
Published at the MLDD workshop, ICLR 2022

Prediction of Molecular Field Points using
SE(3)-Transformer Model

Florian B. Hinz
Department of Pharmaceutical Sciences
University of Basel
Klingelbergstrasse 50
4056 Basel
Switzerland
florian.hinz@unibas.ch

Amr H. Mahmoud
Department of Pharmaceutical Sciences
University of Basel
Klingelbergstrasse 50
4056 Basel
Switzerland
amr.abdallah@unibas.ch

Markus A. Lill
Department of Pharmaceutical Sciences
University of Basel
Klingelbergstrasse 50
4056 Basel
Switzerland
markus.lill@unibas.ch

Abstract

Due to their computational efficiency, 2D fingerprints are typically used
in similarity-based high-content screening. The interaction of a ligand
with its target protein, however, relies on its physicochemical interactions
in 3D space. Thus, ligands with different 2D scaffolds can bind to the
same protein if these ligands share similar interaction patterns. Molecular
fields can represent those interaction profiles. For efficiency, the extrema of
those molecular fields, named field points, are used to quantify the ligand
similarity in 3D. The calculation of field points involves the evaluation of the
interaction energy between the ligand and a small probe shifted on a fine grid
representing the molecular surface. These calculations are computationally
prohibitive for large datasets of ligands, making field point representations
of molecules intractable for high-content screening. Here, we overcome this
roadblock by one-shot prediction of field points using generative neural
networks based on the molecular structure alone. Field points are predicted
by training an SE(3)-Transformer, an equivariant, attention-based graph
neural network architecture, on a large set of ligands with field point data.
Initial data demonstrates the feasibility of this approach to precisely generate
negative, positive and hydrophobic field points within 1 Å of the ground
truth for a diverse set of drug-like molecules.

1 Introduction

Similarity based virtual screening often relies on 2d or 3d molecular structures. The interaction
between ligand and a target protein, however, depends on the strength of physicochemical
interactions between the two entities. Those interactions are best modeled by molecular
interaction fields of a ligand with molecular probes characterizing the interacting protein.
Consequently, ligands with different molecular structure but similar molecular interaction
fields can bind at the same binding site. In Cheeseright et al. (2006) it was suggested that the
molecular interaction fields are sufficiently well represented by their extrema points (see Fig.
1), named field points. In the same publication, a methodology for constructing molecular
field points for electrostatic, van der Waals and hydrophobic interaction fields was described.
The successful identification of alternative lead compounds with different molecular topology
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but similar binding properties based on field points was illustrated for a range of different
ligands and targets (e.g. in Low and Vinter (2008),Cheeseright et al. (2008), Cheeseright
et al. (2009)). In this paper, we train an equivariant, attention based, graph neural network

Figure 1: Molecule with associated field points (red: electrostatic positive, aquamarine:
electrostatic negative, orange: hydrophobic, yellow: van der Waals). A larger sphere indicates
a higher absolute value of the molecular force field at this position.

for field point prediction. Equivariance is a mathematical property determining the effect of
a transformation on a function’s input to its output (see Definition 1). In the context of deep
learning, equivariance properties allow for data efficiency by reflecting problem symmetries.
Thus, incorporating equivariance into a model seems to be specifically promising in the
area of computational biology and cheminformatics, as data is scarce and the bio-chemical
processes occur irrespectively of rotational and translational coordinate transforms.
Convolutional neural networks were first applied in Lecun et al. (1998) and have since then
proved to be impressively successful for a range of applications, such as the analysis of
image, video and audio data. CNNs owe this effectiveness to weight sharing, constructed in
a way that results in translation equivariance (see e.g. section 1.1 in Gerken et al. (2021)
for a formal context). Loosely speaking, this equivariance property ensures that applying
a convolutional layer to a translated image is equivalent to translating the result of the
application of the convolutional layer to the original image. This translation equivariance
property was shown to be useful in a range of applications, most prominently in image
classification tasks (see e.g. Krizhevsky et al. (2012) for an early example).
Inspired by the success of CNNs, extensive research effort was devoted to the construction
of neural networks satisfying equivariance properties in a more general, group theoretically
formalized context (see e.g. Cohen and Welling (2016) for pioneering work). These archi-
tectures reduce the number of parameters while maintaining expressivity, by incorporating
existing problem-inherent symmetries into the model. The resulting reduction of model
complexity leads to increased training efficiency, specifically in higher dimensions. Further
advantages of equivariance properties are a more understandable, interpretable and robust
response of the network to transformations of the input data.
In the context of cheminformatics we are concerned with problem symmetries in the three-
dimensional space: A molecule is still of the same type, no matter how it is shifted or rotated
in the Euclidean space. The strength and dynamics of protein-ligand interactions do not
depend on the point of observation. If we rotate our point of view onto the same molecule,
our prediction of the molecular interaction fields should be rotated accordingly. Naturally,
it seems to be a promising approach to introduce an inductive bias into a neural network
that mathematically guarantees such properties. More specifically, we are interested in
network architectures that are equivariant w.r.t. the group of rotations and translations in
three dimensions, i.e. SE(3). One model architecture satisfying this property is the SE(3)-
Transformer (introduced in Fuchs et al. (2020)). The SE(3)-Transformer is an attention
based, graph neural network with tensorfield type building blocks (see Thomas et al. (2018)).
We build on the model suggested in Fuchs et al. (2020) and its efficient implementation by
NVIDIA (NVIDIA, 2022), and applied it to a large database consisting of small molecules
and their field points.
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In section 2 we provide details on the dataset and the construction of descriptors. In section 3
we describe the model architecture and introduce the loss function used for learning. For the
purpose of quantifying the quality of the predictions of our model, we introduce evaluation
functions in chapter 4 and discuss the results.

2 Dataset Preparation

The original data set consists of ∼ 24 million small molecules of sizes ranging from 6 to 100
atoms. For each molecule the data set contains up to 5 different conformations. The data is
artificially generated by third-party software in accordance with the elaborations presented in
Cheeseright et al. (2006). We first construct a diverse subset based on the Tanimoto distance
of Morgan fingerprints (Morgan, 1965) using a greedy algorithm, resulting in a data set of
85000 molecules. Each data sample consists of a molecule and the associated field points
(see Table 2, Table 3 and Figure 5 for an example). After constructing additional descriptors,
each molecule per data sample is composed of the following information: Graph topology
(coordinates and edges), node degree, atom type (defined by element and hybridization state),
partial charge, atom size, and Wildman-Crippen logP.
Molecules are represented by graphs where information between neighboring nodes is ex-
changed along edges using the SE(3)-Trasnformer. Two different graph topologies have been
tested. In one approach, the graph topology is defined by the covalent bonds. In the second
approach, the graph topology is based on Euclidean distances, i.e. two nodes (e.g. atoms)
are connected via an undirected edge, if their distance is less than 7 Å.
The atom type is one-hot encoded as a vector of dimension 24. The node degree is kept as
natural number scalar. For the partial charge, atom size, and Wildman-Crippen logP value
we apply a radial basis function expansion. In detail, let x ∈ R be a feature taking values in
the range [xmin, xmax] and c1, . . . , cm ∈ R with

xmin = c1 < c2 < · · · < cm = xmax

be m ∈ N equidistant support points in the range of values of the corresponding feature.
Define

σ :=
√
|c1 − c2| > 0.

Then the scalar feature x ∈ [xmin, xmax] is expanded to an m dimensional vector as follows:

r(x) =
(
e−

1
σ2 (x−c1)2

, e−
1
σ2 (x−c2)2

, . . . , e−
1
σ2 (x−cm)2

)
.

For the partial charge we choose m = 15, xmin = −1.14, xmax = 1.70, for the atom size
m = 10, xmin = 1.20, xmax = 2.10 and for the Wildman-Crippen logP value m = 20, xmin =
−1.95, xmax = 0.886.
In total, the features (”node degree”, ”atom type”, ”partial charge”, ”atom size”, ”Crippen
logP value”) add up to a vector of dimension 70 = 1 + 24 + 15 + 10 + 20. That means each
node in the graph is associated to a feature vector finput ∈ R70 that will serve as input to
the model described in the next section.

3 Model and Loss function

In the following we are using the same terminology of rotation order and fiber structure
as in Fuchs et al. (2020) (see Terminology 1 in the Appendix). Our model is built on the
NVIDIA implementation (NVIDIA, 2022) of the SE(3)-Transformer as described in Fuchs
et al. (2020). In detail, we are using a neural network consisting of 7 ”SE3 Attention Blocks”
of the following form (see Figure 2 and Terminology 2, 3, 4):

• ConvSE3 (Tensor field network convolution transforming an arbitrary input fiber to
an arbitrary output fiber. In this case used for computing attention key fiber and
value fiber with specified number of degrees and channels)
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• LinearSE3 (self-interaction of channels within degrees for computing the query fiber)
• AttentionSE3 (attention calculation over all neighboring atoms)
• LinearSE3 (self-interaction of channels within degrees to obtain output fiber)

We apply layer normalization in each ”ConvSE3” component. In total, the network contains
about 3.97 million learnable parameters. In the hidden layers we allow rotation orders
0, 1, 2 with 32 channels each, corresponding to the fiber structure [’0’: 32; ’1’: 32; ’2’: 32].
Recall that scalars are represented by rotation order 0, vectors by 1, and rotation order 2
corresponds to a higher order geometric object of dimension 5. Hence, per node (e.g. atom)
of the graph, the attention block calculates a vector of dimension 32 · (1 + 3 + 5) = 288.
Subsequent to the 7 attention blocks, we apply a final ”ConvSE3” layer in order to transform
to the output fiber structure [’0’: 3 ; ’1’: 3] (network architecture is illustrated in Figure
2). Thus, the model predicts 3 scalars and vectors per node (e.g. atom) of the graph (see
first image of Figure 3). These vectors represent the positions of field points relative to the
coordinates of the corresponding atom. The associated scalar per vector corresponds to
a weighting of this specific prediction. In order to train these predictions, a suitable loss
function was developed. Note that we consider the field point prediction tasks as separate
problems for each type of field point (positive, negative, hydrophobic, van der Waals). Thus,
a separate model was trained for each type of field point.

Attention

Block A  

ConvSE3

Layer C

6 x
Attention

Block B

Figure 2: Model Architecture: For all nodes 1 to n, the input feature vector of dimension 70
is transformed via an ”Attention Block A” (see Terminology 2) to 32 scalars, 3-dimensional
vectors and 5-dimensional vectors each. Hence, the dimension of the hidden feature vector
sums up to 288 = 32 · (1 + 3 + 5). Further six layers of ”Attention Block B” (see Terminology
3) transform to the same dimension. Finally the ”ConvSE3 Layer C” (see Terminology 4)
transforms to the output feature vector of dimension 12 (three scalars and three 3-dimensional
vectors each).

ClusteringTraining

Figure 3: First Image: Per atom the model predicts three tupels (w, v) of weights and
vectors. The size of the red dots indicates the value of the weights. The weights together
with the endpoints of these vectors determine a Gaussian Mixture Model. Second Image:
Using the symmetrized Kullback Leibler divergence as loss function, the model learns to
form prediction point clouds around the true field points (only one vector per atom shown).
Third Image: Finally, we apply a clustering algorithm to obtain a localized prediction.

Consider a molecule consisting of n ∈ N nodes. For node i ∈ {1, . . . , n}, denote by
wi,1, wi,2, wi,3 ∈ R the predicted scalars (used to determine the probability weights in
the following) and by vi,1, vi,2, vi,3 ∈ R3 the predicted vectors (used to point to the field
points relative to the atom position in the following), respectively. By applying a softmax
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function, the scalars (wi,j)(i,j)∈{1,···,n}×{1,2,3} determine a probability distribution as follows:
For i ∈ {1, · · · , n}, j ∈ {1, 2, 3}, define

qi,j := exp(wi,j)∑
(k,l)∈{1,···,n}×{1,2,3}

exp(wk,l)
∈ [0, 1].

Denote by ai = (ai,1, ai,2, ai,3) ∈ R3, i ∈ {1, · · · , n} the coordinate position of the i’th node
(i.e. atom). For the purpose of training, we interpret the predicted probabilities and vectors
as determining weights and centers of a Gaussian Mixture Model as follows:

q(x) :=
∑

(i,j)∈{1,···,n}×{1,2,3}

qi,j · φai+vi,j ,0.2(x), (1)

where we denote by

φµ,σ(x) = 1√
(2π)3σ3

exp
(
− 1

2σ2 ||x− µ||
2
2

)
the isotropic Gaussian density function in 3 dimensions with mean µ ∈ R3 and standard
deviation σ ∈ R+. For a molecule withm ∈ N field points of a certain type (e.g. hydrophobic),
let

(fxj , fvj ) ∈ R3 × R, j ∈ {1, · · · ,m}

denote the coordinate position and field value of the j′th field point. We define probabilities
pj ∈ [0, 1] , j ∈ {1, . . . ,m} in proportion to the field values:

∀j ∈ {1, . . . ,m} : pj :=
|fvj |∑m
i=1|fvi |

∈ [0, 1]. (2)

Analogously to (1), the probability weights (pj)mj=1 and true field point locations (fxj )mj=1
determine a Gaussian Mixture Model as

p(x) :=
m∑
j=1

pj · φfx
j
,0.2(x). (3)

Note that weighting by field values as in (2) takes into account that larger field values are
more relevant in determining the binding properties of the molecule and thus more important
to predict correctly.
By construction of q and p (see (1), (3)) we can expect that density q being approximately
similar to p will result in reasonable field point predictions. A natural choice as a measure of
divergence between two densities is the symmetrized Kullback-Leibler divergence:

L1(p, q) = KL(p| q) +KL(q| p)

=
∫
R3
p(x) · log

(
p(x)
q(x)

)
dx+

∫
R3
q(x) · log

(
q(x)
p(x)

)
dx (4)

Let us denote by q := ((qi,j , vi,j))(i,j)∈{1,···,n}×{1,2,3} and p :=
(
(pj , fxj )

)m
j=1 the probabilities

and vectors determining the densities q and p respectively (compare (1) and (3)). Since
calculating the quantity (4) is analytically intractable and computationally (e.g. via Monte
Carlo simulations) demanding, we replace it by the following loss:

L2(p, q) =
m∑
j=1

pj log
(

pj
q(fxj )

)
+

∑
i∈{1,···,n}
j∈{1,2,3}

qi,j log
(

qi,j
p(ai + vi,j)

)
(5)
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Note that intuitively, the equation (5) can be thought of as taking the discrete probability at
support points fx1 , .., fxm and ai + vi,j , (i, j) ∈ {1, · · · , n} × {1, 2, 3} respectively, as the first
argument of the KL divergence in both terms of (4).
Each field point across different molecules should be equally important (proportionate by
field value) to be predicted correctly. Hence, we need to scale the loss L2 by the sum of field
values to obtain:

L3(p, q) =

 m∑
j=1

fvj

 · L2(p, q).

During training we observed that a small penalization on the length of prediction vectors is
essential for the preservation of locality and training convergence. Moreover, a penalization of
large probability weights in the form of a quadratic sum of probability weights was beneficial
to cause the model to predict clouds of predictions instead of few high probability vectors,
leading to more robustness and better performance. Including both penalization terms, we
define the final loss function as

L4(p, q) =

 m∑
j=1

fvj

 ·
L2(p, q) + α ·

∑
i∈{1,···,n}
j∈{1,2,3}

qi,j · ||vi,j ||2+β ·
∑

i∈{1,···,n}
j∈{1,2,3}

q2
i,j

 , (6)

where α = 1
10 and β = 10.

The model described so far, results in predictions forming point clouds around the target field
point (see second image of Fig. 3). In order to obtain more localized and precise predictions,
we apply a clustering algorithm. We choose an agglomerative clustering as implemented in
Pedregosa et al. (2011) with a linkage distance threshold of 1 Å to obtain the final field point
predictions (third image of Fig. 3). The probability weights of all predictions contained in
a cluster are summed up and a prediction is made at the weighted average position, if the
sum exceeds a certain threshold c ∈ [0, 1]. More specifically, for k,M, k1, . . . , kM ∈ N, let
Ck be the k’th cluster found by the clustering algorithm, consisting of the probabilities and
coordinates (qk1 , uk1), . . . , (qkM , ukM ) ∈ R× R3:

Ck = {(qk1 , uk1), . . . , (qkM , ukM )} .

Then the k’th field point prediction suggested by the model is:

(qCk , uCk) =

 M∑
j=1

qkj ,
1∑M

l=1 qkl

M∑
j=1

qkjukj

 .

We decide to make a prediction at the point uCk if the associated cluster probability qCk
exceeds the threshold c ∈ [0, 1], meaning

qCk > c. (7)
Assuming that l ∈ N clusters were predicted, we denote by

uC := (uC1 , · · · , uCl) (8)
the tuple of predicted cluster locations.

4 Results

The data set is split randomly into training set (80%) and test set (20%) on molecule basis
(all conformations of one molecule will be in the same set). We train on a GPU of 24 GB
memory (GeForce RTX 3090) with a batch size of 50 (accumulated batch size is 25000) for
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about 5 days. In order to quantify the quality of our field point predictions, let us introduce
the true positive rate and the weighted true positive rate (e.g. weighted sensitivity) as
evaluation functions: For r > 0 and uC as in (8), define

LrTPR(p, uC) := 1
m

m∑
j=1

(
1−

l∏
i=1

1]r,∞[(||fxj − uCi ||2)
)

(9)

LrWTPR(p, uC) :=
m∑
j=1

pj

(
1−

l∏
i=1

1]r,∞[(||fxj − uCi ||2)
)

(10)

To put the quantity (10) into context, we also calculate the positive predictive value (preci-
sion):

LrPPV (p, uC) := 1
l

l∑
i=1

1−
m∏
j=1

1]r,∞[(||fxj − uCi ||2)

 .

Note that LrTPR(p, uC) (equation (9)) corresponds to the proportion of ground truth field
points that were predicted by the model (in the sense that at least one prediction is within
the distance r > 0). The quantity LrWTPR(p, uC) (equation (10)) is defined similarly, however
weights the correct prediction of each ground truth field point in proportion to its field
value. The measure LrWTPR(p, uC) might be more relevant, as it is indeed more important
to predict field points of high value correctly. The precision LrPPV (p, uC) corresponds to the
proportion of predictions that are closer than distance r > 0 to a ground truth field point.
In the following analysis, we chose the cluster probability threshold c = 0.005 for predicting
a field point at a cluster center (compare (7)) for all field point types. Results for ranging
cutoff values can be found in Figure 6.
The results for each field point type and maximal distance r from ground truth position are
shown for the test set in Table 1 and for the training set in Table 4. Note that larger values
for L̂rWTPR, L̂

r
TPR and L̂rPPV are considered as higher prediction quality, with 1 being the

optimum. Per construction, all three evaluation quantities are monotonically increasing with
r. We observe that there is little difference in model performance between training and test
set for r ≥ 1. Slight overfitting can be noticed for r = 0.5. For all field points we achieve
a precision of at least 80% for r = 1, meaning that only few predictions are far off from a
ground truth field point.
The model performs slightly better for positive electrostatic field points than for negative
electrostatic field points, specifically for r = 0.5 and r = 1 in terms of precision. However,
with a weighted true positive rate of 0.865 (negative field point) and 0.858 (positive field
point) at r = 1 on the test set, the model seems to capture the majority of high value field
points for both field point types.
Figure 4 shows three examples for (a) negative and (b) positive field points highlighting
the overall excellent performance of the model to reproduce the ground truth points. Not
surprisingly, field points that are predominantly caused by single nearby polar atoms with
highly negative or positive partial charge are precisely reproduced (e.g. field points n1, n9,
n11, p3, p15, p16, etc.). However, the model also learns field points that originate from the
electrostatic potential from multiple, sometimes topologically distant, polar atoms (e.g. n2,
n4-6, p1, p2, p8, p20, etc.). Negative and positive field points originate not only from atoms
that can undergo hydrogen bonding such as oxygen and nitrogen, but also halogen atoms
(n3) or electropositive hydrogen atoms (e.g. p18-21). This demonstrates that the network
model not only learns trivial projections from isolated atoms but the topological and spatial
context of the molecules. The latter is modeled in our network by defining graph edges with
a maximum Euclidean distance of 7 Å. Whereas the dominant field points (e.g. n2, n4-7,
n9) are all well-reproduced, sometimes weak field points are not predicted (e.g. n8, n10) or
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Results on test set
Negative field points Positive field points

r = 0.5 1 1.5 2 0.5 1 1.5 2
L̂rWTPR 0.786 0.865 0.884 0.896 0.803 0.858 0.872 0.883
L̂rTPR 0.706 0.786 0.805 0.818 0.738 0.793 0.807 0.819
L̂rPPV 0.642 0.806 0.864 0.898 0.735 0.836 0.876 0.898

Hydrophobic field points van der Waals field points
r = 0.5 1 1.5 2 0.5 1 1.5 2
L̂rWTPR 0.953 0.970 0.982 0.990 0.574 0.637 0.667 0.701
L̂rTPR 0.940 0.959 0.972 0.983 0.530 0.585 0.612 0.644
L̂rPPV 0.862 0.940 0.968 0.985 0.768 0.893 0.939 0.964

Table 1: Field point prediction results on test set.

their position is shifted (e.g. p1-2). In the case of n10, the inherent flexibility of the nearby
hydroxyl group strongly influences the position of this field point. Thus, field points related
to such flexible hydroxyl groups (and similar functional groups) will have variable positions
dependent on the generated rotation state of the functional group. This variability within
the training set, makes it for the model very difficult to learn coherent rules of field point
generation.
The best performance of the model was achieved for hydrophobic field points (Figure 4
c). For r = 1 on the test set, the precision (L̂rPPV = 0.940) as well as the sensitivity
(L̂rWTPR = 0.970, L̂rTPR = 0.959) indicate that almost all ground truth field points were
predicted by the model, with very few far-off predictions. Many hydrophobic field points are
located on hydrophobic atoms (e.g. h1, h9) or in aromatic rings (e.g. h2, h3, h5-7, etc.).
Interestingly, the model is able to differentiate between homocyclic rings (e.g. h2, h3), where
the field point is co-localized with the center of mass of the ring, and heterocyclic rings
(e.g. h5-7), where the field point is shifted due to the presence of polar atoms within the
ring structure. The right-most molecule in Figure 4 c, shows the challenging case of a long
aliphatic chain. Most field points were well reproduced but some spatially nearby field points
(e.g. h15-18) were compressed into single field points. This behavior is due to the applied
clustering algorithm.
For the van der Waals field points, the model achieves a high precision of 0.893 at a distance
of r = 1. However, compared to the other field point types the model predicts relatively few
ground truth field points (L̂rWTPR = 0.637). In Figure 4 d it can be observed that several
ground truth field points were not predicted at all, though most existing predictions are
accurate. Presumably, the prediction task is more difficult than for other field point types,
since the attractive component of the van der Waals fields is weak and more homogenously
distributed over the molecular surface. This results in a large number of field points
representing shallow energy minima which are less well defined compared to the other field
points.
To study the dependency of prediction performance on graph topology, the same network
architecture was trained using a graph with edges defined by the covalent bonds. Table 5 and
Figure 7 show the inferior performance of this model. The main factor for this performance
drop is the lack of information flow between spatially close but topologically distant atoms.
For example, field point 1 (in Figure 7, right) is the result of the negative partial charges of
the carbonyl atom and the single aromatic ring. Thus, the graph defined by covalent bonds
only is unable to capture this information as those functional groups have a relatively large
topological distance, i.e. there is a lack of information flow in the SE(3)-Transformer model.
The model instead predicts field point c1 based on the carbonyl atom and c2 based on the
aromatic ring, both ignoring the correlative effect of those functional groups. The same
can be observed for field point 3 which is based on the fields from the aromatic ring and
secondary amine. The model predicts additional field points c1 and c3 which are not present
in the ground truth data. Those field points do not exist in reality as the negative potential
from the corresponding carbonyl atoms is largely cancelled by the positive methyl group

8



Published at the MLDD workshop, ICLR 2022

Figure 4: Examples of (a) negative, (b) positive, (c) hydrophobic and (d) van der Waals
field points. Shown are ground truth field points as transparent yellow spheres and predicted
field points as solid red spheres. Radii of spheres representing ground truth field points are
scaled by field point value, i.e. strength of field point.

and positive amine, respectively for c1 and c3. The model that is based on information flow
via covalent bonds is unable to correctly capture those physical effects as the atoms with
opposite partial charge are not topologically adjacent to each other.

5 Conclusion

We demonstrated the benefits of an equivariant, attention based, graph neural network in
the context of molecular field point prediction. A model based on the SE(3)-Transformer was
trained using a large set of small molecules. Our model successfully predicts field points of
different types of molecular interaction fields. In comparison to current methods of field point
prediction that are based on computationally demanding calculations for the interaction
energies between a probe and the molecule, our trained model allows for an efficient one-shot
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prediction of field points. We also demonstrated that field points that are spawned by
topologically distant atoms can be reliably predicted if a graph structure was generated that
is based on spatial rather than topological context of the molecule. The optimized model
will allow in further research the use of physicochemical field point information for similarity
based virtual screening on huge databases of compounds.
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Appendix A: Terminology

In the following section, we denote by ⊕ the direct sum, ⊗ the Kronecker product and
I3 ∈ R3×3, I5 ∈ R5×5 are the identity matrices in 3 and 5 dimensions respectively.
Definition 1 (Equivariance). Let G be a group and X,Y be sets. Let .X , .Y be group
actions of G on X and Y respectively. A map Φ : X −→ Y is called G−equivariant if it
satisfies:

∀g ∈ G, x ∈ X : Φ(g .X x) = g .Y Φ(x)

Moreover, in the special case of

∀g ∈ G, x ∈ X : Φ(g .X x) = Φ(x),

the map Φ is called G−invariant.
Terminology 1 (Rotation order, fiber structure). A linear group representation of the
group of rotations in 3 dimensions SO(3) can be decomposed into irreducible representations
of dimensions 2l + 1 for l ∈ N ∪ {0}. We refer to l ∈ N ∪ {0} as the ”rotation order”.
The rotation orders l = 0, 1 can be viewed as scalars and vectors in 3-dimensional space,
respectively. If a feature vector v consists of m0,m1,m2 ∈ N elements (also called ”channels”)
of rotation orders l = 0, 1, 2, respectively, we say that its ”fiber structure” is [’0’: m0; ’1’: m1;
’2’: m2]. Consequently the feature vector v is structured as follows:

v ∈ R⊕ . . .⊕ R︸ ︷︷ ︸
m0 times

⊕R3 ⊕ . . .⊕ R3︸ ︷︷ ︸
m1 times

⊕R5 ⊕ . . .⊕ R5︸ ︷︷ ︸
m2 times

∼= Rm0+3·m1+5·m2 .

Defining

R[’0’: m0; ’1’: m1; ’2’: m2] := R⊕ . . .⊕ R︸ ︷︷ ︸
m0 times

⊕R3 ⊕ . . .⊕ R3︸ ︷︷ ︸
m1 times

⊕R5 ⊕ . . .⊕ R5︸ ︷︷ ︸
m2 times

,

we denote
v ∈ R[’0’: m0; ’1’: m1; ’2’: m2] ∼= Rm0+3·m1+5·m2 .

Moreover, for m̃0 ≤ m0, m̃1 ≤ m1, m̃2 ≤ m2 with m̃0, m̃1, m̃2 ∈ N we agree to the notation

v[’0’: m̃0; ’1’: m̃1; ’2’: m̃2] := (v1, · · · , vm̃0 , vm0+1, · · · , vm0+3·m̃1 ,

vm0+3·m1+1, · · · , vm0+3·m1+5·m̃2)
∈ R[’0’: m̃0; ’1’: m̃1; ’2’: m̃2] ∼= Rm̃0+3·m̃1+5·m̃2 ,

being a subvector of v consisting only of the first m̃0, m̃1, m̃2 channels of rotation orders 0, 1
and 2 respectively.
Terminology 2 (Attention Block A). Consider a molecule consisting of n ∈ N atoms
with coordinates a1, . . . , an ∈ R3. Per construction, for each atom j ∈ {1, . . . , n} we associate
an initial feature vector fj ∈ R[’0’: 70] ∼= R70. Thus, the molecule can be represented as a
graph G = (V, E), with V = {(1, a1, f1), (2, a2, f2), · · · , (n, an, fn)} the set of nodes and E
the set of edges connecting nodes. The attention block consists of the following four layers:

1. ConvSE3 Layer: For all i, j ∈ {1, . . . , n}, calculate tensor field convolutions to obtain
key and value vectors

ki,j = WK(aj − ai)fj ∈ R[’0’: 16] ∼= R16

vi,j = WV (aj − ai)fj ∈ R[’0’: 16,’1’: 16, ’2’: 16] ∼= R144

where WK(aj − ai) ∈ R16×70 and WV (aj − ai) ∈ R144×70 are tensor field network
type embedding matrices.

2. LinearSE3 Layer: Calculate self-interaction to obtain the query vector

qi = WQfi ∈ R[’0’: 16] ∼= R16,

where WQ ∈ R16×70.
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3. AttentionSE3 Layer: Calculate attention per node. For (i, ai, fi) ∈ V, let N(i) ⊂
{1, · · · , n} denote the set of indices of neighbors of the i’th node. For i, j ∈ {1, . . . , n},
define

αi,j =
exp

(
qTi ki,j√

16

)
∑

j′∈N(i)
exp

(
qT
i
ki,j′√
16

) ∈ [0, 1]

fatt,i =
∑

j∈N(i)

αi,j · vi,j ∈ R[’0’: 16,’1’: 16, ’2’: 16] ∼= R144

4. LinearSE3 Layer: For i ∈ {1, · · · , n}, concatenate the fibers of fi and fatt,i:

f̃i =
(
f

[’0’: 16]
i , fatt,i

)
∈ R[’0’: 32,’1’: 16, ’2’: 16] ∼= R160.

Calculate the output vector

fout,i = Wout · f̃i ∈ R[’0’: 32,’1’: 32, ’2’: 32] ∼= R288,

where Wout ∈ R288×160 is a block matrix, consisting of self-interaction submatrices
of dimensions 32× 32, 96× 48, 160× 80. More specifically

Wout = W 0
out ⊕

(
W 1
out ⊗ I3

)
⊕
(
W 2
out ⊗ I5

)
,

where W 0
out ∈ R32×32,W 1

out ∈ R32×16,W 2
out ∈ R32×16. Note that the multiplication

with Wout corresponds to a 1× 1 convolution of channels within each rotation order.

Terminology 3 (Attention Block B). Using the same notation as in 2, let ai ∈ R3 denote
the coordinates of the i’th node. The output of ”Attention Block A” results in a feature vector
fi ∈ R[’0’: 32,’1’: 32, ’2’: 32] ∼= R288 per node i ∈ {1, · · · , n}. ”Attention Block B” transforms
this feature vector to a feature vector of the same fiber structure by applying the following
four layers:

1. ConvSE3 Layer: For all i, j ∈ {1 . . . , n}, calculate tensor field convolutions to obtain
key and value vectors

ki,j = WK(aj − ai)fj ∈ R[’0’: 16,’1’: 16, ’2’: 16] ∼= R144

vi,j = WV (aj − ai)fj ∈ R[’0’: 16,’1’: 16, ’2’: 16] ∼= R144,

where WK(aj − ai) ∈ R144×288 and WV (aj − ai) ∈ R144×288 are tensor field network
type embedding matrices.

2. LinearSE3 Layer: Calculate self-interaction to obtain the query vector

qi = WQfi ∈ R[’0’: 16,’1’: 16, ’2’: 16] ∼= R144,

where WQ ∈ R144×288 is a block matrix, consisting of self-interaction submatrices of
dimensions 16× 32, 48× 96, 80× 160. More specifically

WQ = W 0
Q ⊕

(
W 1
Q ⊗ I3

)
⊕
(
W 2
Q ⊗ I5

)
,

where W 0
Q ∈ R32×32,W 1

Q ∈ R16×32,W 2
Q ∈ R16×32. Note that the multiplication with

WQ corresponds to a 1× 1 convolution of channels within each rotation order.

3. AttentionSE3 Layer: Calculate attention per node. For (i, ai, fi) ∈ V, let N(i) ⊂
{1, · · · , n} denote the set of indices of neighbors of the i’th node. For i, j ∈ {1, . . . , n}
define

αi,j =
exp

(
qTi ki,j√

144

)
∑

j′∈N(i)
exp

(
qT
i
ki,j′√
144

) ∈ [0, 1]

fatt,i =
∑

j∈N(i)

αi,j · vi,j ∈ R[’0’: 16,’1’: 16, ’2’: 16] ∼= R144.
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4. LinearSE3 Layer: For i ∈ {1, · · · , n}, concatenate the fibers of fi and fatt,i

f̃i =
(
f

[’0’: 32]
i , f

[’0’: 16]
att,i , f

[’1’: 32]
i , f

[’1’: 16]
att,i , f

[’2’: 32]
i , f

[’2’: 16]
att,i

)
∈ R[’0’: 48,’1’: 48, ’2’: 48] ∼= R432.

Calculate the output vector

fout,i = Wout · f̃i ∈ R[’0’: 32,’1’: 32, ’2’: 32] ∼= R288,

where Wout ∈ R288×432 is a block matrix, consisting of self-interaction submatrices
of dimensions 32× 48, 96× 144, 160× 240. More specifically

Wout = W 0
out ⊕

(
W 1
out ⊗ I3

)
⊕
(
W 2
out ⊗ I5

)
,

whereW 0
out,W

1
out,W

2
out ∈ R32×48. Note that the multiplication withWout corresponds

to a 1× 1 convolution of channels within each rotation order.

Terminology 4 (ConvSE3 Layer C). The output of ”Attention Block B” results in a
feature vector fi ∈ R288 (fiber structure [’0’: 32, ’1’: 32,’2’: 32]) per node i ∈ {1, · · · , n}.
The final ”ConvSE3 Layer” transforms fi to the output feature vector fout,i ∈ R12 of fiber
structure [’0’: 3, ’1’: 3] as follows: For i, j ∈ {1, . . . , n} define

hi,j = Wout(aj − ai)fj ∈ R[’0’: 3,’1’: 3] ∼= R12

fself,j = Wself · f [’0’: 32,’1’: 32]
j ∈ R[’0’: 3,’1’: 3] ∼= R12

f̃i,j = hi,j + fself,j ∈ R[’0’: 3,’1’: 3] ∼= R12

fout,i =
∑

j∈N(i)

f̃i,j ∈ R[’0’: 3,’1’: 3] ∼= R12

where Wout(aj − ai) ∈ R12×128 is a tensor field network type embedding matrix and Wself ∈
R12×288 is block matrix, consisting of self-interaction submatrices of dimensions 3× 32 and
9× 96. More specifically

Wself = W 0
self ⊕

(
W 1
self ⊗ I3

)
,

where W 0
self ,W

1
self ∈ R3×32. Note that the multiplication with Wself corresponds to a 1× 1

convolution of channels within each rotation order.
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Appendix B: Tables

Molecule information
Coordinate N A P S W D

(−0.571,−0.329, 0.007) C 2 −0.1340 1.7 0.08129 3
(0.571, 0.329,−0.007) C 2 −0.2480 1.7 0.08129 3

(−0.574,−1.321, 0.027) H 15 0.0460 1.2 0 1
(−1.431, 0.164,−0.003) H 15 0.0460 1.2 0 1
(1.431,−0.164, 0.003) H 15 0.0830 1.2 0 1
(0.574, 1.321,−0.027) H 15 0.0830 1.2 0 1

Table 2: Features per atom for a sample molecule. Abbreviations: N: atom name, A: atom
type, P: partial charge, S: atom size, W: Wildman-Crippen logP, D: node degree

Field point information
Coordinate Field value Field point type

(0.028, 0.069, 2.488) −6.5370 F-
(0.028,−0.032,−2.489) −6.5370 F-

(−3.251,−1.860,−0.082) −0.6560 FO
(1.078,−1.915,−2.090) −0.9210 FO
(−1.083, 1.828,−2.165) −0.9210 FO
(1.077,−1.816, 2.175) −0.9210 FO
(−0.024, 0.108, 2.960) −0.8500 FO
(−1.079, 1.911, 2.092) −0.9210 FO

(−0.001, 0.001,−0.004) 4.2050 FI

Table 3: Field point information: F-: electrostatic negative, F+: electrostatic positive, FI:
van der Vaals, FO: hydrophobic

Results on training set
Negative field points Positive field points

r = 0.5 1 1.5 2 0.5 1 1.5 2
L̂rWTPR 0.801 0.868 0.883 0.894 0.816 0.861 0.872 0.882
L̂rTPR 0.713 0.782 0.799 0.811 0.747 0.793 0.805 0.816
L̂rPPV 0.658 0.813 0.868 0.901 0.753 0.845 0.881 0.901

Hydrophobic field points Van der Waals field points
r = 0.5 1 1.5 2 0.5 1 1.5 2
L̂rWTPR 0.958 0.973 0.984 0.991 0.575 0.634 0.664 0.698
L̂rWTPR 0.946 0.961 0.973 0.983 0.531 0.583 0.609 0.641
L̂rPPV 0.869 0.944 0.970 0.986 0.776 0.895 0.940 0.964

Table 4: Field point prediction results on training set
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Results for negative field points
Distance-based graph topology Molecule graph topology

r = 0.5 1 1.5 2 0.5 1 1.5 2
L̂rWTPR 0.786 0.865 0.884 0.896 0.464 0.653 0.720 0.759
L̂rTPR 0.706 0.786 0.805 0.818 0.523 0.723 0.793 0.834
L̂rPPV 0.642 0.806 0.864 0.898 0.344 0.516 0.620 0.708

Table 5: Comparison between distance-based graph topology (7 Å) and molecule graph
topology (defined by covalent bonds) on negative electrostatic field points.
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Appendix C: Graphics

Figure 5: Visualization of a simple molecule (consisting only of hydrogen and carbon atoms)
and its field points (aquamarine: electrostatic negative, orange: hydrophobic, yellow: van
der Waals).
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Figure 6: Weighted sensitivity (L1
WTPR) vs precision (L1

PPV ) for the four field point types.
The distance r = 1 was fixed (compare Tables 4 to 1) and the quantities L1

WTPR, L
1
PPV

calculated for 50 equidistant cutoff values between c ∈ [0.001, 0.1] (compare 7).
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Figure 7: Example of comparison of different graph topologies used to predict negative field
points. Left: Edges of graph defined by Euclidean distance between atoms being smaller
than 7 Å. Right: Edge of graph defined based on covalent bonds. Shown are ground truth
field points as transparent yellow spheres and predicted field points as solid red spheres.
Radii of spheres representing ground truth field points are scaled by field point value, i.e.
strength of field point.
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