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Abstract

Improvisation is a hallmark of human intelligence, particularly in high-stakes1

domains such as emergency medicine, where ideal tools are often unavailable2

and practitioners must adapt procedures using what is at hand. While recent3

vision-language models (VLMs) have demonstrated strong general reasoning and4

perception abilities, they remain inadequate for grounded procedural adaptation5

under constraints. In this paper, we introduce ImPlan, an improvisational reasoning6

framework that augments VLMs with structured planning and transformation-aware7

substitution. ImPlan generates action-object graphs that adapt procedural goals to8

context-specific affordances in the scene. Experiments on a benchmark of expert-9

annotated emergency procedures show that ImPlan significantly outperforms direct10

VLM prompting, both proprietary and open-weight models, even when built on11

weaker backbone models. On average, ImPlan improves groundness scores by up12

to 70.8% and plausibility scores by up to 28.6%, achieving simultaneous gains in13

visual grounding and logical coherence. ImPlan offers a potentially generalizable14

path for grounded decision-making in resource-limited environments.15

1 Introduction16

Vision-language models (VLMs) have achieved significant success by integrating visual processing17

with natural language understanding [Achiam et al., 2023, Touvron et al., 2023, Liu et al., 2023,18

2024, Radford et al., 2019, 2021, Li et al., 2023, Zhang et al., 2024b, Li et al., 2024, Guo et al., 2024,19

Zhang et al., 2024a, Shakeri et al., 2024]. While VLMs have demonstrated impressive performance20

on perception-grounded tasks and general instruction following [Cheng et al., 2025, Dai et al., 2023],21

they largely operate within a traditional reasoning paradigm [Wei et al., 2022, Wang et al., 2023].22

These models are adept at following detailed prompts or retrieving known procedures, but they lack23

mechanisms for context-sensitive procedural adaptation. These models are adept at following detailed24

prompts or retrieving known procedures, but they lack mechanisms for context-sensitive procedural25

adaptation [Amara et al., 2024, Nikandrou et al., 2024].26

Specifically, when key tools are missing or altered, VLMs tend to either hallucinate inappropriate27

actions or default to generic templates-failing to produce grounded, functional adaptations[Chen28

et al., 2024, Qian et al., 2024]. Consider a first response scenario where a field medic must perform29

an emergency tracheostomy to restore a patient’s airway. The ideal tool, a surgical scalpel, is missing.30

In a high-stakes, time-critical setting, the medic does not pause the procedure—instead, they sanitize31

a sharp knife and proceed. This act is not a reckless guess; it is a calculated decision that substitutes32

an available tool for a missing one, while preserving the goal and structure of the procedure. Figure 133

illustrates an improvisation scenario for emergency tourniquet application. Such decisions exemplify34

improvisational reasoning: the ability to adapt abstract procedural knowledge to grounded, real-world35

constraints [Favero et al., 2024, Lyu et al., 2024].36
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Figure 1: Comparison of Regular and Improvised Tourniquet Procedures: The top row demonstrates
a standard tourniquet application using medical-grade equipment in a controlled setting. The
bottom row depicts an improvised (properly referred in the medical jargon as Just-in-Time (JIT))
tourniquet procedure using a belt and a screwdriver, as might be required in austere environments.
This study evaluates the ability of vision-language models (VLMs) to generate step-by-step medical
procedures in improvised settings based on visual scene understanding.

Traditional reasoning, as modeled in current VLMs and planning systems, aims for optimality under37

the assumption that ideal resources are available. Improvisational reasoning, by contrast, requires38

systems to identify feasible substitutes, anticipate their transformed use, and assess whether the39

modified plan remains safe and effective. A model that knows the correct surgical procedure is not,40

by default, capable of adapting it in a degraded environment.41

In this work, we introduce ImPlan, a structured framework for improvisational reasoning grounded42

in visual context. Given a scene and a procedural goal (e.g., tracheostomy, tourniquet application),43

ImPlan generates an adapted sequence of action-object steps that maintain procedural intent while44

replacing unavailable tools with visually present alternatives. Our system leverages a pre-trained45

VLM, but enhances it with explicit graph-based procedural reasoning and transformation-aware46

substitutions.47

We evaluate ImPlan on a new benchmark of five emergency medical procedures, annotated by domain48

experts performing real or simulated improvisations. Experiments show that ImPlan significantly49

outperforms direct VLM prompting across multiple open-weight and proprietary models of varying50

sizes and capabilities. On average, ImPlan improves groundness by up to 70.8% and plausibility51

by up to 28.6%, showing consistent bidirectional gains across all tested models. These results52

demonstrate that modeling grounded procedural improvisation is critical for deploying AI systems in53

high-stakes, resource-limited settings.54

2 Problem Settings55

We address the task of procedure graph generation in the context of emergency medical interventions,56

where the execution of a procedure must be adapted to real-world constraints such as limited tool57

availability and the urgency of immediate care. In such high-stakes scenarios, such as applying a58

tourniquet or clearing an airway, medical practitioners are often required to look for alternatives,59

relying on non-standard or makeshift tools to perform critical steps (referred to as Just-in-Time (JIT)60

procedures).61

The goal of this task is to generate a coherent, contextually grounded sequence of medical actions62

that achieves the intended procedural objective using only the resources available in the environment.63

In practice, these procedure steps assist a general medic, who may be unfamiliar with the specific64

situation and likely operating under stress, in carrying out the emergency intervention. Task alteration65

in such scenarios is challenging, even for experts. While the underlying concept is broadly applicable66

to many other domains, in this paper, we focus specifically on emergency medical procedures.67

Formally, let S denote a scene, represented as a short video clip or a sequence of image frames68

capturing a localized emergency situation. Let C ∈ P be the context label specifying the high-level69

medical procedure to be performed, where P is the set of supported procedural categories. The70

desired output is a procedure graph Gout, defined as an ordered sequence of action-object pairs:71

Gout = {(a1, o1), (a2, o2), . . . , (an, on)},
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where each ai is a discrete action (e.g., tie, wrap, apply pressure) and each oi is a physical object or72

tool (e.g., gauze, towel, scarf) used to perform the action.73

The procedure graph Gout must satisfy two primary constraints. First, the sequence must be internally74

coherent and goal-directed, preserving the logical structure of a standard execution of procedure C.75

Second, the graph must be grounded in the visual content of scene S, such that each object oi is76

either visibly present in the scene or plausibly substitutable based on semantic or functional similarity.77

The ability to generate such grounded and improvisational procedure graphs is critical for intelligent78

assistance systems in emergency medicine, where time constraints and environmental variability79

prohibit reliance on ideal conditions or standard equipment.80

This formulation extends classical procedural modeling by incorporating both contextual grounding81

and improvisational reasoning, enabling robust adaptation of procedural knowledge in highly dynamic82

and resource-constrained settings.83

3 Methodology84

Improvisation may require modifying a scene-available object before it becomes a functional sub-85

stitute. For instance, converting a pen into an airway tube requires removing the ink cartridge. Let86

T denote the set of allowed transformations (e.g., cut, unwrap, flatten), where each t ∈ T maps87

a raw object to a transformed one. We define an improvisation score function I(o∗, o′) ∈ [0, 1] to88

quantify the functional similarity between the required object o∗ and a transformed substitute o′. A89

substitution is considered feasible only if the score exceeds a minimum threshold τ ∈ [0, 1]. This90

ensures that highly implausible actions, those likely to disrupt the procedure or worsen the situation,91

are avoided. Figure 2 general overview of our framework. The details process is described bellow.92

Figure 2: Overview of ImPlan Framework.

3.1 Procedural Graph Adaptation Setup93

Let C ∈ P be a procedural context label, and let GC
ideal = {(a1, o∗1), . . . , (an, o∗n)} denote the94

canonical procedure graph for task C, where each ai is an action and o∗i is the ideal tool used to95

perform it. Let S represent a visual scene, and let TS ⊆ O be the set of available objects in the scene.96

The objective is to generate a modified graph Gimp = {(ai, õi, t̃i)}, where each õi ∈ TS and t̃i ∈ T is97

a transformation (or the identity function), such that the resulting sequence maintains the procedural98

logic of GC
ideal, while adapting to the object constraints imposed by S.99

3.2 Stereotypical Procedure Graph Construction100

To ground improvisational reasoning in clinically validated knowledge, ImPlan constructs a stereo-101

typical procedure graph G∗ for each procedural goal. Each graph captures the canonical sequence102

of actions and objects observed during regular (non-improvised) executions of the procedure. Each103

instance of a procedure is represented as a directed graph G = (V,E), where V denotes the set of104

nodes, corresponding to actions (verbs) and objects (nouns), and E ⊆ V × V encodes the directed105

edges representing transitions between steps. Each edge e = (vi, vj) ∈ E is annotated with an106
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ordinal label indicating the chronological step order. An action at step i is described as a verb-noun107

pair (ui, vi), representing the operation and the associated object.108

Each procedure instance is encoded into two matrices: an adjacency matrix P ∈ {0, 1}NW×NW109

representing the structural connectivity, and an ordinal matrix Q ∈ RNW×NW capturing the temporal110

ordering of steps, where NW denotes the total number of unique verb and noun nodes across all111

instances. To ensure uniqueness, repeated actions within a procedure are assigned distinct counter112

indices.113

The construction of a procedural graph proceeds by parsing action sequences sequentially: nodes are114

added to the graph as new actions or objects appear, and edges are created linking object-verb-object115

transitions, preserving temporal order. The adjacency and ordinal matrices are updated accordingly116

throughout the parsing process. Further details of the graph generation procedure are provided in117

Appendix.118

Given a set of K demonstration instances {G1, G2, . . . , GK} corresponding to the same procedure,119

the stereotypical procedure graph G∗ is constructed by aggregating adjacency and ordinal matrices120

across instances. For each node pair (i, j), the averaged adjacency P̄ (i, j) and ordinal Q̄(i, j) are121

computed as: P̄ (i, j) = 1
K

∑K
k=1 Pk(i, j), Q̄(i, j) = 1

K

∑K
k=1 Qk(i, j). To filter out rare or122

inconsistent transitions, a threshold α ∈ [0, 1] is applied: transitions with P̄ (i, j) < α are pruned,123

while others are retained. The remaining edges define the final structural skeleton of G∗, while124

the averaged ordinal values preserve procedural sequencing information. The detailed averaging125

procedure is provided in Appendix.126

Each procedural goal is associated with exactly one pre-constructed graph G∗, creating a direct one-127

to-one mapping used at inference time. By grounding adaptations in these stereotypical structures,128

ImPlan preserves procedural coherence while allowing flexible improvisation. Detailed steps are in129

the Algorithm 1.130

3.3 Hypothesis Generation via Reasoning Steps131

Given the scene toolset TS , transformation set T , the ideal graph GC
ideal, and the score function I , the132

algorithm proceeds as follows:

Algorithm 1 ImPlan Algorithm
Require: Ideal concept graph GC

ideal, object set TS , transformations T , similarity threshold τ
Ensure: Improvised graph Gimp

1: Initialize improvised graph Gimp ← [ ]
2: for each (ai, o

∗
i ) ∈ GC

ideal do
3: if o∗i ∈ TS then
4: Append (ai, o

∗
i , identity) to Gimp

5: else
6: for each (o, t) ∈ TS × T do
7: o′ ← Transform(o, t)
8: s← I(o∗i , o

′)
9: end for

10: Select best-scoring pair (ô, t̂) such that I(o∗i ,Transform(ô, t̂)) ≥ τ
11: if such a pair (ô, t̂) exists then
12: Append (ai, ô, t̂) to Gimp
13: end if
14: end if
15: end for
16: return Gimp

133

If no feasible graph generated the algorithm return an empty set. To adapt the ideal graph to a scene134

S with observed tools TS , the system follows a structured reasoning path based on the algorithm135

which yields a grounded hypothesis graph Gh = {(ai, õi, t̃i)}:136
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Hypothesis and Reasoning Process

• Procedure identification: The label C defines the target procedural intent.
• Tool detection: Visual processing identifies objects TS ⊆ O available in scene S.
• Graph grounding: Each step in GC

ideal is compared against TS to determine tool avail-
ability.

• Tool substitution: For missing tools o∗i , the system queries a set of transformations T
over each o ∈ TS and computes a similarity score
Î(o∗i ,Transform(o, t)), where Î is approximated using VLM embedding similarity.

• Substitution selection: The best substitute (ôi, t̂i) is selected for each missing tool,
provided the estimated similarity exceeds threshold τ ; otherwise, the step is omitted.

137

3.4 Practical Instantiation via Vision-Language Models138

Since the improvisation score is not directly accessible, it is approximated using a pre-trained139

vision-language model (VLM) to estimate semantic similarity between ideal and transformed tools140

within a shared embedding space. Transformations are derived from scene context or prompt141

engineering, with a greedy substitution policy applied based on similarity scores. This allows142

efficient, scalable reasoning under perceptual constraints. To connect design and deployment, the143

algorithm and reasoning framework (Fig. 2) guide VLM behavior through structured prompts.144

Originally a conceptual model of procedural improvisation, these reasoning steps are encoded as145

system instructions, aligning inference-time behavior with high-level planning logic for greater146

interpretability and consistency.147

3.5 Implementation Details148

The system is a structured reasoning pipeline built on a pre-trained vision-language model (VLM),149

operating in a zero-shot, prompt-based setting without fine-tuning. Prompt engineering, input150

formatting, and retrieval are used to ground the procedural graph and guide reasoning. Each VLM151

query is framed with a system prompt encoding the scene, the high-level goal C, and the hypothesized152

action sequence. These prompts help the model interpret the scene, reason through steps, and suggest153

substitutions. The ideal procedure graph GC
ideal is retrieved as a list of action-object pairs, presented154

as bullet points or phrases. Steps are represented both in text (e.g., “insert airway tube”) and via155

embeddings. Scene objects o ∈ TS are labeled with natural phrases (e.g., “pen”, “rolled towel”) and156

transformed using templates (e.g., “cut-open pen”). These variants are encoded using the VLM’s text157

encoder.158

Inference uses API-based VLM access via chat interfaces (OpenAI, Gemini, Together AI1), with159

support for models like LLaMA and Qwen.160

4 Experiments161

We evaluate ImPlan, our improvisational reasoning framework, on a suite of procedural tasks162

requiring grounded planning under object constraints. These tasks simulate real-world scenarios163

in which ideal tools may be unavailable, necessitating adaptation using only the resources visually164

present in the scene. The experiments test both full-procedure adaptation and localized, step-level165

improvisation across a diverse set of vision-language models (VLMs) and reasoning strategies.166

4.1 Dataset167

All videos were recorded from a first-person perspective using head-mounted GoPro Hero7 cameras168

(San Mateo, California) at 1080p resolution. The cameras were angled 20–30 degrees downward169

from the forehead to ensure optimal framing, with the hands intentionally centered in the field of170

view to enhance procedural visibility. Recordings were conducted across a range of simulated clinical171

1https://www.together.ai/
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environments to reflect operational diversity. These recordings capture five life-saving interventions:172

Cricothyroidotomy (CR), Needle Thoracostomy (ND), Tourniquet (TQ), Tube Thoracostomy (CT),173

and Interosseous Insertion (IO).174

A key component of the dataset includes 67 videos capturing “just-in-time” (JIT) proce-175

dures—improvised life-saving interventions performed using non-standard or readily available176

materials. These scenarios emphasize adaptability in resource-limited settings, including the use of177

belts (e.g., Figure 1) or clothing secured with screwdrivers for tourniquets.178

These improvised videos serve as the primary evaluation set for this paper, highlighting real-world179

improvisation and dynamic decision-making under pressure. In contrast, the dataset also contains180

220 videos of standard procedures performed with conventional medical tools in more controlled181

conditions. These represent routine, stereotypical workflows and are used to establish reference182

performance and baseline behavior in procedural execution. The standard procedure data were used183

to generate the stereotypical procedure graph for our ImPlan framework.184

Each video in the dataset was annotated by trained medical professionals, who labeled start and end185

timestamps for each action and described the activity using verb–noun pairs (e.g., “insert needle,”186

“apply tourniquet”). These annotations serve as the ground truth for model training and evaluation.187

To ensure accuracy and reduce inconsistencies, all annotations underwent peer review by additional188

medical experts, supporting high-quality ground truth.189

4.2 Baselines and VLMs190

We compare ImPlan against several configurations that isolate different reasoning mechanisms.191

The direct prompting baseline uses the VLM to generate responses without structured guidance,192

simulating a zero-shot setting. A second baseline augments the prompt with a chain-of-thought (CoT)193

scaffold, encouraging sequential reasoning. The full ImPlan system introduces structured graph194

reasoning, tool transformation modeling, similarity-based substitution, and scoring components.195

Experiments are conducted using both open-weight and proprietary VLMs. The open-weight models196

include variants from LLaMA, and Qwen. Proprietary models include GPT-4.1 (Mini, Nano), GPT-197

4o, and Gemini (2, 1.5). This range allows us to assess how model capacity and alignment quality198

influence improvisational performance.199

4.3 Evaluation Metrics200

Performance is measured using multiple complementary metrics. The plausibility score quantifies201

the logical consistency and goal alignment of generated action sequences. It is computed using202

cosine similarity in an embedding space, where embeddings are obtained from a sentence transformer203

[Reimers and Gurevych, 2019] applied to the entire procedure graph represented as text. The score204

ranges from 0 to 1 (higher is better). The groundness score evaluates the visual and contextual205

feasibility of each substituted tool within the scene. This metric assesses the ability of VLMs to206

generate plans that are grounded in the provided scene context, rather than relying on memorized207

standard procedures. It is calculated by comparing the ground truth annotations, which include208

improvised tool use, with the predicted or generated plans produced by the VLMs. A higher score209

indicates better grounding, and values are normalized between 0 and 1.210

5 Results211

5.1 Groundness Score212

The groundness score evaluates the extent to which generated tool-use procedures are contextually213

and visually grounded in the provided scene. This metric is critical for assessing the ability of models214

to reason beyond memorized routines and adapt to dynamic, scene-specific constraints. Table 1 shows215

that our proposed method, ImPlan, consistently improves groundness across all evaluated models,216

demonstrating its effectiveness in enhancing scene-aware planning.217

Strong Improvements Across All Model Types. Our ImPlan approach demonstrates gains across all218

ten models, with particularly large relative improvements for open-weight models. Qwen2.5-72B, for219

example, shows the highest relative improvement of +70.80%, boosting its average score from 0.27 to220
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Table 1: Comparison of model Groundness Score across different settings. AVG = average of CR,
CT, IO, ND, TQ; Gain (%) = percentage improvement from base to implan.

Model Setting CR CT IO ND TQ AVG Gain (%)

GPT-4.1 base 0.40 0.61 0.46 0.69 0.32 0.50
implan 0.52 0.62 0.78 0.49 0.68 0.62 24.60

GPT-4.1-mini base 0.31 0.35 0.52 0.62 0.24 0.41
implan 0.36 0.49 0.70 0.58 0.60 0.55 33.82

GPT-4.1-nano base 0.11 0.33 0.29 0.56 0.07 0.27
implan 0.27 0.37 0.38 0.40 0.33 0.35 28.68

GPT-4o base 0.34 0.36 0.60 0.72 0.31 0.47
implan 0.52 0.53 0.41 0.46 0.61 0.51 8.58

Gemini 1.5 base 0.20 0.35 0.25 0.48 0.21 0.30
implan 0.26 0.45 0.35 0.51 0.58 0.43 44.30

Gemini 2.0 base 0.36 0.42 0.60 0.68 0.30 0.47
implan 0.44 0.64 0.59 0.89 0.37 0.59 24.15

LLaMA3.2-11B base 0.12 0.21 0.34 0.52 0.09 0.26
implan 0.30 0.32 0.57 0.57 0.15 0.38 49.22

LLaMA4-Mav-17B base 0.20 0.45 0.27 0.65 0.22 0.36
implan 0.37 0.51 0.36 0.55 0.30 0.42 16.76

LLaMA4-Scout-17B base 0.19 0.30 0.30 0.40 0.19 0.28
implan 0.33 0.40 0.29 0.64 0.53 0.44 58.70

Qwen2.5-72B base 0.16 0.35 0.30 0.39 0.17 0.27
implan 0.44 0.39 0.51 0.69 0.31 0.47 70.80

0.47. Similarly, LLaMA4-Scout-17B improves from 0.28 to 0.44 (+58.70%), and LLaMA3.2-11B221

gains +49.22%. These results underscore ImPlan’s utility for lifting the performance floor of weaker222

base models in terms of contextual understanding.223

ImPlan scales effectively across models ranging from compact versions (e.g., GPT-4.1-nano,224

LLaMA3.2-11B) to large-scale architectures (Qwen2.5-72B, LLaMA4-Mav-17B). Importantly, the225

magnitude of improvement does not correlate linearly with base performance: weaker models often226

show the highest relative gains, but even high-performing base models see meaningful improvements.227

Gains for Proprietary Models. Proprietary models, including GPT-4.1, GPT-4o, and Gemini, also228

benefit notably. GPT-4.1, already a strong performer (0.50 base), sees a +24.60% gain, reaching an229

average groundness of 0.62. Gemini 1.5 and Gemini 2.0 experience improvements of +44.30% and230

+24.15%, respectively. Notably, GPT-4.1-mini exhibits a substantial +33.82% increase, suggesting231

that ImPlan is especially beneficial for lower-capacity variants that may lack innate scene-specific232

reasoning skills.233

Category-Level Trends. ImPlan’s strongest effects are observed in IO and TQ—categories that234

require flexible adaptation to non-standard tools and task conditions. For instance, GPT-4.1 improves235

from 0.46 to 0.78 in IO, and Gemini 1.5 jumps from 0.21 to 0.58 in TQ. These improvements suggest236

that ImPlan enables models to break from rigid, canonical patterns and propose more plausible237

alternatives suited to the actual visual context.238

While gains are generally consistent, a few categories show flat or slightly reduced scores post-ImPlan.239

For example, GPT-4.1 drops in ND from 0.69 to 0.49, and GPT-4o dips in IO from 0.60 to 0.41.240

These cases may reflect occasional overemphasis on scene adaptation at the expense of broader241

generalization. Further refinement of the balancing mechanism between grounding and default242

procedural knowledge could help mitigate these trade-offs.243

5.2 Plausibility Score244

The plausibility score captures the internal logical consistency and goal-directedness of the generated245

procedure as a whole. This metric complements groundness by assessing whether the action sequence,246

aligns with coherent human-like reasoning. As shown in Table 2, ImPlan improves plausibility across247

all model types, though the magnitude and pattern of improvement vary with model scale, architecture,248

and baseline performance.249

Consistent Gains Across Models. All ten evaluated models show a positive gain in average250

plausibility after applying ImPlan. The most significant improvements are observed in Gemini 1.5251

(+28.57%), Gemini 2.0 (+28.46%), and Qwen2.5-72B (+21.97%). These gains are substantial252

and consistent across all five subcategories (CR, CT, IO, ND, TQ), indicating that ImPlan robustly253
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Table 2: Comparison of model Plausibility Score across different settings. AVG = average of CR,
CT, IO, ND, TQ; Gain (%) = percentage improvement from base to implan.

Model Setting CR CT IO ND TQ AVG Gain (%)

GPT-4.1 base 0.59 0.54 0.63 0.70 0.53 0.60
implan 0.79 0.55 0.74 0.65 0.60 0.67 11.37

GPT-4.1-mini base 0.56 0.52 0.70 0.68 0.56 0.60
implan 0.75 0.62 0.81 0.67 0.58 0.69 13.58

GPT-4.1-nano base 0.45 0.47 0.64 0.67 0.48 0.54
implan 0.61 0.48 0.57 0.65 0.61 0.58 7.75

GPT-4o base 0.56 0.47 0.66 0.71 0.59 0.60
implan 0.78 0.58 0.67 0.64 0.58 0.65 8.70

Gemini 1.5 base 0.32 0.38 0.50 0.58 0.39 0.43
implan 0.43 0.50 0.62 0.66 0.58 0.56 28.57

Gemini 2.0 base 0.50 0.48 0.58 0.65 0.46 0.53
implan 0.68 0.62 0.80 0.80 0.53 0.69 28.46

LLaMA3.2-11B base 0.52 0.49 0.61 0.57 0.46 0.53
implan 0.58 0.51 0.78 0.63 0.53 0.61 14.34

LLaMA4-Mav-17B base 0.56 0.55 0.57 0.63 0.49 0.56
implan 0.76 0.50 0.59 0.65 0.58 0.62 10.00

LLaMA4-Scout-17B base 0.51 0.49 0.52 0.56 0.48 0.51
implan 0.55 0.49 0.50 0.63 0.53 0.54 5.47

Qwen2.5-72B base 0.53 0.52 0.62 0.56 0.41 0.53
implan 0.73 0.55 0.67 0.71 0.56 0.64 21.97

enhances models’ ability to reason coherently about tool-use scenarios. Notably, the Gemini series,254

despite moderate to low base performance, benefits most from the addition of ImPlan, with Gemini255

2.0 achieving a new peak plausibility of 0.69, surpassing GPT variants. Looking across the five256

sub-tasks, the most consistent improvements are seen in CR and IO—categories. For instance,257

GPT-4.1 improves its CR score from 0.59 to 0.79, and Gemini 2.0 improves IO from 0.58 to 0.8.258

Gains for Proprietary Models. The GPT family consistently benefits from ImPlan, though to259

a lesser extent than some of the open-weight models. GPT-4.1-mini improves from 0.60 to 0.69260

(+13.58%), while GPT-4.1 sees a gain of +11.37%. Interestingly, GPT-4.1-nano, the smallest261

variant, shows the smallest absolute improvement (+0.04) and a relatively modest percentage gain262

(+7.75%), despite a low starting point. This suggests that while ImPlan improves coherence across263

the board, its effectiveness may be constrained by the capacity of smaller proprietary models to264

encode and retain long-range procedural logic.265

Open-Weight Model Behavior. Among open-weight models, Qwen2.5-72B and LLaMA3.2-11B266

show strong gains in plausibility (+21.97% and +14.34%, respectively), confirming that ImPlan’s267

benefits generalize well beyond proprietary VLMs. LLaMA4-Mav-17B shows a gain (+10.00%),268

while LLaMA4-Scout-17B shows the lowest relative improvement (+5.47%). Interestingly, the269

Scout model sees stronger gains in groundness, indicating that it may already produce moderately270

coherent plans, and ImPlan primarily helps align those with scene context rather than improving their271

internal logic.272

5.3 Unified Evaluation of Groundedness and Plausibility273

While groundness and plausibility measure distinct aspects of procedural quality, contextual feasibility274

and logical coherence, respectively, robust real-world planning demands strong performance on both.275

Overemphasis on plausibility alone can lead to superficially coherent but visually implausible plans,276

while high groundness without coherent logic can result in disjointed or incomplete action sequences.277

Thus, a method that can simultaneously enhance both dimensions is crucial for generating usable and278

trustworthy plans.279

Figure 3 presents a joint visualization of model performance across these two axes (average scores).280

Each model is represented as a vector from its base configuration (empty circle) to its ImPlan-281

enhanced version (filled circle). Across all models, regardless of architecture family (GPT, Gemini,282

LLaMA, Qwen) or parameter scale, ImPlan consistently shifts performance upward and to the283

right. This pattern clearly indicates simultaneous improvement in both contextual grounding and284

logical planning, without evidence of trade-offs between the two.285

The directionality and length of the improvement vectors offer additional insight. For instance,286

models with weaker base performance, such as Qwen2.5-72B, LLaMA3.2-11B, and Gemini 1.5,287
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Figure 3: Joint performance of models on Groundness Score and Plausibility Score. Arrows
indicate improvement direction from base (◦) to ImPlan (•). ImPlan consistently enhances both
context grounding and logical coherence across all model families.

show substantial leaps in both dimensions, demonstrating ImPlan’s ability to elevate underperforming288

models across the board. Meanwhile, already strong models like GPT-4.1 and Gemini 2.0 benefit289

from more modest but still significant gains, suggesting that ImPlan complements rather than replaces290

existing procedural priors. Interestingly, post-ImPlan models tend to cluster in the upper-right291

quadrant of the plot, forming a tighter performance band than in the base configuration. This292

convergence indicates that ImPlan serves as a regularizing force across heterogeneous models,293

improving not just raw scores but also alignment in quality across systems. Furthermore, the lack of294

any downward or leftward movements confirms that ImPlan does not introduce a negative effect in295

either metric.296

Overall, the joint analysis reinforces the findings of the previous subsections: ImPlan provides broad297

and balanced improvements in zero-shot procedural plan generation. Its consistent bidirectional gains298

across model types support the core claim of this work—that explicit scene-grounded reasoning299

mechanisms can elevate large language models beyond memorized, default behaviors toward more300

adaptive and context-sensitive planning.301

6 Conclusion302

We presented ImPlan, a framework that equips vision-language models with structured improvisa-303

tional reasoning for grounded procedural adaptation. Unlike standard prompting, ImPlan enables304

models to generate context-sensitive action plans when ideal tools are missing or altered. Experiments305

on expert-annotated emergency procedures show that ImPlan yields significant gains in both ground-306

ness (up to 70.8%) and plausibility (up to 28.6%) across a range of models. These results demonstrate307

that structured adaptation can harmonize visual grounding and logical coherence, advancing the308

robustness of AI planning in real-world, resource-limited settings.309
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A Procedural Graph Construction and Averaging391

A.1 Graph Construction from Sequential Actions392

Given a sequential list of procedural actions annotated as verb-noun pairs, the construction of the393

procedural graph proceeds incrementally. Each unique action or object is mapped to a distinct node,394

and directed edges are created to represent the operational transitions. Temporal order is captured via395

ordinal labels on edges.396

The following pseudocode summarizes the graph construction process:397

A.2 Averaged Stereotypical Graph Construction398

To construct the canonical stereotypical graph G∗ for each procedural goal, multiple instance graphs399

are aggregated. The adjacency and ordinal matrices across different demonstrations are averaged400

elementwise. A thresholding step is applied to prune unreliable transitions.401

The averaging procedure is detailed below:402
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Algorithm 2 Graph Construction from Action Sequences
Require: Action sequence {a1, a2, . . . , aNA

}
Ensure: Adjacency matrix P , Ordinal matrix Q

1: Initialize node sets U, V ← ∅, edge set E ← ∅
2: Initialize counters for repeated actions
3: for each action ai do
4: Parse ai into verb ui and noun vi
5: if ui or vi not in U or V then
6: Add new nodes ui, vi
7: end if
8: Add directed edge from previous noun vi−1 to current verb ui

9: Add directed edge from current verb ui to current noun vi
10: Annotate edges with ordinal index i
11: end for
12: Build matrices P,Q from collected edges

Algorithm 3 Stereotypical Graph Averaging
Require: Matrices {(P1, Q1), (P2, Q2), . . . , (PK , QK)}, threshold α
Ensure: Averaged matrices P̄ , Q̄

1: for each node pair (i, j) do
2: Compute P̄ (i, j) = 1

K

∑K
k=1 Pk(i, j)

3: Compute Q̄(i, j) = 1
K

∑K
k=1 Qk(i, j)

4: if P̄ (i, j) < α then
5: Set P̄ (i, j) = 0, remove edge
6: else
7: Set P̄ (i, j) = 1, retain edge
8: end if
9: Set Q̄(i, j)← P̄ (i, j)× Q̄(i, j)

10: end for
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included in the main paper.692

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,693

or other labor should be paid at least the minimum wage in the country of the data694

collector.695

15. Institutional review board (IRB) approvals or equivalent for research with human696

subjects697

Question: Does the paper describe potential risks incurred by study participants, whether698

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)699

approvals (or an equivalent approval/review based on the requirements of your country or700

institution) were obtained?701

Answer: [NA]702

Justification: [NA]703

Guidelines:704

• The answer NA means that the paper does not involve crowdsourcing nor research with705

human subjects.706

• Depending on the country in which research is conducted, IRB approval (or equivalent)707

may be required for any human subjects research. If you obtained IRB approval, you708

should clearly state this in the paper.709

• We recognize that the procedures for this may vary significantly between institutions710

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the711

guidelines for their institution.712

• For initial submissions, do not include any information that would break anonymity (if713

applicable), such as the institution conducting the review.714

16. Declaration of LLM usage715

Question: Does the paper describe the usage of LLMs if it is an important, original, or716

non-standard component of the core methods in this research? Note that if the LLM is used717

only for writing, editing, or formatting purposes and does not impact the core methodology,718

scientific rigorousness, or originality of the research, declaration is not required.719

Answer: [NA]720

Justification: [NA]721

Guidelines:722

• The answer NA means that the core method development in this research does not723

involve LLMs as any important, original, or non-standard components.724

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)725

for what should or should not be described.726
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