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Abstract

The rapid adaptation ability of auto-regressive
foundation models is often attributed to the
diversity of their pre-training data. This is
because, from a Bayesian standpoint, minimizing
prediction error in such settings requires integrat-
ing over all plausible latent hypotheses consistent
with observations. While this behavior is desir-
able in principle, it often proves too ambitious
in practice: under high ambiguity, the number of
plausible latent alternatives makes Bayes-optimal
prediction computationally intractable. Cognitive
science has long recognized this limitation,
suggesting that under such conditions, heuristics
or information-seeking strategies are preferable
to exhaustive inference. Translating this insight
to next-token prediction, we hypothesize that low-
and high-ambiguity predictions pose different
computational demands, making ambiguity-
agnostic next-token prediction a detrimental
inductive bias. To test this, we introduce
MetaHMM, a synthetic sequence meta-learning
benchmark with rich compositional structure and
a tractable Bayesian oracle. We show that Trans-
formers indeed struggle with high-ambiguity
predictions across model sizes. Motivated by cog-
nitive theories, we propose a method to convert
pre-trained models into Monte Carlo predictors
that decouple task inference from token predic-
tion. Preliminary results show substantial gains in
ambiguous contexts through improved capacity al-
location and test-time scalable inference—though
challenges remain. Code is available here.

Introduction

A leading explanation for the surprising generalization
capabilities of transformer-based (Vaswani et al., 2017)
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foundation models (Bommasani et al., 2021) is that their
pretraining distribution resembles a sequence meta-learning
problem (Brown et al., 2020; Xie et al., 2021; Chan et al.,
2022; Wang et al., 2023; Hahn & Goyal, 2023). In this view,
each document in the corpus is governed by latent factors
(e.g., topic, world state), and models learn to perform
implicit Bayesian inference over these factors to predict
tokens effectively across domains.

In the idealized setting (Ortega et al., 2019), each sequence
is generated by sampling a task § ~ p*(6) and then drawing
observations from p*(x1.7 | 8). The next-token predictor
that minimizes prediction error in that setting is called the
Bayes-optimal posterior predictive :

(@ | 2e) = /0 P |2 8)p (0 2er) (1)

Prediction Inference

Thus, training a model to minimize next-token prediction
loss (LHS) is encouraged to implicitly perform task
inference (RHS)—notably explaining how foundation
models can adapt to new tasks at inference time purely
by conditioning on a few input examples (In-Context
Learning, ICL; Brown et al., 2020; Panwar et al., 2024).
This meta-learning view, however, exposes a fundamental
challenge: in high-ambiguity contexts, where the posterior
over tasks p*(6 | <) has high entropy, prediction becomes
inherently harder due to the need to consider many plausible
hypotheses 6. In fact, cognitive science has long recognized
that Bayes-optimal prediction becomes intractable under
resource constraints (Lieder & Griffiths, 2020). Humans
respond with ambiguity-aware strategies such as heuristics
(Binz et al., 2022), approximate inference (Sanborn et al.,
2010), or information-seeking (Friston et al., 2017).

Following from this, we hypothesize that sequence models
which allocate fixed computation per token suffer from
poor capacity allocation : the more difficult high-ambiguity
predictions receive too little while low-ambiguity ones
receive too much. From a statistical learning angle, we
suggest that ambiguity-sensitivity may serve as an effective
inductive bias for general next-token prediction. While
it is well understood that prediction under ambiguity
causes issues ar inference in foundation models (Liu
et al., 2023; Keluskar et al., 2024), we are the first to
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Figure 1: The MetaHMM benchmark. a) Latent structure of a MetaHMM environment. White rectangles contain mutually
exclusive discrete choices 6; which together define an HMM 6. Yellow circles represent hidden states and blue rectangles
represent observable symbols. b) Example of an HMM sampled from the given building blocks. ¢) Div,(t) for different

model sizes.

ground this problem in meta-learning theory, make links
to resource-rational analysis (Lieder & Griffiths, 2020) and
make the case for poor resource allocation at training.

To test this hypothesis, we introduce MetaHMM, the first
synthetic benchmark for sequence meta-learning with rich
compositional latent structure and an exactly computable
Bayesian oracle. By evaluating learned next-token
predictors against the Bayes-optimal model in Equation (1),
we show that Transformers consistently underperform in
high-ambiguity settings. Importantly, this gap persists
across model sizes, suggesting that scale alone does not
resolve ambiguity-related failures. We release our codebase
for procedural and scalable MetaHMM generation.

To mitigate this issue, we propose a modular predictor
that approximates Equation (1) using a Monte Carlo (MC)
estimator, bootstrapped from a classical autoregressive
model. Inspired by human approximate inference (Sanborn
et al., 2010), our method separates task inference from
token prediction, introducing useful inductive biases and
allowing test-time scaling (Snell et al., 2024) by increasing
the number of MC samples. In doing so, we describe
a principled type of test-time scaling as adaptation to
posterior entropy—grounded in both Bayesian theory and
resource-rational cognition.

On MetaHMM, our method consistently outperforms the
underlying sequence model in high-ambiguity settings,
with gains increasing as more samples are drawn. However,
performance gains diminish with larger models, suggesting
this approach is especially useful when base models underfit.
Adapting our method to naturalistic settings is an important
direction for future work. More broadly, exploring addi-
tional types ambiguity-aware strategies may be essential for
improving robustness and efficiency of foundation models.
This work takes a first step in that direction.

1. The MetaHMM environment

We choose a synthetic environment to isolate and analyze
the ambiguity problem without the confounding complexity
of natural language. While language corpora resemble a
meta-learning distribution, they go far beyond that formal-
ism in ways that would obscure the underlying mechanisms
we aim to study. Moreover, no existing sequence meta-
learning benchmark possesses the following two properties
(a) a non-trivial, structured space of generators that supports
meaningful latent inference, and (b) a fully tractable Bayes-
optimal predictor (see Section 3 for further discussion).

A MetaHMM environment consists of a family of Hidden
Markov Models (HMMs; Rabiner & Juang, 1986) where
each member is described by a latent code € which specifies
how to build the HMM from a pool of shared building
blocks. Concretely, each coordinate 6; of 8 corresponds
to a discrete choice which defines the HMM. Further, one
can control the size of a MetaHMM by adding/removing
choices; explicit size computation given in Appendix B.

The transition matrix of each HMM is composed of one
base cycle which goes through all hidden states and multiple
groups of smaller cycles from cycle families. For both the
base cycle and cycle families, the direction and speed at
which cycles are traversed can change (through a Direction
and Step-size variable). Each outgoing edges of a node
(after adding all cycles together) have equal probability.
The emission matrix of each HMM is built from multiple
different emission groups together partitioning the hidden
states. Additionally, all groups’ emission mappings can be
cyclically shifted through the Shift variable. See Figure 1a).

Importantly, our setup enables efficient and exact computa-
tion of the posterior predictive in Equation (1) using JAX
(Bradbury et al., 2018) implementations of the forward al-
gorithm (Linderman et al., 2025).

Due to the Markovian nature of HMMs, the ambiguity of
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p*(0 | x<¢) decreases monotonically with sequence length.
As a result, the beginning of each sequence corresponds to
the high-ambiguity regime—the region where we expect
models to perform most poorly. At long context length,
when 6 is unambiguous, we expect the Transformer to easily
simulate the HMM (Rizvi-Martel et al., 2024).

Evaluation of Transformers

We generate MetaHMM environments of size ~ 12,000 and
train 4 different sizes of causal Transformer models py on
them (Appendix B for more details). We train on sequences
of length T' = 200 and evaluate each model by computing a
symmetrized KL divergence between its posterior predictive
distribution and that of the Bayes-optimal predictor:

1
Div,(t) := §DKL[p*($t | 2<t) | pp(@e | T<1)]  (2)

1 *
+§DKL[p¢($t | 2<t) || p* (24 | T<t)]

providing a principled measure of the model’s deviation
from the ideal predictor at each position in the sequence.

THE KL BUMP

We find that the model initially perfectly fits the Bayesian
oracle, followed by a characteristic bump at short context,
followed by a steady decrease towards an asymptote. That
the transient bump was also noticed by (Xie et al., 2021,
Fig. 7). We hypothesize that this behavior arises because,
in very short contexts, the model memorize marginal token
statistics, as in (Kobayashi et al., 2023). This strategy,
however, fails after a few tokens given the exponential
growth of possible sequences as a function of length. Aside
from this subtlety, we highlight that Transformers trained
with next-token loss struggle in regions of high ambiguity.

EFFECT OF INCREASED MODEL SIZE

Increasing model size leads to rapid convergence in perfor-
mance at large sequence lengths, but the KL bump persists
across all model scales. This finding underscores a key
limitation of current autoregressive models: while they allo-
cate uniform compute per token—often increasing slightly
with position—the difficulty of prediction varies across the
sequence. In high-ambiguity regions (early in the sequence),
the model is under-parameterized relative to the task due
to the difficulty of latent posterior inference, while in low-
ambiguity regions (later positions), it is over-parameterized.
We also attempted to mitigate this imbalance by training on
a skewed distribution emphasizing shorter sequences (Fig-
ure 4), hoping to increase model focus on high-ambiguity
regimes. However, this yielded no significant improvements,
suggesting the need for more sophisticated approaches.

2. Monte-Carlo predictor

Our core idea is to approximate the Bayesian integral in
Equation (1) using a Monte Carlo (MC; Robert et al., 1999)
estimate: we draw multiple samples from the task pos-
terior p(f# | x<¢), compute the conditional predictions
p(x; | <4, 0) for each, and average the results. This ap-
proach not only offers a principled mechanism for separately
allocating modeling capacity to task inference and next-
token prediction during training, but also introduces a nat-
ural form of test-time scaling via the number of samples S

s
1
Pop (T | T<t) = 5 Z]%(It | £<t,0;) 3)
i=1

where 6; L p(0 | x<4)

The main challenge lies in implementing this formulation
outside synthetic environments (which is still the aim of this
paper), where the true latent variable € is unknown—making
it unclear how to train the components of the predictor. We
address this with a three-step solution Figure 2a):

1. Latent proxy : Replace the (in practice) unknown
latent 6 with a contextual embedding z = E(zcts),
where T4 ~ pp. Crucially, we restrict x4, to regimes
in which the posterior inference problem would be un-
ambiguous (e.g., large sequence lengths in MetaHMM),
such that the learned z can serve as a good proxy
for the true task latent. In practice, we use average-
pooled hidden states from the frozen pre-trained model
Do (Tt | T<4) to define E.

2. Conditional predictor : Train a conditional sequence
model py(z; | T<¢,2) by fine-tuning a pre-trained
model pg, (2, | £<¢), prepending the embedding z =
E(xcz) to its input. Sequences .y, and x1.p are
importantly drawn from the same generator pj,.

3. Inference sampler : Train a diffusion model pa-
rameterized by v to sample contextual embedding
z ~ p(z | £<¢) conditional on x ., for ¢ € [1,T].

The key intuition is that the sequence model py is only used
for unambiguous prediction (given z), while the diffusion
model is only used for task inference (without access to the
token to be predicted). This structure introduces inductive
biases tailored to the generative process, while retaining
the flexibility of learned amortized inference. Additionally,
it is straightforward to derive from standard pre-trained
language models through targeted fine-tuning. The idea
of training a diffusion model on sentence embeddings is
inspired from (Lovelace et al., 2023; 2024).

2.1. Results

We perform the aforementioned procedure on the models
in Figure 1 with an additional context x ., of length 100,
ensuring unambiguity of 6. Next we train a Diffusion Trans-
former (DiT; Peebles & Xie, 2023) to sample z = E(Zcts)
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Figure 2: The Monte-Carlo Predictor. a) Computational and training structure of the MC predictor. The parts in dotted
lines are only used to train pgs(2: | £<¢, ), while the content of the green rectangle corresponds to the MC predictor. b)
Performance of the MC predictor (green) with various number of samples compared with the original sequence model (gray,
1.1M). Y-axis is Div. ¢) Average Div(t) (across sequence length) of the MC predictor (green) with S = 50 compared to the
underlying model (gray) for the different model sizes in Figure 1.

from x, for ¢ € [0,50]. Note that we deliberately used a
larger diffusion than necessary to ensure that capacity of the
task inference machinery was not the bottleneck. Studying
the total parameter efficiency of our method (i.e. including
the diffusion module) is left for future work.

IMPROVED PERFORMANCE FOR SMALL MODELS

For small model sizes (e.g. 1.1M), we observe a clear im-
provement of the Monte-Carlo predictor over py, (z¢ | T<¢),
see Figure 2b). Further, as expected, divergence to ora-
cle monotonically decreases with additional MC samples,
demonstrating the test-time scaling potential of our ap-
proach. We also confirm the importance of having long
sequences x ¢, for our latent proxy z in Figure 5. Observe
that the Div of the MC predictor for this 1.1M model with
S = 51is similar to the Div of the 6.3M model in Figure 1c).

DIMINISHING RETURNS WITH SCALE

However, as model size increases, our method has dimin-
ishing returns Figure 2c¢): for the biggest model, the MC
predictor underperforms the traditional model for all number
of samples. We attribute this discrepancy to multiple pos-
sible causes. On one hand, as the model size increases, its
divergence to the Bayesian oracle at short context decreases,
which sets the bar higher for the MC estimate. This reflects
the insight from The Bitter Lesson (Sutton, 2019): as model
capacity increases, architectural priors matter less. Our ap-
proach is thus most applicable in settings where the under-
lying sequence model underfits the Bayesian oracle—likely
the case for foundation models faced with the complexities
of natural language. In such scenarios, our method offers a
mechanism for enhancing performance in high-ambiguity
regimes without increasing compute for easier parts of the
sequence. At the same time, it is also plausible that engi-
neering issues are at play, which we discuss in Appendix B.

3. Discussion

Using our synthetic benchmark, MetaHMM, we have
demonstrated that Transformers fail to approximate the
Bayesian posterior predictive in high-ambiguity regimes.
As noted, a similar issue is faced by humans, who address
it with adaptive behavior (Gigerenzer & Goldstein, 1996).
This highlights a key limitation of current approaches
to sequence modeling, where fixed compute budget is
used regardless of contextual uncertainty. We argue that
foundation models should be ambiguity-sensitive, adapting
their inference effort to the difficulty of the prediction.

As a step in this direction, we proposed a modular method
that bootstraps a standard autoregressive model into a two-
stage predictor: a diffusion-based context sampler and a con-
ditional transformer. This architecture enables test-time scal-
able approximate Bayesian inference through Monte Carlo
sampling. Our experiments show improved performance
under ambiguity, though further work is needed to improve
efficiency and decide if it can be applied to larger models.

More broadly, our contribution is to clearly identify a
structural problem—handling epistemic uncertainty—and
provide a foundation for future solutions. Beyond scalable
inference, alternative directions include learned heuristics
tailored to ambiguous contexts, and mechanisms for
information-seeking behavior. While our framework does
not support explicit actions, recent trends in RL-finetuned
models (OpenAl, 2024; Guo et al., 2025) may be implicitly
addressing ambiguity through learned clarification or
retrieval behaviors. We hope that this work stimulates a
comprehensive integration of past and current research
related to the identified ambiguity problem; towards
foundation models which go beyond Bayes-optimality
(Grau-Moya et al., 2022).
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A. Extented related work
A.1. Sequence Meta-Learning and In-Context Learning

The link between in-context learning (ICL) and meta-learning was established early on (Brown et al., 2020) and has
become central to understanding foundation model behavior. Xie et al. (2021) were among the first to formalize this
connection by framing foundation model pre-training as meta-learning over a distribution of tasks. This perspective has
since inspired a wide range of studies (Von Oswald et al., 2023; Hahn & Goyal, 2023; Chan et al., 2022; Akyiirek et al.,
2022; 2024; Grau-Moya et al., 2024), most of which focus on few-shot ICL (Lampinen et al., 2024), where the model infers
a classification function in-context: xo, Yo, . .., Zq — Yq-

Our work instead focuses on sequence meta-learning, a more general—and we argue more accurate—framing of what
foundation models do : model sequences. In this view, each sequence is generated by a latent task €, and the model must
perform implicit inference over 6 to make accurate predictions.

Several synthetic distributions have been proposed for studying sequence meta-learning, but, as shown in Figure 1, none
satisfy all the properties we require. GINC (Xie et al., 2021) uses sequences drawn from a mixture of HMMs but lacks
compositional structure and evaluates models mainly through predictive accuracy. RegBench (Akyiirek et al., 2024) also
evaluates models on probabilistic sequence data and compares them to a Bayesian oracle, but focuses on architecture
comparisons (e.g., RNNs vs. Transformers) rather than the ambiguity-computation mismatch we investigate. Other works
study non-Markovian sequence distributions, such as those based on PCFGs (Hahn & Goyal, 2023) or Turing machines
(Grau-Moya et al., 2024), but these lack a tractable Bayesian oracle, limiting their utility for quantitative evaluation.

A.2. Latent variables in Transformers

Multiple previous works have explored to what extent Transformers explicitly represent the latent variables underlying
an in-context problem. (Todd et al., 2023; Hendel et al., 2023) have shown that in some few-show ICL tasks, such word
associations, Transformer indeed represent the task latent 6, allowing for manipulation of the inference process. (Yang et al.,
2025) have expanded on the conditions necessary for task vectors to appear, and how they often don’t. Authors have also
proposed a method to force the appearance of task vectors using an auxiliary loss. (Mittal et al., 2024) also demonstrated
that task vectors sometimes do not appear in function approximation few-shot ICL tasks and attributed it to the fact that
Transformers had trouble representing the functional form pj(x | y). Lastly, (Zhuang et al., 2024) have trained Transformers
with continuous task vectors in order to increase the performance on some ICL tasks.

A.3. Ambiguity and the Limits of Bayesian Inference

The challenge of inference under ambiguity has long been studied in cognitive science and decision theory. While Bayesian
inference offers a normative ideal, exact inference becomes intractable—or even behaviorally irrational—when the posterior
is broad (Gigerenzer & Goldstein, 1996; Gilboa et al., 2009; Lieder & Griffiths, 2020).

To account for how humans reason effectively despite such limitations, resource-rational analysis posits that people optimize
a trade-off between accuracy and cognitive cost (Lieder & Griffiths, 2020). Rather than marginalizing over all hypotheses,
humans rely on heuristics or approximate inference mechanisms—often learned through experience—that deliver fast,
”good enough” solutions (Sanborn et al., 2010; Binz et al., 2022).

Another human strategy is information-seeking, where agents act to reduce uncertainty before committing to a belief or
decision. This is formalized in active inference (Friston et al., 2017), in which agents take epistemic actions—e.g., querying,
exploring, or deferring—to gather evidence and improve predictions. Related ideas appear in reinforcement learning under
the banner of curiosity and intrinsic motivation (Oudeyer & Kaplan, 2007; Gottlieb & Oudeyer, 2018).

These insights motivate our central hypothesis: when the posterior over latent tasks p(6 | ;) is broad, prediction becomes
not only statistically harder, but also computationally more demanding. While humans respond flexibly through heuristics
and exploration, transformers by default apply a fixed computation budget to all inputs.

A.4. Existing solutions

Although rarely framed in terms of latent task inference, many approaches in the foundation model literature implicitly
address ambiguity. One prominent strategy is retrieval-augmented generation (RAG) (Lewis et al., 2020; Izacard & Grave,
2020), which enriches the input context with relevant documents, enabling models to disambiguate queries using external
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knowledge. RAG is especially helpful in settings with underspecified or ambiguous inputs.

Other approaches equip models with clarification-seeking capabilities (Zhang & Choi, 2023), allowing them to request more
information before answering. Similarly, tool-augmented models (Schick et al., 2023; Yao et al., 2023) can interact with
APIs or calculators, actively reducing uncertainty—akin to epistemic actions in humans. Further, system prompts, such as
those used in chatbots, serve to disambiguate the model’s role and task (Niwa & Iso, 2024).

As a side note, chain-of-thought prompting (Wei et al., 2022; Kojima et al., 2022) methods improve reasoning by encouraging
intermediate steps. However, theses methods enhance can be seen as addressing cases where the conditional prediction
p(2¢ | <4, 0), not the task inference, is too difficult for the model.

Finally, reinforcement learning from human feedback (RLHF) can lead to emergent ambiguity-sensitive behaviors (OpenAl,
2024; Guo et al., 2025). Models fine-tuned with RLHF sometimes defer responses, ask clarifying questions, or invoke
tools—particularly when direct answers are penalized for inaccuracy (Nakano et al., 2021). These behaviors align with
active inference (Friston et al., 2017; Millidge et al., 2021), though ambiguity resolution is not explicitly optimized.

A.5. Test-Time Scaling and Adaptive Inference

Our method also contributes to the growing literature on test-time scalable inference, where computation is dynamically
adjusted based on input difficulty. Early work on adaptive computation time (ACT) (Graves, 2016) allowed models to learn
how many steps to take. In transformers, this has evolved into early exiting mechanisms (Zhu, 2021), which conditionally
terminate processing. See Snell et al. (2024) for a modern discussion of test-time scaling. Our approach offers a specific,
and principled interpretation of test-time scaling from a Bayesian perspective.

B. Additional details
B.1. Engineering challenges of the Monte-Carlo predictor

As model size increases, the latent representation z also grows in dimensionality, potentially making the diffusion sampling
task more difficult. Despite the DiT’s large capacity, it may still underfit. Improved diffusion design—e.g., via classifier-free
guidance (Ho & Salimans, 2022) or self-conditioning (Chen et al., 2022)—could help bridge this gap. Additionally,
the embedding z may encode high- frequency details from x;, that are hard to sample accurately. This issue could be
exacerbated by increasing the dimension of z. A promising direction would be to regularize z to capture only information
relevant to task identity 6. For example, maximizing the mutual information I(z; #) via a contrastive loss (Oord et al., 2018;
Li et al., 2024) could encourage more robust low-dimensional. We leave a full exploration of these directions to future work,
viewing our method as a first step toward separating task inference and prediction in foundation models.

B.2. MetaHMM details

All experiments in this paper are performed on three seeds of a MetaHMM with a fixed size. HMMs have a hidden state
space of dimension 20 and an observational space of size 50. Other hyperparamters are described in Figure 3a). The total
number of HMMs can be computed as

(np - sp - dp) - (Q;f “dp-sp)e (ad - Be) )
—_—— ————

N—_———— —
Base cycles Cycle families Emission groups

which in our case gives 12,288 HMMs.

B.3. Architecture details

All causal transformers use the Adam optimizer with learning rate 0.001, batch size 256 and 50, 000 updates. Further
hyperparameters of the causal Transformers are given by Figure 3b). When training on a MetaHMM environment, we hold
out 1000 HMMs (~ 1—12 of all) for validation, and report validation metrics throughout.

All diffusion models are DiTs (Peebles & Xie, 2023) trained with the Adam optimizer with learning rate 0.0001, batch
size 512 and 100, 000 updates. The conditioning information, i.e. ¢, is first passed through an Transformer encoder
(without causal masking) and then both through a cross-attention block and a adalLN-Zero block. Hyperparameters are given
by Figure 3c). When training, we hold out %th of all HMMs for validation. The DiT uses the velocity parameterization
(Salimans & Ho, 2022) with an L2 loss and a cosine noise schedule. Sampling is performed using the DDPM sampler with
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Base cycles

Cycles ny, 4

Step-size sy, 2

Directions dp 2

Cycle families Size/Hyperparmeters | Layers | Heads | Dimension DiT Layers 8
Families n ¢ 3 1.IM 4 4 128 DiT Heads
Groups per family g 2 2.0M 6 6 128 Dimension | 512
Directions d 2 6.3M 6 8 256 Enc. Layers
Step-sizes sy 2 25.0M 8 8 512 Enc. Heads 8
Emission matrix (b) Causal Transformer (c) DiT
Groups g, 3

Emission per group a | 2

Shifts 5, 3

(a) MetaHMM

Figure 3: Hyperparameters

50 timesteps. Other hyperparameters are the same as in (Lovelace et al., 2023).

B.4. Figures
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Figure 4: Transformer trained on random sequence lengths Variation of the next-token training setup of Figure 1c) where
sequences have random lengths uniformly sampled between 1 and 200. This puts more pressure on the predictors to perform
well at low context lengths. Batch size are adjusted so that the amount of tokens per batch remains constant (and equal to
full-length training).
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Figure 5: Short x;, variation of Figure 2b) where x ., has length 10. This means that z should be a poor proxy for 6 and
the MC predictor should do poorly.
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