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ABSTRACT

Biological cortical neurons are remarkably sophisticated computational devices,
temporally integrating their vast synaptic input over an intricate dendritic tree,
subject to complex, nonlinearly interacting internal biological processes. A recent
study proposed to characterize this complexity by fitting accurate surrogate models
to replicate the input-output relationship of a detailed biophysical cortical pyramidal
neuron model and discovered it needed temporal convolutional networks (TCN)
with millions of parameters. Requiring these many parameters, however, could stem
from a misalignment between the inductive biases of the TCN and cortical neuron’s
computations. In light of this, and to explore the computational implications of
leaky memory units and nonlinear dendritic processing, we introduce the Expressive
Leaky Memory (ELM) neuron model, a biologically inspired phenomenological
model of a cortical neuron. Remarkably, by exploiting such slowly decaying
memory-like hidden states and two-layered nonlinear integration of synaptic input,
our ELM neuron can accurately match the aforementioned input-output relationship
with under ten thousand trainable parameters. To further assess the computational
ramifications of our neuron design, we evaluate it on various tasks with demanding
temporal structures, including the Long Range Arena (LRA) datasets, as well
as a novel neuromorphic dataset based on the Spiking Heidelberg Digits dataset
(SHD-Adding). Leveraging a larger number of memory units with sufficiently long
timescales, and correspondingly sophisticated synaptic integration, the ELM neuron
displays substantial long-range processing capabilities, reliably outperforming the
classic Transformer or Chrono-LSTM architectures on LRA, and even solving the
Pathfinder-X task with over 70% accuracy (16k context length). These findings
raise further questions about the computational sophistication of individual cortical
neurons and their role in extracting complex long-range temporal dependencies.

1 INTRODUCTION

The human brain has impressive computational capabilities, yet the precise mechanisms underpinning
them remain largely undetermined. Two complementary directions are pursued in search of
mechanisms for brain computations. On the one hand, many researchers investigate how these
capabilities could arise from the collective activity of neurons connected into a complex network
structure Maass (1997); Gerstner & Kistler (2002); Grüning & Bohte (2014), where individual
neurons might be as basic as leaky integrators or ReLU neurons. On the other hand, it has been
proposed that the intrinsic computational power possessed by individual neurons Koch (1997); Koch
& Segev (2000); Silver (2010) contributes a significant part to the computations.

Even though most work focuses on the former hypothesis, an increasing amount of evidence indicates
that cortical neurons are remarkably sophisticated Silver (2010); Gidon et al. (2020); Larkum (2022),
even comparable to expressive multilayered artificial neural networks Poirazi et al. (2003); Jadi et al.
(2014); Beniaguev et al. (2021); Jones & Kording (2021), and capable of discriminating between
dozens to hundreds of input patterns Gütig & Sompolinsky (2006); Hawkins & Ahmad (2016);
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Moldwin & Segev (2020). Numerous biological mechanisms, such as complex ion channel dynamics
(e.g. NMDA nonlinearity Major et al. (2013); Lafourcade et al. (2022); Tang et al. (2023)), plasticity
on various and especially longer timescales (e.g. slow spike frequency adaptation Kobayashi et al.
(2009); Bellec et al. (2018)), the intricate cell morphology (e.g. nonlinear integration by dendritic
tree Stuart & Spruston (2015); Poirazi & Papoutsi (2020); Larkum (2022)), and their interactions,
have been identified to contribute to their complexity.

Detailed biophysical models of cortical neurons aim to capture this inherent complexity through
high-fidelity mechanistic simulations Hay et al. (2011); Herz et al. (2006); Almog & Korngreen
(2016). However, they require a lot of computing resources to run and typically operate at a very
fine level of granularity that does not facilitate the extraction of higher-level insights into the neuron’s
computational principles. A promising approach to derive such higher-level insights from simulations
is through the training of surrogate phenomenological neuron models. Such models are designed
to replicate the output of biophysical simulations but use simplified interpretable components. This
approach was employed, for example, to model computation in the dendritic tree via simple two-layer
ANN Poirazi et al. (2003); Tzilivaki et al. (2019); Ujfalussy et al. (2018). Building on this line of
research, a recent study by Beniaguev et al. (2021) developed a temporal convolutional network
to capture the spike-level input/output (I/O) relationship with millisecond precision, accounting
for the complexity of integrating diverse synaptic input across the entirety of the dendritic tree of a
high-fidelity biophysical neuron model. It was found that a highly expressive temporal convolutional
network with millions of parameters was essential to reproduce the aforementioned I/O relationship.

In this work, we propose that a model equipped with appropriate biologically inspired components that
align with the high-level computational principles of a cortical neuron should be capable of capturing
the I/O relationship using a substantially smaller model size. To achieve this, a model would likely
need to account for multiple mechanisms of neural expressivity and judiciously allocate computational
resources and parameters in a rough analogy to biological neurons. Should such a construction be pos-
sible, the required design choices may yield insights into principles of neural computation at the con-
ceptual level. We proceed to design the Expressive Leaky Memory (ELM) neuron model (see Figure
1), a biologically inspired phenomenological model of a cortical neuron. While biologically inspired,
low-level biological processes are abstracted away for computational efficiency, and consequently,
individual parameters of the ELM neuron are not designed for direct biophysical interpretability.
Nevertheless, model ablations can provide conceptual insights into the computational components re-
quired to emulate the cortical input/output relationship. The ELM neuron functions as a recurrent cell
and can be conveniently used as a drop-in replacement for LSTMs Hochreiter & Schmidhuber (1997).

Our experiments show that a variant of the ELM neuron is expressive enough to accurately match
the spike level I/O of a detailed biophysical model of a layer 5 pyramidal neuron at a millisecond
temporal resolution with a few thousand parameters, in stark contrast to the millions of parameters
required by temporal convolutional networks. Conceptually, we find accurate surrogate models to
require multiple memory-like hidden states with longer timescales and highly nonlinear synaptic
integration. To explore the implications of neuron-internal timescales and sophisticated synaptic
integration into multiple memory units, we first probe its temporal information integration capabilities
on a challenging biologically inspired neuromorphic dataset requiring the addition of spike-encoded
spoken digits. We find that the ELM neuron can outperform classic LSTMs leveraging a sufficient
number of slowly decaying memory and highly nonlinear synaptic integration. We subsequently
evaluate the ELM neuron on the well-established long sequence modeling LRA benchmarks from
the machine learning literature, including the notoriously challenging Pathfinder-X task, where it
achieves over 70% accuracy but many transformer-based models do not learn at all.

Our contributions are the following.

1. We propose the phenomenological Expressive Leaky Memory (ELM) neuron model, a
recurrent cell architecture inspired by biological cortical neurons.

2. The ELM neuron efficiently learns the input/output relationship of a sophisticated biophysi-
cal model of a cortical neuron, indicating its inductive biases to be well aligned.

3. The ELM neuron facilitates the formulation and validation of hypotheses regarding the
underlying high-level neuronal computations using suitable architectural ablations.

4. Lastly, we demonstrate the considerable long-sequence processing capabilities of the ELM
neuron through the use of long memory and synapse timescales.

2



Published as a conference paper at ICLR 2024

2 THE EXPRESSIVE LEAKY MEMORY NEURON

(a) A Cortical Neuron

(b) The ELM Neuron Architecture

κm = exp(−∆t/τm)

κs = exp(−∆t/τs)

st = κs ⊙ st−1 +ws ⊙ xt

∆mt = tanh(MLPwp([st,κm ⊙mt−1]))

mt = κm ⊙mt−1 + λ · (1− κm)⊙∆mt

yt = wy ·mt

(1)
(c) The ELM Neuron Equations

Figure 1: The biologically motivated Expressive Leaky Memory (ELM) neuron model. The
architecture can be divided into the following components: the input current synapse dynamics, the
integration mechanism dynamics, the leaky memory dynamics, and the output dynamics. a) Sketch of
a biological cortical pyramidal neuron segmented into the analogous architectural components using
the corresponding colors. b) Schematics of the ELM neuron architecture, component-wise colored
accordingly. c) The ELM neuron equations, where xt ∈ Rds is the input at time t, ∆t ∈ R+ the
fictitious elapsed time in milliseconds between two consecutive inputs xt−1 and xt , m ∈ Rdm are
memory units, s ∈ Rds the synapse currents (traces), τm ∈ R+dm and τs ∈ R+ds their respective
timescales in milliseconds, ws ∈ R+ds are synapse weights, wp the weights of a Multilayer
Perceptron (MLP) with lmlp hidden layers of size dmlp, wy ∈ Rdo×dm the output weights, λ ∈ R+ a
scaling factor for the delta memory ∆mt ∈ Rdm , and y ∈ Rdo the output.

In this section, we discuss the design of the Expressive Leaky Memory (ELM) neuron, and its variant
Branch-ELM. Its architecture is engineered to capture sophisticated cortical neuron computations
efficiently. Abstracting mechanistic neuronal implementation details away, we resort to an overall
recurrent cell architecture with biologically motivated computational components. This design
approach emphasizes conceptual over mechanistic insight into cortical neuron computations.

The current synapse dynamics. Neurons receive inputs at their synapses in the form of sparse
binary events known as spikes Kandel et al. (2000). While the Excitatory/Inhibitory synapse identity
determines the sign of the input (always given), the positive synapse weights can act as simple input
gating ws (learned in Branch-ELM). The synaptic trace st denotes a filtered version of the input,
believed to aid coincidence detection and synaptic information integration in neurons König et al.
(1996). This implementation is known as the current-based synapse dynamic Dayan & Abbott (2005).

The memory unit dynamics. The state of a biological neuron may be characterized by diverse
measurable quantities, such as their membrane voltage or various ion/molecule concentrations (e.g.
Ca+, mRNA, etc.), and their rate of decay over time (slow decay <-> large timescale), endowing
them with a sort of leaky memory Kandel et al. (2000); Dayan & Abbott (2005). However, which of
these quantities are computationally relevant, how and where they interact, and on what timescale,
remains a topic of active debate Aru et al. (2020); Herz et al. (2006); Almog & Korngreen (2016);
Koch (1997); Chavlis & Poirazi (2021); Cavanagh et al. (2020); Gjorgjieva et al. (2016). Therefore,
to match a biological neuron’s computations, the surrogate model architecture needs to be expressive
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enough to accommodate a large range of possibilities. In the ELM neuron, we achieve this by making
the number of memory units dm a hyper-parameter and equipping each of them with a τm (always
learnable), setting it apart most other computational neuroscience models.

The integration mechanism dynamics. This dynamic refers to how the synaptic input st is inte-
grated into the memory units ∆mt in analogy to the dendritic tree of a cortical neuron. While earlier
perspectives suggested an integration process akin to linear summation Jolivet et al. (2008), newer
studies advocate for complex nonlinear integration Almog & Korngreen (2016); Gidon et al. (2020);
Larkum (2022), specifically proposing multi-layered ANNs as more suitable descriptions Poirazi et al.
(2003); Jadi et al. (2014); Marino (2021); Jones & Kording (2021); Iatropoulos et al. (2022); Jones
& Kording (2022); Hodassman et al. (2022), also backed by recent evidence of neuronal plasticity
beyond synapses Losonczy et al. (2008); Holtmaat et al. (2009); Abraham et al. (2019). Motivated by
this ongoing discussion, we choose to parameterize the input integration using a Multilayer Perceptron
(MLP) (wp always learnable, with lmlp = 1 and dmlp = 2dm), which can be used to explore the
full range of hypothesized integration complexities, while offering a straightforward way to quantify
and ablate the ELM neuron integration complexity. In the Branch-ELM variant (for motivation see
details in Section 4 and Figure 4) we extend the integration mechanism dynamics; before the MLP is
applied, the synaptic input st ∈ Rds is reduced to a smaller number (dtree) of branch activations, each
computed as a sum over dbrch neighboring synaptic inputs (with dtree ∗ dbrch = ds). In this variant
the ws need to be learnable, as they are responsible for weighting the sum and cannot be absorbed
in the MLP later. Despite the biological inspiration, the MLP and synapses are only intended to
capture the neuron analogous plasticity and dendritic nonlinearity, and cannot give a mechanistic
explanation of these phenomena in neuron. Finally, incorporating previous memory units mt−1 into
the integration process, the ELM can accommodate state-dependent synaptic integration and related
computations Hodgkin & Huxley (1952); Gasparini & Magee (2006); Bicknell & Häusser (2021),
and enables the relationships among memory units m to be fully learnable. The range of the m
values is controlled by λ, and the mixing of the proposal values by the parameter km (for details on
parameters see Appendix Section A). Crucially, our approach sidesteps the need for expert-designed
and pre-determined differential equations typical in phenomenological neuron modeling.

The output dynamics. Spiking neurons emit their output spike at the axon hillock roughly when
their membrane voltage crosses a threshold Kandel et al. (2000). The ELM neuron’s output is
similarly based on its internal state mt−1 (using a linear readout layer wy), which rectified can be
interpreted as the spike probability. For task compatibility, the output dimensionality is adjusted
based on the respective dataset (not affecting neuron expressivity).

3 RELATED WORK

Accurately replicating the full spike-level neuron input/output (I/O) relationship of detailed
biophysical neuron models at millisecond resolution in a computationally efficient manner presents a
formidable challenge. However, addressing this dynamics-learning task could yield valuable insights
into neural mechanisms of expressivity, learning, and memory Durstewitz et al. (2023). The relative
scarcity of prior work on this subject can be partially attributed to the computational complexity
of cortical neurons only recently garnering increased attention Tzilivaki et al. (2019); Beniaguev
et al. (2021); Larkum (2022); Poirazi & Papoutsi (2020). Additionally, traditional phenomenological
neuron models have primarily aimed to replicate specific computational phenomena of neurons or
networks Koch (1997); Izhikevich (2004); Herz et al. (2006), rather than the entire I/O relationship.

Phenomenological neuron modeling research on temporally or spatially less detailed I/O relationship
of biophysical neurons has been primarily centered around the use of multi-layered ANN structures
in analogy to the neurons dendritic tree Poirazi et al. (2003); Tzilivaki et al. (2019); Ujfalussy et al.
(2018). Similarly, we parametrize the synaptic integration with an MLP, while crucially extending
this modeling perspective in several ways. Drawing upon the principles of classical phenomenological
modeling via differential equations Izhikevich (2004); Dayan & Abbott (2005), our approach em-
braces the recurrent nature of neurons. We further consider the significance of hidden states m beyond
membrane voltage, as seen in prior works with predetermined variables Brette & Gerstner (2005);
Gerstner et al. (2014). This addition enables us to flexibly investigate internal memory timescales τm.
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Figure 2: The ELM neuron is a computationally efficient model of cortical neuron. a) detailed
biophysical model of a layer 5 cortical pyramidal cell was used to generate the NeuronIO dataset
consisting of input spikes and output spikes and voltage. b) and c) Voltage and spike prediction
performance of the respective surrogate models, produced using joint ablation of dm with dmlp = 2dm
for ELM models. Previously around 10M parameters were required to make accurate spike predictions
using a TCN Beniaguev et al. (2021), an LSTM baseline is able to do it with 266K, and our ELM and
Branch-ELM neuron model require 53K and 8K respectively (3rd from left each), simultaneously
achieving much better voltage prediction performance than the TCN. For comparison in terms of
TP/FP Rate performance or FLOPS cost see Fig. 4c or S1 respectively. Additional comparisons to
other phenomenological neuron models, such as LIF and ALIF, are provided in Table S4.

Deep learning architectures for long sequence modeling have seen a shift towards the explicit
incorporation of timescales for improved temporal processing, as observed in recent advancements in
RNNs, transformers, and state-space models Gu et al. (2021); Mahto et al. (2021); Smith et al. (2023);
Ma et al. (2023). Such an explicit approach can be traced back to Leaky-RNNs Mozer (1991); Jaeger
(2002); Kusupati et al. (2018); Tallec & Ollivier (2018), which use a convex combination of old
memory and updates, as done in ELM using κm. Whereas the classic time-varying memory decay me-
diated by implicit timescales Tallec & Ollivier (2018), is known from classic gated RNNs like LSTM
Hochreiter & Schmidhuber (1997) and GRU Cho et al. (2014). In contrast to complex gating mecha-
nisms, time-varying implicit timescales, or sophisticated large multi-staged architectures, the ELM fea-
tures a much simpler recurrent cell architecture only using constant explicit (trainable) timescales τm
for gating, putting the major emphasis on the input integration dynamics using a single powerful MLP.

4 EXPERIMENTS

In the experimental section of this work, we address three primary research questions. First,
can the ELM neuron accurately fit a high-fidelity biophysical simulation with a small number of
parameters? We detail this investigation in Section 4.1. Second, how can the ELM neuron effectively
integrate non-trivial temporal information? We explore this issue in Section 4.2. Third, what
are the computational limits of the ELM design? Discussed in Section 4.3. For training details,
hyper-parameters, and tuning recommendations, please refer to the Appendix Section B and Table S1.

4.1 FITTING A COMPLEX BIOPHYSICAL CORTICAL NEURON MODEL’S I/O RELATIONSHIP

The NeuronIO dataset primarily consists of simulated input-output (I/O) data for a complex
biophysical layer 5 cortical pyramidal neuron model Hay et al. (2011). Input data features
biologically inspired spiking patterns (1278 pre-synaptic spike channels featuring -1,1 or 0 as input),
while output data comprises the model’s somatic membrane voltage and output spikes (see Figure 2a
and 2b). The dataset and related code are publicly available Beniaguev et al. (2021), and the models
were trained using Binary Cross Entropy (BCE) for spike prediction and Mean Squared Error (MSE)
for somatic voltage prediction, with equal weighting.

Our ELM neuron achieves better prediction of voltage and spikes than previously used architectures
for any given number of trainable parameters (and compute). In particular, it crosses the “sufficiently
good” spike prediction performance threshold (0.991 AUC) as proposed in (Beniaguev et al., 2021)
by using 50K trainable parameters, which is around 200× improvement compared to the previous
attempt (TCN) that required around 10M trainable parameters, and 6× improvement over a LSTM
baseline which requires around 266K parameters (see Figure 2c-d). Overall, this result indicates
that recurrent computation is an appropriate inductive bias for modeling cortical neurons.
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Figure 3: The ELM neuron gives relevant neuroscientific insights. Ablations on NeuronIO of
different hyperparameters of an ELM neuron with AUC ≈ 0.992, and a Branch-ELM with the same
default hyperparameters. The number of removed divergent runs marked with 1∗. a) We find between
10 and 20 memory-like hidden states to be required for accurate predictions, much more than typical
phenomenological models use Izhikevich (2004); Dayan & Abbott (2005). b) Highly nonlinear
integration of synaptic input is required, in line with recent neuroscientific findings Stuart & Spruston
(2015); Jones & Kording (2022); Larkum (2022). c) Allowing greater updates to the memory units is
beneficial (see Appendix A). d-f) Ablations of memory timescale (initialization and bounding) range
or (constant) value, with the default range being 1ms-150ms. Timescales around 25 ms seems to be
the most useful (matching the typical membrane timescale in the cortex Dayan & Abbott (2005));
however, a lack can be partially compensated by longer timescales. g) and h) Ablating the number of
branches dtree and number of synapses per branch dbrch of the Branch-ELM neuron.

We use the fitted model to investigate how many memory units and which timescales are needed
to match the neuron closely. We find that around 20 memory units are required (Figure 3a) with
timescales that are allowed to reach at least 25 ms (Figure 3d). While a diversity of timescales,
including long ones, seems to be favorable for accurate modeling (Figure 3d and 3f), ELM with
constant memory timescales around 25 ms performs sufficiently well (matching the typical membrane
timescales in computational modeling Dayan & Abbott (2005), Figure 3e). Removing the hidden
layer or decreasing the integration mechanism complexity significantly reduces performance
(Figure 3b). Allowing for more rapid memory updates through larger λ is crucial (Figure 3c),
possibly to match the fast internal dynamics of neurons around spike times or to absorb information
faster into memory (more details in Appendix A). When fitting the simple leaky-integrate-and-fire
(LIF) or adaptive LIF, we reach a better prediction with only a few memory units (Figure S7).

How much nonlinearity is in the dendritic tree? Within the ELM architecture, we allow for
nonlinear interaction between any two synaptic inputs via the MLP. This flexibility might be necessary
in cases where little is a priori known about the input structure. However, for matching the I/O
of cortical neurons, knowledge of neuronal morphology and biophysical assumptions about linear-
nonlinear computations in the dendritic tree might be exploited to reduce the dimensionality of the
input to the MLP (parameter-costly component with ds = 1278 inputs). Consequently, we modify the
ELM neuron to include virtual branches along which the synaptic input is first reduced by a simple
summation before further processing (see Figure 4). For NeuronIO specifically, we assign the synaptic
inputs to the branches in a moving window fashion (exploiting that in the dataset, neighboring inputs
were also typically neighboring synaptic contacts on the same dendritic branch of the biophysical
model). The window size is controlled by the branch size dbrch, and the stride size is derived from
the number of branches dtree to ensure equally spaced sampling across the ds = 1278 inputs.
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Figure 4: Coarse-grained modeling of synaptic integration significantly improves model effi-
ciency. a) The integration mechanism dynamics of the ELM now computes the activity of individual
dendritic branches as a simple sum of their respective synaptic inputs first before passing them on to
the MLPwp , where dtree is the number of branches and dbrch the number of synapses per branch. b)
Accurate predictions using a Branch-ELM neuron with 8104 parameters (for zoomed-in version with
model dynamics see Figure S9). c). The new Branch-ELM neuron improves on the ELM neuron by
about 7× in terms of parameter efficacy (same ELM hyper-parameters). Differences in model quality
are highlighted when examining a True-Positive rate at a low False-Positive rate.

Surprisingly, even with this strong simplification, the Branch-ELM neuron model can retain its
predictive performance while requiring 8K trainable parameters (roughly 7× reduction over the
vanilla ELM) to cross the performance threshold substantially. We also find that a combination
of dtree = 45, dbrch = 65 and dm = 15 still achieved over 0.9915 AUC with only 5329
trainable parameters, corroborating the assumption of the near-linear computation within dendritic
branches and inviting future investigation of minimal required synaptic nonlinearity. However, this
simplification utilizes the knowledge of morphology for modeling the neuron (in our case, exploiting
the neighborhood in the dataset), violating it leads to deterioration of performance (Figure S6),
therefore for most of the task we use the vanilla ELM neuron.

4.2 EVALUATING TEMPORAL PROCESSING CAPABILITIES ON A BIO-INSPIRED TASK

The Spiking Heidelberg Digits (SHD) dataset comprises spike-encoded spoken digits (0-9) in
German and English Cramer et al. (2020). The digits were encoded using 700 input channels in
a biologically inspired artificial cochlea. Each channel represents a narrow frequency band with
the firing rate coding for the signal power in this band, resulting in an encoding that resembles the
spectrogram of the spoken digit (see Figure 5a).

Motivated by recent findings that most neuromorphic benchmark datasets only require minimal tem-
poral processing abilities Yang et al. (2021), we introduce the SHD-Adding dataset by concatenating
two uniformly and independently sampled SHD digits and setting the target to their sum (regardless
of language) (see Figure 5a). Solving this dataset necessitates identifying each digit on a shorter
timescale and computing their sum by integrating this information over a longer timescale, which in
turn requires retaining the first digit in memory. Whether single cortical neurons can solve this exact
task is unclear; however, it has been shown that even single neurons possibly encode and perform
basic arithmetics in the medial temporal lobe Cantlon & Brannon (2007); Kutter et al. (2018; 2022).

The ELM neuron solves the summing task across various temporal resolutions (determined by the bin
size). As we vary the bin size from 1ms (2000 bins in total, the maximal temporal detail and longest
required memory retention) to 100 (20 bins in total, the minimal temporal detail and shortest memory
retention), the ELM neuron’s performance remains robust, degrading proportionally to the bin sizes
(see Figure 5b-d); this drop in performance is not a shortcoming of the model itself, but a consequence
of loss of temporal information through binning. Further, the performance is also maintained when
testing on two held-out speakers, showing that the ELM neuron remains comparatively robust
out-of-distribution. Due to vanishing gradients, the LSTM performs worse on this task, especially
when the bin size is below 50. As the bin size increases, the LSTM’s performance improves but does
not surpass ELM because larger bin sizes likewise lead to the loss of crucial temporal details. This
outcome underlines the importance of a model’s ability to integrate complex synaptic information
effectively (see Figure 5e) and the utility of longer neuron-internal timescales for learning long-range
dependencies, potentially necessary for cortical neuron’s operation (see Figure 5f).
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Figure 5: The ELM neuron performs well on long and sparse data using longer timescales. a)
Sample from the biologically motivated SHD-Adding dataset (based on Cramer et al. (2020)), each
dot is an input spike, and a vertical dashed line is a guide for the eye indicating the separation of the
two digits (not communicated to the network). b-d) The ELM neuron (186K params.) consistently
outperforms a classic LSTM (956K params.), especially for smaller bin sizes (meaning longer
training samples), and LSTM-performance cannot be fully recovered even for larger bin sizes. The
Branch-ELM (67K params.) can retain performance for fine-grained binning at a much reduced
model size. Our LIF neuron based Spiking Neural Network (SNN) (51K params.) does not manage
to achieve good performance for any bin size, and training becomes unstable for long sequences. e)
and f) Ablations using a bin size of 2ms with test set performance reported. e) Solving SHD-Adding
requires ELM neuron to have a higher complexity than required for NeuronIO, and much larger
models become unstable. Potentially a network of smaller ELM neuron might be preferable. f)
Longer τm are crucial for extracting long-range dependencies. Possibly shorter ones might suffice in
a ELM network, as longer timescales can emerge through dynamics Khajehabdollahi et al. (2023).

4.3 EVALUATING ON COMPLEX AND VERY LONG TEMPORAL DEPENDENCY TASKS

To test the extent and limits of the ELM neuron’s ability to extract complex long-range dependencies,
we use the classic Long Range Arena (LRA) benchmark datasets Tay et al. (2021). It consists of
classification tasks; three image-derived datasets Image, Pathfinder, and Pathfinder-X (images being
converted to a grayscale pixel sequence), and three text-based datasets ListOps, Text, and Retrieval.
Pixel and token sequences were encoded categorically, however, only considering 8 or 16 different
grayscale levels for images. In particular, the Pathfinder-X task is notoriously difficult, as the task
is to determine whether two dots are connected by a path in a 128× 128 image (~16k length).

Our results are summarized in Table 1, where we compare the ELM neuron against several strong
baselines. The model most comparable to ours is an LSTM with derived explicit gating bias
initialization for effectively longer internal timescales Tallec & Ollivier (2018) (Chrono-LSTM).
When comparing the two, we find that both models consistently perform well, except on the
Pathfinder-X* task which only the ELM can reliably solve, albeit using longer τs than usual. The
larger self-attention-based models trail further behind, with both Transformer Vaswani et al. (2017)
and Longformer Beltagy et al. (2020) completely failing to solve the Pathfinder-X task Tay et al.
(2021). Only the purpose-built architectures such as S4 Gu et al. (2021) and Mega Ma et al. (2023)
(current SOTA) perform better, but they require many layers of processing and many more parameters
than an ELM neuron, which uses 150 memory units and typically ~100k parameters.

Overall, the results suggest that the simple ELM neuron architecture is capable of reliably solving
challenging tasks with very long temporal dependencies. Crucially, this required using memory
timescales initialized according to the task length and highly nonlinear synaptic integration into 150

*Only once during hyper-parameter tuning did a single Chrono-LSTM run achieve barely above chance
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Table 1: The ELM neuron can solve challenging long-range sequence modeling tasks. The table
shows the mean accuracy on Long Range Arena (LRA) Benchmark Tay et al. (2021). The ELM
neuron routinely scores higher than the Chrono-LSTM or the much larger Transformer or Longformer,
and only the large multi-layered architectures tuned specifically for these tasks, such as S4 or Mega,
outperform it. Surprisingly, it is also the only non purpose-built model that can reliably solve the
notoriously challenging 16K sample length Pathfinder-X task. Model sizes of the bottom baseline
models are extracted from Gu et al. (2021)Ma et al. (2023)Tay et al. (2021). Training details and
model hyper-parameters are detailed in Appendix Section B, and Tables S2 and S3.

Image Pathfinder Pathfinder-X ListOps Text Retrieval

ELM Neuron (ours) 49.62 71.15 77.29 46.77 80.3 84.93
Chr.-LSTM Tallec & Ollivier (2018) 46.09 70.79 FAIL∗ 44.55 75.4 82.87
# parameters ~100k ~100k ~100k ~100k ~200k ~150k

Transformer Vaswani et al. (2017) 42.44 71.4 FAIL 36.37 64.27 57.46
Longformer Beltagy et al. (2020) 42.22 69.71 FAIL 35.63 62.85 56.89
S4 Gu et al. (2021) 87.26 86.05 88.1 58.35 76.02 87.09
Mega Ma et al. (2023) 90.44 96.01 97.98 63.14 90.43 91.25
# parameters ~600k ~600k ~600k ~600k ~600k ~600k

memory units (See Appendix B). While the LRA benchmark revealed the single ELM neurons limits,
we hypothesize that assembling ELM neurons into layered networks might give it enough processing
capabilities to catch up with the deep models, but we leave this investigation to future work.

5 DISCUSSION

In this study, we introduced a biologically inspired recurrent cell, the Expressive Leaky Memory
(ELM) neuron, and demonstrated its capability to fit the full spike-level input/output mapping of a
high-fidelity biophysical neuron model (NeuronIO). Unlike previous works that achieved this fit with
millions of parameters, a variant of our model only requires a few thousand, thanks to the careful
design of the architecture exploiting appropriate inductive biases. Furthermore, unlike existing
neuron models, the ELM can effectively model neuron without making rigid assumptions about the
number of memory states and their timescales, or the degree of nonlinearity in its synaptic integration.

We further scrutinized the implications and limitations of this design on various long-range
dependency datasets, such as a biologically-motivated neuromorphic dataset (SHD-Adding), and
some notoriously challenging ones from the machine learning literature (LRA). Leveraging slowly
decaying memory units and highly nonlinear dendritic integration into multiple memory units, the
ELM neuron was found to be quite competitive, in particular, compared to classic RNN architectures
like the LSTM, a notable feat considering its much simpler architecture and biological inspiration.

It should be noted that despite its biological motivation, our model cannot give mechanistic
explanations of neural computations as biophysical models do, and that the task of fitting another
neuron’s I/O is not itself a biologically relevant task for a neuron. Many biological implementation
details are abstracted away in favor of computational efficiency and conceptual insight, and the re-
quired/recovered ELM neuron hyper-parameters depend on what constitutes a sufficiently good fit and
the model’s subsequent use case. Furthermore, ELM is trained using BPTT, which is not considered
biologically plausible in itself, and ELM learning likely relies on neuronal plasticity beyond synapses,
the extent of which in biological neurons is still a subject of debate. Additionally, our neuron model
dendrites are rudimentary (e.g., lacking apical vs basal distinction) and rely on oversampling synaptic
inputs for performance so far. Finally, given the use of biologically implausible BPTT as a training
technique and comparatively larger ELM neuron sizes on the later datasets, one should be careful
to directly draw conclusions about the learning capabilities of individual biological cortical neurons.

Despite these caveats, the ELM’s ability to efficiently fit cortical neuron I/O and its promising
performance on machine learning tasks suggests that we are beginning to incorporate the inductive
biases that drive the development of more intelligent systems. Future research focused on connecting
smaller ELM neurons into larger networks could provide even more insights into the necessary and
dispensable elements for building smarter machines.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported by a Sofja Kovalevskaja Award from the Alexander von Humboldt Foun-
dation. We acknowledge the support from the BMBF through the Tübingen AI Center (FKZ:
01IS18039A and 01IS18039B). AL, GM, and BS are members of the Machine Learning Cluster
of Excellence, EXC number 2064/1 – Project number 39072764. AS would like to thank the Max
Planck Society for their generous financial support throughout the project. We would like to thank
Antonio Orvieto for help with table S6. We thank the Max Planck Computing and Data Facility
(MPCDF) staff, as the majority of computations were performed on the HPC system Raven.

10



Published as a conference paper at ICLR 2024

REFERENCES

Wickliffe C Abraham, Owen D Jones, and David L Glanzman. Is plasticity of synapses the mechanism
of long-term memory storage? NPJ science of learning, 4(1):9, 2019.

Mara Almog and Alon Korngreen. Is realistic neuronal modeling realistic? Journal of neurophysiol-
ogy, 116(5):2180–2209, 2016.

Jaan Aru, Mototaka Suzuki, and Matthew E Larkum. Cellular mechanisms of conscious processing.
Trends in Cognitive Sciences, 24(10):814–825, 2020.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. Advances in neural
information processing systems, 31, 2018.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

David Beniaguev, Idan Segev, and Michael London. Single cortical neurons as deep artificial neural
networks. Neuron, 109(17):2727–2739, 2021.

Brendan A Bicknell and Michael Häusser. A synaptic learning rule for exploiting nonlinear dendritic
computation. Neuron, 109(24):4001–4017, 2021.

Romain Brette and Wulfram Gerstner. Adaptive exponential integrate-and-fire model as an effective
description of neuronal activity. Journal of neurophysiology, 94(5):3637–3642, 2005.

Jessica F Cantlon and Elizabeth M Brannon. Basic Math in Monkeys and College Students. PLoS
Biology, 5(12):e328, December 2007. ISSN 1545-7885. doi: 10.1371/journal.pbio.0050328. URL
https://dx.plos.org/10.1371/journal.pbio.0050328.

Sean E Cavanagh, Laurence T Hunt, and Steven W Kennerley. A diversity of intrinsic timescales
underlie neural computations. Frontiers in Neural Circuits, 14:615626, 2020.

Spyridon Chavlis and Panayiota Poirazi. Drawing inspiration from biological dendrites to empower
artificial neural networks. Current opinion in neurobiology, 70:1–10, 2021.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The heidelberg
spiking data sets for the systematic evaluation of spiking neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 2020.

Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and mathematical
modeling of neural systems. MIT press, 2005.

Daniel Durstewitz, Georgia Koppe, and Max Ingo Thurm. Reconstructing computational system
dynamics from neural data with recurrent neural networks. Nature Reviews Neuroscience, 24(11):
693–710, 2023.

Sonia Gasparini and Jeffrey C Magee. State-dependent dendritic computation in hippocampal ca1
pyramidal neurons. Journal of Neuroscience, 26(7):2088–2100, 2006.

Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Albert Gidon, Timothy Adam Zolnik, Pawel Fidzinski, Felix Bolduan, Athanasia Papoutsi, Panayiota
Poirazi, Martin Holtkamp, Imre Vida, and Matthew Evan Larkum. Dendritic action potentials and
computation in human layer 2/3 cortical neurons. Science, 367(6473):83–87, 2020.

11

https://dx.plos.org/10.1371/journal.pbio.0050328


Published as a conference paper at ICLR 2024

Julijana Gjorgjieva, Guillaume Drion, and Eve Marder. Computational implications of biophysical
diversity and multiple timescales in neurons and synapses for circuit performance. Current opinion
in neurobiology, 37:44–52, 2016.

André Grüning and Sander M Bohte. Spiking neural networks: Principles and challenges. In ESANN.
Bruges, 2014.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Robert Gütig and Haim Sompolinsky. The tempotron: a neuron that learns spike timing–based
decisions. Nature neuroscience, 9(3):420–428, 2006.

Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of synapses, a theory of sequence
memory in neocortex. Frontiers in neural circuits, pp. 23, 2016.

Etay Hay, Sean Hill, Felix Schürmann, Henry Markram, and Idan Segev. Models of neocortical layer
5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS
computational biology, 7(7):e1002107, 2011.

Andreas VM Herz, Tim Gollisch, Christian K Machens, and Dieter Jaeger. Modeling single-neuron
dynamics and computations: a balance of detail and abstraction. science, 314(5796):80–85, 2006.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Shiri Hodassman, Roni Vardi, Yael Tugendhaft, Amir Goldental, and Ido Kanter. Efficient dendritic
learning as an alternative to synaptic plasticity hypothesis. Scientific Reports, 12(1):6571, 2022.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952.

Anthony Holtmaat, Tobias Bonhoeffer, David K Chow, Jyoti Chuckowree, Vincenzo De Paola,
Sonja B Hofer, Mark Hübener, Tara Keck, Graham Knott, Wei-Chung A Lee, et al. Long-
term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nature
protocols, 4(8):1128–1144, 2009.

Georgios Iatropoulos, Johanni Brea, and Wulfram Gerstner. Kernel memory networks: A unifying
framework for memory modeling. Advances in Neural Information Processing Systems, 35:
35326–35338, 2022.

Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE transactions on neural
networks, 15(5):1063–1070, 2004.

Monika P Jadi, Bardia F Behabadi, Alon Poleg-Polsky, Jackie Schiller, and Bartlett W Mel. An
augmented two-layer model captures nonlinear analog spatial integration effects in pyramidal
neuron dendrites. Proceedings of the IEEE, 102(5):782–798, 2014.

Herbert Jaeger. Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf and the" echo
state network" approach. ., 2002.

Renaud Jolivet, Felix Schürmann, Thomas K Berger, Richard Naud, Wulfram Gerstner, and Arnd
Roth. The quantitative single-neuron modeling competition. Biological cybernetics, 99(4):417–426,
2008.

Ilenna Simone Jones and Konrad Paul Kording. Might a single neuron solve interesting machine
learning problems through successive computations on its dendritic tree? Neural Computation, 33
(6):1554–1571, 2021.

Ilenna Simone Jones and Konrad Paul Kording. Do biological constraints impair dendritic computa-
tion? Neuroscience, 489:262–274, 2022.

Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, A James Hudspeth, Sarah
Mack, et al. Principles of neural science, volume 4. McGraw-hill New York, 2000.

12



Published as a conference paper at ICLR 2024

Sina Khajehabdollahi, Roxana Zeraati, Emmanouil Giannakakis, Tim Jakob Schäfer, Georg Martius,
and Anna Levina. Emergent mechanisms for long timescales depend on training curriculum and
affect performance in memory tasks. arXiv preprint arXiv:2309.12927, 2023.

Ryota Kobayashi, Yasuhiro Tsubo, and Shigeru Shinomoto. Made-to-order spiking neuron model
equipped with a multi-timescale adaptive threshold. Frontiers in computational neuroscience, pp.
9, 2009.

Christof Koch. Computation and the single neuron. Nature, 385(6613):207–210, 1997.

Christof Koch and Idan Segev. The role of single neurons in information processing. Nature
neuroscience, 3(11):1171–1177, 2000.

Peter König, Andreas K Engel, and Wolf Singer. Integrator or coincidence detector? the role of the
cortical neuron revisited. Trends in neurosciences, 19(4):130–137, 1996.

Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, and Manik Varma.
Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network. Advances
in neural information processing systems, 31, 2018.

Esther F. Kutter, Jan Bostroem, Christian E. Elger, Florian Mormann, and Andreas Nieder. Single
Neurons in the Human Brain Encode Numbers. Neuron, 100(3):753–761.e4, November 2018. ISSN
08966273. doi: 10.1016/j.neuron.2018.08.036. URL https://linkinghub.elsevier.
com/retrieve/pii/S0896627318307414.

Esther F. Kutter, Jan Boström, Christian E. Elger, Andreas Nieder, and Florian Mormann. Neuronal
codes for arithmetic rule processing in the human brain. Current Biology, 32(6):1275–1284.e4,
March 2022. ISSN 09609822. doi: 10.1016/j.cub.2022.01.054. URL https://linkinghub.
elsevier.com/retrieve/pii/S0960982222001166.

Mathieu Lafourcade, Marie-Sophie H van der Goes, Dimitra Vardalaki, Norma J Brown, Jakob Voigts,
Dae Hee Yun, Minyoung E Kim, Taeyun Ku, and Mark T Harnett. Differential dendritic integration
of long-range inputs in association cortex via subcellular changes in synaptic ampa-to-nmda
receptor ratio. Neuron, 2022.

Matthew Larkum. Are dendrites conceptually useful? Neuroscience, 2022.

Attila Losonczy, Judit K Makara, and Jeffrey C Magee. Compartmentalized dendritic plasticity and
input feature storage in neurons. Nature, 452(7186):436–441, 2008.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: Moving average equipped gated attention. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=qNLe3iq2El.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Shivangi Mahto, Vy Ai Vo, Javier S. Turek, and Alexander Huth. Multi-timescale representation
learning in {lstm} language models. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=9ITXiTrAoT.

Guy Major, Matthew E Larkum, and Jackie Schiller. Active properties of neocortical pyramidal
neuron dendrites. Annual review of neuroscience, 36:1–24, 2013.

Joseph Marino. Predictive coding, variational autoencoders, and biological connections. Neural
Computation, 34(1):1–44, 2021.

Toviah Moldwin and Idan Segev. Perceptron learning and classification in a modeled cortical
pyramidal cell. Frontiers in computational neuroscience, 14:33, 2020.

Michael C Mozer. Induction of multiscale temporal structure. Advances in neural information
processing systems, 4, 1991.

13

https://linkinghub.elsevier.com/retrieve/pii/S0896627318307414
https://linkinghub.elsevier.com/retrieve/pii/S0896627318307414
https://linkinghub.elsevier.com/retrieve/pii/S0960982222001166
https://linkinghub.elsevier.com/retrieve/pii/S0960982222001166
https://openreview.net/forum?id=qNLe3iq2El
https://openreview.net/forum?id=qNLe3iq2El
https://openreview.net/forum?id=9ITXiTrAoT


Published as a conference paper at ICLR 2024

Panayiota Poirazi and Athanasia Papoutsi. Illuminating dendritic function with computational models.
Nature Reviews Neuroscience, 21(6):303–321, 2020.

Panayiota Poirazi, Terrence Brannon, and Bartlett W Mel. Pyramidal neuron as two-layer neural
network. Neuron, 37(6):989–999, 2003.

R Angus Silver. Neuronal arithmetic. Nature Reviews Neuroscience, 11(7):474–489, 2010.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Greg J Stuart and Nelson Spruston. Dendritic integration: 60 years of progress. Nature neuroscience,
18(12):1713–1721, 2015.

Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? In International
Conference on Learning Representations, 2018.

Yuanhong Tang, Xingyu Zhang, Lingling An, Zhaofei Yu, and Jian K Liu. Diverse role of nmda
receptors for dendritic integration of neural dynamics. PLOS Computational Biology, 19(4):
e1011019, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=qVyeW-grC2k.

Alexandra Tzilivaki, George Kastellakis, and Panayiota Poirazi. Challenging the point neuron dogma:
Fs basket cells as 2-stage nonlinear integrators. Nature communications, 10(1):3664, 2019.

Balázs B Ujfalussy, Judit K Makara, Máté Lengyel, and Tiago Branco. Global and multiplexed
dendritic computations under in vivo-like conditions. Neuron, 100(3):579–592, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Qu Yang, Jibin Wu, and Haizhou Li. Rethinking benchmarks for neuromorphic learning algorithms.
In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

14

https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k


Published as a conference paper at ICLR 2024

Appendix

A IMPLEMENTATION DETAILS

All computations were performed using Python 3.9, and the following libraries were instrumental
in our implementation: jax 0.3.14 (coupled with jaxlib 0.3.10 as a GPU back-end) for auto-grad
and auto-vectorization; equinox 0.8.0, a jax-based neural network library; optax 0.1.3, a jax-based
optimizer library; and pytorch 1.12.1 for data-loading. The accompanying git repository for the
project can be found under: https://github.com/AaronSpieler/elmneuron.

Table S1: The ELM neuron parameters and recommendations.

Hyper-Parameter NeuronIO Recommendation

s0 0 /
ws 0.5 /
ws (bounds) > 0 >= 0
τs all 5ms ∝ time sparse data (tune)
m0 0 /
dm 20 up to 250 (primary TUNE)
τm (init technique) equally spaced evenly spaced on log scale
τm (init range) 1ms, 100ms 1ms, data length
τm (bounds) 0ms, 500ms same as init range
MLPwp (nonlineary) ReLU /
MLPwp

(bias) True /
MLPwp (init technique) Kaiming Uniform /
lmlp 1 /
dmlp 2 ∗ dm /
λ 10 5
wy (bias) True /
wy (init technique) Kaiming Uniform /
dtree 45 ∝ inp. 2-5x sampled (tune)
dbrch 100 ∝ space sparse data (tune)

For all experiments wy , wp and τm were learnable, with ws crucially also learnable for Branch-ELM.

Recommended default and tuning parameters: We primarily recommend ablating dm. In case
of small dm, exploring larger relative dmlp might yield improved performance. For ELM with many
small τm or larger λ we have observed spome trainig instability; seemingly resolved through modified
memory update (see below). The timescales τm should generally be derived from the dataset length
and the suspected timescales of the temporal dependencies within the data; if reasonably initialized,
learnability doesn’t seem to be necessary. Increasing τs may help to enhance learning speed in case of
temporally very sparse data. When using the Branch-ELM it is important to sufficiently over-sample
the input (more synapses than inputs) as we suspect significant expressivity stemming from ws doing
the selection. Additional recommendations are summarized in Table S1.

Timescale parametrization: The memory timescales τm are directly learnable model parameters.
They are constrained to an apriori-specified bound, which is enforced through a sigmoid rectification
(the lower bound being > 0). By defining κm = exp(−∆t/τm), the resulting values are ensured to be
within [0, 1] for all valid τm, irrespective of ∆t. In preliminary experiments we observed increased
training stability as opposed to directly learning κm.

Improved implementation: We found that enabling greater changes in ∆mt by introducing a
multiplicative factor λ improved training performance. Interestingly, the λ · (1− κm) term can then
be seen as effectively using a λ times faster input timescale than τm. This notion can be explicitly
implemented by substituting κλ = exp(−∆t/τλ) where τλ = τm/λ. The appoximation holds for
τm >> λ > 1, and only diverges for small τm, where it allows for less stark m changes than the
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original implementation. In preliminary experiments we found this modification to result in increased
training stability for ELM neuron with many small τm or larger λ (see Figure S4).

Stable memory dynamics: A necessary prerequisite for solving long-range credit assignment
problems in recurrent architectures is to address the vanishing and exploding gradient problem. In the
ELM neuron we achieve this by enforcing a stable dynamic of the memory units, which are primarily
responsible for carrying information forward through time. The combination of controlled (slow)
decay using κm (addressing the vanishing gradient problem) and controlled (bounded) growth using
the complementary 1− κm (addressing the exploding gradients problem), couples input to forget
timescales using λ in a principled way such that m will be bounded if ∆m is bounded (e.g. ensured
through tanh rectification), even if latter was generated using a highly nonlinear MLP (see Figure
S9d). Note that in principle, this construction could also be applied to layer wise processing in depth,
instead of in recurrent processing in time; however, we leave this experiment to future investigations.

The SNN implementation: The LIF neuron based SNN consisted of an output layer (No = "number
of classes") and a recurrent layer (Nr = 500−No), with 20% of neurons being inhibitory. The spiking
threshold was vthr = 1, and neurons were partially reset after firing using vt+∆t = vt − 0.9 · vthr.
The membrane timescale was initialized to 25ms, and directly learnable like in the ELM neuron.
Each of the 100 synaptic weights were initialized to ws = 0.3/sqrt(100), and were rectified using
ReLU . All neurons were randomly connected on a synapse-by-synapse basis with 90% probability
to the previous-layer, and 10% probability to the own-layer. The output neurons output was low-pass
filtered using constant 20ms, before being used by the cross-entropy function.

B DATASETS AND TRAINING DETAILS

General training setup: For each task and dataset, the training dataset was deterministically split
to create a consistent validation dataset, which was used for model selection during training and
hyperparameter tuning. All models were trained using Backpropagation Through Time (BPTT), and
used a cosine-decay learning-rate schedule across the entire training duration of the training run. All
experiments were run on a single A100-40GB or A100-80GB and ran less than 24h, Pathfinder-X
being the notable exception.

NeuronIO Dataset: For training and evaluation the dataset was pre-processed in accordance with
Beniaguev et al. (2021), by capping somatic membrane voltage at -55mV and subtracting a bias
of -67.7mV. Additionally, the somatic membrane voltage was scaled by 1/10 for training. Training
samples were 500ms long with a 1ms bin size and ∆t. The ELM neuron used the default parameters
from Table S1. Models were trained using the Adam optimizer with an initial learning rate of 5e−4

and a batch size of 8 for 30 epochs with 11,400 batches per epoch using Binary Cross Entropy
(BCE) for spike prediction and Mean Squared Error (MSE) for somatic voltage prediction, with
equal weighting. Loss was calculated after a 150ms burn-in period. The mean and standard deviation
over three runs is reported, with Root Means Squared Error (RMSE) and Area Under the Receiver
Operator Curve (AUC) for voltage and spike prediction, respectively. The model hyper-parameters
and training settings were chosen based on validation RMSE in preliminary ablations.

Spiking Heidelberg Digits (Adding) Datasets: The digits were preprocessed by cutting them to a
uniform length of one second and binning the spikes using various bin sizes, the default being 2ms.
The models were trained using the Adamax optimizer with an initial learning rate of 5e−3 and a batch
size of 8 for 70 epochs, with 814 or 2000 batches per epoch for SHD and SHD-Adding respectively,
with ∆t set to the bin size, and dropout probability set to 0.5. The ELM and Branch-ELM used
λ = 5, dm = 100 and τm initialized evenly spaced between 1ms and 150ms with bounds of 0ms
to 1000ms, whereas the LSTM used a hidden size of 250 and additional recurrent dropout of 0.3,
while the SNN used a learning rate of 2e−3 no dropout but a l1 regularization on the spikes of
0.01. The Branch-ELM over-sampled the input with dtree = 100, dbrch = 15 and used random
synapse to branch assignment. Models were trained using the Cross-Entropy (CE) loss on the last
float output of the respective model, and the performance was reported as prediction Accuracy, with
mean and standard deviation calculated over five runs (chance performance being 1/19). The model
hyper-parameters and training settings were chosen based on validation Accuracy in preliminary
ablations.
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Long Range Arena Benchmark: The images-based datasets were preprocessed by binning the
individual grey-scale values (256 total) into 16, or 8 for Pathfinder-X, different levels. For the text
based datasets a simple one-hot token encoding was used. For the Retrieval task with a two-tower
setup, the latent-dimension was 75 for both models. All models were trained using the Adam
optimizer, with the ELM neuron using an initial learning rate of 2e− 4, and the the LSTM models
working best with 1e− 3. All were trained using Cross-Entropy (CE) loss on the last output of the
model, and the performance is reported as prediction Accuracy. The mean over three runs is reported
for all experiments.

Table S2: The ELM neuron configuration

Dataset Input Dim Batch Size Epochs τs Timescales

Image 16 384 300 5 logspace: 1− 103

Pathfinder 16 384 300 5 logspace: 1− 103

Pathfinder-X 8 768 300 150 logspace: 1− 2 ∗ 104
ListOps 25 384 150 5 logspace: 1− 2 ∗ 103
Text 169 384 150 5 logspace: 1− 4 ∗ 103
Retrieval 105 384 150 5 logspace: 1− 4 ∗ 103

The ELM memory timescale bounds were matched to the initialization range. The ELM used a
synapse tau of 150ms on the Pathfinder-X dataset, which we observed to increase the learning
speed significantly, however, smaller synapse tau can also work (e.g. see Figure S8). Otherwise,
hyper-parameters were harmonized as much as possible, to demonstrate the robustness of the hyper-
parameter choice.

Table S3: The Chrono-LSTM configuration

Dataset Input Dim Batch Size Epochs Timescales

Image 16 384 300 uniform: 1− 2 ∗ 103
Pathfinder 16 384 300 uniform: 1− 2 ∗ 103
Pathfinder-X 8 768 300 uniform: 1− 2 ∗ 104
ListOps 25 384 150 uniform: 1− 4 ∗ 103
Text 169 384 150 uniform: 1− 8 ∗ 103
Retrieval 105 384 150 uniform: 1− 8 ∗ 103

The Chrono-LSTM hyper-parameter tuning primarily concerned the learning rates and hidden sizes,
however a learning rate of 1e−3 (among the tested) and a hidden size of 150 (max tested) consistently
performed best, the exception being Pathfinder-X, where during tuning a single run using a smaller
hidden size performed slightly above change.

C ADDITIONAL RESULTS

For comparison, we fit the classic computational neuroscience models to the same NeuronIO data.
Namely, we use the Leaky integrate-and-fire (LIF) neuron model (with learnable membrane timescale,
weights, and bias unit for linear integration), adaptive LIF (ALIF) that has additionally a single
timescale of spike-frequency adaptation. To have a fair comparison, we also fitted an ELM neuron
model with only a single memory unit (and timescale) with linear synaptic integration (thus no MLP,
additional parameters due to bias units, readout, and other implementation details). The LIF’s internal
membrane voltage was directly fit to the target voltage, and its output spike directly to the target
spikes, using otherwise same training methodology as described in Section B.
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Table S4: Evaluating Tiny Models on NeuronIO

Model Soma RMSE Spike AUC # parameters

(classic) LIF 2.29 0.9117 1280
(classic) ALIF 2.29 0.9115 1281
(simplest) ELM 1.60 0.9255 1286
(dm = 15) Branch-ELM 0.66 0.9915 5329

While all three models perform much worse than the reference performance threshold of 0.991AUC,
the ELM neuron performs slightly better, particularly for somatic prediction. This could result from
the ELM neuron, similar to the underlying biophysical model, not enforcing an explicit hard memory
reset when spiking. The noticeable lack of performance difference between LIF and ALIF might
be due to the fitted models consistently staying below the spiking threshold. Finally, the LIF and
ALIF model’s shortcoming in accurately capturing the I/O relationship highlights the need for a more
flexible phenomenological neuron model.

Figure S1: The ELM neuron is a computationally efficient model of cortical neuron. Similar
figure to 2c and 2d, however, displaying FLOPs required to do inference on a single sample. a) and
b) Voltage and spike prediction performance of the respective surrogate models. While previous
works required around 10M parameters to make accurate spike predictions using a TCN Beniaguev
et al. (2021), an LSTM baseline is able to do it with 266K, our ELM neuron model requires merely
53K, and our Branch-ELM neuron only a humble 8K, simultaneously achieving much better voltage
prediction performance than the TCN. A throughput optimized ELM neuron implementation can
potentially reduce the required FLOPs even further.

Figure S2: Branch-ELM neuron training is more stable with smaller λ. Evaluating a Branch-ELM
with same hyper-parameters as in Figure 2, except with λ = 5. The variability of test set performance
is reduced for most configurations, particularly for ones with a larger number of trainable parameters
(and memory units). Additionally, it allows for an improved max performance for the model type.
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Figure S3: The ELM neuron gives relevant neuroscientific insights. Ablations on NeuronIO of
different hyperparameters of an Branch-ELM neuron with AUC ≈ 0.992, with default hyperparame-
ters. The number of removed divergent runs marked with 1∗. a) We find above memory-like hidden
states to be required for accurate predictions, much more than typical phenomenological models
use Izhikevich (2004); Dayan & Abbott (2005). b) Highly nonlinear integration of synaptic input
is required, in line with recent neuroscientific findings Stuart & Spruston (2015); Jones & Kording
(2022); Larkum (2022). c) Allowing greater updates to the memory units is beneficial, however,
too large ones increase training instability. d-f) Ablations of memory timescale (initialization and
bounding) range or (constant) value, with the default range being 1ms-150ms. Timescales around
25ms-50ms seem to be the most useful (matching the typical membrane timescale in the cortex Dayan
& Abbott (2005)); however, a lack can be partially compensated by longer timescales, even better
than by the vanilla ELM. g) and h) Ablating the number of branches dtree and number of synapses
per branch dbrch.

Figure S4: Ablations with the improved ELM neuron implementation. Ablations on NeuronIO
that previously displayed training instabilities are now stable throughout and more consistent when
rerun with the updated implementation (see section A for details on the implementation). a) Rerun
of experiment in S3d. b) Rerun of experiment in 3e. c) Rerun of experiment in S3c. d) Rerun
of experiment in 2c. Furthermore, we reran experiment in 3b, and training was stable for linear
integration. Lastly, we reran experiment in 5e, however, did not observe significant improvements.
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Figure S5: The ELM neuron performs well on typical neuromorphic datasets. The following
results are on the original Spiking Heidelberg Digits dataset Cramer et al. (2020). a-c) The ELM and
Branch-ELM neuron reliably outperforms a classic LSTM, especially for smaller bin sizes (meaning
longer training samples), and LSTM-performance cannot be fully recovered even for larger bin sizes.
Our LIF neuron based Spiking Neural Network (SNN), however, does manage to achieve decent
performance for bin sizes around 20, in contrast to the SHD-Adding dataset (see Figure 5).

Figure S6: Ablating the ELM branch architecture on NeuronIO. Average test AUC displayed,
using otherwise same hyper-parameters and training setup as in experiments in Figure 2. Exploiting
the ordering in the synaptic input, and having learnable synapses is crucial for the Branch-ELM
neuron model. Applying a specific nonlinearity on branch output slightly degrades performance.
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Figure S7: Fitting simplified neuron models using
ELM. Accurately fitting the classic Leaky Integrate
and Fire (LIF) model is possible with only linear inte-
gration (lmlp = 0), and a single memory unit (dm = 1),
therefore matching the ground truth architecture. When
fitting both LIF and Adaptive-LIF with an ELM neu-
ron with two memory units, the LIF fit yields better
results; this is expected, as the ground truth ALIF ar-
chitecture has an additional hidden state; the adaptive
threshold. We suspect that as neither LIF nor ALIF
display chaotic dynamics, an overall higher AUC may
be achieved than for BioPhys; the AUC plateau may
display residual uncertainty inherent to the dataset.

Figure S8: Ablating the τs parameter on Pathfinder-X. Av-
erage and max test Accuracy displayed, using otherwise same
hyper-parameters and training setup as in experiments in Table
S2. While reliably achieving high performance requires larger
τs, smaller timescales can achieve even higher performance, al-
though less reliably and take longer to pick up the learning signal.
The intermediate drop in performance for 75ms and 100ms could
be an artifact due to nontrivial interactions between τs and the
cycle length (128) of the flattened image (128× 128) data.

Table S5: Ablation of ELM neuron dm on Pathfinder

dm 10 25 50 100 150 200 300

# params 822 3552 12k 44k 96k 168k 373k
ACC 57.83 62.95 66.31 69.31 71.54 72.98 71.85

In Table S5 we show the dependence of test accuracy on the ELM neuron model size, using otherwise
same training setup as before. Performance levels out around 72% accuracy at dm = 150 (default),
and decreases to 57% accuracy at dm = 10. An S5 model (see Table S6 with likewise a single layer
(and 186K parameters) is outperformed with an ELM neuron with dm = 25 memory units (and
3.5K parameters).

Table S6: Ablation of S5 model layers on Pathfinder

# layers 1 2 4 6

# params 186k 371k 742k 1.1M
ACC 58.19 78.69 91.63 95.33

In Table S6 provide an ablation of the S5 model Smith et al. (2023), a close to state of the art model on
the Long Range Arena, as reference of how such models perform with varying number of parameters
and layers. The reported training hyper-parameters were used, with the learning rate individually
ablated per model size. The mean accuracy over three runs is reported. Note, the steep drop-off in
performance between two layers and one.
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Table S7: Ablation of ELM neuron dropout probability on Pathfinder

dropout 0 0.1 0.2 0.3 0.4 0.5

Train ACC 0.8525 0.9092 0.9244 0.9149 0.8987 0.8763
Test ACC 0.7275 0.7631 0.811 0.823 0.815 0.8063

In Table S7 provide an ablation of the ELM neuron training with varying dropout probability and
longer training (1000 Epochs), but otherwise same hyper-parameters as before (dm = 150). Notice,
how using a dropout of 0.3 outperforms even two layered S5 at less than a third of its size. Given the
significant gap between train and test accuracy, we expect that further improvements to the training
setup by using weight decay, layer normalization, etc. (as routinely used in the training of SOTA
models on LRA) might improve convergence speed and generalization.

D ADDITIONAL VISUALIZATIONS

Figure S9: Visualization of ELM neuron dynamics. Extended visualization of Figure 2b for an
ELM neuron achieving around 0.992 AUC. a) The synaptic input as the neuron model receives it, with
excitatory input (+1) marked in red, and inhibitory input (−1) marked in blue. b) The ELM neurons
predictions and the ground-truth targets for a regular sample from the data. Interestingly, the whole
two seconds were inferred in one go (similar to Figure 4b), which shows its generalization capabilities
beyond the training horizon of 500ms. c) A random subset of 20 synapses are visualized. Synapses
receiving negative input will be deflected downwards. d) All 20 memory values are visualized. Some
fluctuate more rapidly than others, typically proportional to their memory timescales.

22



Published as a conference paper at ICLR 2024

E RESULTS IN TABLE FORMAT

Table S8: The Branch-ELM on NeuronIO

Trainable
Parameters FLOPs Voltage Prediction

RMSE
Spike Prediction

AUC
Memory Units

10 5.9K 16.04M 0.695 ± 0.004 0.989 ± 0.0001
15 6.9K 17.06M 0.652 ± 0.0 0.9913 ± 0.0007
20 8.1K 18.27M 0.638 ± 0.003 0.9924 ± 0.0002
25 9.5K 19.69M 0.639 ± 0.013 0.9922 ± 0.0006
30 11.1K 21.3M 0.628 ± 0.002 0.9927 ± 0.0001
40 14.9K 25.13M 0.633 ± 0.014 0.9925 ± 0.0005
50 19.5K 29.76M 0.629 ± 0.012 0.9925 ± 0.0009

Table S9: The ELM on NeuronIO

Trainable
Parameters FLOPs Voltage Prediction

RMSE
Spike Prediction

AUC
Memory Units

10 26.06K 28.49M 0.709 ± 0.001 0.9878 ± 0.0004
15 39.39K 41.84M 0.662 ± 0.003 0.99 ± 0.0013
20 52.92K 55.38M 0.643 ± 0.004 0.9918 ± 0.0002
25 66.65K 69.13M 0.648 ± 0.008 0.9918 ± 0.0002
35 94.71K 97.22M 0.631 ± 0.001 0.9922 ± 0.0001
50 138.3K 140.85M 0.629 ± 0.002 0.9925 ± 0.0002
75 214.95K 217.58M 0.622 ± 0.004 0.9927 ± 0.0001
100 296.6K 299.3M 0.623 ± 0.006 0.9927 ± 0.0001

Table S10: The LSTM on NeuronIO

Trainable
Parameters FLOPs Voltage Prediction

RMSE
Spike Prediction

AUC
Hidden Size

15 77.67K 77.77M 0.717 ± 0.021 0.9864 ± 0.0008
25 130.45K 130.61M 0.673 ± 0.003 0.9898 ± 0.0002
50 265.9K 266.23M 0.641 ± 0.004 0.9913 ± 0.0002
100 551.8K 552.45M 0.624 ± 0.002 0.9923 ± 0.0002
150 857.7K 858.68M 0.623 ± 0.005 0.9925 ± 0.0001
250 1529.5K 1531.13M 0.626 ± 0.005 0.9925 ± 0.0004
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Table S11: SHD Results

Train Accuracy Valid Accuracy Test Accuracy
Model Bin Size

B-ELM

1 0.99 ± 0.01 0.96 ± 0.01 0.86 ± 0.02
2 0.99 ± 0.01 0.96 ± 0.02 0.86 ± 0.01
4 0.99 ± 0.01 0.96 ± 0.01 0.86 ± 0.02
6 1.0 ± 0.0 0.96 ± 0.0 0.86 ± 0.01
8 1.0 ± 0.0 0.96 ± 0.0 0.85 ± 0.01
10 1.0 ± 0.0 0.96 ± 0.0 0.86 ± 0.01
20 0.99 ± 0.0 0.96 ± 0.01 0.85 ± 0.01
50 0.99 ± 0.0 0.93 ± 0.0 0.79 ± 0.01
100 0.97 ± 0.0 0.9 ± 0.01 0.72 ± 0.01

ELM

1 1.0 ± 0.0 0.98 ± 0.0 0.9 ± 0.0
2 1.0 ± 0.0 0.98 ± 0.0 0.91 ± 0.01
4 1.0 ± 0.0 0.98 ± 0.0 0.9 ± 0.01
6 1.0 ± 0.0 0.98 ± 0.0 0.9 ± 0.02
8 1.0 ± 0.0 0.98 ± 0.0 0.89 ± 0.01
10 1.0 ± 0.0 0.98 ± 0.0 0.89 ± 0.0
20 1.0 ± 0.0 0.97 ± 0.0 0.88 ± 0.01
50 0.99 ± 0.01 0.95 ± 0.01 0.84 ± 0.01
100 1.0 ± 0.0 0.93 ± 0.01 0.77 ± 0.01

LSTM

1 0.26 ± 0.41 0.24 ± 0.4 0.21 ± 0.35
2 0.29 ± 0.34 0.27 ± 0.33 0.21 ± 0.3
4 0.94 ± 0.07 0.91 ± 0.07 0.78 ± 0.09
6 0.99 ± 0.0 0.96 ± 0.01 0.83 ± 0.02
8 1.0 ± 0.0 0.96 ± 0.0 0.86 ± 0.03
10 1.0 ± 0.0 0.97 ± 0.0 0.87 ± 0.01
20 1.0 ± 0.0 0.96 ± 0.0 0.82 ± 0.01
50 1.0 ± 0.0 0.94 ± 0.01 0.81 ± 0.0
100 0.99 ± 0.0 0.91 ± 0.01 0.74 ± 0.0

SNN

1 0.05 ± 0.0 0.05 ± 0.0 0.05 ± 0.0
2 0.07 ± 0.02 0.07 ± 0.02 0.07 ± 0.02
4 0.16 ± 0.04 0.16 ± 0.05 0.16 ± 0.05
6 0.36 ± 0.04 0.35 ± 0.05 0.35 ± 0.05
8 0.46 ± 0.04 0.45 ± 0.04 0.45 ± 0.04
10 0.51 ± 0.07 0.49 ± 0.07 0.5 ± 0.06
20 0.61 ± 0.04 0.59 ± 0.05 0.58 ± 0.04
50 0.49 ± 0.02 0.47 ± 0.02 0.47 ± 0.02
100 0.41 ± 0.03 0.39 ± 0.02 0.39 ± 0.03
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Table S12: SHD-Adding Results

Train Accuracy Valid Accuracy Test Accuracy
Model Bin Size

B-ELM

1 0.99 ± 0.0 0.95 ± 0.01 0.83 ± 0.02
2 0.99 ± 0.0 0.95 ± 0.0 0.81 ± 0.02
4 0.95 ± 0.06 0.91 ± 0.05 0.79 ± 0.04
6 0.99 ± 0.0 0.94 ± 0.0 0.8 ± 0.03
8 0.89 ± 0.14 0.85 ± 0.14 0.75 ± 0.1
10 0.85 ± 0.21 0.81 ± 0.2 0.7 ± 0.16
20 0.72 ± 0.25 0.68 ± 0.24 0.59 ± 0.19
50 0.93 ± 0.01 0.86 ± 0.01 0.72 ± 0.0
100 0.83 ± 0.03 0.76 ± 0.02 0.59 ± 0.03

ELM

1 1.0 ± 0.0 0.96 ± 0.01 0.82 ± 0.01
2 1.0 ± 0.0 0.96 ± 0.0 0.82 ± 0.01
4 0.98 ± 0.03 0.93 ± 0.03 0.81 ± 0.03
6 0.95 ± 0.05 0.89 ± 0.05 0.76 ± 0.07
8 0.94 ± 0.09 0.88 ± 0.09 0.76 ± 0.08
10 0.98 ± 0.04 0.93 ± 0.04 0.8 ± 0.03
20 0.99 ± 0.0 0.94 ± 0.01 0.79 ± 0.02
50 0.99 ± 0.0 0.92 ± 0.01 0.75 ± 0.01
100 0.98 ± 0.0 0.86 ± 0.01 0.66 ± 0.02

LSTM

1 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.01
2 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
4 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
6 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
8 0.11 ± 0.02 0.11 ± 0.02 0.1 ± 0.01
10 0.21 ± 0.08 0.19 ± 0.07 0.15 ± 0.05
20 0.83 ± 0.37 0.75 ± 0.33 0.6 ± 0.26
50 0.99 ± 0.0 0.87 ± 0.01 0.67 ± 0.02
100 0.98 ± 0.0 0.75 ± 0.01 0.55 ± 0.01

SNN

10 0.09 ± 0.01 0.09 ± 0.01 0.08 ± 0.01
20 0.08 ± 0.01 0.08 ± 0.01 0.08 ± 0.01
50 0.1 ± 0.01 0.1 ± 0.01 0.1 ± 0.0
100 0.09 ± 0.0 0.09 ± 0.0 0.09 ± 0.0
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