
Enhanced Partitioning of DNN Layers for Uploading from
Mobile Devices to Edge Servers

Kwang Yong Shin
Seoul National University

 Seoul, South Korea
kwangshin@altair.snu.ac.kr

Hyuk-Jin Jeong
 Seoul National University

 Seoul, South Korea
hjj@altair.snu.ac.kr

Soo-Mook Moon
Seoul National University

 Seoul, South Korea
 smoon@snu.ac.kr

ABSTRACT

Offloading computations to servers is a promising method for
resource constrained devices to run deep neural network (DNN).
It often requires pre-installing DNN models at the server, which
is not a valid assumption in an edge server environment where a
client can offload to any nearby server, especially when it is on
the move. So, the client needs to upload the DNN model on
demand, but uploading the entire layers at once can seriously
delay the offloading of the DNN queries due to its high overhead.
IONN is a technique to partition the layers and upload them
incrementally for fast start of offloading [1]. It partitions the
DNN layers using the shortest path on a DNN execution graph
between the client and the server based on a penalty factor for
the uploading overhead. This paper proposes a new partition
algorithm based on efficiency, which generates a more fine-
grained uploading plan. Experimental results show that the
proposed algorithm tangibly improves the query performance
during uploading by as much as 55%, with faster execution of
initially-raised queries.

CCS CONCEPTS
• Human-centered computing ~ Mobile computing •
Computing methodologies ~ Distributed computing
methodologies • Computer systems organization ~ Neural
networks

Systems and Applications (EMDL’19), June 21, 2019, Seoul, Republic of
Korea. ACM, New York, NY, USA, 6 pages.
https://dx.doi.org/10.1145/3325413.3329788

1. INTRODUCTION

DNN apps are computation intensive, so it is challenging for
mobile devices with limited hardware to run them. Current
wisdom is to offload the computations to central cloud servers [3]
[4] [14], so the servers run the DNNs on behalf of the client
using the powerful hardware. This requires the pre-installation
of DNN models at the dedicated servers in advance [5] [12].

This requirement is not appropriate for the emerging edge
computing environment where the client may send its DNN
queries to any nearby generic servers located at the edge of the
network [6] [7] [15]. This is especially true when the client is on
the move, thus changing the offloading servers frequently. Also,
the client may run apps based on its personalized DNN models,
existing only on the device. Since the hardware capacity of the
edge servers is far limited than that of the centralized servers, it
is unreasonable for the edge servers to save many DNN models.
Rather, on-demand installation by uploading the client’s DNN
model to the server would be more practical. A critical issue of
the on-demand DNN installation is that the overhead of
uploading the whole DNN model takes a long time, resulting in a
long delay to use the edge server.

An offloading approach called incremental offloading of neural
network (IONN) has been proposed to address this issue [1].
IONN divides a client’s DNN model into several partitions of its
layers and determines the order of uploading them to the server.
The client uploads the partitions to the server one by one,
instead of sending the entire DNN model at once. The server
incrementally builds the DNN model as each DNN partition
arrives, allowing the client to start offloading even partially,
before the whole DNN model is uploaded. That is, when there is
a DNN query, the server will execute those partitions uploaded
so far, while the client will execute the rest of the partitions. This
incremental, partial DNN offloading enables mobile clients to
use edge servers more quickly, improving the query performance.

 To decide the best DNN partitions and the uploading order,
IONN uses a heuristic algorithm based on graph data structure,
which expresses the collaborative DNN execution between the
client and the server. It updates the edge weights according to a

KEYWORDS
Edge computing; deep neural network; computation offloading;
mobile computing

ACM Reference format:

Kwang Yong Shin, Hyuk-Jin Jeong and Soo-Mook Moon. 2019. Enhanced
Partitioning of DNN Layers for Uploading from Mobile Devices to Edge
Servers. In The 3rd International Workshop on Deep Learning for Mobile

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
EMDL'19, June 21, 2019, Seoul, Republic of Korea.
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6771-4/19/06...$15.00.
DOI: https://dx.doi.org/10.1145/3325413.3329788

Workshop Full Paper EMDL ’19, June 21, 2019, Seoul, Korea

35

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3325413.3329788&domain=pdf&date_stamp=2019-06-13

penalty factor and searches for the shortest path. By repeating
this process, IONN derives an uploading plan for the DNN
partitions that ensures DNN performance converges to the best
performance. A problem with the penalty factor approach is that
the value is somewhat arbitrary, heuristically decided or
differently tuned for each DNN model, and the partition tends to
be large, missing the performance opportunity obtainable with a
more fine-grained partitioning.

This paper proposes a different partitioning algorithm, based on
the efficiency of each partition, the latency reduction benefit
divided by the uploading overhead. For the partition chosen in
this way, we also try to sub-partition it if the earlier uploading of
the sub-partition can accelerate the query execution. The
proposed algorithm creates a more fine-grained uploading plan,
which can improve the query performance tangibly, by as much
as 55% for some model.

The rest of this paper is organized as follows. Section 2 reviews
IONN, especially its partitioning algorithm. Section 3 describes
the proposed algorithm. Section 4 shows the experimental result.
A summary is in Section 5.

2. REVIEW OF IONN FOR DNN EDGE

2.1 Overview

Generally, a DNN can be viewed as a directed graph whose
nodes are layers. Each layer performs its computation on the
input data and passes the output data to the next layer. Layers
often include parameters that can be trained during the training
phase. Once trained, the DNN model can be used for handling
the inference query for a given input data.

IONN works as follows. When a client connects to an edge
server, it offloads the DNN computations to the edge server. The
DNN model is stored on the client device only, and the edge
server has no information on the client’s DNN model. So, IONN
creates an uploading plan using a partitioning algorithm that
determines the DNN partitions and the uploading order of each
partition. A partition consists of one or multiple layers.

To create an uploading plan, the client needs the profile
information on the execution latency of each DNN layer. The
client’s profile is obtained when the model is installed at the
client, which executes the DNN model in advance. The server’s
profile is estimated from the prediction functions for each type
of DNN layer [5], created at the server when installing IONN.
The server’s profile is delivered to the client at runtime when the
client enters its service area.

IONN finds and uploads partitions with a high priority first, and
once uploaded, the computations of the layers in those partitions
will be done at the server, thus being offloaded. The server will
incrementally build the DNN model from the partitions that the
client has sent. Knowing which partitions are uploaded and built,
the client locally computes the remaining layers that are not yet
uploaded. For example, when a DNN query is raised, the
computation is performed locally at the client, just before a

partition that has been uploaded. Then, the result is transferred
to the server, and the server executes the uploaded partitions
with it and transfers the new result back to the client. The client
continues the query execution, possibly offloading to the server
again if deemed advantageous.

DNN layers that would better be at the server to achieve the best
expected query performance, should be uploaded as early as
possible. However, those layers are not uploaded all at once, but
one partition at a time, so that if a query is raised during
uploading, the uploaded layers so far will be executed at the
server, while local layers will be executed at the client. A
partitioning algorithm that partitions the DNN layers
considering both the performance benefit and the uploading
overhead of each layer is needed. Partitions that are uploaded
earlier can have their computations offloaded first, so the
priority among the partitions is important.

2.2 Original Partitioning Algorithm

IONN builds a graph-based DNN execution model, named NN
execution graph, and creates DNN partitions by iteratively
finding the fastest execution path on the graph by performing
the shortest path algorithm on the graph. Edge weights are
adjusted to promote uploading of more layers.

Fig. 1 shows the subgraph corresponding to a single layer,
composed of three nodes (1, 2, 3), which will be connected to the
next layer, also composed of three layers (4, 5, 6). They depict
the client-side execution time (1, 4) as well as the data transfer
time to the server (1, 2), the server-side execution time (2, 3), and
the data transfer time to the client (3, 4) or the transfer time to
the server (3, 5, which is zero). The server-side execution time
will also include the upload overhead to initially discourage
offloading of layer with high upload overhead.

A path in the graph from the first layer to the last layer depicts a
scenario for partitioned execution. IONN finds the shortest path
to select the first partition to upload. Those layers in the server-
side for the first shortest path will be uploaded and executed at
the server initially (initial state). We need to upload more layers
to achieve the best performance, the shortest path when the
upload overhead is zero in the graph (optimal state); it is not
necessarily a path that executes all layers at the server since
some layers must still be executed at the client if their data

Figure. 1. Execution time and data transfer time
associated with a layer represented as a graph. Edge
weights indicate the time taken for each step. Nodes 2, 3,
5 represent that query data is at the server, and 1, 4
represent that query data is at client. Edge (2, 3) and (1, 4)
represents execution at server and client, respectively.

Workshop Full Paper EMDL ’19, June 21, 2019, Seoul, Korea

36

transfer overhead is too high. IONN iteratively computes the
shortest path in the graph after multiplying a penalty factor to
the upload overhead in each iteration, which incrementally
converts the graph weights to the optimal state. IONN multiplies
a constant 0.5 to the penalty factor, thus reducing the upload
overhead by half in each iteration. This process repeats until all
layers are uploaded or the threshold for the optimal state reaches.
The layers in the partition chosen in each iteration will
constitute an uploading plan.

Fig. 2 shows an example NN graph composed of four layers
(A~D). The upload overhead of each layer is 8, except for C
whose upload overhead is 16, and they are depicted next to the
server execution time (e.g., 3+8 for A). In the first iteration, the
shortest path includes B in the server side. In the second
iteration after reducing the upload overhead by half, the new
shortest path includes A, C, D in the server side. The uploading
plan is uploading [B] first, then [A, C, D].

3. ENHANCED PARTITIONING ALGORITHM

In this section, we propose a new partitioning algorithm for
IONN based on the efficiency of partitions.

3.1 Motivation

IONN used a maximum of eight penalty factors to find partitions:
1, 0.5, 0.25, …, 0.016, 0.0. When the penalty factor is 1.0, the
shortest path finds layers for which uploading leads to a total
latency decrease (benefit) higher than its uploading overhead

(cost). Reducing the uploading overhead by half in each iteration
promotes the uploading of additional layers to eventually reach
the optimal state.

There are two issues for the algorithm. The values for the
penalty factor are decided somewhat arbitrarily, and may be
different for each DNN model. Also, the partitions tend to be
large, missing the performance opportunity obtainable with a
more fine-grained partitioning, as will be explained shortly.

Fig. 3 (a) shows the overall improvement of the DNN execution
latency for the example of Fig. 2, when [B] is uploaded first,
followed by [A,C,D]. While [B] is being uploaded for the first 8
time units, there is no latency benefit. After [B] is uploaded at
time 8, the total latency is improved by 9 since B’s execution at
the server reduces its execution time from 19 to 10. This latency
benefit is not improved any further until [A,C,D] is uploaded at
the time 40, reaching the optimal state, a latency improvement of
31.

However, if IONN chose [A] in iteration 2 and [C,D] in iteration
3, thus making a uploading plan [B]-[A]-[CD], the latency
improvement graph will be Fig 3 (b), There is additional latency
benefit of 6 during the time 16-40 due to [A] uploaded at the
time 16. Uploading of [C,D] reaches the optimal state, as
previously.

Finally, if [C] and [D] were uploaded separately, with an
uploading plan of [B]-[A]-[C]-[D], there is additional latency
benefit of 8 during the time 32-40, as in Fig. 3 (c). However, it
should be noted that [B]-[A]-[D]-[C] would achieve a worse
latency even than Figure 3 (b), indicating finer-grained
partitioning is not always beneficial.

Penalty factor partitioning can find partition [A] with the
appropriate penalty factor, but not [C]. If a penalty value
between 0.75 and 0.67 was used in the second iteration, [A]
would be identified, but there is no clear way of deciding it in
advance. Partition [C] cannot be identified by adjusting penalty
factor. Instead, [C,D] will always be identified as a single
partition.

This simple example indicates there are two improvements

Figure 2. Illustration of the original partitioning
algorithm.

Fig. 3 Illustration of the incremental latency improvement of different partitioning algorithms

Workshop Full Paper EMDL ’19, June 21, 2019, Seoul, Korea

37

needed for more fine-grained partitioning. The original
algorithm relies on heuristically chosen values for the penalty
factors to partition a given DNN model, and the appropriate
values cannot be known in advance. There even exist finer
partitions that cannot be found by penalty factors with small
differences. A new algorithm is proposed that does not rely on
heuristically chosen values and finds more fine-grained
partitions, while prioritizing partitions with high latency
improvement and low upload penalty.

3.2 Efficiency-based Partitioning

The main idea is to find the next partition in each iteration using
efficiency, defined as follows:

Efficiency = latency improvement / upload time

If we define efficiency in the context of penalty-based partition,
it would be the first penalty value that can change the shortest
path, when we decrease the penalty value from 1.0 repeatedly by
a tiny amount. Such a penalty value satisfies:

latency improvement - penalty factor * upload overhead = 0

In other words, efficiency equals to such a penalty factor, but we
can decide it deterministically unlike a penalty factor. Based on
efficiency, we can devise a greedy algorithm that selects a
partition with the highest efficiency repeatedly. We call this
approach efficiency-based partitioning in this paper.

The proposed algorithm for the example in Fig. 2 works as in Fig.
4. After [B] is uploaded, we compute efficiency for every
possible candidate partition. The partition [A] has an efficiency
of 0.75 (since it has an upload overhead of 8 and a latency
improvement of 6, as can be seen in Fig. 2), the partition [C,D]
has an efficiency of 0.67, and others have a lower efficiency
(efficiency of any partition crossing already-uploaded partitions
is not calculated, since it is lower than or equal to the best, non-
crossing partition). After [A] is uploaded, we compute the
efficiency again for the remaining candidate partitions. Among
[C], [D], and [C,D], the partition [C,D] has the highest efficiency,
so we choose it. This will lead to an uploading plan of [B]-[A]-
[C,D].

We need to compute efficiency for every possible sequence of
adjacent layers since there are cases where individual layers are
inefficient but efficient when grouped into a single partition.
When computing the latency improvement, we need to consider
the already uploaded layers. That is, depending on whether
adjacent layers are already uploaded to the server, the input and
output data transfer time between the server and the client can
vary significantly for the partition candidates. This means every
time a partition is uploaded, efficiencies of the remaining
partition candidates may need re-calculating. This favors
uploading of a partition that has adjacent layers already
uploaded, as the client to server transfer time of input data or the
server to client transfer time of output data is replaced by a
server to server transfer time, which is zero.

3.3 Recursive Partitioning

It is desirable for a partition candidate to be recursively sub-
partitioned if a sub-partition also improves latency, as in Fig. 3
(c). This approach is called recursive-efficiency-based
partitioning in this paper. Fig. 4 illustrates this sub-partitioning,
after the partition [C,D] is selected as the most efficient one.
Instead of immediately grouping it as a partition, it checks the
sub-partitions, [C] and [D], of the partition [C D], to see if a sub-
partition with positive efficiency exists. If none, [C D] is grouped
as a single partition, but [C] has an efficiency of 0.5. Hence, we
select the partition [C] as a separate partition.

If there were multiple sub-partitions with positive efficiency, the
sub-partition with highest efficiency is selected. If a partition
selected recursively also contains sub-partitions, because it
consists of multiple layers, the recursion repeats, until no sub-
partition with positive efficiency exists. Then, it means the
partition does not contain sub-partition with latency
improvement. After selecting partition [C], we return to
efficiency-based partitioning in the next iteration, which selects
[D]. Because [C] has been uploaded, the efficiency of the
partition [D] changes from -1 to 1, higher than the efficiency of
[C,D] before recursion. It shows how after selecting a sub-
partition by recursion, the remaining sub-partition always has
an efficiency higher than that of partition the recursive
partitioning was performed on. The final uploading plan is [B]-
[A]-[C]-[D].

3.4 Overall Proposed Algorithm

The two improvements on the original penalty factor-based
partitioning, efficiency-based partitioning and recursive sub-
partitioning, are the basis for the final, proposed partitioning
algorithm, shown in algorithm 1.

There are two minor optimizations for the algorithm. We can
know in advance layers not uploaded in the optimal state, by

Figure 4. Illustration of the proposed partitioning
algorithm for example in Fig. 2. The generated upload
plan is [B]-[A]-[C]-[D].

Workshop Full Paper EMDL ’19, June 21, 2019, Seoul, Korea

38

computing the shortest path on the NN graph with a penalty

factor of zero. Any candidate partition that includes those layers
does not need to have its efficiency computed, since it will not be
chosen as partition and uploaded. On the other hand, partitions
with efficiency is higher than 1 are always beneficial to upload,
thus need no further partitioning. It is the initial partition, layers
in the server-side of the NN graph with a penalty factor of 1.0

4. PRELIMINARY EVALUATION RESULT

4.1 Experiment Environment

We evaluated the proposed partitioning algorithms on the
similar IONN environment [1]. We use the caffe [8] framework
to implement the DNN offloading system. The client was
connected to the server through lab Ethernet, and the
experiment was conducted with a network bandwidth limited to
80Mbps by software. The client device is an embedded board
Odroid XU4 with ARM big.LITTLE CPU (2.0GHz+ 1.5GHz 4
cores) and 2GB memory [9]. The server has an x86 CPU (3.6GHz
4 cores), GTX 1080 Ti GPU, and 32GB memory.

After the client is connected to the edge server, the client
performs the partitioning algorithm and creates an uploading
plan. Then, the client starts the incremental uploading of the
partitions as well as the execution of the DNN queries. The client
repeatedly raises DNN queries, raising a new query right after
the previous query finishes, until the entire model is uploaded.
Till then, each query is executed collaboratively by the client
(local layers) and by the server (uploaded layers), even for the
first query, which will wait until the first partition is uploaded
completely and then execute (so its execution time is same for
the three algorithms; see Fig. 7). Then, it raises five more DNN
queries. An average of 10 runs was found for five CNN models:
AlexNet [2], Inception [16], ResNet [13], GoogleNet [10] and
MobileNet [11].

We experimented with three partitioning algorithms: the
original penalty-based algorithm with halving penalty factor
values (original), the efficiency-based algorithm (efficiency), and
the efficiency-based algorithm with recursive sub-partitions
(recursive-efficiency).

4.2 Partitioning Behavior

Figure 5 compares the number of partitions for the three
algorithms for each model. It also shows the number of
partitions uploaded in the first half of the model uploading time
and that in the second half separately. The total number of
partitions increases tangibly when we move from original to
efficiency and recursive-efficiency. The increase in both the first
half and the second half for AlexNet and ResNet relates to
improved query latencies in both cases, as will be seen later.

Figure 6 shows for each model the relative size of the largest
partition compared to the entire model size. Except for
Inception, efficiency and recursive-efficiency could divide the
largest partition into smaller partitions (the largest partition in
Inception was a single layer, thus indivisible).

4.3 DNN Query Performance

Figure 7 traces the execution latencies of repeatedly-raised
queries for the AlexNet which has a relatively large uploading
time. For AlexNet, recursive-efficiency significantly increases the

Algorithm 1 DNN Partitioning Algorithm

Input: DNN model description, DNN server and
client execution latency (profile or prediction),
network speed

Output: Partitioning plan

1: procedure PARTITIONING
2: plan ← []
3: find optimal layers
4: find and add initial partition to plan
5: create partition candidates and calculate their

efficiencies
6: while optimal layer NOT in partitions exist do
7: p ← candidate with highest efficiency
8: while sub-partition candidate of p with

positive efficiency exist do
9: p ← sub-partition candidate with

highest efficiency
10: add p to plan
11: remove partition candidates containing

layer in p
12: update efficiencies
13: return partitions

Figure 5. Number of partitions of original, efficiency, and
recursive-efficiency algorithms (from left to right).

2
4

2 1 2
1

1
1 2

2
2

6 6
2 2

1

1
3

2 2
4

9
6 6

123

1
4 3

5

0

2

4

6

8

10

12

14

16

18

AlexNet Inception ResNet GoogleNet MobileNet

N
u

m
b

er
 o

f
P

ar
ti

ti
o

n
s

DNN Model

First-half Second-half

Figure 6. The relative size of the largest partition,
compared to the entire size of the DNN model

0
.9

6

0
.6

7

0
.5

9

0
.4

0

0
.3

8

0
.9

6

0
.6

7

0
.3

5

0
.4

0

0
.3

8
 0
.6

2

0
.6

7

0
.2

4

0
.2

1

0
.2

5

0

0.2

0.4

0.6

0.8

1

AlexNet Inception ResNet GoogleNet MobileNet

La
rg

es
t

p
ar

ti
ti

o
n

 r
el

at
iv

e
si

ze

DNN Model

Original Efficiency Recursive-efficiency

Workshop Full Paper EMDL ’19, June 21, 2019, Seoul, Korea

39

number of queries executed compared to original, due to the
lower latency of query execution, especially during the interval
of 22-30 seconds. The number of query processed before the
entire model is uploaded increased from 56.8 to 88.1, an increase
of 55% (the number of queries per second increased by 48%).
These results coincide with the decrease in the relative size of
the largest partition in Figure 6 and the increase of the number
of partitions in the first and second half of the uploading time in
Figure 5.

We also saw some benefit in query latency for ResNet. Original
is better in some queries due to implementation issues. For
Inception and small-sized models like GoogleNet and MobileNet,
there was no clear distinction among three algorithms.

4.4 Partitioning Algorithm Overhead

The overhead of the three partitioning algorithms on the client
were similar. The speed of the original algorithm is similar to or
slightly faster than the efficiency-based algorithm, but both were
in the range of 0.1-0.5ms. Modifying the original algorithm to
output the same result as efficiency-based one, which was
reducing the penalty factor from 1 to 0 by a constant 0.0001,
leads to a running time of 100ms. This high overhead is due to
its run of the shortest path algorithm around 10,000 times. A
small constant was needed because ResNet had partitions
identified by 0.0001 difference in the penalty factor. Our
proposed algorithm with recursive efficiency runs with a
reasonable overhead (0.6ms for AlexNet, for 2ms for MobileNet).

5. SUMMARY AND FUTURE WORK

Edge computing is a promising approach to run the DNN models
on resource-scarce mobile devices, but requires incremental
uploading of layers. This paper proposes an efficiency-based
algorithm for partitioning a DNN model to decide the uploading
plan of the layers. It prioritizes the partitions with high latency
improvement and low uploading overhead, with finer-grained
partitions. Experimental results on IONN show that the query
performance increases tangibly for some models, while
decreasing the initial query completion time, compared to the
original penalty-based algorithm.

We need to upgrade the implementation of the server-side DNN,
which is expected to improve the result of other models. We also
need to evaluate with realistic query raise behaviors of real DNN
apps to understand the impact of the proposed algorithm. These
are left as a future work.

ACKNOWLEDGMENTS
This work was supported by Basic Science Research Program
through the National Research Foundation (NRF) of Korea
funded by the Ministry of Science, ICT & Future Planning (NRF-
2017R1A2B2005562).

REFERENCES
[1] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon.

2018. IONN: Incremental Offloading of Neural Network Computations from
Mobile Devices to Edge Servers. In Proceedings of the 2018 ACM Symposium
on Cloud Computing (SoCC ’18). ACM, New York, NY, USA, 401-411.

[2] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097-1105).

[3] Hewlett Packard Haven, https://www.havenondemand.com/
[4] IBM Alchemy API, https://www.ibm.com/watson/alchemy-api.html
[5] Yiping Kang, et al. (2017). Neurosurgeon: Collaborative Intelligence Between

the Cloud and Mobile Edge. In Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (pp. 615-629). ACM.

[6] Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012, August). Fog computing
and its role in the internet of things. In Proceedings of the first edition of the
MCC workshop on Mobile cloud computing (pp. 13-16).

[7] Satyanarayanan, M. (2017). The emergence of edge computing. Computer,
50(1), 30-39.

[8] Jia, Y., et al. (2014). Caffe: Convolutional architecture for fast feature
embedding. In Proc of the 22nd ACM intl conference on Multimedia.

[9] ODROID XU4 user manual, https://magazine.odroid.com/odroid-xu4
[10] Szegedy, C. et al. (2015). Going deeper with convolutions. In Proc. of the IEEE

conference on computer vision and pattern recognition.
[11] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. (2017).
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. CoRR abs/1704.04861

[12] L. Yang, J. Cao, H. Cheng and Y. Ji. (2015) "Multi-User Computation
Partitioning for Latency Sensitive Mobile Cloud Applications," in IEEE
Transactions on Computers, vol. 64, no. 8, pp. 2253-2266

[13] He, K., et al. (2016). Deep residual learning for image recognition. In Proc of
the IEEE conference on computer vision and pattern recognition.

[14] Google Cloud Platform. https://cloud.google.com/compute/pricing
[15] Satyanarayanan, M. (2001). Pervasive computing: Vision and challenges. IEEE

Personal communications, 8(4), 10-17.
[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. (2015).

Rethinking the inception architecture for computer vision. CoRR.

Figure 7. Query execution latency (shorter is better).

0

0.5

1

1.5

0 10 20 30 40

Q
u

er
y

Ex
ec

u
ti

o
n

 L
at

en
cy

 (
s)

Time (s)

AlexNet

Original/Efficiency Recursive-efficiency

0

1

2

3

0 5 10 15

Q
u

er
y

Ex
ec

u
ti

o
n

 L
at

en
cy

 (
s)

Time (s)

ResNet

Original Efficiency Recursive-efficiency

Workshop Full Paper EMDL ’19, June 21, 2019, Seoul, Korea

40

https://www.havenondemand.com/
https://www.ibm.com/watson/alchemy-api.html
https://magazine.odroid.com/odroid-xu4
https://cloud.google.com/compute/pricing

