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Abstract: We propose Generation to Simulation (Gen2Sim), a method for scaling1

up robot skill learning in simulation by automatically generating simulation 3D2

assets, scenes, task definitions, task decompositions and reward functions, cap-3

italizing over large pre-trained generative models of language and images. We4

propose methods for 3D simulation asset generation from lifting open-world 2D5

object images using image diffusion models and LLM queries for plausible ranges6

of physical parameters. We then chain-of-thought prompt LLMs to parse URDF7

files of generated and human-developed assets to generate task descriptions, task8

decomposition, and corresponding reward functions, based on the assets and scene9

affordances. We train reinforcement learning policies in the simulation environ-10

ments using our generated tasks supervised by the generated reward functions. We11

demonstrate successful policy learning for a number of long horizon tasks using12

Gen2Sim, without any human involvement. Our work contributes hundreds of13

simulated assets and tasks for articulated and novel 3D object assets, taking a step14

towards fully autonomous robotic manipulation skill acquisition in simulation.15

Keywords: Policy Learning in Simulation, Manipulation, Generative Models16

1 Introduction17

Scaling up training data has been a driving force behind the recent revolutions in language modeling18

[1], visual understanding [2], speech recognition [3], image generation [4], to name a few. This begs19

the question: can we scale up robot data to enable a similar revolution in robotic skill learning? One20

way to scale robot data is in the real world, by having multiple robots self-explore [5] or by collecting21

kinesthetic demonstrations at scale, with proper instrumentation or crowd-sourcing [6]. This is a22

promising direction, but safety concerns and wear and tear of the robots might be an obstacle towards23

autonomous real-world exploration. Another way to scale robot data is in simulation, by scaling up24

simulated environments and tasks, training robot policies in simulation with reinforcement learning25

or trajectory optimization, and then transferring them to the real world [7]. Such sim2real paradigm26

has seen recent successes in robot locomotion [8, 9, 10], in hand manipulation [11, 12], acrobatic27

flight [13, 14], and deformable object manipulation [15, 16, 17]. However, these examples, though28

very important and exciting, are still fairly isolated.29

A central bottleneck towards scaling up simulation environments and tasks is the laborious manual30

effort needed for developing the visuals and physics of assets, their arrangement and configurations,31

the development of task curricula, and reward functions or programmatic demonstrations. In industry,32

tremendous resources have been invested in developing simulators for autonomous vehicles [18],33

warehouse robots, articulated objects [19], home environments [20, 21, 22], etc., many of which are34

proprietary and not open-sourced. Given these considerations, an important question naturally arises:35

How can we minimize manual effort in simulation development for diverse robotic skill learning?36

In this paper, we explore automating the creation of simulation environments, and the development of37

manipulation tasks and rewards, by exploiting the latest progress in large-scale pre-trained generative38
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Figure 1: Gen2Sim is an automated generative pipeline for assets, textures, physical properties, tasks, task
decompositions and corresponding rewards functions, aiming for autonomous robotic skill learning in simulation.
Here we show 12 generated tasks, concerning the semantic affordances of the diverse types of assets in the scene.

models, aiming towards automated robotic skill learning. Our system, Gen2Sim, strives to automate39

all stages involved in such development: from low-level 3D assets, textures, and physics properties,40

to high-level task descriptions and reward functions, leading to automated skill learning in diverse41

scenarios (See Figure 1). We automate 3D object asset generation by combining image diffusion42

models for 3D mesh and texture generation, and LLMs for querying physical parameters information.43

We showcase how LLMs and image generative models can diversify the appearances and behaviors of44

assets by producing plausible ranges of textures, sizes and physical parameters, achieving “intelligent”45

domain diversification. We automate task description, task decomposition and reward function46

generation by few-shot prompting LLMs to predict language descriptions for semantically meaningful47

tasks, concerning affordances of existing and generated 3D assets, articulated or not, alongside their48

reward functions. Gen2Sim generates thousands of object assets and task variations without any49

human involvement beyond several LLM prompt designs. We successfully train RL policies using50

our auto-generated tasks and reward functions. Last, we demonstrate the usefulness of our simulation-51

trained policies, by constructing a digital-twin environment of a given real scene, allowing a robot to52

practice skills in the twin simulator and deploying it back to the real world to execute the task.53

In summary, we make the following contributions:54

• We show how pre-trained generative models of images and language can help automate 3D55

asset generation and diversification, task description generation, task decomposition and56

reward function generation that supports reinforcement learning of long horizon tasks in57

simulation with minimal human involvement.58

• We deploy our method to generate hundreds of assets, and hundreds of manipulation59

tasks, their decompositions and their reward functions, for both human-developed and60

automatically generated object assets.61

Our code will be made publicly available upon publication. For videos and more qualitative results,62

see our project site: https://gen2sim.github.io/.63
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2 Related Work64

Large Language Models for task and motion planning in robotics Large language models (LLMs)65

map instructions to language subgoals [23, 24, 25, 26] or action programs [27] with appropriate66

plan-like or program-like prompts. LLMs trained from Internet-scale text have shown impressive67

zero-shot reasoning capabilities for a variety of downstream language tasks [1] when prompted68

appropriately, without any weight fine-tuning [28, 29, 30, 31]. LLMs were used to generate task69

curricula and predict skills to execute in Minecraft worlds [32, 33, 34] Following the seminal work of70

Code as Policies, many works map language to programs over given skills [35] or hand-designed71

motion planners [36]. Our work instead maps task descriptions into task decompositions and reward72

functions, to guide reinforcement learning in simulation, to discover skills that would achieve the73

generated tasks. Work of [37] also uses language for predicting reward function for robot locomotion,74

but does not consider task generation and decomposition or interaction with objects. Our work is the75

first to use LLMs for task decomposition and reward generation, as well as asset generation.76

Automating 3D asset creation with generative models The traditional process of creating 3D assets77

typically involves multiple labor-intensive stages, including geometry modeling, shape baking, UV78

mapping, material creation, texturing and physics parameter estimation, where different software79

tools and the expertise of skilled artists are often required. It is thus desirable to automate 3D asset80

generation to automatically generate high-quality assets that support realistic rendering under arbitrary81

views and have plausible physical behaviours during force application and contacts. The lack of82

available 3D data and the abundance of 2D image data have stimulated interest in learning 3D models83

from 2D image generators [38, 39]. The availability of strong 2D image generative models based on84

diffusion led to high-quality 3D models from text descriptions [40, 41, 42] or single 2D images using85

the diffusion model as a 2D prior [43, 44, 45]. In this work, instead of a text-conditioned model,86

we use a view and relative pose conditioned image generative model, which we found to provide87

better prior for score distillation. Some methods attempt to use videos of assets and differentiable88

simulations to estimate their physics parameters and/or adapt the simulation environment, in an89

attempt to close the simulation to reality gap [46, 47, 48]. Our effort is complementary to these90

works.91

Simulation environments for robotic skill learning In recent years, improving simulators for robot92

manipulation has attracted increasingly more attention. Many robotic manipulation environments and93

benchmarks [49, 50, 19] are built on top of either PyBullet [51] or MuJoCo [52] as their underlying94

physics engines, which mainly support rigid-body simulation. Recently, environments supporting95

soft-body manipulation, such as FleX [53], SAPIEN [19], TDW [54], SoftGym [55] and FluidLab96

[17] provide capabilities for simulating deformable objects and fluids. Our automated asset and task97

generation are not tied to any specific simulation platforms and can be used with any of them. We98

unleash the common sense knowledge and reasoning capabilities provided by LLMs and use them to99

suggest task descriptions, task decompositions, and reward functions. We then use reinforcement100

learning to discover solution trajectories instead of TAMP-based search.101

3 Gen2Sim102

Gen2Sim generates 3D assets from object images using image diffusion models and predicts physical103

parameters for them using LLMs (Section 3.1). It then prompts LLMs to generate language task104

descriptions and corresponding reward functions for each generated or human-developed asset,105

suitable to their affordances (Section 3.2). Finally, we train RL policies in the generated environments106

using the generated reward functions, allowing robots to acquire manipulation skills in diverse scenes107

and tasks. We additionally show the applicability of the simulation trained policy by constructing108

digital twin environment in simulation, and deploy the trained trajectory in the real world (Section109

3.3). See Figure 2 for our method overview.110

3.1 3D Asset Generation111

Gen2Sim automates 3D asset generation by transforming 2D images of objects to textured 3D meshes112

with plausible physics parameters. The images can be 1) real images taken in the robot’s environment,113

3



Figure 2: The Gen2Sim pipeline: Gen2Sim first generates 3d assets by lifting (generated) 2D images to
3D, and then use both generated assets and assets obtained from other publicly available datasets to populate
environments. Afterwards, it queries LLMs to generate meaningful tasks given the scene description, performs
task decomposition, generates policy training supervision (reward functions), and yields automated skill learning.

2) real images provided by Google search under relevant category names, e.g., “avocado”, or 3)114

images generated by pre-trained text-conditioned diffusion models, such as stable diffusion [56],115

prompted appropriately to generate uncluttered images of the relevant objects, e.g., “an image of an116

individual avocado”. We query GPT-4 [57] for a list of object categories relevant for manipulation117

tasks to search online for or to generate, instead of manually designing it. (Check out our project site118

for a detailed list of the objects we generated.) Given a real or generated 2D image of an object, we119

lift it to a 3D model using Score Distillation Sampling [40, 41], initially developed in [40, 58] for120

text-to-3D lifting. We provide background on image diffusion models below, before we describe our121

3D model fitting approach.122

3.1.1 Image diffusion models123

A diffusion model learns to model a probability distribution p(x) by inverting a process that gradually124

adds noise to the image x. The diffusion process is associated with a variance schedule {βt ∈125

(0, 1)}Tt=1, which defines how much noise is added at each time step. The noisy version of sample126

x at time t can then be written xt =
√
ᾱtx +

√
1− ᾱtϵ where ϵ ∼ N (0,1), is a sample from a127

Gaussian distribution (with the same dimensionality as x), αt = 1 − βt, and ᾱt =
∏t

i=1 αi. One128

then learns a denoising neural network ϵ̂ = ϵϕ(xt; t) that takes as input the noisy image xt and the129

noise level t and tries to predict the noise component ϵ. Diffusion models can be easily extended to130

draw samples from a distribution p(x|c) conditioned on a prompt c, where c can be a text description,131

a camera pose, and image semantic map, etc [4, 59, 60]. Conditioning on the prompt can be done132

by adding c as an additional input of the network ϵϕ. For 3D lifting, we build on Zero-1-to-3 [61], a133

diffusion model for novel object view synthesis that conditions on an image view of an object and a134

relative camera rotation around the object to generate plausible images for the target object viewpoint,135

c = [I1, π]. It is trained on a large collection D′ = {(xi, ci)}Ni=1 of images paired with views and136

relative camera orientations as conditioning prompt by minimizing the loss:137

Ldiff(ϕ;D′) = 1
|D′|

∑
xi,ci∈D′

||ϵϕ(
√
ᾱtx

i +
√
1− ᾱtϵ, ci, t)− ϵ||2.

3.1.2 Image-to-3D Mesh using Score Distillation Sampling138

Given an image and relative camera pose 2D diffusion model p(I|[I0, π]), we extract from it a 3D139

rendition of the input image I0, represented by a differential 3D representation using Score Distillation140

Sampling (SDS). We do so by randomly sampling a camera pose π, rendering a corresponding view Iπ ,141

assessing the likelihood of the view based on the model p(Iπ|[I0, π]), and updating the differentiable142

3D representation to increase the likelihood of the generated view based on the model. Specifically,143
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the denoiser network is frozen and the 3D model is updated as:144

∇(θ)LSDS(θ;π, c, t) =
Et,ϵ[w(t)(ϵϕ(atI + σtϵ; t, c)− ϵ) · ∇θI],

where I = R(θ, π) is the image rendered from a given viewpoint π. We use a two-stage fitting,145

wherein the first stage an instantNGP NeRF representation [62] is used, similar to RealFusion [43],146

and in the second stage a mesh-based representation is initialized from the NeRF and finetuned147

differentiably, similar to Fantasia3D [41]. More information of our score distillation sampling can be148

found in our website.149

SDS was initially developed in [40, 58] for text-to-3D lifting. Gen2Sim considers an image as150

input for 3D lifting instead. In Section 4, we compare against RealFusion [43] and Fantasia3D151

[41] that also consider image-to-3D lifting by textual inversion for diffusion adaptation and by an152

image re-projection loss, respectively. We show our proposed pipeline generates more faithful 3D153

models from images because the image likelihood provided by the view and pose conditioned image154

generative model [44] is more informative than a generic or personalized text-conditioned one.155

3.1.3 Generating plausible physical properties156

The visual and collision parameters of an asset are generated from the Image-to-Mesh pipeline157

discussed above. To define 3D sizes and physics parameters for the generated 3D meshes, we query158

GPT-4 regarding the range of plausible width, height, and length for each object, and the range of159

mass given the object category. We then scale the generated 3D mesh based on the produced size160

range. We feed the mass and 3D mesh information to MeshLab [63] to get the inertia matrix for the161

asset. Our prompts for querying GPT for mass and 3D object size can be found on our website. We162

wrap the generated mesh information, its semantic name, as well as the physical parameters into163

URDF files to be loaded into our simulator.164

3.2 Task Generation, Decomposition and Reward Function165

Given either generated assets or assets obtained from publically available datasets, we prompt LLMs166

to suggest meaningful manipulation tasks considering their affordances, to decompose these tasks into167

subtasks when possible, and to generate reward functions for each subtask. We train reinforcement168

learning policies for each (sub)task using the generated reward functions, and then chain them together169

to solve long horizon tasks, which would have been impossible without LLMs’ decomposition.170

Prompts to generate task descriptions, task decompositions and rewards functions contain three171

elements:172

1. Asset descriptions We use combinations of assets we generate using the method of Section 3.1,173

as well as articulated assets from PartNet Mobility [19] and GAPartNet dataset [64]. We populate174

our simulation environment with randomly sampled assets. Then, we extract information from the175

URDF files including link names, joints with their types, and limits, using automated scripts. For176

example, an asset microwave has parts [door, handle, and body], and joint [door-joint]177

of type revolute with a joint position range [0, 1]. We then feed the extracted configurations of178

the assets to the LLM, with one example shown below:179

The environment contains the following assets:180
1. asset_name: "microwave"181

part_cofiguration:182
Part 1: "body"183
Part 2: "door"184

- link_name: "link_0"185
- joint_name: "joint_0"186
- joint_type: "revolute"187
- limit: [0, 1]188

Part 3: "handle"189
- link_name: "handle_0"190
- joint_name: "handlejoint_0"191
- joint_type: "fixed"192

2. asset_name: "cup"193
part_cofiguration:194

5



Part 1: cup195
- link_name: "base"196
- joint_name: "base_joint"197
- joint_type: "fixed"198

2. Instructions These are instructions that regulate the response from the LLM. It includes function199

APIs that can be used by the LLM to query the pose of the robot end-effector, as well as different200

assets in the given environment:201

List meaningful manipulation tasks that can be performed202
in this environment. Give subtask decomposition and the203
order of execution to solve the task. Also, provide the204
reward function for each subtask.205

206
The following tasks can be performed in this environment:207
1. Open the Microwave Door208
2. Close the Microwave Door209
3. Pick Cup210
4. Place Cup211
5. Put the Cup in the Microwave212

This task needs to be decomposed into sub-tasks:213
- Open the Microwave214
- Pick Cup215
- Place the Cup in the Microwave216

3. Task and Decomposition Examples are question-to-language pairs that present few-shot in-217

context demonstrations of how tasks can be decomposed into subtasks.218

List meaningful manipulation tasks that can be performed219
in this environment. Give subtask decomposition and the220
order of execution to solve the task. Also, provide the221
reward function for each subtask.222

223
The following tasks can be performed in this environment:224
1. Open the Microwave Door225
2. Close the Microwave Door226
3. Pick Cup227
4. Place Cup228
5. Put the Cup in the Microwave229

This task needs to be decomposed into sub-tasks:230
- Open the Microwave231
- Pick Cup232
- Place the Cup in the Microwave233

4. Examples of reward functions are task to reward function pairs that present few-shot demonstra-234

tions of how tasks can be translated to reward functions. For the following example task, we provide235

example reward functions composed of 1) distance reward: distance between the end-effector and the236

target part, and 2) state reward: distance between the current and the target pose of an articulated237

asset, link, or joint. Note that the following is just an example for the LLM to use as a reference.238

Task: OpenMicrowaveDoor239
Task Description: open the door of the microwave240
‘‘‘241
def compute_reward(env):242

# reward function243
door_handle_pose = env.get_pose_by_link_name("microwave", "handle_0")244
gripper_pose = env.get_robot_gripper_pose()245
distance_gripper_to_handle = torch.norm(door_handle_pose - gripper_pose, dim=-1)246
door_state = env.get_state_by_joint_name("microwave", "joint_0")247
cost = distance_gripper_to_handle - door_state248
reward = - cost249

250
# success condition251
target_door_state = env.get_limits_by_joint_name("microwave", "joint_0")["upper"]252
success = torch.abs(door_state - target_door_state) < 0.1253

254
return reward, success255

‘‘‘256

We provide a comprehensive list of our prompts on our website. We show in Section 4 that our method257

can generalize across assets, suggest diverse and plausible tasks, and reward functions automatically,258

without any additional human involvement.259
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3.3 Sequential Reinforcement Learning for Long Horizon Tasks260

We train reinforcement learning policies using Proximal Policy Optimization (PPO) [65] maximizing261

the generated reward functions for each subtask. We train RL for each generated subtask in temporal262

order. Once training for a subtask converges, we proceed to the next subtask. The initial state263

of the gripper and the environment are sampled from the resulting states of the previous subtask264

execution. This ensures policies can be temporally chained upon training. Note that while training265

till convergence doesn’t guarantee successful policy training, since we decompose the high-level task266

into very fine-grained simplistic subtasks, such a heuristic works practically well in our experiments.267

Our RL policies are trained per environment using privileged information of the simulation state268

to facilitate learning. Such learned policies can be used as demonstration data and distilled into269

vision-language transformer policies ([6, 66, 67]), and we leave this to our future work.270

4 Experiments271

Our experiments aim to answer the following questions:272

1. Can Gen2Sim generate plausible geometry, appearance, and physics for diverse types of objects273

and parts, without human expertise and with minimal human involvement?274

2. Can Gen2Sim generate task language goals and reward functions for novel object categories, novel275

assets with different part configurations, and a combination of multiple assets in an environment?276

3. Can the generated environments and reward function lead to successful learning of RL policies?277

4.1 Asset Generation278

We compare our image-to-3D lifting with two baselines:279

Figure 3: Left: 3D asset generation from
Gen2Sim, RealFusion [43] and Make-It-3D
[44]. Gen2Sim uses a view and camera pose
conditioned image generative model during
score distillation, which helps generate more
accurate 3D geometry in comparison to the
baselines.

1. RealFusion [43], which uses textual inversion of [68] to280

learn a text embedding for the depicted object concept in281

an image, and uses text-conditioned diffusion model that282

uses this text embedding in the text prompt during score283

distillation.284

2. Make-It-3D [44], which uses the same NeRF and tex-285

tured mesh two-stage fitting with SDS as ours do, but does286

not use a view and pose conditioned generative model,287

rather a text-based diffusion model, similar to [40].288

We show comparisons on several example objects in Fig-289

ure 3, with images rendered from 4 different views. Our290

generates more plausible 3D assets as our diffusion prior291

comes from an image and pose-conditioned model in292

comparison to approaches like Fantasia3D or RealFusion293

which uses text conditioning. For more visualizations and294

details of our generated assets, with diversified textures295

and their behaviors under gravity and collisions, please296

refer to our website.297

4.2 Automated Skill Learning298

We make use of GPU-parallel data sampling in IsaacGym [69] which enables fast and stable conver-299

gence of our policies. Our robotic setup uses a Franka Panda arm with a mobile base. It is equipped300

with either a parallel gripper or a suction cup, depending on the task needs. The suction gripper is301

only used in pick-and-place tasks where grasping varied geometric objects was intrinsically hard with302

RL. In all other task categories, we use the parallel jaw gripper. Our state representation for PPO303

includes the robot’s joint position q ∈ R11, velocity q̇ ∈ R11 (7-DoF arm, x and y for the mobile304

base and 2 extra DoFs from the gripper jaws), orientation of the gripper r ∈ SO(3), and poses and305
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joint configurations of the assets present in the scene. We use position control and at each timestep t,306

our policy produces target gripper pose and configurations, which is then converted to target robot307

configurations by computing inverse kinematics. A low-level PID torque controller provided by308

IsaacGym is then used to produce low-level joint torque commands.309

Gen2Sim generates diverse tasks, plausible natural language task descriptions, task decompositions310

and reward functions automatically for hundreds of assets, with different category labels and number311

of joints, based on the examples provided by the prompt. We show some examples of such generated312

task descriptions and their corresponding language descriptions in Figure 1 and more on our website.313

We show example task decompositions in Figure 2. At the time of submission, our pipeline has314

generated hundreds of tasks, which we will release upon publication. Note that our method can be315

queried endlessly to generate more tasks and provide task-specific policy demonstrations, which316

could be used for policy distillation in the future.317

We provide all prompts in our website, alongside examples of GPT’s responses. Only one example is318

included in our prompt for task decomposition and reward generation; it concerns the task of “putting319

a cup in a Microwave”. We show then the prediction of GPT4 regarding task and reward function320

for instances of Door, DishWasher, fruits, veggies and others. Note that the articulation structure321

structure across all of the assets differ significantly, but our method can effectively generalize. Also,322

Gen2Sim capitalizes on the common sense knowledge of LLMs regarding object affordances, and323

thus can produce meaningful ways for interacting with the assets, such as “press the sanitizer” and324

“turn the faucet”, as shown in Figure 1. The rewards generated by GPT can be well optimized with325

off-the-shelf RL algorithms [65] to learn useful manipulation policies, and the polices are able to326

solve the tasks upon convergence.327

5 Limitations328

There still remain two limitations that need to be addressed for the proposed system to materialize329

into a platform for large-scale robot skill learning that are deployable in real-world, as identified330

below:331

1. Beyond rigid asset generation: The assets we can currently generate are rigid or mostly rigid332

objects, which do not deform significantly under external forces. For articulated assets, we are333

using existing manually designed and labelled datasets ([19, 64]). To generate articulated objects,334

deformable objects and liquids, accurate fine-grained video perception is required in combination335

with generative priors to model the temporal dynamics of their geometry and appearance. This is an336

exciting and challenging direction for future work.337

2. Simulation to reality gap. Improving fidelity and efficiency of simulators is an active area of338

research that our method will dramatically benefit from, and we plan to work on. Also, combining339

explicit physics engines with learnt residual models from simulation and real world alignment [70]340

for decreasing the simulation to reality gap is an exciting research direction we plan to pursue.341

6 Conclusion342

We have presented Gen2Sim, a pipeline for automating the development of simulation environments,343

tasks and reward functions with pre-trained generative models of vision and language. We presented344

methods that create and augment geometry, textures and physics of object assets from single images,345

parse URDF files of assets, generate task descriptions, decompositions and reward python functions,346

and train reinforcement learning policies to solve the generated long horizon tasks. Addressing the347

limitations including generating diverse assets with more complex physical properties, and transfer348

trained policy to real world using realistic vision input in a closed-loop manner, are direct avenues349

for our future work. We believe generative models of images and language will play an important350

role in automating and supersizing robot training data in simulation, and in crossing the sim2real351

gap, necessary for delivering robot generalists in the real world. Gen2Sim takes one first step in that352

direction.353
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