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Abstract001

Structured representations, exemplified by002
Abstract Meaning Representation (AMR),003
have long been pivotal in computational004
linguistics. However, their role remains005
ambiguous in the Large Language Mod-006
els (LLMs) era. Initial attempts to inte-007
grate structured representation into LLMs008
via a zero-shot setting yielded inferior per-009
formance. We hypothesize that such a010
decline stems from the structure informa-011
tion being passed into LLMs in a code012
format unfamiliar to LLMs’ training cor-013
pora. Consequently, we propose SR-LLM,014
an innovative framework with two settings015
to explore a superior way of integrating016
structured representation with LLMs from017
training-free and training-dependent per-018
spectives. The former integrates structural019
information through natural language de-020
scriptions in LLM prompts, whereas its021
counterpart augments the model’s inference022
capability through fine-tuning on linguisti-023
cally described structured representations.024
Performance improvements were observed025
in widely downstream datasets, with partic-026
ularly notable gains of 3.17% and 12.38%027
in PAWS. To the best of our knowledge,028
this work represents the pioneering demon-029
stration that leveraging structural repre-030
sentations can substantially enhance LLMs’031
inference capability. We hope that our work032
sheds light and encourages future research033
to enhance the reasoning and interoperabil-034
ity of LLMs by structure data.035

1 Introduction036

Structured representations (SR), manifested in037

Abstract Meaning Representation (AMR) (Da-038

monte et al., 2016; Knight et al., 2021; Ramírez,039

2024), Parse Syntax Trees (PST) (Sachan et al.,040

2020), and First-Order Logic (FOL) (Barwise,041

1977), have been fundamental to NLP (Man-042

ning, 1999; Collobert et al., 2011), serving as043
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Figure 1: We propose two novel AMR integration
approaches: a training-free method using natu-
ral language descriptions and a training-dependent
fine-tuning paradigm. Evaluation on PAWS shows
+3.17% and +12.38% improvements respectively,
contrasting with the -5.18% decline in conventional
code-format methods.

sophisticated frameworks for capturing seman- 044

tic relationships and linguistic structures (Ba- 045

narescu et al., 2013; Wang et al., 2015). An 046

example of AMR, PST, and FOL is depicted 047

in Figure 2. 048

In the era of LLMs, the paradigm for opti- 049

mal SR integration remains an open research 050

challenge. Despite LLMs’ capabilities, direct 051

integration of SR into prompts, as illustrated 052

in Figure 1, has proven counterproductive (Jin 053

et al., 2024). We posit that this performance 054

degradation stems from LLMs’ inherent limita- 055

tions in processing structured representations, 056

where direct exposure to complex linguistic 057

structures impedes rather than enhances their 058

reasoning process. 059

To address the aforementioned challenges 060

and effectively leverage SR in LLMs, we in- 061
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Figure 2: The AMR, PST, and FOL of the sentence
“John saw a dog”.

troduce SR-LLM, a comprehensive framework062

with dual configurations for structural knowl-063

edge integration. The training-free approach064

transforms SR into natural language descrip-065

tions (SR-NLD), enhancing prompt comprehen-066

sion by reformulating structured information067

into semantically rich, accessible formats that068

facilitate nuanced reasoning and reduce ambigu-069

ity. Complementarity, the training-dependent070

paradigm employs supervised fine-tuning on071

task-specific SR datasets (termed Gen-SR) to072

establish robust SR-task connections through073

iterative exposure to structured data, enabling074

the model to develop sophisticated internal rep-075

resentations and leverage deep structural knowl-076

edge during inference across diverse NLP tasks.077

Our empirical evaluation encompasses a com-078

prehensive suite of NLP benchmarks, spanning079

diverse linguistic phenomena from paraphrase080

detection (Mihalcea et al., 2006; Dolan and081

Brockett, 2005) and textual entailment recogni-082

tion (Dagan et al., 2005; Bowman et al., 2015)083

to machine translation (Bahdanau, 2014; John-084

son et al., 2017). This diverse benchmark selec-085

tion enables rigorous evaluation of our meth-086

ods across the NLP spectrum. Experimen-087

tal results demonstrate the superiority of our088

methods over existing approaches: on PAWS,089

while conventional method exhibits a 5.18%090

performance degradation, our training-free and091

training-dependent approaches achieve +3.17%092

and +12.38% improvements respectively, which093

validating the efficacy of our structured infor-094

mation integration paradigm.095

Our contributions are as follows:096

• We introduce SR-LLM, a novel frame-097

work that facilitates SR integration with098

LLMs through dual paradigms: training-099

free adaptation and supervised fine-tuning.100

• We provide insights into how different101

types of SR (AMR, PST, FOL) impact 102

LLMs performance across various tasks. 103

• To the best of our knowledge, we are the 104

first to show that combining such SR does 105

in fact improve LLM performance, which 106

opens up new avenues for enhanced LLM 107

reasoning and interoperability. 108

2 Problem Definition 109

This research endeavors to investigate the po- 110

tential synergies between SR and LLMs, with 111

the ultimate goal of ascertaining how their 112

seamless integration can augment the efficacy 113

and proficiency of LLMs in a wide array of NLP 114

tasks. 115

Given a natural language input sequence 116

X = (x1, x2, . . . , xn), where xi ∈ V represents 117

a token drawn from the vocabulary V , we also 118

introduce the structured representation Z. Z 119

serves as auxiliary information derived from 120

X and can take various forms, such as AMR, 121

PST, or FOL. These SRs capture semantic, 122

syntactic, or logical information and provide 123

complementary insights to natural language 124

understanding. 125

The task involves generating an output se- 126

quence Y = (y1, y2, . . . , ym), where each yi 127

belongs to either the target vocabulary or a 128

structured semantic output space. This trans- 129

formation is performed by a model f , defined 130

as: 131

Y = f(X,Z) (1) 132

Here, f specifies how X and Z are utilized to 133

complete a specific task by integrating natural 134

language input with its structured representa- 135

tion. 136

The primary goal of this research is to op- 137

timize the definition of f to achieve the most 138

effective use of X and Z, thereby maximizing 139

task performance. Specifically, the objective 140

is to identify the optimal model f∗ that maxi- 141

mizes the evaluation metric P (·), such as accu- 142

racy or F1 score: 143

f∗ = arg max
f

P (f(X,Z)) (2) 144

145

3 Method 146

This chapter introduces the SR-LLM frame- 147

work, a novel paradigm designed to inves- 148

tigate the efficacious integration of SR into 149
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Instruction: You are an NLP assistant, your task is Sentiment Analysis. You will be
provided with a sentence and its Abstract Meaning Representation (AMR) described in

natural language. Based on the them, classify the sentiment as either positive or negative.

Input sentence: ''John saw a dog.''

Prompt

Input AMR natural description: 

This sentence is neutral.

Figure 3: The whole process of SR-LLM in training-free setting. Initially, a task-specific prompt
consists of an instruction, input sentence, and input SR structure (AMR is used here). Subsequently,
the original AMR undergoes transformation via the AMR-to-NLD module, which employs predefined
rules to map the AMR into an easily interpretable natural language description. This description is then
subjected to refinement by a language model, ensuring fluency and coherence, resulting in AMR-NLD.
Finally, the AMR-NLD is seamlessly integrated into the input, which is then fed into the LLM to
generate the ultimate response.

LLMs. The SR-LLM framework encompasses150

two configurations: training-free and training-151

dependent. These configurations are designed152

to amalgamate various types of SR through153

differentiated methodologies, thereby enhanc-154

ing the LLMs’ capability to comprehend and155

exploit structured information.156

3.1 SR-LLM Training-Free157

Instruction: 
You are a NLP assistant whose purpose is {nlp task}...
And you will be given the original text(s) 
...
Input: {Original Text}
Output: XXX

Instruction: 
You are a NLP assistant whose purpose is to {nlp task}...
And you will be given the original text(s) and its(their) 
{Abstract Meaning Representation} to help you to handle 
this problem
Input: {Original Text} and {AMR} 
Output: XXX

Base Prompt

AMRCOT Prompt

Figure 4: Base prompt and AMRCOT prompt.
(Top) This is the original task prompt, with only
the raw text as input, serving as the standards for
performance. (Bottom) This is the AMRCOT
prompt method proposed by Jin et al. (2024), serv-
ing as a baseline.

Prior approaches, exemplified by AMRCOT158

(Jin et al., 2024), have attempted to explic-159

itly incorporate AMR into Chain-of-Thought160

(COT) prompts, as illustrated in Figure 4, have161

shown that this explicit approach fails to yield162

performance enhancement. We hypothesize 163

that one factor contributing to this ineffective- 164

ness stems from the inherent difficulty LLMs 165

face in adequately comprehending and process- 166

ing abstract structures such as AMR. In view 167

of the aforementioned challenge, as illustrated 168

in Figure 3, we propose SR-LLM Training-Free, 169

where the original structured representation Z 170

is transformed into natural language descrip- 171

tions termed SR-NLD, where SR can be in- 172

stantiated with specific structured representa- 173

tions such as AMR, PST, and FOL. We refer 174

to this entire transformation process as SR-to- 175

NLD(Structured Representation to Natural 176

Language Description). Specifically, the struc- 177

tured representations are mapped through pre- 178

defined transformation rules, converting ab- 179

stract symbols into easily interpretable natural 180

language expressions. These generated natural 181

language descriptions are then refined by a lan- 182

guage model to ensure fluency and coherence. 183

Finally, these descriptions are incorporated into 184

the prompt and input into the target LLM. A 185

pivotal advantage of this methodology lies in its 186

training-free nature, as it does not require any 187

additional fine-tuning or retraining of the LLM. 188

Consequently, this technique offers remarkable 189

flexibility, enabling rapid adaption to a diverse 190

array of NLP tasks. 191
Next, we shall elucidate the SR-to-NLD pro- 192

cess, employing AMR-NLD as our quintessen- 193

tial exemplar, which shown in the Algorithm 1. 194
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Algorithm 1 AMR-to-NLD Transformation
1: Input: AMR graph G = (V,E), nodes collection

V , edges collection E, Penman library P, language
model θ

2: Output: Refined natural language descriptions
Srefined

3: Phase 0: Convert AMR to Triplets
4: Convert AMR graph G into triplets T = {(c1, r, c2) |

c1, c2 ∈ V, r ∈ E} using the Penman library: T =
P(G)

5: Phase 1: Identifier Instantiation
6: for each triplet (c1, r, c2) ∈ T do
7: if r = :instance then
8: Replace identifiers c1, c2 with their corre-

sponding concepts or instances
9: end if

10: end for
11: Phase 2: Mapping to Natural Language
12: Convert triplets into natural language descriptions

using a predefined dictionary: M : T ′ → S
13: Phase 3: Refinement
14: Refine the generated descriptions S using language

model: Srefined = θ(S)
15: return Srefined

The process first converts the AMR graph into195

triplets, then replaces the identifiers with actual196

concepts. Next, the triplets are mapped into197

natural language descriptions using predefined198

rules, and finally, the descriptions are refined199

by GPT-4o Mini to produce coherent AMR-200

NLD. To mitigate the risk of hallucination, we201

implemented a voting mechanism based on mul-202

tiple generations. This detailed analysis forms203

the core of our discussion, outlining each step204

of the conversion process. The transformation205

methods for other SRs are elaborated in the206

Appendix A.1 for completeness. Different from207

traditional SR-to-Text approaches, which gen-208

erate a structurally coherent and fluent text209

based on the SR, such as the “input sentence”210

in Figure 4. SR-to-NLD aims to collaboratively211

describe the structured information through212

multiple sentences, as illustrated by the Re-213

fined AMR-NLD in Figure 4.214

3.2 SR-LLM Training-Dependent215

In addition to making SRs more interpretable216

for LLMs, we also believe that establishing217

connections between tasks and structured in-218

formation presents a potential opportunity. As219

shown in the Figure 5, in SR-LLM Training-220

Dependent, we constructed a task-specific hy-221

brid dataset, named Gen-SR, where SR can222

be replaced by specific representations such as223

AMR, PST, and FOL.224

The entire hybrid dataset is composed of two225

Instruction: XXX

Input sentence: XXX

Prompt

Input AMR: XXX

This sentence
is neutral.

Input sentence: XXX

G(text)

Instruction: XXX

Input sentence: XXX

G(AMR)

Instruction: XXX

Gen-AMR

Supervised Fine-tuning

Output: XXX
Input AMR: XXX

Output: XXX

Figure 5: The whole process of SR-LLM in
training-dependent setting. Taking AMR as an
example, a dataset called Gen-AMR, created by
combining inputs consisting of sentences and their
corresponding AMR structures, is utilized for the
SFT of LLM to enhance the reasoning capability.

parts: one consists of task-specific instruction 226

pairs based on original text, while the other 227

adds SRs in the instruction pairs based on the 228

former. The former we mark as G(text) and 229

the other we mark as G(SR). The complete 230

example of these two are shown in the Ap- 231

pendix D. This mixed approach allows LLM to 232

not only learn instruction-following for down- 233

stream tasks from G(text), but also to estab- 234

lish more robust connections between tasks 235

and structures from G(SR), making the model 236

achieve more effective improvements compared 237

to learning solely from text. 238

4 Experiments 239

4.1 Datasets 240

To ensure comprehensive and diverse experi- 241

ments, we selected 10 datasets covering vari- 242

ous NLP tasks based on Liu et al. (2024), in- 243

cluding five tasks from Jin et al. (2024) for 244

result comparability. The dataset composi- 245

tion includes: PAWS for paraphrase detec- 246

tion (Zhang et al., 2019), SNLI for textual en- 247

tailment recognition (Bowman et al., 2015), 248

WMT16 for translation tasks (Bojar et al., 249

2016), CoNLL2003 for named entity recogni- 250

tion (Sang and De Meulder, 2003), Logic for 251

logical fallacy detection (Jin et al., 2022), SST- 252

2 for sentiment analysis (Socher et al., 2013), 253

Pubmed45 for event extraction (Garg et al., 254

2016), WiC for word sense disambiguation (Pile- 255

hvar and Camacho-Collados, 2018), SPIDER 256

for Text2SQL code generation (Yu et al., 2018), 257
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Table 1: Performance of SR-LLM(training-free). In the table, a checkmark under “SR” indicates
that the original SR was added to the prompt, while a checkmark under “SR-NLD” (highlighted with a
gray background) represents the inclusion of SR-NLD in the prompt, which corresponds to the results of
SR-LLM (training-free). No checkmarks indicate the use of the original prompt, serving as the control
group for comparison. Our focus is on the performance differences between adding SR and SR-NLD, as
well as their respective differences compared to the control group.

SR
SR-NLD
(Ours)

PAWS
(F1)

Logic
(F1)

Pubmed45
(F1)

AGNEWS
(F1)

WiC
(F1)

SNLI
(F1)

CoNLL2003
(F1)

SST-2
(F1)

WMT16
(BLEU)

SPIDER
(F1)

(a) Llama3.1- 8b-Instruct
41.59 15.48 24.35 53.88 43.99 25.81 46.28 68.72 13.16 24.80

✓ 36.41 14.20 20.69 48.17 42.05 23.17 41.75 65.66 12.34 21.53
✓ 44.77 18.27 26.10 56.67 48.17 28.87 48.73 71.77 14.10 29.60

(b) GPT 3.5-turbo
56.94 38.63 27.14 85.12 50.61 38.93 56.52 90.46 26.13 39.63

✓ 56.10 36.27 25.63 81.33 51.60 32.00 54.67 86.90 25.77 39.07
✓ 57.97 39.40 28.17 84.07 55.27 41.47 55.17 92.60 27.07 42.27

(c) GPT 4o-mini
75.80 48.10 38.65 85.26 58.47 40.59 65.27 91.39 26.80 41.55

✓ 73.50 47.32 33.11 81.62 46.65 41.30 59.21 91.01 26.21 39.33
✓ 76.48 47.95 36.66 83.45 56.63 42.00 64.12 92.83 26.76 43.57

and AGNEWS for text classification (Zhang258

et al., 2015).259

Regarding the source of SR datasets, we used260

a dual-source strategy: one part includes high-261

quality AMR datasets from Jin (Jin et al.,262

2024), covering five core tasks; the other is263

automatically constructed using GPT-4o, com-264

prising supplementary AMR, PST, and FOL265

data. The detailed collection processes and266

results provided in the Appendix B.1.267

4.2 Training-Free Results268

Experimental Details. We conducted ex-269

periments on the Llama3.1-8b-Instruct (Dubey270

et al., 2024), GPT-3.5-turbo, and GPT-4o-271

mini (Achiam et al., 2023) models, arranged272

from weak to strong according to their perfor-273

mance levels, employing two prompting strate-274

gies: Chain-of-Thought (CoT) (Wei et al., 2022)275

and One-Shot (Brown, 2020). CoT guides276

step-by-step reasoning, while One-Shot demon-277

strates task-solving through specific examples.278

All experiments were conducted independently279

on three types of SRs: AMR, FOL, and PST.280

Both PST and FOL were incorporated into281

the prompts using the same approach as AMR-282

COT (Jin et al., 2024). For brevity, the results283

obtained from these experiments were averaged284

and presented. For detailed prompts, refer to285

the Appendix E.286

Result Analysis. First, as shown in Table 1,287

incorporating SR-NLD into the prompt con-288

sistently outperforms incorporating the origi-289

nal SR. This indicates that for LLMs, trans- 290

forming abstract SRs into natural language for- 291

mats more familiar to the models is an effective 292

strategy for enhancing their ability to interpret 293

and apply structured information. Meanwhile, 294

the comparision of the three models also re- 295

veals that the gradual decrease in the benefit of 296

structured information as model performance 297

increases. Specifically, for the Llama3.1-8b- 298

Instruct model, results with SR-NLD signifi- 299

cantly and consistently surpass those of the 300

original prompt (i.e., without SR or SR-NLD). 301

For GPT-3.5-turbo, most results show improve- 302

ment, whereas for GPT-4o-mini, approximately 303

half of the results demonstrate improvement, 304

albeit with a smaller margin. This result fur- 305

ther illustrates that weaker models benefit more 306

from structured information as a supplement 307

to the original text, aiding them in downstream 308

reasoning tasks. In contrast, for stronger mod- 309

els, the additional structured information offers 310

limited advantages and may even be less infor- 311

mative than the insights derived directly from 312

the raw text. 313

4.3 Training-Dependent Results 314

Experimental Details We conducted exper- 315

iments using the Llama3.1-8B-Instruct model 316

to evaluate the performance of the training- 317

dependent setting of SR-LLM, more detailed 318

experimental parameters can be found in the 319

Appendix A.2. The whole process of fine-tuning 320

is a joint training across data from 10 tasks, 321

rather than task-specific fine-tuning for any 322

5



Table 2: Performance of SR-LLM(training-dependent). G(text) and G(SR) represent the types of
training data, with 50% and 10% indicating their respective proportions in the total training dataset. Our
focus is on the best performance of the model across various tasks under different fine-tuning strategies,
as well as the performance differences between adding SR and the control group.

FT Strategy SR
PAWS
(F1)

Logic
(F1)

Pubmed45
(F1)

AGNEWS
(F1)

WiC
(F1)

SNLI
(F1)

CoNLL2003
(F1)

SST-2
(F1)

WMT16
(BLEU)

SPIDER
(EM)

-
41.59 15.48 24.35 53.88 43.99 25.81 46.28 68.72 13.16 24.80

✓ 36.41 14.20 20.69 48.17 42.05 23.17 41.75 65.66 12.34 21.53

100% G(text)
68.94 26.21 78.91 76.52 66.97 35.53 75.79 75.59 29.07 41.20

✓ 64.07 16.84 77.33 67.14 67.05 35.36 71.73 74.65 28.41 38.47

100% G(SR)
65.34 25.23 81.13 75.10 66.44 36.68 75.40 77.49 26.93 37.07

✓ 75.39 29.89 82.02 81.99 70.82 56.62 76.27 81.62 30.80 40.60

50% G(SR)
+ 50% G(text)

68.66 26.77 79.78 75.77 69.48 36.49 75.42 77.13 26.14 42.40
✓ 81.04 36.52 81.85 82.63 74.68 54.92 76.67 83.72 30.33 48.93

single dataset. Detailed data collection proce-323

dures and specific training data configurations324

are provided in the Appendix B.2. To provide a325

comparative analysis, we conducted three sets326

of experiments using the following datasets:327

100%G (text), 100%G (SR), and a 50%G (text)328

mixed with 50% G (SR). The 50%-50% ratio329

was chosen because we considered it to be the330

most balanced approach. Further experiments,331

elaborated in Appendix C.2, also confirmed332

that this is the optimal mixing ratio. And we333

employed a random sampling approach. All334

experiments were conducted independently on335

three types of SRs and for brevity, the results336

obtained from these experiments were averaged337

and presented.338

Result Analysis. As shown in the Table 2,339

when the fine-tuning dataset includes a cer-340

tain proportion of SRs and incorporates SRs341

in the prompt, the model achieves superior342

performance in downstream tasks, consistently343

surpassing the case where the training data344

consists solely of text. Additionally, we observe345

that models fine-tuned with SRs data perform346

significantly better with prompts that include347

SRs, compared to the original prompts without348

SR. Conversely, when the training data consists349

entirely of text, the opposite trend is observed.350

These findings suggest that when a model es-351

tablishes a strong association between tasks352

and structured representations during training,353

it can leverage this information more effectively354

during inference. Furthermore, when the train-355

ing data is entirely composed of structured356

representations, the performance is inferior to357

that achieved with a balanced mix of text and358

structured data. This highlights the critical im-359

Table 3: Performance between different AMR
Source. Each data represents the performance
difference of the model when using AMRs generated
by GPT-4o versus AMRBART, calculated as the
performance of AMRBART minus that of GPT-4o.
As shown, the differences are almost all below 1%.

AMR
AMR
(NLD)

PAWS
(F1)

Logic
(F1)

Pubmed45
(F1)

WMT16
(BLEU)

SPIDER
(EM)

(a) Llama3.1-8b-Instruct
✓ 0.40 -0.07 0.01 0.13 0.28

✓ 0.77 -0.13 0.50 -0.02 -0.01

(b) GPT 3.5-turbo
✓ 0.45 0.57 -0.15 0.08 0.12

✓ 0.02 -2.40 0.52 0.23 0.21

(c) GPT 4o-mini
✓ 0.08 0.07 0.53 0.49 0.02

✓ -0.11 0.61 0.61 -0.13 -0.13

portance of a balanced integration of raw text 360

and structured representations in maximizing 361

the model’s reasoning capabilities. 362

4.4 Auxiliary Validation Experiments 363

SR from High-Quality SR-Parsing Model. 364

To validate the reliability of the generated SRs, 365

we choose AMRBART (Bai et al., 2022) to 366

generate the required AMRs, and experiments 367

were conducted to compare the results with 368

those generated by GPT-4o. It is a model that 369

demonstrates exceptional performance in the 370

AMR parsing domain with a Smatch score of 371

85.4 on the AMR Parsing Leaderboard, ranking 372

among the top-performing models. As shown 373

in the Table 3, the performance differences be- 374

tween AMRs and AMR-NLDs derived from 375

these two sources were minimal, almost always 376

within 0.5%. This indicates that the quality of 377

the AMRs produced by AMRBART is compa- 378

rable to those generated by our method. 379
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Table 4: Performance between different AMR Quality. The numbers in parentheses represent the
performance differences between adding AMR or AMR-NLD and the control group. ‘Flawed’ means the
AMR is ambiguous or structurally flawed. ‘Gold’ means the AMR is double checked by human and LLM.

AMR Quality AMR AMR-NLD PAWS (F1) Logic (F1) Pubmed45 (F1) WMT16 (BLEU) SPIDER (EM)

(a) Llama3.1-8b-Instruct
- - - 42.19 14.32 23.67 13.66 22.58

Flawed ✓ 34.5 (-7.69) 11.52 (-2.8) 19.41 (-4.26) 11.07 (-2.59) 18.26 (-4.32)
Gold ✓ 42.48 (+0.29) 14.7 (+0.38) 23.43 (-0.24) 14.65 (+0.99) 22.93 (+0.35)

Flawed ✓ 32.91 (-9.29) 11.56 (-2.76) 18.39 (-5.28) 11.06 (-2.6) 18.49 (-4.09)
Gold ✓ 46.96 (+4.76) 18.98 (+4.66) 28.62 (+4.95) 19.13 (+5.47) 28.02 (+5.44)

(b) GPT 3.5-turbo
- - - 56.04 43.79 28.29 26.01 40.28

Flawed ✓ 51.57 (-4.47) 41.58 (-2.21) 25.71 (-2.58) 23.79 (-2.22) 36.66 (-3.62)
Gold ✓ 54.53 (-1.51) 44.7 (+0.91) 29.47 (+1.19) 26.17 (+0.15) 39.77 (-0.51)

Flawed ✓ 51.33 (-4.71) 39.79 (-4.01) 26.9 (-1.38) 24.37 (-1.64) 36.74 (-3.54)
Gold ✓ 56.78 (+0.74) 46.49 (+2.7) 32.0 (+3.71) 28.72 (+2.71) 44.81 (+4.53)

(c) GPT 4o-mini
- - - 68.71 44.95 37.07 29.02 40.05

Flawed ✓ 65.63 (-3.08) 42.74 (-2.2) 35.42 (-1.66) 27.31 (-1.71) 37.84 (-2.21)
Gold ✓ 70.04 (+1.33) 45.9 (+0.96) 35.36 (-1.71) 29.62 (+0.6) 41.47 (+1.42)

Flawed ✓ 62.63 (-6.07) 41.46 (-3.49) 34.51 (-2.56) 26.64 (-2.38) 37.30 (-2.76)
Gold ✓ 70.13 (+1.42) 46.18 (+1.23) 39.17 (+2.09) 30.14 (+1.12) 41.54 (+1.48)

Gold AMR vs Flawed AMR. Addition-380

ally, we selected 70 AMR samples (labeled as381

“Flawed”) with ambiguities or structural flaws382

from each of the 10 datasets and refined them383

using a dual-process correction strategy that384

combined AMRBART-generated results with385

manual adjustments, producing high-quality386

AMRs (labeled “Gold”). Results in Table 4387

show that AMR quality significantly impacts388

model performance. Using flawed AMRs led to389

performance declines for both direct AMR and390

AMR-NLD representations, with a more pro-391

nounced drop for AMR-NLD. This indirectly392

validates AMR-NLD’s ability to enhance LLMs’393

understanding of AMR structures. In contrast,394

with high-quality AMRs, AMR-NLD substan-395

tially improved model performance, while direct396

AMR usage showed limited gains. These re-397

sults demonstrate that combining high-quality398

AMR-NLD is more effective in helping mod-399

els comprehend structured information. This400

effect is particularly pronounced when the qual-401

ity of the AMR is high, leading to substantial402

performance gains.403

Fine-tuning Larger Model. To validate404

the robustness of the proposed method, we405

selected Llama3.1-70B-Instruct and conducted406

training-dependent experiments, whose details407

were consistent with those described for the408

Llama3.1-8B-Instruct model above, in five tasks409

shown in the Table 5. The SR used in these410

experiments was AMR, with a 50%-50% ratio.411

Table 5: Performance of SR-LLM(training-
dependent) in Llama3.1-70b-Instruct. The
numbers in parentheses represent the performance
differences between adding SR and the control
group. Our focus is on the performance variations
across different models with different prompts.

AMR
PAWS
(F1)

Logic
(F1)

Pubmed45
(F1)

WMT16
(BLEU)

SPIDER
(EM)

(a) Vanilla
68.00 47.13 63.95 28.65 33.71

✓
60.28
(-7.73)

43.08
(-4.04)

48.82
(-15.13)

27.91
(-0.73)

29.20
(-4.51)

(b) 50% G(AMR) + 50% G(text)
74.74 54.57 76.51 33.73 47.06

✓
84.56

(+9.81)
58.96

(+4.39)
81.54

(+5.03)
37.00

(+3.27)
53.84

(+6.78)

We can see that, after fine-tuning, the model 412

demonstrated improvements on all tasks, with 413

corresponding values turning positive, more 414

than half of which exceeded 5%. These results 415

further validate the effectiveness of Training- 416

Dependent method on larger-scale models. 417

Experiment on Traceable LLM. Since 418

NLP datasets have been public for years, their 419

role in modern LLM development is unclear. 420

We validate our approach through experiments 421

on OLMo (Groeneveld et al., 2024), where the 422

training and validation data sources are clearly 423

documented, in five tasks shown in the Table 6. 424

The results show that when the prompt includes 425

SR, its performance is lower than when SR is 426

not included. However, when SR is transformed 427

into SR-NLD, the performance improves signif- 428
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Table 6: Performance in OLMo.

SR
SR_NLD
(Ours)

PAWS
(F1)

Logic
(F1)

Pubmed45
(F1)

WMT16
(BLEU)

SPIDER
(EM)

61.52 22.96 60.27 9.67 20.44
✓ 57.73 17.97 57.89 11.23 19.79

✓ 65.40 24.89 65.19 12.44 22.20

icantly. For instance, in the PAWS, the perfor-429

mance increases from 61.52% to 65.40%. This430

demonstrates the robustness and generalizabil-431

ity of our approach.432

5 Related Work433

Structure Representations. The SRs, in-434

cluding AMR, PST, and FOL, each unique435

advantages and applications in specific areas.436

AMR uses rooted, labeled graphs to abstract437

syntactic details, offering concise and seman-438

tically rich representations (Banarescu et al.,439

2013). PST, based on Chomsky’s generative440

grammar, employs hierarchical trees to rep-441

resent sentence syntax and word dependen-442

cies (Chomsky, 2014). FOL, as a symbolic443

logic system, defines objects, their relations,444

and properties, serving as a key tool in formal445

logic and reasoning (Enderton, 2001; Barwise,446

1977).447

Structure Representations Transforma-448

tion. The SR transformation has long been a449

critical area of research. Much of the existing450

work has focused on SR-to-Text approaches,451

which generate fluent text that aligns with the452

structure of the SR (Song et al., 2018; Ribeiro453

et al., 2021; Wang et al., 2020). Meanwhile,454

a method known as canonical expressions em-455

ploys rule-based techniques to convert struc-456

tures into standardized natural language repre-457

sentations, primarily to resolve ambiguities in458

non-standard sentences (Shin et al., 2021; Roy459

et al., 2024). Its outputs are essentially normal-460

ized texts rather than comprehensive descrip-461

tions of the SR’s full structure. In contrast, our462

SR-to-NLD approach preserves the integrity463

of structured information while enhancing its464

interpretability through natural language de-465

scriptions of the structure.466

Structured Representations used for NLP467

in LLM. With the rise of LLM, studies like468

Hahn et al. (2022) showed these sequence to469

sequence model’s ability to generalize across470

formal domains, though challenges like low in-471

terpretability and hallucinations persist De Bel- 472

lis (2023). Integrating structured representa- 473

tions into LLMs has improved accuracy and 474

interpretability. Yao et al. (2024) and (Shi 475

et al., 2024) combined AMR with LLMs for 476

tasks like sentence simplification and Retrieval- 477

Augmented Generation. Additionally, Hahn 478

et al. (2022) and (Kalyanpur et al., 2024) ad- 479

vanced formal specification and logical reason- 480

ing in LLMs. And An et al. (2024) identified 481

"magic prompts" that improve the performance 482

of NLP tasks by solely focusing on semantic 483

parsing, without the need to provide the ac- 484

tual parsing results. However, Jin et al. (2024) 485

argued that simplely add AMR into prompt 486

might sometimes hinder performance in certain 487

NLP tasks. 488

6 Conclusion 489

SR-LLM demonstrates significant progress 490

in enhancing LLMs’ reasoning capabilities 491

through structured representations. Our evalu- 492

ation across diverse NLP tasks revealed SR’s 493

potential in generating novel implicit informa- 494

tion. We established a framework for integrat- 495

ing SR into LLMs, from prompt engineering 496

to fine-tuning, providing valuable insights into 497

structured information incorporation. These 498

advancements led to substantial improvements 499

in both training-free and training-fependent set- 500

tings, highlighting the effectiveness of integrat- 501

ing semantic, syntactic, and logical features. 502

As we refine SR-LLM, we anticipate further 503

progress towards more interpretable, accurate, 504

and versatile language models with enhanced 505

reasoning capabilities in various applications. 506

7 limitations 507

Despite SR-NLD’s promising performance in 508

certain tasks, its effectiveness remains inconsis- 509

tent across different LLMs. The rule-based con- 510

version method may constrain flexibility. Fu- 511

ture research should focus on developing a more 512

robust and adaptive structured representation, 513

exploring task-specific optimizations, and inves- 514

tigating advanced conversion techniques and 515

novel model architectures. Expanding evalua- 516

tion to diverse language models and datasets 517

will be crucial to enhance the method’s consis- 518

tency, flexibility, and applicability in various 519

NLP domains. 520
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A Experimental Details740

A.1 Details of Converting SR to741

SR-NLD742

A.1.1 Details of Translating AMR743

Triplet to Natural Sentence744

According to the Figure 6, first, the triplet is745

converted into a sentence based on the relation746

mapping rules. Then, using the entity dictio-747

nary, the entities are replaced with their actual748

meanings to form the final sentence. Finally,749

the sentence is input into the LLM for refine-750

ment into a complete and coherent sentence, as751

shown in the Figure 7.752

(see-01, :ARG0, person)

"{person} is the doer of the action {see-01}."

":ARG0":
 "{entity2} is the doer of 

the action {entity1}."

"person" : person
"see-01" : view

"person is the doer of the action view."

Polish Prompt

"One person saw something"

Figure 6: The process of translate entities and
relationships into natural language sentences

A.1.2 Whole Process of Making753

PST-NLD754

Definition of PST. PST is represented as a755

tree structure T = (N,E). Here N denotes the756

set of nodes, representing the syntactic compo-757

nents of a sentence (e.g., part-of-speech tags758

and phrase labels). Node types include S (sen-759

tence), NP (noun phrase), V P (verb phrase),760

etc. E denotes the set of edges, representing761

dependencies between components. An exam-762

ple of the original PST structure is shown in763

the Figure 8.764

Conversion of PST to a Linear Structure765

Using Depth-First Search (DFS). Start-766

ing from the root node (typically n0, represent-767

ing the sentence’s syntactic structure, such as768

Figure 7: The prompt of polishing sentence for
making AMR-NLD

S), we traverse the tree in a depth-first search 769

(DFS) manner, converting it into a linear se- 770

quence of symbols P . 771

Mapping PST Identifiers to Natural Lan- 772

guage Descriptions. We define a mapping 773

function M to translate each identifier (e.g., S, 774

NP , V BD) and its child nodes into natural 775

language descriptions. The dictionary D, which 776

specifies the natural language interpretation of 777

each identifier, is detailed in the appendix. For 778

each triplet (n, c1, c2), where n is a node and 779

c1, c2 are its children, we apply the mapping 780

function M(n) = description(n). The resulting 781

natural language description S is as shown in 782

the Figure 8. 783

Refinement of Natural Language Descrip- 784

tions Using a Language Model. To make 785

the descriptions more natural and coherent, 786

the generated descriptions S are refined using 787

the language model FLM : S → Srefined. The 788

specific prompt is shown in the prompt (b) of 789

Figure 9. 790
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P = (S, (NP, (NNP, John)), (VP, (VBD, saw)), (NP, (DT, a), (NN, dog))) 

Linear PST

map

(Sentence(NounPhrase(Propernoun, singularJohn))
(VerbPhrase(Verb, pasttense saw))

(NounPhrase(Determiner a)(Noun, singularor mass dog)))

Instantiated PST

expand and polish

Refined set of natural language sentence

Original sentence : John saw a dog. Grammatical structure :
- John : Noun phrase, the subject of the sentence, referring to...
- saw : Verb phrase, indicating the past action performed ...
- a dog : Noun phrase, the direct object of the sentence...

convert

PST-to-NLD
Original PST

NP

S

VP

VJohn NP

saw det N

a dog

Figure 8: The Whole process of Making PST-
NLD. The process of creating PST-NLD involves
first converting the PST tree structure into a linear
sequence of symbols using depth-first search (DFS).
Then, a mapping function is applied to translate
each node and its children into natural language
descriptions. Finally, a language model is used
to refine the generated descriptions, making them
more natural and coherent.

A.1.3 Whole Process of Making791

FOL-NLD792

Definition of FOL. FOL is represented as793

F = (Q,V, P,C), where Q denotes the set of794

quantifiers, used to express the existence of795

variables, such as ∃ (exists) and ∀ (for all). V796

represents the set of variables, representing ob-797

jects in FOL, typically denoted as x, y, z. P798

represents the set of predicates, used to express799

properties of objects or relationships between800

multiple objects. C represents the set of logical801

connectives, used to connect multiple propo-802

sitions, including conjunction (∧), disjunction803

(∨), and negation (¬). An example of the orig-804

inal FOL structure is shown in the Figure 10.805

Figure 9: The prompt of polishing sentence for
making PST-NLD

Mapping FOL to Natural Language De- 806

scriptions. We define a mapping function 807

M = (D,L), where D is a set of symbol map- 808

pings that translates variables, predicates, and 809

logical operators in FOL into natural language 810

descriptions. L is a set of logical mapping 811

rules that transforms the logical structure of 812

FOL into natural language syntax. By apply- 813

ing these mapping rules to the initial FOL ex- 814

pressions, we can convert logical symbols into 815

natural language descriptions. 816

Refinement of Natural Language Descrip- 817

tions Using a Language Model. To ensure 818

that the descriptions are coherent and fluent, 819

we refine the generated descriptions S using 820

the language model FLM : S → Srefined. The 821

specific prompt is shown in the prompt (c) of 822

Figure 11. 823

A.2 Complete Fine-tuning Details 824

We used Meta’s Llama-3.1-8B-Instruct as the 825

backbone and conducted fine-tuning on 8 826

NVIDIA A100-80G GPUs. Optimization was 827

12



map

∃x(Dog(x) ∧ Saw(John, x))

Original FOL

Instantiated FOL

There exists x (x is a dog and John saw x)

There is a dog which is seen by John.

Refined set of natural language sentence

FOL-to-NLD

expand and polish

Figure 10: The Whole process of Making FOL-
NLD. The process of converting FOL to NLD
involves first mapping FOL symbols, such as vari-
ables, predicates, and logical operators, into natural
language using predefined symbol mappings and
logical rules. Then, the generated descriptions are
refined using a language model to ensure they are
coherent and fluent.

performed using the AdamW optimizer with828

a learning rate of 1e-4 and cosine learning829

rate decay. The training setup included a830

per_device_train_batch_size of 16 and gra-831

dient_accumulation_steps of 8, yielding an832

effective global batch size of 1024. A fixed ran-833

dom seed of 42 ensured reproducibility. Each834

dataset was fine-tuned for 10 epochs, with early835

stopping to prevent overfitting.836

B Data Collection837

B.1 The Process of Constructing838

Datasets for All Tasks of839

SR-LLM (training-free)840

In this section, I will outline the process of841

collecting test data for the 10 tasks used in SR-842

LLM (training-free), including both the original843

text and three types of structured representa-844

tions. The data statistics are summarized in845

the Table 7.846

SNLI SNLI is a large and comprehensive847

dataset, with a test set containing 10,000 exam-848

ples. Therefore, we directly used the test set849

for our experiments. The AMR, FOL, and PST850

data were generated using GPT-4o-turbo in a851

few-shots setting, with the prompt provided in852

Figure 11: The prompt of polishing sentence for
making FOL-NLD
Table 7: Tasks and datasets used in SR-LLM
(training-free)

Dataset Task Test Size

PAWS Paraphrase Detection 8000
SNLI Recognizing Textual Entailment 10000
WMT16 Translation 5999
CoNLL2003 Named Entity Recognition 3453
LOGIC Logical Fallacy Detection 2449
SST-2 Sentiment Analysis 872
Pubmed45 Event Extraction 5000
WiC Lexical Disambiguation 2038
SPIDER Text2SQL Code Generation 8034
AGNEWS Text Classification 7600

the Figure 12, Figure 13 and Figure 14. 853

CoNLL2003 CoNLL2003 is also a rich and 854

complete dataset, with a test set of 3,453 ex- 855

amples, which we used directly. Structured 856

representations were generated using the same 857

method as described above. 858

SST-2 Since the official SST-2 test set does 859

not contain labels, we used the full validation 860

set of 872 examples as the test set for this 861

experiment. Structured representations were 862

generated using the same method as described 863

above. 864

WiC The WiC test set consists of 1,400 ex- 865

amples, which is relatively small. Therefore, 866

we combined the 648 examples from the valida- 867

tion set to create a larger test set. Structured 868

representations were generated using the same 869

method as described above. 870

AGNEWS AGNEWS is another large and 871

comprehensive dataset, with a test set of 7,600 872

examples, which we used directly. Structured 873

13



Figure 12: The prompt of making AMR

representations were generated using the same874

method as described above.875

PAWS To ensure sufficient comparability in876

the experiments, the original text data and877

AMR representations for PAWS were sourced878

from Jin et al. (2024). And the FOL and PST879

representations were generated using the same880

method as described above.881

WMT16, LOGIC, Pubmed45, SPIDER882

The data collection for these tasks followed the883

same procedure as PAWS.884

B.2 The Process of Constructing885

Datasets for All Tasks of886

SR-LLM (training-dependent)887

In this section, I will explain the process of888

collecting both training and test data for the889

10 tasks used in SR-LLM (training-dependent),890

including the original text and three types of891

structured representations. Data statistics are892

summarized in the Table 8.893

PAWS, WMT16, Pubmed45, SNLI,894

CoNLL2003, SST-2, AGNEWS These895

datasets contain relatively large training sets.896

Therefore, we randomly selected 10,000 ex-897

amples from each as the training set. The898

structured representations were generated us-899

ing GPT-4o-turbo in a few-shot setting, with900

sample prompts provided in the figure. The test901

Figure 13: The prompt of making PST

Table 8: Tasks and datasets used in SR-LLM
(training-dependent)

Dataset Task Train Size Test Size

PAWS Paraphrase Detection 10000 8000
SNLI Recognizing Textual Entailment 10000 10000
WMT16 Translation 10000 5999
CoNLL2003 Named Entity Recognition 10000 3453
LOGIC Logical Fallacy Detection 10000 2449
SST-2 Sentiment Analysis 10000 872
Pubmed45 Event Extraction 10000 5000
WiC Lexical Disambiguation 5066 1048
SPIDER Text2SQL Code Generation 7000 1034
AGNEWS Text Classification 10000 7600

sets are the same as those used in the SR-LLM 902

(training-free) experiments. 903

LOGIC Since the LOGIC dataset is rela- 904

tively small, the training-free setup used all 905

the available samples from the test, validation, 906

and training sets combined, yielding a total of 907

2,449 samples as the test set. We retained these 908

2,449 samples for the test set in the training- 909

dependent setting as well. To create the train- 910

ing set, we synthetically generated 10,000 logic 911

examples using GPT-4o-turbo. The generation 912

process is illustrated in the Figure 15, where 913

a few-shot strategy was employed to guide the 914

model to generate sentences containing differ- 915

ent logical fallacies. The generated prompt is 916

14



Figure 14: The prompt of making FOL

shown in Figures 16 and Figures 17. The type917

of logical error serves as the label, producing918

complete data points. Structured representa-919

tions were generated in the same manner as920

described above.921

Logic Fallacy Type:
Faulty Generalization

Logic Fallacy
Sentence Generate

Prompt

Theme:
Sports

I watched one soccer match, and the
players were lazy. So, soccer players

must not be very hardworking.

Figure 15: The synthetic process for LOGIC
data. Taking the “Faulty Generalization” type as
an example, we employed a few-shot strategy to
guide the model in generating sentences containing
the logical fallacy of “Faulty Generalization” To
ensure greater sentence diversity, we incorporated a
thematic element during generation, such as “Sports”
as shown in the figure. This thematic addition
helps produce a broader variety of sentence while
maintaining the specific logical error, leading to a
richer and more varied dataset.

SPIDER Since the official SPIDER test set922

is not publicly available, the training-free setup923

used a combination of training and validation924

sets as the test set. However, due to the com-925

plexity of generating SPIDER-like data, we926

used the original 7,000 training examples for927

the training set in the training-dependent set-928

Figure 16: Logic Fallacy Generate Prompt (a)

ting and the 1,034 validation examples as the 929

test set. Structured representations were gen- 930

erated as described above. 931

WiC As the WiC training set is relatively 932

small, we combined the 648 validation exam- 933

ples with the original training set to create 934

a total of 5,066 training samples. Structured 935

representations were generated using the same 936

method as described above. 937

C Additional Experiments 938

C.1 Comparative Analysis of Different 939

SR Combinations and Their 940

Impact on LLM Reasoning 941

We conducted an in-depth comparison of the 942

performance of different structured represen- 943

tations (SR) and explored their combinations 944

to assess whether joint usage could further en- 945
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Figure 17: Logic Fallacy Generate Prompt (b)

hance LLM reasoning capabilities. Figure 18946

summarizes the average performance improve-947

ments across all tasks. The results indicate948

that the use of individual SRs such as AMR,949

PST, and FOL did not lead to significant per-950

formance enhancements, which is consistent951

with the findings of (Jin et al., 2024). More-952

over, when multiple SRs were introduced simul-953

taneously, their combined complexity posed954

additional challenges for the LLMs, further dis-955

persing the model’s attention and resulting in956

poorer performance compared to using a single957

SR. In contrast, when relatively weaker LLMs958

were provided with more comprehensible seman-959

tic features (AMR) and logical features (FOL),960

their average performance improved. The in-961

tegration of these two types of features com-962

plemented each other, leading to better overall 963

results. However, the contribution of syntactic 964

features (PST) was relatively less effective and, 965

in some cases, even negated the positive effects 966

of semantic and logical features. 967

Figure 18: Performance comparison of differ-
ent SR combinations. (a) The average perfor-
mance enhancement (∆), for various SR combina-
tions across different tasks. (b) The average per-
formance enhancement (∆), for different SR-NLD
combinations across various tasks.

C.2 Optimal Text-to-SR Ratio 968

Analysis 969

To further investigate the most optimal ra- 970

tio of between G(text) and G(SR), I selected 971

five tasks, which includes PAWS, LOGIC, 972

Pubmed45, SPIDER, WMT16 for additional 973

experiments, adjusting the ratio of text to struc- 974

tured representations in the Gen-SR dataset to 975

identify the optimal balance. The experimental 976

results are shown in the Figure 19. As can 977

be observed, the fluctuations in performance 978

with different ratios are relatively small. For 979

both AMR and PST, a 50-50 ratio between 980

text and structured representations appears to 981

be the most effective. However, for FOL, a 982

30-70 ratio (whether favoring structured rep- 983

resentations) yields better results. This is a 984

preliminary exploration, and I believe it repre- 985
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sents a promising direction for further research.986

Figure 19: Comparison of average performance of
models at different scales in all tasks.

C.3 Enhancing LLM’s Understanding987

of SR during Pretraining.988

We further conducted experiments during the989

pretraining phase with the goal of enhancing990

LLM’s ability to comprehend structured rep-991

resentations, aiming for performance improve-992

ments in downstream tasks. Specifically, we993

collected 1GB of task-agnostic SR data, includ-994

ing AMR, PST, and FOL, following a similar995

procedure as in previous data collection efforts,996

and applied this data to the pre-training of997

the Llama3.1-8B-Instruct model. Building on998

this, we further conducted SFT, the same as999

SR-LLM (training-dependent), on five datasets.1000

The final average performance results are shown1001

in the Table 9.1002

The experimental results show that, com-1003

pared to the vanilla model without pre-training,1004

the pre-trained model indeed exhibited per-1005

formance improvements in downstream tasks,1006

though the improvements were relatively mod-1007

est, with an average increase of less than 1%.1008

However, after applying SFT on the pre-trained1009

model, its performance was actually inferior to1010

that of the vanilla model trained directly with1011

SFT. We hypothesize that this phenomenon1012

may be due to the model forming certain in-1013

herent understandings of structured represen-1014

tations during the pre-training phase, which1015

hindered its ability to establish effective con-1016

nections between structure and tasks during1017

SFT, leading to worse performance compared to1018

the vanilla model. This phenomenon highlights1019

a potential conflict in how the model processes1020

structured information during the pre-training1021

and fine-tuning phases, which warrants further1022

exploration and resolution in future research.1023

Table 9: The SR enhancement of models with
different training strategies. These are the
average SR Enhancement results across all tasks
under different training strategies. Green indicates
the best performance within the same SR, while
red represents the worst performance.

AMR FOL PST Pretrain SFT ∆

✓ -3.51%
✓ ✓ 0.56%
✓ ✓ ✓ -1.16%
✓ ✓ 11.59%

✓ -2.83%
✓ ✓ 1.30%
✓ ✓ ✓ 3.10%
✓ ✓ 6.45%

✓ -3.61%
✓ ✓ -0.18%
✓ ✓ ✓ 1.58%
✓ ✓ 2.91%

D Examples of Gen-SR 1024

We present specific examples of Gen-SR in this 1025

section. Figure 20 shows an example of G(text), 1026

Figure 21 shows an example of G(AMR), Fig- 1027

ure 22 shows an example of G(PST), and Fig- 1028

ure 23 shows an example of G(FOL). 1029

Figure 20: The Example of G(text)

E Prompt of Testing the SR-LLM 1030

We present the complete prompts for our ex- 1031

periments, including both CoT and One-shot 1032

17



Figure 21: The Example of G(AMR)

Figure 22: The Example of G(PST)

examples, using the SNLI dataset as an illustra-1033

tion in Figures 24, Figures 25 and Figures 26.1034

Figure 23: The Example of G(FOL)

Figure 24: The COT prompt of SNLI
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Figure 25: The One-Shot prompt of SNLI

Figure 26: The One-Shot prompt of SNLI’s example
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