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ABSTRACT 

Offloading computations to servers is a promising method for 
resource constrained devices to run deep neural network (DNN). 
It often requires pre-installing DNN models at the server, which 
is not a valid assumption in an edge server environment where a 
client can offload to any nearby server, especially when it is on 
the move. So, the client needs to upload the DNN model on 
demand, but uploading the entire layers at once can seriously 
delay the offloading of the DNN queries due to its high overhead. 
IONN is a technique to partition the layers and upload them 
incrementally for fast start of offloading [1]. It partitions the 
DNN layers using the shortest path on a DNN execution graph 
between the client and the server based on a penalty factor for 
the uploading overhead. This paper proposes a new partition 
algorithm based on efficiency, which generates a more fine-
grained uploading plan. Experimental results show that the 
proposed algorithm tangibly improves the query performance 
during uploading by as much as 55%, with faster execution of 
initially-raised queries.  
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1. INTRODUCTION

DNN apps are computation intensive, so it is challenging for 
mobile devices with limited hardware to run them. Current 
wisdom is to offload the computations to central cloud servers [3] 
[4] [14], so the servers run the DNNs on behalf of the client
using the powerful hardware. This requires the pre-installation
of DNN models at the dedicated servers in advance [5] [12].

This requirement is not appropriate for the emerging edge 
computing environment where the client may send its DNN 
queries to any nearby generic servers located at the edge of the 
network [6] [7] [15]. This is especially true when the client is on 
the move, thus changing the offloading servers frequently. Also, 
the client may run apps based on its personalized DNN models, 
existing only on the device. Since the hardware capacity of the 
edge servers is far limited than that of the centralized servers, it 
is unreasonable for the edge servers to save many DNN models. 
Rather, on-demand installation by uploading the client’s DNN 
model to the server would be more practical. A critical issue of 
the on-demand DNN installation is that the overhead of 
uploading the whole DNN model takes a long time, resulting in a 
long delay to use the edge server. 

An offloading approach called incremental offloading of neural 
network (IONN) has been proposed to address this issue [1]. 
IONN divides a client’s DNN model into several partitions of its 
layers and determines the order of uploading them to the server. 
The client uploads the partitions to the server one by one, 
instead of sending the entire DNN model at once. The server 
incrementally builds the DNN model as each DNN partition 
arrives, allowing the client to start offloading even partially, 
before the whole DNN model is uploaded. That is, when there is 
a DNN query, the server will execute those partitions uploaded 
so far, while the client will execute the rest of the partitions. This 
incremental, partial DNN offloading enables mobile clients to 
use edge servers more quickly, improving the query performance. 

 To decide the best DNN partitions and the uploading order, 
IONN uses a heuristic algorithm based on graph data structure, 
which expresses the collaborative DNN execution between the 
client and the server. It updates the edge weights according to a 
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penalty factor and searches for the shortest path. By repeating 
this process, IONN derives an uploading plan for the DNN 
partitions that ensures DNN performance converges to the best 
performance. A problem with the penalty factor approach is that 
the value is somewhat arbitrary, heuristically decided or 
differently tuned for each DNN model, and the partition tends to 
be large, missing the performance opportunity obtainable with a 
more fine-grained partitioning.  

This paper proposes a different partitioning algorithm, based on 
the efficiency of each partition, the latency reduction benefit 
divided by the uploading overhead. For the partition chosen in 
this way, we also try to sub-partition it if the earlier uploading of 
the sub-partition can accelerate the query execution. The 
proposed algorithm creates a more fine-grained uploading plan, 
which can improve the query performance tangibly, by as much 
as 55% for some model. 

The rest of this paper is organized as follows. Section 2 reviews 
IONN, especially its partitioning algorithm. Section 3 describes 
the proposed algorithm. Section 4 shows the experimental result. 
A summary is in Section 5. 

2. REVIEW OF IONN FOR DNN EDGE 

2.1 Overview 

Generally, a DNN can be viewed as a directed graph whose 
nodes are layers. Each layer performs its computation on the 
input data and passes the output data to the next layer. Layers 
often include parameters that can be trained during the training 
phase. Once trained, the DNN model can be used for handling 
the inference query for a given input data.  

IONN works as follows. When a client connects to an edge 
server, it offloads the DNN computations to the edge server. The 
DNN model is stored on the client device only, and the edge 
server has no information on the client’s DNN model. So, IONN 
creates an uploading plan using a partitioning algorithm that 
determines the DNN partitions and the uploading order of each 
partition. A partition consists of one or multiple layers.  

To create an uploading plan, the client needs the profile 
information on the execution latency of each DNN layer. The 
client’s profile is obtained when the model is installed at the 
client, which executes the DNN model in advance. The server’s 
profile is estimated from the prediction functions for each type 
of DNN layer [5], created at the server when installing IONN. 
The server’s profile is delivered to the client at runtime when the 
client enters its service area. 

IONN finds and uploads partitions with a high priority first, and 
once uploaded, the computations of the layers in those partitions 
will be done at the server, thus being offloaded. The server will 
incrementally build the DNN model from the partitions that the 
client has sent. Knowing which partitions are uploaded and built, 
the client locally computes the remaining layers that are not yet 
uploaded. For example, when a DNN query is raised, the 
computation is performed locally at the client, just before a 

partition that has been uploaded. Then, the result is transferred 
to the server, and the server executes the uploaded partitions 
with it and transfers the new result back to the client. The client 
continues the query execution, possibly offloading to the server 
again if deemed advantageous. 

DNN layers that would better be at the server to achieve the best 
expected query performance, should be uploaded as early as 
possible. However, those layers are not uploaded all at once, but 
one partition at a time, so that if a query is raised during 
uploading, the uploaded layers so far will be executed at the 
server, while local layers will be executed at the client. A 
partitioning algorithm that partitions the DNN layers 
considering both the performance benefit and the uploading 
overhead of each layer is needed. Partitions that are uploaded 
earlier can have their computations offloaded first, so the 
priority among the partitions is important. 

2.2 Original Partitioning Algorithm 

IONN builds a graph-based DNN execution model, named NN 
execution graph, and creates DNN partitions by iteratively 
finding the fastest execution path on the graph by performing 
the shortest path algorithm on the graph. Edge weights are 
adjusted to promote uploading of more layers. 

Fig. 1 shows the subgraph corresponding to a single layer, 
composed of three nodes (1, 2, 3), which will be connected to the 
next layer, also composed of three layers (4, 5, 6). They depict 
the client-side execution time (1, 4) as well as the data transfer 
time to the server (1, 2), the server-side execution time (2, 3), and 
the data transfer time to the client (3, 4) or the transfer time to 
the server (3, 5, which is zero). The server-side execution time 
will also include the upload overhead to initially discourage 
offloading of layer with high upload overhead. 

A path in the graph from the first layer to the last layer depicts a 
scenario for partitioned execution. IONN finds the shortest path 
to select the first partition to upload. Those layers in the server-
side for the first shortest path will be uploaded and executed at 
the server initially (initial state). We need to upload more layers 
to achieve the best performance, the shortest path when the 
upload overhead is zero in the graph (optimal state); it is not 
necessarily a path that executes all layers at the server since 
some layers must still be executed at the client if their data 
 

Figure. 1. Execution time and data transfer time 
associated with a layer represented as a graph. Edge 
weights indicate the time taken for each step. Nodes 2, 3, 
5 represent that query data is at the server, and 1, 4 
represent that query data is at client. Edge (2, 3) and (1, 4) 
represents execution at server and client, respectively. 
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transfer overhead is too high. IONN iteratively computes the 
shortest path in the graph after multiplying a penalty factor to 
the upload overhead in each iteration, which incrementally 
converts the graph weights to the optimal state. IONN multiplies 
a constant 0.5 to the penalty factor, thus reducing the upload 
overhead by half in each iteration. This process repeats until all 
layers are uploaded or the threshold for the optimal state reaches. 
The layers in the partition chosen in each iteration will 
constitute an uploading plan.  

Fig. 2 shows an example NN graph composed of four layers 
(A~D). The upload overhead of each layer is 8, except for C 
whose upload overhead is 16, and they are depicted next to the 
server execution time (e.g., 3+8 for A). In the first iteration, the 
shortest path includes B in the server side. In the second 
iteration after reducing the upload overhead by half, the new 
shortest path includes A, C, D in the server side. The uploading 
plan is uploading [B] first, then [A, C, D]. 

3. ENHANCED PARTITIONING ALGORITHM 

In this section, we propose a new partitioning algorithm for 
IONN based on the efficiency of partitions. 

3.1 Motivation 

IONN used a maximum of eight penalty factors to find partitions: 
1, 0.5, 0.25, …, 0.016, 0.0. When the penalty factor is 1.0, the 
shortest path finds layers for which uploading leads to a total 
latency decrease (benefit) higher than its uploading overhead 

(cost). Reducing the uploading overhead by half in each iteration 
promotes the uploading of additional layers to eventually reach 
the optimal state. 

There are two issues for the algorithm. The values for the 
penalty factor are decided somewhat arbitrarily, and may be 
different for each DNN model. Also, the partitions tend to be 
large, missing the performance opportunity obtainable with a 
more fine-grained partitioning, as will be explained shortly. 

Fig. 3 (a) shows the overall improvement of the DNN execution 
latency for the example of Fig. 2, when [B] is uploaded first, 
followed by [A,C,D]. While [B] is being uploaded for the first 8 
time units, there is no latency benefit. After [B] is uploaded at 
time 8, the total latency is improved by 9 since B’s execution at 
the server reduces its execution time from 19 to 10. This latency 
benefit is not improved any further until [A,C,D] is uploaded at 
the time 40, reaching the optimal state, a latency improvement of 
31. 

However, if IONN chose [A] in iteration 2 and [C,D] in iteration 
3, thus making a uploading plan [B]-[A]-[CD], the latency 
improvement graph will be Fig 3 (b), There is additional latency 
benefit of 6 during the time 16-40 due to [A] uploaded at the 
time 16. Uploading of [C,D] reaches the optimal state, as 
previously. 

Finally, if [C] and [D] were uploaded separately, with an 
uploading plan of [B]-[A]-[C]-[D], there is additional latency 
benefit of 8 during the time 32-40, as in Fig. 3 (c). However, it 
should be noted that [B]-[A]-[D]-[C] would achieve a worse 
latency even than Figure 3 (b), indicating finer-grained 
partitioning is not always beneficial. 

Penalty factor partitioning can find partition [A] with the 
appropriate penalty factor, but not [C]. If a penalty value 
between 0.75 and 0.67 was used in the second iteration, [A] 
would be identified, but there is no clear way of deciding it in 
advance. Partition [C] cannot be identified by adjusting penalty 
factor. Instead, [C,D] will always be identified as a single 
partition.  

This simple example indicates there are two improvements 

Figure 2. Illustration of the original partitioning 
algorithm.  

 
Fig. 3 Illustration of the incremental latency improvement of different partitioning algorithms 
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needed for more fine-grained partitioning. The original 
algorithm relies on heuristically chosen values for the penalty 
factors to partition a given DNN model, and the appropriate 
values cannot be known in advance. There even exist finer 
partitions that cannot be found by penalty factors with small 
differences. A new algorithm is proposed that does not rely on 
heuristically chosen values and finds more fine-grained 
partitions, while prioritizing partitions with high latency 
improvement and low upload penalty. 

3.2 Efficiency-based Partitioning 

The main idea is to find the next partition in each iteration using 
efficiency, defined as follows: 

Efficiency = latency improvement / upload time  

If we define efficiency in the context of penalty-based partition, 
it would be the first penalty value that can change the shortest 
path, when we decrease the penalty value from 1.0 repeatedly by 
a tiny amount. Such a penalty value satisfies:  

latency improvement - penalty factor * upload overhead = 0 

In other words, efficiency equals to such a penalty factor, but we 
can decide it deterministically unlike a penalty factor. Based on 
efficiency, we can devise a greedy algorithm that selects a 
partition with the highest efficiency repeatedly. We call this 
approach efficiency-based partitioning in this paper.  

The proposed algorithm for the example in Fig. 2 works as in Fig. 
4. After [B] is uploaded, we compute efficiency for every 
possible candidate partition. The partition [A] has an efficiency 
of 0.75 (since it has an upload overhead of 8 and a latency 
improvement of 6, as can be seen in Fig. 2), the partition [C,D] 
has an efficiency of 0.67, and others have a lower efficiency 
(efficiency of any partition crossing already-uploaded partitions 
is not calculated, since it is lower than or equal to the best, non-
crossing partition). After [A] is uploaded, we compute the 
efficiency again for the remaining candidate partitions. Among 
[C], [D], and [C,D], the partition [C,D] has the highest efficiency, 
so we choose it. This will lead to an uploading plan of [B]-[A]-
[C,D].  

We need to compute efficiency for every possible sequence of 
adjacent layers since there are cases where individual layers are 
inefficient but efficient when grouped into a single partition. 
When computing the latency improvement, we need to consider 
the already uploaded layers. That is, depending on whether 
adjacent layers are already uploaded to the server, the input and 
output data transfer time between the server and the client can 
vary significantly for the partition candidates. This means every 
time a partition is uploaded, efficiencies of the remaining 
partition candidates may need re-calculating. This favors 
uploading of a partition that has adjacent layers already 
uploaded, as the client to server transfer time of input data or the 
server to client transfer time of output data is replaced by a 
server to server transfer time, which is zero.  

 

3.3 Recursive Partitioning 

It is desirable for a partition candidate to be recursively sub-
partitioned if a sub-partition also improves latency, as in Fig. 3 
(c). This approach is called recursive-efficiency-based 
partitioning in this paper. Fig. 4 illustrates this sub-partitioning, 
after the partition [C,D] is selected as the most efficient one. 
Instead of immediately grouping it as a partition, it checks the 
sub-partitions, [C] and [D], of the partition [C D], to see if a sub-
partition with positive efficiency exists. If none, [C D] is grouped 
as a single partition, but [C] has an efficiency of 0.5. Hence, we 
select the partition [C] as a separate partition.  

If there were multiple sub-partitions with positive efficiency, the 
sub-partition with highest efficiency is selected. If a partition 
selected recursively also contains sub-partitions, because it 
consists of multiple layers, the recursion repeats, until no sub-
partition with positive efficiency exists. Then, it means the 
partition does not contain sub-partition with latency 
improvement. After selecting partition [C], we return to 
efficiency-based partitioning in the next iteration, which selects 
[D]. Because [C] has been uploaded, the efficiency of the 
partition [D] changes from -1 to 1, higher than the efficiency of 
[C,D] before recursion. It shows how after selecting a sub-
partition by recursion, the remaining sub-partition always has 
an efficiency higher than that of partition the recursive 
partitioning was performed on. The final uploading plan is [B]-
[A]-[C]-[D]. 

3.4 Overall Proposed Algorithm 

The two improvements on the original penalty factor-based 
partitioning, efficiency-based partitioning and recursive sub-
partitioning, are the basis for the final, proposed partitioning 
algorithm, shown in algorithm 1.  

There are two minor optimizations for the algorithm. We can 
know in advance layers not uploaded in the optimal state, by 

 
Figure 4. Illustration of the proposed partitioning 
algorithm for example in Fig. 2. The generated upload 
plan is [B]-[A]-[C]-[D]. 
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computing the shortest path on the NN graph with a penalty 

factor of zero. Any candidate partition that includes those layers 
does not need to have its efficiency computed, since it will not be 
chosen as partition and uploaded. On the other hand, partitions 
with efficiency is higher than 1 are always beneficial to upload, 
thus need no further partitioning. It is the initial partition, layers 
in the server-side of the NN graph with a penalty factor of 1.0 

4. PRELIMINARY EVALUATION RESULT 

4.1 Experiment Environment 

We evaluated the proposed partitioning algorithms on the 
similar IONN environment [1]. We use the caffe [8] framework 
to implement the DNN offloading system. The client was 
connected to the server through lab Ethernet, and the 
experiment was conducted with a network bandwidth limited to 
80Mbps by software. The client device is an embedded board 
Odroid XU4 with ARM big.LITTLE CPU (2.0GHz+ 1.5GHz 4 
cores) and 2GB memory [9]. The server has an x86 CPU (3.6GHz 
4 cores), GTX 1080 Ti GPU, and 32GB memory. 

After the client is connected to the edge server, the client 
performs the partitioning algorithm and creates an uploading 
plan. Then, the client starts the incremental uploading of the 
partitions as well as the execution of the DNN queries. The client 
repeatedly raises DNN queries, raising a new query right after 
the previous query finishes, until the entire model is uploaded. 
Till then, each query is executed collaboratively by the client 
(local layers) and by the server (uploaded layers), even for the 
first query, which will wait until the first partition is uploaded 
completely and then execute (so its execution time is same for 
the three algorithms; see Fig. 7). Then, it raises five more DNN 
queries. An average of 10 runs was found for five CNN models: 
AlexNet [2], Inception [16], ResNet [13], GoogleNet [10] and 
MobileNet [11]. 

We experimented with three partitioning algorithms: the 
original penalty-based algorithm with halving penalty factor 
values (original), the efficiency-based algorithm (efficiency), and 
the efficiency-based algorithm with recursive sub-partitions 
(recursive-efficiency). 

4.2 Partitioning Behavior 

Figure 5 compares the number of partitions for the three 
algorithms for each model. It also shows the number of 
partitions uploaded in the first half of the model uploading time 
and that in the second half separately. The total number of 
partitions increases tangibly when we move from original to 
efficiency and recursive-efficiency. The increase in both the first 
half and the second half for AlexNet and ResNet relates to 
improved query latencies in both cases, as will be seen later.  

Figure 6 shows for each model the relative size of the largest 
partition compared to the entire model size.  Except for 
Inception, efficiency and recursive-efficiency could divide the 
largest partition into smaller partitions (the largest partition in 
Inception was a single layer, thus indivisible). 

4.3 DNN Query Performance 

Figure 7 traces the execution latencies of repeatedly-raised 
queries for the AlexNet which has a relatively large uploading 
time. For AlexNet, recursive-efficiency significantly increases the 

Algorithm 1 DNN Partitioning Algorithm 

Input:  DNN model description, DNN server and 
client execution latency (profile or prediction), 
network speed 

Output: Partitioning plan 

1: procedure PARTITIONING 
2:  plan ← [] 
3:  find  optimal layers 
4:  find and add initial partition to plan 
5:  create partition candidates and calculate their 

efficiencies  
6:  while optimal layer NOT in partitions exist do 
7:   p ← candidate with highest efficiency 
8:   while sub-partition candidate of p with 

positive efficiency exist do 
9:    p ← sub-partition candidate with 

highest efficiency 
10:   add p to plan 
11:   remove partition candidates containing 

layer in p 
12:   update efficiencies 
13:  return partitions 

 

 

Figure 5. Number of partitions of original, efficiency, and 
recursive-efficiency algorithms (from left to right). 
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number of queries executed compared to original, due to the 
lower latency of query execution, especially during the interval 
of 22-30 seconds. The number of query processed before the 
entire model is uploaded increased from 56.8 to 88.1, an increase 
of 55% (the number of queries per second increased by 48%). 
These results coincide with the decrease in the relative size of 
the largest partition in Figure 6 and the increase of the number 
of partitions in the first and second half of the uploading time in 
Figure 5.  

We also saw some benefit in query latency for ResNet. Original 
is better in some queries due to implementation issues. For 
Inception and small-sized models like GoogleNet and MobileNet, 
there was no clear distinction among three algorithms. 

4.4 Partitioning Algorithm Overhead 

The overhead of the three partitioning algorithms on the client 
were similar. The speed of the original algorithm is similar to or 
slightly faster than the efficiency-based algorithm, but both were 
in the range of 0.1-0.5ms. Modifying the original algorithm to 
output the same result as efficiency-based one, which was 
reducing the penalty factor from 1 to 0 by a constant 0.0001, 
leads to a running time of 100ms. This high overhead is due to 
its run of the shortest path algorithm around 10,000 times. A 
small constant was needed because ResNet had partitions 
identified by 0.0001 difference in the penalty factor. Our 
proposed algorithm with recursive efficiency runs with a 
reasonable overhead (0.6ms for AlexNet, for 2ms for MobileNet).  

5. SUMMARY AND FUTURE WORK 

Edge computing is a promising approach to run the DNN models 
on resource-scarce mobile devices, but requires incremental 
uploading of layers. This paper proposes an efficiency-based 
algorithm for partitioning a DNN model to decide the uploading 
plan of the layers. It prioritizes the partitions with high latency 
improvement and low uploading overhead, with finer-grained 
partitions. Experimental results on IONN show that the query 
performance increases tangibly for some models, while 
decreasing the initial query completion time, compared to the 
original penalty-based algorithm.  

We need to upgrade the implementation of the server-side DNN, 
which is expected to improve the result of other models. We also 
need to evaluate with realistic query raise behaviors of real DNN 
apps to understand the impact of the proposed algorithm. These 
are left as a future work. 
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Figure 7. Query execution latency (shorter is better). 
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