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ABSTRACT

Deep reinforcement learning research has enabled reaching significant performance
levels for sequential decision making in MDPs with highly complex observations
and state dynamics with the aid of deep neural networks. However, this aid came
with a cost that is inherent to deep neural networks which have increased sensitivi-
ties towards indistinguishable peculiarly crafted non-robust directions. To alleviate
these sensitivities several studies suggested techniques to cope with this problem
via explicitly regulating the temporal difference loss for the worst-case sensitivity.
In our study, we show that these worst-case regularization techniques come with
a cost that intriguingly causes inconsistencies and overestimations in the state-
action value functions. Furthermore, our results essentially demonstrate that vanilla
trained deep reinforcement learning policies have more accurate and consistent
estimates for the state-action values. We believe our results reveal foundational
intrinsic properties of the adversarial training techniques and demonstrate the need
to rethink the approach to robustness in deep reinforcement learning.

1 INTRODUCTION

Advancements in deep neural networks have recently proliferated leading to expansion in the domains
where deep neural networks are utilized including image classification (Krizhevsky et al., 2012),
natural language processing (Sutskever et al., 2014), speech recognition (Hannun et al., 2014) and self
learning systems via exploration. In particular, deep reinforcement learning has become an emerging
field with the introduction of deep neural networks as function approximators (Mnih et al., 2015).
Hence, deep neural policies have been deployed in many different domains from pharmaceuticals to
self driving cars (Daochang & Jiang, 2018; Huan-Hsin et al., 2017; Noonan, 2017).

As the advancements in deep neural networks continued a line of research focused on their vulnera-
bilities towards a certain type of specifically crafted perturbations computed via the cost function
used to train the neural network (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2018;
Kurakin et al., 2016; Dong et al., 2018). While some research focused on producing optimal `p-norm
bounded perturbations to cause the most possible damage to the deep neural network models, an
extensive amount of work focused on making the networks robust to such perturbations (Madry et al.,
2018; Carmon et al., 2019; Raghunathan et al., 2020).

The vulnerability to such particularly optimized adversarial directions was inherited by deep neural
policies as well (Huang et al., 2017; Kos & Song, 2017; Korkmaz, 2022). Thus, robustness to such
perturbations in deep reinforcement learning became a concern for the machine learning community,
and several studies proposed various methods to increase robustness (Pinto et al., 2017; Gleave et al.,
2020). Thus, in this paper we focus on adversarially trained deep neural policies and the state-action
value function learned by these training methods in the presence of an adversary. In more detail, in
this paper we aim to seek answers for the following questions: (i) How accurate is the state-action
value function on estimating the values for state-action pairs in MDPs with high dimensional state
representations?, (ii) Does adversarial training affect the estimates of the state-action value function?,
(iii) What are the effects of training with worst-case distributional shift on the state-action value
function representation for the optimal actions? and (iv) Are there any fundamental trade-offs
intrinsic to explicit worst-case regularization in deep neural policy training? To be able to answer
these questions we focus on adversarial training and robustness in deep neural policies and make the
following contributions:
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• We conduct an investigation on the state-action values learnt by the state-of-the-art adversar-
ially trained deep neural policies and vanilla trained deep neural policies.

• We provide theoretically motivated justification for how adversarial training might change
the state-action value function.

• We perform several experiments in Atari games with large state spaces from the Arcade
Learning Environment (ALE). With our systematic analysis we show that vanilla trained
deep neural policies have a more accurate representation of the sub-optimal actions compared
to the state-of-the-art adversarially trained deep neural policies.

• Furthermore, we show the inconsistencies in the action ranking in the state-of-the-art
adversarially trained deep neural policies. Thus, these results demonstrate the loss of
information in state-action value function as a novel fundamental trade-off intrinsic to
adversarial training.

• More importantly, we demonstrate that state-of-the-art adversarially trained deep neural
policies learn overestimated state-action value functions.

• Finally, we explain how our results call into question the hypothesis initially proposed by
Bellemare et al. (2016) relating the action gap and overestimation.

2 BACKGROUND AND PRELIMINARIES

Preliminaries: In deep reinforcement learning the goal is to learn a policy for taking actions in a
Markov Decision Process (MDP) that maximize discounted expected cumulative reward. An MDP is
represented by a tupleM = (S,A, P, r, ρ0, γ) where S is a set of continuous states, A is a discrete
set of actions, P is a transition probability distribution on S × A× S, r : S × A→ R is a reward
function, ρ0 is the initial state distribution, and γ is the discount factor. The goal in reinforcement
learning is to learn a policy π : S → P(A) which maps states to probability distributions on
actions in order to maximize the expected cumulative reward R = E

∑T−1
t=0 γtr(st, at) where

at ∼ π(st). In Q-learning Watkins (1989) the goal is to learn the optimal state-action value function
Q∗(s, a) = R(s, a) +

∑
s′∈S P (s′|s, a) maxa′∈AQ

∗(s′, a′). Thus, the optimal policy is determined
by choosing the action a∗(s) = arg maxaQ(s, a) in state s.

Adversarial Crafting and Training: Szegedy et al. (2014) observed that imperceptible perturbations
could change the decision of a deep neural network and proposed a box constrained optimization
method to produce such perturbations. Goodfellow et al. (2015) suggested a faster method to produce
such perturbations based on the linearization of the cost function used in training the network. Kurakin
et al. (2016) proposed the iterative version of the fast gradient sign method proposed by Goodfellow
et al. (2015) inside an ε-ball.

xN+1
adv = clipε(x

N
adv + αsign(∇xJ(xNadv, y))) (1)

in which J(x, y) represents the cost function used to train the deep neural network, x represents
the input, and y represents the output labels. While several other methods have been proposed (e.g.
Korkmaz (2020)) using a momentum-based extension of the iterative fast gradient sign method,

vt+1 = µ · vt +
∇sadvJ(stadv + µ · vt, a)

‖∇sadvJ(stadv + µ · vt, a)‖1
(2)

st+1
adv = stadv + α · vt+1

‖vt+1‖2
(3)

adversarial training has mostly been conducted with perturbations computed by projected gradient
descent (PGD) proposed by Madry et al. (2018) (i.e. Equation 1).

Adversaries and Training in Deep Neural Policies: The initial investigation on resilience of deep
neural policies was conducted by Kos & Song (2017) and Huang et al. (2017) concurrently based on
the utilization of the fast gradient sign method proposed by Goodfellow et al. (2015). Korkmaz (2022)
showed that deep reinforcement learning policies learn shared adversarial features across MDPs.
While several studies focused on improving optimization techniques to compute optimal perturbations,
a line of research focused on making deep neural policies resilient to these perturbations. Mandlekar
et al. (2017) proposed including these perturbations in training time to increase resilience for robotic
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setups. Pinto et al. (2017) proposed to model the dynamics between the adversary and the deep
neural policy as a zero-sum game where the goal of the adversary is to minimize expected cumulative
rewards of the deep neural policy. Gleave et al. (2020) approached this problem with an adversary
model which is restricted to take natural actions in the MDP instead of modifying the observations
with `p-norm bounded perturbations. The authors model this dynamic as a zero-sum Markov game
and solve it via self play. Recently, Huan et al. (2020) proposed to model this interaction between
the adversary and the deep neural policy as a state-adversarial MDP, and claimed that their proposed
algorithm State Adversarial Double Deep Q-Network (SA-DDQN) learns theoretically certified
robust policies against natural noise and perturbations. More recently, several empirical concerns
have been raised on the robustness of theoretically certified adversarially trained deep neural policies
Ezgi (2021). In our work, we systematically investigate and theoretically motivate the problems
caused by adversarial training on the state-action value function learned by deep neural policies.

3 ADVERSARIAL TRAINING AND THE STATE-ACTION VALUE FUNCTION

In this paper we aim to answer the following questions:

• How does training with explicit worst-case regularization affect the estimates of the optimal
state-action values in MDPs with high dimensional state representations?

• What is the accuracy of the state-action value function representation for the non-optimal
actions in deep neural policies?

• Does state-of-the-art adversarial training affect the state-action value estimates?
• Are there any intrinsic trade-offs tied to adversarial deep neural policy training?

While the goal in Q-learning is to learn the state-action value function Q(s, a) that maximizes
expected discounted cumulative rewards, in deep Q-learning an additional concern arises from
susceptibility towards adversarial perturbations due to the nonlinear function approximator used
in learning the Q-function. Ideally, one might hope that adversarial training would reduce the
vulnerability of the Q-function to adversarial perturbations while preserving the Q-values of the
non-perturbed states as much as possible. The theoretically motivated adversarial training techniques
achieve certified defense against adversarial perturbations inside the ε-ball Dε(s) = {s̄ : ‖s− s̄‖∞ ≤
ε}. However, we show that this approach induces significant changes in the Q-function so that the
Q-function loses its accuracy for the non-perturbed states. In particular, adversarial training causes
deep neural policies to learn overestimated state-action values, and the Q-values for non-optimal
actions are reduced in accuracy to the point where their relative ranking changes.

In the remainder of this section we give theoretical motivation for these empirical results. In particular
we demonstrate that in the setting of linear function approximation, adversarial training can potentially
lead to overestimation for the Q-values of the optimal actions, and reordering of the ranking of non-
optimal actions. The basic approach of adversarial training techniques is based on adding a regularizer
to the standard Q-learning update. The regularizer is designed to penalize Q-functions for which a
perturbed state s̄ ∈ Dε(s) can change the identity of the highest Q-value action. For the baseline
adversarial training technique we will theoretically analyze the effects of this regularizer.
Definition 3.1 (Huan et al. (2020)). For a state s let a∗(s) = arg maxaQ(s, a). The regularizer is
given by

R(θ) =
∑
s

(
max

s̄∈Dε(s)
max
a 6=a∗(s)

Qθ(s̄, a)−Qθ(s̄, a∗(s))
)
.

The adversarial training algorithm proceeds by addingR(θ) to the standard temporal difference loss

L(θ) = LH

(
r + γmax

a′
Qtarget(s′, a′)−Qθ(s, a)

)
+R(θ) (4)

used in DQN and minimizing via stochastic gradient descent.

We now describe the construction of an MDP M with linear function approximation where the
use of the regularizer causes overestimation and reordering of suboptimal actions. There are two
states parametrized by feature vectors s1, s2 ∈ Rn, and there are three possible actions {ai}3i=1
in each state. Taking any of the three actions in state s1 leads to a transition to state s2 and vice
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versa. Let 1 > γ > 0 be the discount factor, and let δ > η > 0 be small constants with γ > δ. The
rewards for each action are as follows: r(s1, a1) = 1 − γ, r(s1, a2) = η − γ, r(s1, a3) = δ − γ,
r(s2, a1) = η− γ, r(s2, a2) = 1− γ, and r(s2, a3) = δ− γ. Clearly, the optimal policy is to always
take action a1 in state s1, and action a2 in state s2 as these are the only actions giving positive reward.
Thus the optimal state-action values are given by: Q∗(s1, a1) = Q∗(s2, a2) =

∑∞
t=0(1− γ)γt = 1,

Q∗(s1, a2) = Q∗(s2, a1) = η − γ + γ
∑∞
t=0(1 − γ)γt = η , and Q∗(s1, a3) = Q∗(s2, a3) =

δ − γ + γ
∑∞
t=0(1− γ)γt = δ. Let the Q-function be linearly parametrized by θ = (θ1, θ2, θ3) so

that Qθ(s, ai) = 〈θi, s〉. Finally, let zi for i ∈ {1, 2, 3} be three orthonormal vectors, and let the state
feature vectors satisfy:

1. s1 = z1 + δz3 + ηz2 and 2. s2 = z2 + δz3 + ηz1

Then it follows that the optimal Q-function is parametrized by θ∗ = (θ∗1 , θ
∗
2 , θ
∗
3) where θ∗i = zi

i.e. Qθ∗(s, a) = Q∗(s, a) for all s and a. Thus, according to the function Qθ∗(s, a), for s1 the best
action is a1, for s2 the best action is a2, and in all states the second-best action is a3. Next we identify
the optimal perturbations used in the computation of the regularizerR(θ∗) for this setting.

Proposition 3.1. In the MDPM suppose that ε < δ−η
2 .

1. For s = s1: s+ ε√
2
(θ∗3 − θ∗1) = arg maxs̄∈Dε(s) maxa6=a∗(s)Qθ∗(s̄, a)−Qθ∗(s̄, a∗(s))

2. For s = s2: s+ ε√
2
(θ∗3 − θ∗2) = arg maxs̄∈Dε(s) maxa6=a∗(s)Qθ∗(s̄, a)−Qθ∗(s̄, a∗(s))

Proof. We will prove item 1, and item 2 will follow from an identical argument with roles of θ∗1 and
θ∗2 swapped. Let s = s1. Any s̄ ∈ Dε(s) can be written as s + εv where v is a unit vector. Thus,
〈θ∗3 , s̄〉 = 〈θ∗3 , s〉+ ε〈θ∗3 , v〉 > 〈θ∗3 , s〉 − ε = δ − ε. Similarly we have 〈θ∗2 , s̄〉 < 〈θ∗2 , s〉+ ε = η + ε.
Since ε < δ−η

2 , we conclude that 〈θ∗3 , s̄〉 > 〈θ∗2 , s̄〉 for all s̄ ∈ Dε(s). Therefore, in state s the action
maximizing maxa 6=a∗(s)Qθ∗(s̄, a)−Qθ∗(s̄, a∗(s)) will always be a3. This implies that

arg max
s̄∈Dε(s)

max
a 6=a∗(s)

Qθ∗(s̄, a)−Qθ∗(s̄, a∗(s)) = arg max
s̄∈Dε(s)

〈θ∗3 , s̄〉 − 〈θ∗1 , s̄〉. (5)

This is the maximum in a ball of radius ε around s of the linear function 〈θ∗3 − θ∗1 , s̄〉. Therefore the
maximum is achieved by s̄ = s+ ε√

2
(θ∗3 − θ∗1) as desired.

In words, the optimal direction to perturb the state s1 in order to have a∗(s) 6= a∗(s̄) is toward
θ∗3 − θ∗1 . Similarly for the state s2, the optimal perturbation is toward θ∗3 − θ∗2 . Next we use this fact
to show that in order to decrease the regularizer it is sufficient to simply increase the magnitude of θ1

and θ2, and decrease the magnitude of θ3.

Proposition 3.2. In the MDPM let λ > 0 and suppose that ε < (1−λ)δ−(1+λ)η
2 . Let θ = (θ1, θ2, θ3)

be given by θ1 = (1 + λ)θ∗1 , θ2 = (1 + λ)θ∗2 and θ3 = (1− λ)θ∗3 . ThenR(θ) < R(θ∗).

Proof. By an identical argument to that in Proposition 3.1 we have that a3 is always the action
maximizing maxa 6=a∗(s)Qθ(s̄, a) − Qθ(s̄, a∗(s)) whenever ε < (1−λ)δ−(1+λ)η

2 . This condition is
satisfied by assumption. Therefore, we conclude that for s = s1, the optimal s̄ ∈ Dε(s) for the scaled
parameters θ is given by s̄ = s+ ε√

2(1+λ2)
(θ3− θ1). Therefore, the contribution to the sum defining

R(θ) from state s1 is given by

〈(θ3 − θ1), s̄〉 = 〈(θ3 − θ1), s〉+ ε
√

2(1 + λ2) = −(1 + λ) + (1− λ)δ + ε
√

2(1 + λ2) (6)

where the last step uses the fact that s = θ∗1 + δθ∗3 + ηθ∗2 and that the vectors θ∗i are orthonormal.
Next using the fact that

√
1 + λ2 < 1 + λ for all λ > 0 we conclude

〈(θ3 − θ1), s̄〉 < −(1 + λ) + (1− λ)δ + ε
√

2 + ελ
√

2 < −(1 + λ) + δ + ε
√

2. (7)

The final inequality follows from the fact that ε < δ
2 so ελ

√
2− λδ < 0. Switching to type 2 actions

an identical proof (with θ1 replaced by θ2) yields the same value for the contribution of type 2 actions
to the sum. By Proposition 3.1, the contribution of each type of state to the sum definingR(θ∗) is

〈(θ∗3 − θ∗1), s+
ε√
2

(θ∗3 − θ∗1)〉 = −1 + δ + ε
√

2. (8)

Clearly the contribution of each state in 7 is strictly less than that in 8. ThereforeR(θ) < R(θ∗).
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Theorem 3.3. If a linear state-action value function approximator Qθ(s, a) is used, then the regular-
izerR(θ) can lead to overestimation of the value of the optimal action, and re-ordering of the values
of the suboptimal actions.

Proof. Consider the MDPM with linear function approximation constructed above. Increasing the
magnitude of θ∗1 and θ∗2 by a factor of 1 + λ leads to overestimation of the Q-value of the best action
in both state s1 and s2 by the same factor. Additionally decreasing the magnitude of θ∗3 can lead
to a change in the ranking of the suboptimal actions. Indeed if 1+λ

1−λ >
δ
η then a3 will become the

third ranked action in both states. Therefore, Proposition 3.2 proves that changing θ to decrease the
regularizer R(θ) can lead to both overestimation of the first ranked action, and re-ordering of the
ranking of the suboptimal actions.

While we showed how this can potentially happen in the case of linear function approximation, we
will see that this is a general phenomenon which occurs with neural-network approximation of the
Q-function in adversarially trained agents. It is important to note that the issues we identify are a
result of the fundamental differences between deep neural policies and classification tasks where
adversarial training has previously been applied. In particular, the fact that the state-action value
function Q(s, a) has a meaning (i.e. measuring expected cumulative rewards) with regard to the MDP
beyond simply labelling the optimal action correctly is the root cause of the effects that we observe.
In other words, simply penalizing the state-action value function for assigning the wrong “label” to
an adversarial example can have unintended, potentially detrimental consequences for learning an
accurate state-action value function.

4 MEASURING THE ACCURACY OF STATE-ACTION VALUES

In this section we provide a methodology to measure the accuracy of the state-action value function
in representing values for the non-optimal actions. At a high-level, our approach is based on action
modification and the relative performance drop P as defined below:

Definition 4.1. The performance drop of an agent when modifying the agent’s actions is given by

P =
Scorebase − Scoreactmod

Scorebase − Scoremin
. (9)

where Scorebase represent the baseline run of the game with no action modification, Scoremin represents
the minimum score available for a given game, and Scoreactmod represents the run of the game where
the actions of the agent are modified for a fraction of the state observations.

We now explain precisely how we propose to measure “accuracy” for non-optimal actions. Formally,
let ai be the ith best action decided by the deep neural policy in a given state s (i.e. Q(s, a) is sorted
in decreasing order, and ai is the action corresponding to ith largest Q-value). For a trained agent,
the value of Q(s, ai) should represent the expected cumulative rewards obtained by taking action
ai in state s, and then taking the highest Q-value action (i.e. a1) in every subsequent state. Thus, a
natural test to perform would be: pick a random state s, make the agent choose action ai in state s,
and in all other states have the agent choose the highest Q-value action. By comparing the relative
performance drop P in this test to a clean run where the agent always takes the highest Q-value
action, one can measure the decline in rewards caused by taking action ai. Further, we can provide a
measure of accuracy for the state-action value function by comparing the results of the test for each
i ∈ {1, 2 . . . |A|}, and checking that the relative performance drops Pi are in the correct order i.e.
0 = P1 ≤ P2 · · · ≤ P|A|.
However, there is an issue with the above proposal. It is often the case that there are many states s
in which the action taken has very little impact on the final rewards. Instead, there are a relatively
smaller number of critical states in which the action taken has a large impact. Thus, picking a single
random state s in which to take action ai will have a statistically insignificant impact on the final
rewards in the game. Therefore we modify the test described above by instead sampling a p-fraction
of the states in the episode uniformly at random, and making the agent take action ai in each of the
sampled states. We then record the relative performance drop as a function of p, yielding a reward
curve Pi(p). More formally, we define
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Figure 1: Performance drop P2(p) with respect to action modification aw for the state-of-the-art
adversarially trained deep neural policies and vanilla trained deep neural policies. Left: BankHeist.
Center: RoadRunner. Right: Freeway.

Definition 4.2. LetM be an MDP and Q(s, a) be a state-action value function forM. In each state
label the actions a1, . . . a|A| in order so that Q(s, a1) ≥ Q(s, a2) · · · ≥ Q(s, a|A|). We define the
performance curve Pi(p) to be the expected performance drop of an agent inM which takes action
ai in a randomly sampled p-fraction of states, and takes action a1 in all other states.

Using these reward curves one can check whether Pi(p) lies above Pj(p) whenever i > j. Of course
one curve may not always lie strictly above or below another, so we introduce the following definition
to quantitatively capture the relative ordering of performance drop curves.

Definition 4.3. Let F : [0, 1] → [0, 1] and G : [0, 1] → [0, 1]. For any τ > 0, we say that the F
τ -dominates G if

∫ 1

0
(F (p)−G(p)) dp > τ .

To compare the accuracy of state-action values for vanilla versus adversarially trained agents, we can
thus perform the above test, and check the relative ordering of the curves Pi(p) using Definition 4.3
for each agent type. In addition, we can also directly compare for each i the curve Padv

i (p) for the
adversarially trained agent with the curve Pvanilla

i (p) for the vanilla trained agent. This is possible
because Pi(p) measures the performance drop of the agent relative to a clean run, and so always takes
values on a normalized scale from 0 to 1. Thus, if we observe for example that Padv

2 (p) τ -dominates
Pvanilla

2 (p) for some τ > 0, we can conclude that the state-action value function of the vanilla trained
agent more accurately represents the second-best action than that of the adversarially trained agent.

5 EXPERIMENTAL DETAILS

The experiments are conducted in high dimensional state representation MDPs. In particular, our
experiments are conducted in the Arcade Learning Environment (ALE) (Bellemare et al., 2013) in the
OpenAI (Brockman et al., 2016) baseline version. The vanilla trained deep neural policy is trained via
Double Deep Q-Network (DDQN) (Wang et al., 2016) initially proposed by Hasselt et al. (2016) with
prioritized experience replay proposed by (Schaul et al., 2016), and the state-of-the-art adversarially
trained deep neural policy is trained via State-Adversarial Double Deep Q-Network (SA-DDQN)
(Section 2) with prioritized experience replay (Schaul et al., 2016). The results are averaged over
10 episodes. We explain in detail all the necessary hyperparameters for the implementation in
the supplementary material. The standard error of the mean is included for all of the figures and
tables. Note that in the main body of the paper we focus on the baseline adversarial training. In the
supplementary material we also provide analysis on the follow-up more recent studies in adversarial
training techniques. The results reported for all of the adversarial training techniques remains the same
that the adversarially trained policies learn inaccurate, inconsistent and overestimated state-action
values.

6 AN ANALYSIS ON THE STATE-ACTION VALUE FUNCTION REPRESENTATION

In this section we demonstrate that the state-action value function of adversarially trained deep
neural policies provides inaccurate estimates for the non-optimal actions, and learns overestimated
state-action values. This confirms that the theoretically-motivated problems discussed in Section
3 do indeed occur in practice for deep neural policies. In particular, to evaluate the accuracy on
non-optimal actions we use the methodology discussed in Section 4 of measuring the performance
drop Pi(p) that occurs when causing the deep neural policy to take the i-th best action in a p fraction
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Figure 2: Performance drop Pw(p) with respect to action modification aw for the state-of-the-art
adversarially trained deep neural policies and vanilla trained deep neural policies.

Table 1: Area under the curve of performance drop under action modification (AM) a2 and aw for
the state-of-the-art adversarially trained deep neural policies and vanilla trained deep neural policies.

Environments BankHeist RoadRunner Freeway

Training Method Adversarial Vanilla Adversarial Vanilla Adversarial Vanilla

AM a2 0.449±0.007 0.191±0.04 0.414±0.015 0.247±0.009 0.351±0.009 0.302±0.007
AM aw 0.311± 0.011 0.398±0.011 0.345±0.011 0.393±0.009 0.241±0.007 0.311±0.010

of states. Our aim is to provide an analysis on how accurate the state-action value function is in
representing values for both optimal and non-optimal actions for vanilla trained deep neural policies
and state-of-the-art adversarially trained deep neural policies.

6.1 INACCURACY OF STATE-ACTION VALUES FOR NON-OPTIMAL ACTIONS

In Figure 1 we show the performance drop P2(p) as a function of the fraction of states p in which
the action modification is applied for state-of-the-art adversarially trained deep neural policies and
vanilla trained deep neural policies. In particular, the action modification is set for the second best
action a2 decided by the state-action value function Q(s, a). As we increase the fraction of states in
which the action modification set to a2 is applied, we observe a performance drop for both of the deep
neural policies. However, we observe that the vanilla trained deep neural policies experience a lower
performance drop with this modification. Especially in BankHeist we observe that the performance
drop does not exceed 0.55 even when the action modification is applied for a large fraction of the
visited states for the vanilla trained deep neural policies. This gap in the performance drop between
the adversarially trained and vanilla trained deep neural policies indicates that the state-action value
function learnt by vanilla trained deep neural policies has a better estimate for the non-optimal
actions. As we measured the impact of a2 modification on the policy performance, we further test
aw = arg minaQ(s, a) modification (i.e. worst possible action in a given state modification) on
the deep neural policy. Figure 2 shows that the performance drop Pw(p) is higher in the vanilla
trained deep neural policies compared to adversarially trained deep neural policies when the action
modification is set to aw. This again further demonstrates that the state-action value function learnt
by the vanilla trained deep neural policy has a more accurate representation over the non-optimal
actions. We hypothesize that adversarial training places higher emphasis on ensuring that the highest
ranked action (i.e. the action that maximizes the state-action value function in a given state) does not
change under small `p-norm bounded perturbations, rather than accurately computing the state-action
value function as discussed in Section 3. Since historically Q-learning suffered from overestimation
of Q-values, a method which places higher emphasis on the highest ranked action risks converging to
a state-action value function with overestimated Q-values. We further demonstrate this in Section 6.2.

6.2 OVERESTIMATION OF Q-VALUES IN ADVERSARIALLY TRAINED DEEP NEURAL POLICIES

Overestimation of Q-values was initially discussed by Thrun & Schwartz (1993) as a byproduct of the
use of function approximators, and was subsequently explained as being caused by the use of the max
operator in Q-learning (van Hasselt, 2010). Furthermore, overestimation bias resulting in learning
of sub-optimal policies was demonstrated in practice by Hasselt et al. (2016). In this subsection we
empirically demonstrate that state-of-the-art adversarial training indeed leads to overestimation in
Q-values, as hypothesized in Section 3. In particular, Figure 4 and Table 2 show the overestimation
bias on the state-action values learned by the state-of-the-art adversarially trained deep neural policies.
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Figure 4: Q-value of the best action a∗ over the states for the state-of-the-art adversarially trained
deep neural policy and vanilla trained deep neural policy.
Table 2: Average Q-values of the optimal action in state-of-the-art adversarially trained deep neural
policies and vanilla trained deep neural policies.

Environments BankHeist RoadRunner Freeway
Training Method Adversarial Vanilla Adversarial Vanilla Adversarial Vanilla

Q(s, a∗) 5.903±2.052 0.300±0.434 8.806±3.216 0.602±0.781 1.667± 0.406 1.185±0.348

Considering that overestimation bias is still an issue and active area of research for vanilla deep
neural policy training (Lan et al., 2020; Anschel et al., 2017; Kuznetsov et al., 2020), the additional
bias introduced intrinsic to adversarial training must be addressed to be able to learn optimal policies.

6.3 INCONSISTENCIES IN ACTION RANKING IN ADVERSARIALLY TRAINED DEEP NEURAL
POLICIES

Figure 3: P2 and Pw for ad-
versarially trained deep neural
policies.

In this subsection we demonstrate the inconsistencies in the non-
optimal action ranking in adversarially trained policies. In par-
ticular, in Figure 3 in BankHeist choosing the worst action leads
to a smaller performance drop than choosing the second best ac-
tion i.e. Pw(p) < P2(p) for all p. Thus, this demonstrates that
the state-action value function is not ranking the sub-optimal ac-
tions accurately. While learning an accurate representation of the
state-action values is important for obtaining a policy that aims to
maximize expected cumulative rewards, learning the correct order
of the actions can also solve this problem. Furthermore, in some
cases the deep neural policy indeed must know the correct order
of the actions due to the presence of an obstruction that blocks the optimal action either due to
the existence of other agents or environmental effects (Rashid et al., 2020; Gleave et al., 2020). In
particular, in safe reinforcement learning several algorithms have been proposed to learn the ranking
of the actions so that the agent can choose the next-best ranked action in safety critical situations
(Alshiekh et al., 2018). Some work has also pointed out that in some cases learning the relative rank
of the actions (Lin & Zhou, 2020) can be more sample efficient than learning correct estimates of the
state-action values. While the inconsistency in action ranking for adversarially trained deep neural
policies can be seen as a vulnerability problem from a security point of view, most intriguingly these
results demonstrate the loss of information in state-action value function as a novel fundamental
trade-off intrinsic to adversarial training.

6.4 ACTION GAP PHENOMENON

The action gap is defined as the difference between the state-action value of the optimal action and
the state-action value of the second ranked action.

κ(Q, s) = max
a′∈A

Q(s, a′)− max
a/∈arg maxa′∈AQ(s,a′)

Q(s, a) (10)

Initially, Farahmand (2011) describes the existence of a large action gap as a desirable property
of an MDP, which makes learning an optimal policy easier. Subsequently, Bellemare et al. (2016)
proposed a connection between the action gap and the overestimation of Q-values, and in particular
hypothesized that increasing the action gap of the learned value function causes a decrease in
overestimation ofQ-values. Following this study, several papers built on the hypothesis that increasing
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Figure 5: Normalized state-action values for the best action a∗, second best action a2 and worst
action aw over states. Row1: Vanilla trained policies. Row2: State-of-the-art adversarially trained
policies.
Table 3: Normalized state-action value estimates1and state-action value estimate shift for the second
best action in state-of-the-art adversarially trained deep neural policies.

Q(s, a) Q(s, a∗) Q(s, a2) Q(s, aw)

ALE Adversarial Vanilla Adversarial Vanilla Adversarial Vanilla

BankHeist 0.1894±0.002 0.170±0.003 0.130±0.0006 0.169±0.002 0.127±0.0010 0.161±0.004
RoadRunner 0.1696±0.008 0.236±0.094 0.132±0.0026 0.159±0.079 0.126±0.0049 -0.265±0.071
Freeway 0.1894±0.002 0.341±0.008 0.130±0.0006 0.333±0.002 0.127±0.0010 0.325±0.009

the action gap causes reduction in bias (Smirnova & Dohmatob, 2020; Fox et al., 2016; Jain et al.,
2020; Lu et al., 2019). In Figure 5 we show that adversarial training increases the action gap. Thus,
the fact that adversarially trained deep neural policies overestimate the optimal state-action values
(see Section 6.2) refutes the hypothesis that increasing the action gap is the sole cause of a decrease
in overestimation bias of state-action values. We hypothesize that the consistent Bellman operator
(Bellemare et al., 2016) may cause a decrease in overestimation for a different reason. In particular,
the consistent Bellman operator corresponds to a special case of a certain reparameterization of
Kullback-Leibler regularization for value iteration (Vieillard et al., 2020). Thus, it may be the case
that the decrease in overestimation of Q-values and improvement in performance is due to a type
of implicit regularization rather than to an increase of the action gap. Hence, our results show that
increasing the action gap alone may coincide with an increase in overestimation of Q-values.

7 CONCLUSION

In this paper we focus on the state-action value function learnt via the state-of-the-art adversarially
trained deep neural policies and vanilla trained deep neural policies. We provide theoretical analysis on
the fundamental effects caused by adversarial training on the state-action value function. Furthermore,
we conduct manifold experiments in the Arcade Learning Environment and with our systematic
analysis we demonstrate that vanilla trained deep neural policies have more accurate and consistent
estimates for the state-action values than the state-of-the-art adversarially trained deep neural policies.
More intriguingly, we show that adversarially trained deep neural policies in certain MDPs completely
loses all the information in the state-action value function that contains the relative ranking of the
actions. More importantly, we show that state-of-the-art adversarially trained deep neural policies
learn overestimated state-action values. We believe our investigation lays out intrinsic properties
of adversarial training while systematically revealing the underlying vulnerabilities, and can be
conducive to building robust and optimal deep neural policies.

1Note that due to the fact that the adversarially trained deep neural policy overestimates Q-values, we
introduce a normalization in order to compare the action gaps of adversarially and vanilla trained policies. In
particular, in Figure 5 we report normalized Q-values in each state s by dividing Q(s, a) by

∑
a |Q(s, a)|.
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