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Abstract

Improvisation is a hallmark of human intelligence, particularly in high-stakes
domains such as emergency medicine, where ideal tools are often unavailable
and practitioners must adapt procedures using what is at hand. While recent
vision-language models (VLMs) have demonstrated strong general reasoning and
perception abilities, they remain inadequate for grounded procedural adaptation
under constraints. In this paper, we introduce ImPlan, an improvisational reasoning
framework that augments VLMs with structured planning and transformation-aware
substitution. ImPlan generates action-object graphs that adapt procedural goals to
context-specific affordances in the scene. Experiments on a benchmark of expert-
annotated emergency procedures show that ImPlan significantly outperforms direct
VLM prompting, both proprietary and open-weight models, even when built on
weaker backbone models. On average, ImPlan improves groundness scores by up
to 70.8% and plausibility scores by up to 28.6%, achieving simultaneous gains in
visual grounding and logical coherence. ImPlan offers a potentially generalizable
path for grounded decision-making in resource-limited environments.

1 Introduction

Vision-language models (VLMs) have achieved significant success by integrating visual processing
with natural language understanding [Achiam et al., 2023 Touvron et al., 2023|, [Liu et al.l 2023}
2024, [Radford et al., [2019, 2021} [Li et al., 2023| Zhang et al., | 2024b} |Li et al., 2024} |Guo et al., 2024,
Zhang et al.,|2024al, [Shakeri et al.,[2024]. While VLMs have demonstrated impressive performance
on perception-grounded tasks and general instruction following [Cheng et al.,[2025] |Dai et al.| [2023]],
they largely operate within a traditional reasoning paradigm [Wei et al., [2022] [Wang et al.| 2023]].
These models are adept at following detailed prompts or retrieving known procedures, but they lack
mechanisms for context-sensitive procedural adaptation. These models are adept at following detailed
prompts or retrieving known procedures, but they lack mechanisms for context-sensitive procedural
adaptation [Amara et al., [2024} Nikandrou et al., [2024]].

Specifically, when key tools are missing or altered, VLMs tend to either hallucinate inappropriate
actions or default to generic templates-failing to produce grounded, functional adaptations[Chen
et al.| 2024} Qian et al., 2024]. Consider a first response scenario where a field medic must perform
an emergency tracheostomy to restore a patient’s airway. The ideal tool, a surgical scalpel, is missing.
In a high-stakes, time-critical setting, the medic does not pause the procedure—instead, they sanitize
a sharp knife and proceed. This act is not a reckless guess; it is a calculated decision that substitutes
an available tool for a missing one, while preserving the goal and structure of the procedure. FigureT]
illustrates an improvisation scenario for emergency tourniquet application. Such decisions exemplify
improvisational reasoning: the ability to adapt abstract procedural knowledge to grounded, real-world
constraints [Favero et al., [2024] |Lyu et al., [2024].
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Figure 1: Comparison of Regular and Improvised Tourniquet Procedures: The top row demonstrates
a standard tourniquet application using medical-grade equipment in a controlled setting. The
bottom row depicts an improvised (properly referred in the medical jargon as Just-in-Time (JIT))
tourniquet procedure using a belt and a screwdriver, as might be required in austere environments.
This study evaluates the ability of vision-language models (VLMs) to generate step-by-step medical
procedures in improvised settings based on visual scene understanding.

Traditional reasoning, as modeled in current VLMs and planning systems, aims for optimality under
the assumption that ideal resources are available. Improvisational reasoning, by contrast, requires
systems to identify feasible substitutes, anticipate their transformed use, and assess whether the
modified plan remains safe and effective. A model that knows the correct surgical procedure is not,
by default, capable of adapting it in a degraded environment.

In this work, we introduce ImPlan, a structured framework for improvisational reasoning grounded
in visual context. Given a scene and a procedural goal (e.g., tracheostomy, tourniquet application),
ImPlan generates an adapted sequence of action-object steps that maintain procedural intent while
replacing unavailable tools with visually present alternatives. Our system leverages a pre-trained
VLM, but enhances it with explicit graph-based procedural reasoning and transformation-aware
substitutions.

We evaluate ImPlan on a new benchmark of five emergency medical procedures, annotated by domain
experts performing real or simulated improvisations. Experiments show that ImPlan significantly
outperforms direct VLM prompting across multiple open-weight and proprietary models of varying
sizes and capabilities. On average, ImPlan improves groundness by up to 70.8% and plausibility
by up to 28.6%, showing consistent bidirectional gains across all tested models. These results
demonstrate that modeling grounded procedural improvisation is critical for deploying Al systems in
high-stakes, resource-limited settings.

2 Problem Settings

We address the task of procedure graph generation in the context of emergency medical interventions,
where the execution of a procedure must be adapted to real-world constraints such as limited tool
availability and the urgency of immediate care. In such high-stakes scenarios, such as applying a
tourniquet or clearing an airway, medical practitioners are often required to look for alternatives,
relying on non-standard or makeshift tools to perform critical steps (referred to as Just-in-Time (JIT)
procedures).

The goal of this task is to generate a coherent, contextually grounded sequence of medical actions
that achieves the intended procedural objective using only the resources available in the environment.
In practice, these procedure steps assist a general medic, who may be unfamiliar with the specific
situation and likely operating under stress, in carrying out the emergency intervention. Task alteration
in such scenarios is challenging, even for experts. While the underlying concept is broadly applicable
to many other domains, in this paper, we focus specifically on emergency medical procedures.

Formally, let S denote a scene, represented as a short video clip or a sequence of image frames
capturing a localized emergency situation. Let C' € P be the context label specifying the high-level
medical procedure to be performed, where P is the set of supported procedural categories. The
desired output is a procedure graph Gy, defined as an ordered sequence of action-object pairs:

Gouw = {(a1701)7 (CLQ, 02)a cey (ana On)}a



where each a; is a discrete action (e.g., tie, wrap, apply pressure) and each o; is a physical object or
tool (e.g., gauze, towel, scarf) used to perform the action.

The procedure graph G, must satisfy two primary constraints. First, the sequence must be internally
coherent and goal-directed, preserving the logical structure of a standard execution of procedure C'.
Second, the graph must be grounded in the visual content of scene .5, such that each object o; is
either visibly present in the scene or plausibly substitutable based on semantic or functional similarity.
The ability to generate such grounded and improvisational procedure graphs is critical for intelligent
assistance systems in emergency medicine, where time constraints and environmental variability
prohibit reliance on ideal conditions or standard equipment.

This formulation extends classical procedural modeling by incorporating both contextual grounding
and improvisational reasoning, enabling robust adaptation of procedural knowledge in highly dynamic
and resource-constrained settings.

3 Methodology

Improvisation may require modifying a scene-available object before it becomes a functional sub-
stitute. For instance, converting a pen into an airway tube requires removing the ink cartridge. Let
T denote the set of allowed transformations (e.g., cut, unwrap, flatten), where each t € 7 maps
a raw object to a transformed one. We define an improvisation score function I(0*,0') € [0,1] to
quantify the functional similarity between the required object o* and a transformed substitute o’. A
substitution is considered feasible only if the score exceeds a minimum threshold 7 € [0, 1]. This
ensures that highly implausible actions, those likely to disrupt the procedure or worsen the situation,
are avoided. Figure[2] general overview of our framework. The details process is described bellow.
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Figure 2: Overview of ImPlan Framework.

3.1 Procedural Graph Adaptation Setup

Let C € P be a procedural context label, and let G5, = {(a1,0}),...,(an,0%)} denote the
canonical procedure graph for task C, where each a; is an action and o} is the ideal tool used to

perform it. Let S represent a visual scene, and let Ts C O be the set of available objects in the scene.

The objective is to generate a modified graph Gimp = {(as, 05, t;)}, where each 6; € Tis and t; € T is
a transformation (or the identity function), such that the resulting sequence maintains the procedural
logic of GS_,, while adapting to the object constraints imposed by S.

ideal®

3.2 Stereotypical Procedure Graph Construction

To ground improvisational reasoning in clinically validated knowledge, ImPlan constructs a stereo-
typical procedure graph G* for each procedural goal. Each graph captures the canonical sequence
of actions and objects observed during regular (non-improvised) executions of the procedure. Each
instance of a procedure is represented as a directed graph G = (V, E'), where V denotes the set of
nodes, corresponding to actions (verbs) and objects (nouns), and £ C V' x V encodes the directed
edges representing transitions between steps. Each edge e = (v;,v;) € E is annotated with an



ordinal label indicating the chronological step order. An action at step ¢ is described as a verb-noun
pair (u;, v;), representing the operation and the associated object.

Each procedure instance is encoded into two matrices: an adjacency matrix P € {0, 1}VwxNw
representing the structural connectivity, and an ordinal matrix @ € R¥Nw >N capturing the temporal
ordering of steps, where Ny denotes the total number of unique verb and noun nodes across all
instances. To ensure uniqueness, repeated actions within a procedure are assigned distinct counter
indices.

The construction of a procedural graph proceeds by parsing action sequences sequentially: nodes are
added to the graph as new actions or objects appear, and edges are created linking object-verb-object
transitions, preserving temporal order. The adjacency and ordinal matrices are updated accordingly
throughout the parsing process. Further details of the graph generation procedure are provided in
Appendix.

Given a set of K demonstration instances {G1,Ga, ..., Gk} corresponding to the same procedure,
the stereotypical procedure graph G* is constructed by aggregating adjacency and ordinal matrices
across instances. For each node pair (i, j), the averaged adjacency P(i,j) and ordinal Q(%, j) are

computed as: P(i,7) = &S, Pu(i,5), Q(i,j) = + S5, Qk(i,4). To filter out rare or
inconsistent transitions, a threshold o € [0, 1] is applied: transitions with P(i,j) < « are pruned,
while others are retained. The remaining edges define the final structural skeleton of G*, while
the averaged ordinal values preserve procedural sequencing information. The detailed averaging
procedure is provided in Appendix.

Each procedural goal is associated with exactly one pre-constructed graph G, creating a direct one-
to-one mapping used at inference time. By grounding adaptations in these stereotypical structures,
ImPlan preserves procedural coherence while allowing flexible improvisation. Detailed steps are in
the Algorithm

3.3 Hypothesis Generation via Reasoning Steps

¢

«deal» and the score function I, the

Given the scene toolset Tg, transformation set 7, the ideal graph G
algorithm proceeds as follows:

Algorithm 1 ImPlan Algorithm

Require: Ideal concept graph G

Ensure: Improvised graph Gimp
1: Initialize improvised graph Gimp + [ |
2: for each (a;,0}) € GS., do

¢

ideal> Object set T's, transformations 7, similarity threshold 7

3: if o] € Ty then

4: Append (a;, 0], identity) to Gimp
5 else

6: for each (0,t) € Tg x T do

7: o' + Transform(o, t)

8: s« I(of,0)

9: end for

10: Select best-scoring pair (6, ) such that I (o}, Transform(o, %)) > 7
11: if such a pair (6, ) exists then
12: Append (a;, 6,1) to Gimp
13: end if
14: end if
15: end for

16: return Gipp

If no feasible graph generated the algorithm return an empty set. To adapt the ideal graph to a scene
S with observed tools T’s, the system follows a structured reasoning path based on the algorithm
which yields a grounded hypothesis graph G, = {(a;, 0;,¢;)}:



Hypothesis and Reasoning Process

¢ Procedure identification: The label C defines the target procedural intent.
* Tool detection: Visual processing identifies objects T's C O available in scene S.

e Graph grounding: Each step in Gﬁeal is compared against Ts to determine tool avail-
ability.

* Tool substitution: For missing tools o, the system queries a set of transformations 7~
over each o € Ts and computes a similarity score

I (o, Transform(o, t)), where I is approximated using VLM embedding similarity.

* Substitution selection: The best substitute (6;,;) is selected for each missing tool,
provided the estimated similarity exceeds threshold 7; otherwise, the step is omitted.

3.4 Practical Instantiation via Vision-Language Models

Since the improvisation score is not directly accessible, it is approximated using a pre-trained
vision-language model (VLM) to estimate semantic similarity between ideal and transformed tools
within a shared embedding space. Transformations are derived from scene context or prompt
engineering, with a greedy substitution policy applied based on similarity scores. This allows
efficient, scalable reasoning under perceptual constraints. To connect design and deployment, the
algorithm and reasoning framework (Fig. 2) guide VLM behavior through structured prompts.
Originally a conceptual model of procedural improvisation, these reasoning steps are encoded as
system instructions, aligning inference-time behavior with high-level planning logic for greater
interpretability and consistency.

3.5 Implementation Details

The system is a structured reasoning pipeline built on a pre-trained vision-language model (VLM),
operating in a zero-shot, prompt-based setting without fine-tuning. Prompt engineering, input
formatting, and retrieval are used to ground the procedural graph and guide reasoning. Each VLM
query is framed with a system prompt encoding the scene, the high-level goal C, and the hypothesized
action sequence. These prompts help the model interpret the scene, reason through steps, and suggest
substitutions. The ideal procedure graph G is retrieved as a list of action-object pairs, presented

ideal
as bullet points or phrases. Steps are represented both in text (e.g., “insert airway tube”) and via
embeddings. Scene objects o € Ts are labeled with natural phrases (e.g., “pen”, “rolled towel””) and
transformed using templates (e.g., “cut-open pen”). These variants are encoded using the VLM’s text

encoder.

Inference uses API-based VLM access via chat interfaces (OpenAl, Gemini, Together Aﬂ), with
support for models like LLaMA and Qwen.

4 Experiments

We evaluate ImPlan, our improvisational reasoning framework, on a suite of procedural tasks
requiring grounded planning under object constraints. These tasks simulate real-world scenarios
in which ideal tools may be unavailable, necessitating adaptation using only the resources visually
present in the scene. The experiments test both full-procedure adaptation and localized, step-level
improvisation across a diverse set of vision-language models (VLMs) and reasoning strategies.

4.1 Dataset

All videos were recorded from a first-person perspective using head-mounted GoPro Hero7 cameras
(San Mateo, California) at 1080p resolution. The cameras were angled 20-30 degrees downward
from the forehead to ensure optimal framing, with the hands intentionally centered in the field of
view to enhance procedural visibility. Recordings were conducted across a range of simulated clinical
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environments to reflect operational diversity. These recordings capture five life-saving interventions:
Cricothyroidotomy (CR), Needle Thoracostomy (ND), Tourniquet (TQ), Tube Thoracostomy (CT),
and Interosseous Insertion (I10).

A key component of the dataset includes 67 videos capturing “just-in-time” (JIT) proce-
dures—improvised life-saving interventions performed using non-standard or readily available
materials. These scenarios emphasize adaptability in resource-limited settings, including the use of
belts (e.g., Figure[I) or clothing secured with screwdrivers for tourniquets.

These improvised videos serve as the primary evaluation set for this paper, highlighting real-world
improvisation and dynamic decision-making under pressure. In contrast, the dataset also contains
220 videos of standard procedures performed with conventional medical tools in more controlled
conditions. These represent routine, stereotypical workflows and are used to establish reference
performance and baseline behavior in procedural execution. The standard procedure data were used
to generate the stereotypical procedure graph for our ImPlan framework.

Each video in the dataset was annotated by trained medical professionals, who labeled start and end
timestamps for each action and described the activity using verb—noun pairs (e.g., “insert needle,”
“apply tourniquet”). These annotations serve as the ground truth for model training and evaluation.
To ensure accuracy and reduce inconsistencies, all annotations underwent peer review by additional
medical experts, supporting high-quality ground truth.

4.2 Baselines and VLMs

We compare ImPlan against several configurations that isolate different reasoning mechanisms.
The direct prompting baseline uses the VLM to generate responses without structured guidance,
simulating a zero-shot setting. A second baseline augments the prompt with a chain-of-thought (CoT)
scaffold, encouraging sequential reasoning. The full ImPlan system introduces structured graph
reasoning, tool transformation modeling, similarity-based substitution, and scoring components.

Experiments are conducted using both open-weight and proprietary VLMs. The open-weight models
include variants from LLaMA, and Qwen. Proprietary models include GPT-4.1 (Mini, Nano), GPT-
40, and Gemini (2, 1.5). This range allows us to assess how model capacity and alignment quality
influence improvisational performance.

4.3 Evaluation Metrics

Performance is measured using multiple complementary metrics. The plausibility score quantifies
the logical consistency and goal alignment of generated action sequences. It is computed using
cosine similarity in an embedding space, where embeddings are obtained from a sentence transformer
[Reimers and Gurevych,|2019]] applied to the entire procedure graph represented as text. The score
ranges from O to 1 (higher is better). The groundness score evaluates the visual and contextual
feasibility of each substituted tool within the scene. This metric assesses the ability of VLMs to
generate plans that are grounded in the provided scene context, rather than relying on memorized
standard procedures. It is calculated by comparing the ground truth annotations, which include
improvised tool use, with the predicted or generated plans produced by the VLMs. A higher score
indicates better grounding, and values are normalized between 0 and 1.

5 Results

5.1 Groundness Score

The groundness score evaluates the extent to which generated tool-use procedures are contextually
and visually grounded in the provided scene. This metric is critical for assessing the ability of models
to reason beyond memorized routines and adapt to dynamic, scene-specific constraints. Table[I|shows
that our proposed method, ImPlan, consistently improves groundness across all evaluated models,
demonstrating its effectiveness in enhancing scene-aware planning.

Strong Improvements Across All Model Types. Our ImPlan approach demonstrates gains across all
ten models, with particularly large relative improvements for open-weight models. Qwen2.5-72B, for
example, shows the highest relative improvement of +70.80 %, boosting its average score from 0.27 to



Table 1: Comparison of model Groundness Score across different settings. AVG = average of CR,
CT, 10, ND, TQ; Gain (%) = percentage improvement from base to implan.

Model Setting CR CT 10 ND TQ ‘ AVG  Gain (%)
GPT-4.1 base 040 0.61 046  0.69 032 0.50

implan 052 062 078 049 0.68 0.62 24.60
GPT-4.1-mini base 0.31 035 052 062 024 0.41

implan 036 049 070 058  0.60 0.55 33.82
GPT-4.1-nano base 0.11 0.33 0.29 0.56 0.07 0.27

implan 027 037 038 040 033 0.35 28.68
GPT-40 base 034 036 060 072 031 0.47

implan 052 053 041 046  0.61 0.51 8.58
Gemini 1.5 base 0.20  0.35 025 048 021 0.30

implan 026 045 035 051 0.58 0.43 44.30
Gemini 2.0 base 036 042 060 068 030 0.47

implan 044 064 059 089 037 0.59 24.15
LLaMA3.2-11B base 0.12  0.21 034 052  0.09 0.26

implan 030 032 057 057 0.15 0.38 49.22
LLaMA4-Mav-17B base 020 045 027 065 022 0.36

implan 0.37 0.51 036 055 030 0.42 16.76
LLaMA4-Scout-17B  base 0.19 030 030 040 0.19 0.28

implan 033 040 029 064 053 0.44 58.70
Qwen2.5-72B base 0.16 035 030 039 0.17 0.27

implan 044 039 051 0.69 031 0.47 70.80

0.47. Similarly, LLaMA4-Scout-17B improves from 0.28 to 0.44 (+58.70%), and LLLaMA3.2-11B
gains +49.22%. These results underscore ImPlan’s utility for lifting the performance floor of weaker
base models in terms of contextual understanding.

ImPlan scales effectively across models ranging from compact versions (e.g., GPT-4.1-nano,
LLaMA3.2-11B) to large-scale architectures (Qwen2.5-72B, LLaMA4-Mav-17B). Importantly, the
magnitude of improvement does not correlate linearly with base performance: weaker models often
show the highest relative gains, but even high-performing base models see meaningful improvements.

Gains for Proprietary Models. Proprietary models, including GPT-4.1, GPT-40, and Gemini, also
benefit notably. GPT-4.1, already a strong performer (0.50 base), sees a +24.60% gain, reaching an
average groundness of 0.62. Gemini 1.5 and Gemini 2.0 experience improvements of +44.30% and
+24.15%, respectively. Notably, GPT-4.1-mini exhibits a substantial +33.82% increase, suggesting
that ImPlan is especially beneficial for lower-capacity variants that may lack innate scene-specific
reasoning skills.

Category-Level Trends. ImPlan’s strongest effects are observed in I0 and TQ—categories that
require flexible adaptation to non-standard tools and task conditions. For instance, GPT-4.1 improves
from 0.46 to 0.78 in 10, and Gemini 1.5 jumps from 0.21 to 0.58 in TQ. These improvements suggest
that ImPlan enables models to break from rigid, canonical patterns and propose more plausible
alternatives suited to the actual visual context.

While gains are generally consistent, a few categories show flat or slightly reduced scores post-ImPlan.
For example, GPT-4.1 drops in ND from 0.69 to 0.49, and GPT-4o dips in IO from 0.60 to 0.41.
These cases may reflect occasional overemphasis on scene adaptation at the expense of broader
generalization. Further refinement of the balancing mechanism between grounding and default
procedural knowledge could help mitigate these trade-offs.

5.2 Plausibility Score

The plausibility score captures the internal logical consistency and goal-directedness of the generated
procedure as a whole. This metric complements groundness by assessing whether the action sequence,
aligns with coherent human-like reasoning. As shown in Table 2] ImPlan improves plausibility across
all model types, though the magnitude and pattern of improvement vary with model scale, architecture,
and baseline performance.

Consistent Gains Across Models. All ten evaluated models show a positive gain in average
plausibility after applying ImPlan. The most significant improvements are observed in Gemini 1.5
(+28.57%), Gemini 2.0 (+28.46%), and Qwen2.5-72B (+21.97%). These gains are substantial
and consistent across all five subcategories (CR, CT, 10, ND, TQ), indicating that ImPlan robustly



Table 2: Comparison of model Plausibility Score across different settings. AVG = average of CR,
CT, 10, ND, TQ; Gain (%) = percentage improvement from base to implan.

Model Setting CR CT 10 ND TQ | AVG  Gain (%)
GPT-4.1 base 059 054 063 070 053 0.60

implan 079 055 074 0.65 0.60 0.67 11.37
GPT-4.1-mini base 056 052 070 0.68 0.56 0.60

implan 0.75 0.62  0.81 0.67 0.58 0.69 13.58
GPT-4.1-nano base 0.45 0.47 0.64 0.67 0.48 0.54

implan 0.61 048 057 065 0.61 0.58 7.75
GPT-40 base 0.56 047 0.66 0.71 0.59 0.60

implan 078 058 0.67 064 058 0.65 8.70
Gemini 1.5 base 032 038 050 058 0.39 0.43

implan 043 050 062 0.66 0.8 0.56 28.57
Gemini 2.0 base 050 048 058 0.65 046 0.53

implan 068 062 080 080 053 0.69 28.46
LLaMA3.2-11B base 052 049 0.6l 0.57  0.46 0.53

implan 0.58 0.51 078 0.63  0.53 0.61 14.34
LLaMA4-Mav-17B base 0.56 055 057 063 049 0.56

implan 076 050 059 065 058 0.62 10.00
LLaMA4-Scout-17B  base 0.51 049 052 056 048 0.51

implan 055 049 050 063 053 0.54 5.47
Qwen2.5-72B base 053 052 062 056 041 0.53

implan 073 055 067 071 056 0.64 21.97

enhances models’ ability to reason coherently about tool-use scenarios. Notably, the Gemini series,
despite moderate to low base performance, benefits most from the addition of ImPlan, with Gemini
2.0 achieving a new peak plausibility of 0.69, surpassing GPT variants. Looking across the five
sub-tasks, the most consistent improvements are seen in CR and I0—-categories. For instance,
GPT-4.1 improves its CR score from 0.59 to 0.79, and Gemini 2.0 improves 10 from 0.58 to 0.8.

Gains for Proprietary Models. The GPT family consistently benefits from ImPlan, though to
a lesser extent than some of the open-weight models. GPT-4.1-mini improves from 0.60 to 0.69
(+13.58%), while GPT-4.1 sees a gain of +11.37%. Interestingly, GPT-4.1-nano, the smallest
variant, shows the smallest absolute improvement (+0.04) and a relatively modest percentage gain
(+7.75%), despite a low starting point. This suggests that while ImPlan improves coherence across
the board, its effectiveness may be constrained by the capacity of smaller proprietary models to
encode and retain long-range procedural logic.

Open-Weight Model Behavior. Among open-weight models, Qwen2.5-72B and LL.aMA3.2-11B
show strong gains in plausibility (+21.97% and +14.34 %, respectively), confirming that ImPlan’s
benefits generalize well beyond proprietary VLMs. LLaMA4-Mav-17B shows a gain (+10.00%),
while LLaMA4-Scout-17B shows the lowest relative improvement (+5.47%). Interestingly, the
Scout model sees stronger gains in groundness, indicating that it may already produce moderately
coherent plans, and ImPlan primarily helps align those with scene context rather than improving their
internal logic.

5.3 Unified Evaluation of Groundedness and Plausibility

While groundness and plausibility measure distinct aspects of procedural quality, contextual feasibility
and logical coherence, respectively, robust real-world planning demands strong performance on both.
Overemphasis on plausibility alone can lead to superficially coherent but visually implausible plans,
while high groundness without coherent logic can result in disjointed or incomplete action sequences.
Thus, a method that can simultaneously enhance both dimensions is crucial for generating usable and
trustworthy plans.

Figure 3| presents a joint visualization of model performance across these two axes (average scores).
Each model is represented as a vector from its base configuration (empty circle) to its ImPlan-
enhanced version (filled circle). Across all models, regardless of architecture family (GPT, Gemini,
LLaMA, Qwen) or parameter scale, ImPlan consistently shifts performance upward and to the
right. This pattern clearly indicates simultaneous improvement in both contextual grounding and
logical planning, without evidence of trade-offs between the two.

The directionality and length of the improvement vectors offer additional insight. For instance,
models with weaker base performance, such as Qwen2.5-72B, LLaMA3.2-11B, and Gemini 1.5,
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Figure 3: Joint performance of models on Groundness Score and Plausibility Score. Arrows
indicate improvement direction from base (o) to ImPlan (e). ImPlan consistently enhances both
context grounding and logical coherence across all model families.

show substantial leaps in both dimensions, demonstrating ImPlan’s ability to elevate underperforming
models across the board. Meanwhile, already strong models like GPT-4.1 and Gemini 2.0 benefit
from more modest but still significant gains, suggesting that ImPlan complements rather than replaces
existing procedural priors. Interestingly, post-ImPlan models tend to cluster in the upper-right
quadrant of the plot, forming a tighter performance band than in the base configuration. This
convergence indicates that ImPlan serves as a regularizing force across heterogeneous models,
improving not just raw scores but also alignment in quality across systems. Furthermore, the lack of
any downward or leftward movements confirms that ImPlan does not introduce a negative effect in
either metric.

Overall, the joint analysis reinforces the findings of the previous subsections: ImPlan provides broad
and balanced improvements in zero-shot procedural plan generation. Its consistent bidirectional gains
across model types support the core claim of this work—that explicit scene-grounded reasoning
mechanisms can elevate large language models beyond memorized, default behaviors toward more
adaptive and context-sensitive planning.

6 Conclusion

We presented ImPlan, a framework that equips vision-language models with structured improvisa-
tional reasoning for grounded procedural adaptation. Unlike standard prompting, ImPlan enables
models to generate context-sensitive action plans when ideal tools are missing or altered. Experiments
on expert-annotated emergency procedures show that ImPlan yields significant gains in both ground-
ness (up to 70.8%) and plausibility (up to 28.6 %) across a range of models. These results demonstrate
that structured adaptation can harmonize visual grounding and logical coherence, advancing the
robustness of Al planning in real-world, resource-limited settings.
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A Procedural Graph Construction and Averaging

A.1 Graph Construction from Sequential Actions

Given a sequential list of procedural actions annotated as verb-noun pairs, the construction of the
procedural graph proceeds incrementally. Each unique action or object is mapped to a distinct node,
and directed edges are created to represent the operational transitions. Temporal order is captured via
ordinal labels on edges.

The following pseudocode summarizes the graph construction process:
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Algorithm 2 Graph Construction from Action Sequences

Require: Action sequence {ay,as,...,an, }
Ensure: Adjacency matrix P, Ordinal matrix )
1: Initialize node sets U, V <+ 0, edge set £ + ()
2: Initialize counters for repeated actions
3: for each action a; do

4: Parse a; into verb u; and noun v;
5: if u; orv; notin U or V' then
6: Add new nodes u;, v;
7: end if
8: Add directed edge from previous noun v;_; to current verb u;
9: Add directed edge from current verb w; to current noun v;
10: Annotate edges with ordinal index ¢
11: end for

12: Build matrices P, () from collected edges

A.2 Averaged Stereotypical Graph Construction

To construct the canonical stereotypical graph G* for each procedural goal, multiple instance graphs
are aggregated. The adjacency and ordinal matrices across different demonstrations are averaged
elementwise. A thresholding step is applied to prune unreliable transitions.

The averaging procedure is detailed below:

Algorithm 3 Stereotypical Graph Averaging

Require: Matrices {(Py,Q1), (P2, Q2), ..., (Pk,QK)}. threshold o
Ensure: Averaged matrices P, )
1: for each node pair (7, j) do

2: Compute P(i,j) = = 3o, Pi(i, j)
: Compute Q(i, j) = % Y i, Qu(i )
if P(i,j) < o then
Set P(i,j) = 0, remove edge

3

4

S:

6: else
7: Set P(i,j) = 1, retain edge
8 end if ~ ~

9 SetQ(i,j) + P(i,j) x Q(i.J)
0: end for

10:
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