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Abstract

Explainable AI (XAI) has unfolded in two distinct research directions with, on the one hand,
post-hoc methods that explain the predictions of a pre-trained black-box model and, on the
other hand, self-explainable models (SEMs) which are trained directly to provide explanations
alongside their predictions. While the latter is preferred in safety-critical scenarios, post-hoc
approaches have received the majority of attention until now, owing to their simplicity and
ability to explain base models without retraining. Current SEMs instead, require complex
architectures and heavily regularized loss functions, thus necessitating specific and costly
training. To address this shortcoming and facilitate wider use of SEMs, we propose a simple
yet efficient universal method called KMEx (K-Means Explainer), which can convert any
existing pre-trained model into a prototypical SEM. The motivation behind KMEx is to push
towards more transparent deep learning-based decision-making via class-prototype-based
explanations that are guaranteed to be diverse and trustworthy without retraining the base
model. We compare models obtained from KMEx to state-of-the-art SEMs using an extensive
qualitative evaluation to highlight the strengths and weaknesses of each model, further paving
the way toward a more reliable and objective evaluation of SEMs1.

1 Introduction

XAI has become a key research area with the primary objective of enhancing the reliability of deep learning
models (Yosinski et al., 2015; Tjoa & Guan, 2021). This domain has notably evolved along two parallel
trajectories in recent years. One focuses on post-hoc methods (Ribeiro et al., 2016; Selvaraju et al., 2017),
where the algorithms aim to explain the behavior of the black-box models after they have been trained. The
other promising branch focuses on SEMs (Rudin, 2019), where the models are strategically designed and
trained to generate explanations along with their predictions.

The easily employable post-hoc techniques have become widely adopted in recent works due to their ability
to offer insights into any black-box models without retraining (Bodria et al., 2023). Nevertheless, the need
for inherently interpretable models has taken some momentum fueled by the unreliability and high variability
of these post-hoc methods which inhibits their usability for safety-critical applications (Rudin, 2019). SEMs
offer explanations that align with the actual computations of the model, thus proving to be more dependable
which is crucial in domains such as criminal justice, healthcare, and finance (Rudin, 2019). However, existing
SEMs rely on complex designs based on large deep-learning backbones and require intricate training strategies.
The associated computational and time costs limit their accessibility and sustainability.

We tackle this limitation by introducing a simple but efficient method called KMEx (K-Means Explainer),
which is the first approach that aims to convert a trained black-box model into a prototypical self-explainable
model (PSEM). PSEMs provide inherent explanations in the form of class-representative concepts, also called
prototypes, in the latent space that can be visualized in the human-understandable input-space (Kim et al.,
2021). These prototypes serve as global explanations of the model (this looks like that (Chen et al., 2019b)),
and their visualization provides knowledge about their neighborhood in the learned embedding. KMEx keeps
the trained encoder intact, learns prototypes via clustering in the embedding space, and replaces the classifier
with a transparent one. This results in an SEM with similar local explanations and performance to the
original black-box model and such enables the reuse of existing trained models.

1The code will be made available on Github upon acceptance.
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Comparing models obtained using KMEx to existing PSEMs requires a comprehensive evaluation strategy
which, for this fairly new field, is still lacking. Differing from conventional black-box classifiers, PSEMs
yield global (prototypes’ visualization) and/or local (activation of individual prototypes by input images)
explanation maps, alongside the predicted class probabilities. Yet, the assessment of SEMs until now has
been limited to comparing the predictive performance to the black-box counterpart with the same backbone
architecture as the SEM, followed by quantifying the robustness of local explanation maps and qualitative
evaluation of global explanations Wang & Wang (2021); Parekh et al. (2021). We argue that this approach
overlooks crucial facets of SEM explainability, failing to establish a standardized framework for thorough
analysis and comparison of existing models. For example, we observe that most of the prototypes learned by
recent SEMs might never be used by their classifier, which challenges the rationale of a transparent model.
Further, the diversity captured by different prototypes in the embedding space, while being a driving force
behind the development of several SEMs (Wang et al., 2021), has traditionally only been validated by highly
subjective visual inspection of the prototypes.

We, therefore, present a novel quantitative and objective evaluation framework based on the three properties
that arose as predicates for SEMs (Gautam et al., 2022): transparency, diversity, and trustworthiness. The
rationale is not to rank models but to highlight the consequences of modeling choices. Indeed, in some
applications, having robust local explanations might be more valuable than diverse prototypes. Yet, this
behavior needs to be quantified in order to support practitioners in choosing the best model for their use case.

Our main contributions are thus as follows:
• We propose a simple yet efficient method, KMEx, which converts any existing black-box model into a

PSEM, thus enabling wider applicability of SEMs.
• We propose a novel quantitative evaluation framework for PSEMs, grounded in the validation of SEM’s

predicates (Gautam et al., 2022), which allows for an objective and comprehensive comparison.

Our key findings are as follows:
• Experiments on various datasets confirm that KMEx matches the performance of the black-box model

while offering inherent interpretability without altering the embedding, making it an efficient benchmark
for SEMs.

• Most existing PSEMs tend to ghost the prototypes, i.e., never utilize them for prediction, which gives a
false sense of needed concepts but also undermines the rationale formalized by the predicates, especially
transparency.

• Unlike KMEx, the large variations in the design and regularizations of other SEMs lead to drastically
different learned representation spaces and local explanations.

• While many SEMs incorporate measures to obtain diverse prototypes, these efforts are not necessarily
reflected in terms of captured input data attributes. We illustrate how KMEx can be leveraged, without
the need for retraining, to improve the prototype positioning on the SEM’s embeddings and to better
cover the attributes and their correlations.

2 Prototypical self-explainable models

In this section, we review the recent literature on PSEMs for the task of image classification, which is the
focus of this work, emphasizing their design considerations as well as evaluation approaches.

PSEMs for image classification typically consist of four common components: an encoder, a set of prototypes,
a similarity function, and a transparent classifier. The encoder is typically sourced from a black-box model,
thereby making the latter the closest (to the SEM architecture) natural baseline for comparison until now.
Prototypes are class-concepts that live in the embedding space and serve as global class explanations, i.e.,
representative vectors, that eliminate the necessity to examine the entire dataset for explaining the learning
of the model. The similarity function compares features extracted from the input to those embodied in the
prototypes. Ultimately, a transparent classifier transforms the similarity scores into class predictions. The
fact that the final classification revolves around the prototypes makes them a critical component of SEMs.
In addition to these, other modules have also been utilized in the literature to facilitate the learning of
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Table 1: Design strategies used by state-of-the-art SEMs.
Similarity Measure Classifier Prototypes Diversity Loss

ProtoPNet Distance based Linear Layer Projected from training data Min/max intra/inter-class distance
FLINT Linear Layer Linear Layer Weight of the network Min/max similarity entropy
ProtoVAE Distance based Linear Layer Learned ad-hoc parameters Orthonormality + KL Divergence
KMEx Distance based Nearest Neighbor k-means Clustering

prototypes, such as a decoder to align the embedding space to the input space (Parekh et al., 2021; Gautam
et al., 2022), or a companion encoder to learn the prototypical space (Parekh et al., 2021).

2.1 Predicates for SEMs

PSEMs are designed to learn inherently interpretable global class concepts. Three principles arise from the
literature to form a framework for their construction: transparency, diversity, and trustworthiness (Gautam
et al., 2022).
• A model is said to be transparent if the downstream task involves solely human-interpretable concepts and

operations.
• The learned concepts are diverse if they capture non-overlapping information in the embedding space and,

therefore, in the input space.
• Trustworthiness comes in several dimensions. An SEM is deemed faithful if its classification accuracy

and explanations match its black-box counterpart. In addition, local and global explanations should be
robust (similar inputs yield similar explanations) and truly reflect the important features of the input with
respect to the downstream task.

2.2 Related work

The first general framework to compute interpretable concepts was SENN (Alvarez Melis & Jaakkola, 2018),
which relies on a complex architecture and loss function to ensure interpretability. Following this, several
SEMs have emerged, one of the most popular being ProtoPNet (Chen et al., 2019b). The latter introduces a
learnable prototype similarity layer with a fixed number of prototypes per class. Several methods have followed
to address the limitations of ProtoPNet. For example, ProtoPShare (Rymarczyk et al., 2021), ProtoTree
(Nauta et al., 2021) and ProtoPool (Rymarczyk et al., 2022) proposed learning of shareable prototypes across
classes, (Donnelly et al., 2021) proposed adaptive prototypes which change their spatial location based on the
input image and TesNet (Wang et al., 2021) introduced a plug-in embedding space spanned by basis concepts
constructed on the Grassman manifold, thereby inducing diversity among prototypes.

In parallel to ProtoPNet and its extensions, several other SEMs have been proposed. FLINT (Parekh
et al., 2021) introduces an interpreter network with a learnable attribute dictionary in addition to the
predictor. SITE (Wang & Wang, 2021) introduces regularizers for obtaining a transformation-equivariant
SEM. ProtoVAE (Gautam et al., 2022) learns a transparent prototypical space thanks to a backbone based
on a variational autoencoder, thereby having the capability to reconstruct prototypical explanations using
the decoder.

While all the existing SEMs have demonstrated effective generation of explanations alongside comparable
accuracies, they invariably demand significant architectural modifications and integration of multiple loss
functions. This often introduces several additional hyperparameters to achieve satisfactory performance.
For instance, in the case of ProtoPNet, a three-step training process involves encoder training, prototypes
projection for explainability, followed by last-layer training. Furthermore, as highlighted in FLINT (Parekh
et al., 2021), a simultaneous introduction of all losses can lead to suboptimal optimization. Their workaround
strategy involves distinct loss combinations for fixed epochs. These intricate training strategies, combined
with the challenge of training large deep learning architectures, complicate the accessibility of SEMs, thereby
emphasizing the demand for more resource-efficient alternatives. KMEx, a universally applicable method
that necessitates no re-training, no additional loss terms for training the backbone, and minimal architectural
adjustments for learning the prototypes, presents an efficient solution to this challenge. Considering our
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Figure 1: Schematic representation of KMEx: The black-box classifier is removed and replaced by a nearest
neighbor classifier based on prototypes learned using k-means in the embedding space. The UMAP (McInnes
et al., 2018) representation is the projection of the learned embedding space for STL-10, along with prototypes,
depicted by squares weighted by their respective importances (1 − Dtsp). The prototypes are visualized in
the input space using the closest training images.

general contributions to SEMs, we use ProtoPNet, a representative approach encompassing all its extensions,
as a baseline in this work. Additionally, we also consider FLINT and ProtoVAE, which cover the diversity of
the SEM’s literature in terms of backbones, similarity, and loss functions. A summary of these baselines is
given in Table 1, along with KMEx, which is presented in the following section.

3 KMEx: a universal explainer

In this section, we introduce our resource-efficient and universal method, KMEx, which transforms a black-box
model into an SEM, fulfilling all the aforementioned predicates. Note that to enhance legibility, KMEx may
refer in the following to both the method and the transformed model.

3.1 KMEx

Let us consider a trained model made of an encoder and a classifier. It can be converted into a self-explainable
model using the following procedure:

1. Learn prototypes for each class using k-means on the embedding of the training data.
2. The classifier returns now the class of the closest prototype using as similarity measure:

s(z, pk) = log
(
(||z − pk||2 + 1)/(||z − pk||2 + ϵ)

)
.

The resulting model is referred to as the K-Means Explainer (KMEx) of the original model. A schematic
representation of the operations is depicted in Figure 1. Note that the KMEx conversion is not a post-hoc
explainability method. Although a trained encoder is re-used, the predictions are computed differently.
Additionally, given the central role of the prototypes, the inherent nature of the KMEx model is now
interpretable.

We further highlight that k-means is computed per class and on the embedding space, which usually has
a reasonable number of dimensions (512 for ResNet34). Hence, the computational cost is limited and
manageable by classic implementations, irrespective of the complexity of the data. For very large datasets,
it can be approximated by computing k-means on a subset of the training set or by using other efficient
implementations (Johnson et al., 2019).
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3.2 KMEx is an SEM

Visualisation of explanations The explanations for a PSEM are two-fold. Global explanations involve
visualizations of prototypes in the input space, providing insights into the model’s acquired knowledge. Local
explanations, on the other hand, entail pixel-level explanations for input images, revealing which portions
of an image are activated by each prototype. For KMEx, we provide global explanations by visualizing the
training images that are closest to the corresponding prototypes in the embedding space. This approximation
is justified by the problem solved by k-means, which makes it unlikely for a prototype to be out of distribution.
For local explanations, we adhere to previous works and employ Prototypical Relevance Propagation (PRP),
a technique demonstrated to be efficient and accurate for ProtoPNet (Gautam et al., 2023).
Transparency The nearest prototype classifier of KMEx allows backtracking of the influence of a prototype
on the predictions, which relates to a distance in the embedding space, thus embodying transparency.
Trustworthiness of the predictions If the original trained model learned to separate well the classes in
the embedding, there should be enough inter-class distance for the linear partition of k-means to yield KMEx
prototypes that also correctly separate the classes and thus achieve classification performance akin to that of
the trained model.
Trustworthiness of the explanations The only difference between a black-box and its KMEx is how
the predictions are derived from the embedding. Therefore, considering identical weights in both models’
encoders, most of the operations involved in the generation of local explanation maps are common to both,
thus similar explanations are expected, regardless of the technique chosen to generate local explanations.
Diversity The purpose of the prototypes is to serve as representatives of their neighborhood in the
embedding space. The diversity predicate implicitly requires that they also spread over the embedding.
To satisfy this predicate without compromising their function, we aim to position the prototypes on the
accumulation points of the embedding. These are captured as the modes of a Gaussian density estimate.
Computing such a model for a high dimensional and sparse dataset is costly, hence we approximate it using
k-means. Finally, given that k-means employs a uniform prior on the cluster probabilities, this method has
the advantage of covering as much of the data in the embedding space as possible, thus fostering diversity.

4 Evaluations

As stated earlier, existing SEMs build upon three shared predicates but adopt varied strategies to ensure
their fulfillment. Transparency is assumed based on architectural choices and, at best, confirmed through
visualization of prototypes using different strategies, such as upsampling (Chen et al., 2019b), activation
maximization (Parekh et al., 2021; Mahendran & Vedaldi, 2016) and PRP (Gautam et al., 2023), accompanied
with similarity scores. The trustworthiness predicate is the most quantifiable one. The faithfulness of the
performance with respect to the “closest” black-box is often reduced to a comparison of accuracies, and
the robustness of the explanations is evaluated via recent measures such as Average Increase (AI), Average
Drop (AD), and Relevance Ordering (RO) test (Lee et al., 2021; MacDonald et al., 2019; Hedström et al.,
2022). Nonetheless, the quantification of disparities between local explanations generated by an SEM and its
nearest black-box model has been largely disregarded. We emphasize that this aspect grows in significance,
particularly as we transition to techniques that transform existing black-box models into interpretable ones
without re-training, a domain where KMEx stands as the first approach. Finally, prototypical diversity
has been largely overlooked in prior research, with evaluations, if conducted, being primarily qualitative in
nature (Gautam et al., 2022).

In this section, we first evaluate KMEx following the evaluation protocols used in the original papers of the
selected baselines, which are summarized in Table 2. Following this, we propose our full quantitative evaluation
framework based on the predicates for SEMs, highlighting the gaps in the evaluation of SEMs existing until
now, also summarized in Table 2. Additionally, we present a quantitative study of the diversity and subclass
representation captured by the prototypes learned by existing SEMs and their KMEx counterparts.

4.0.1 Datasets, implementation and baselines

We evaluate all methods on 7 datasets, MNIST (Lecun et al., 1998), FashionMNIST (Xiao et al., 2017)
(fMNIST), SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky, 2009), STL-10 (Coates et al., 2011), a subset
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Table 2: Evaluation strategies for the predicates used by state-of-the-art SEMs. Proposed evaluation
framework is italicised.

Transparency Trustworthiness Diversity
Baseline Faithfulness Robustness

ProtoPNet Visualization Black-box Accuracy - -
FLINT Visualization Black-box Accuracy - -
ProtoVAE Visualization Black-box/SEM Accuracy AI/AD/RO Reconstruction

visualization
Proposed
Evaluation

Ghosting Black-box/SEM/KMEx Accuracy/KL Divergence AI/AD/RO Inter-prototype
similarity

Table 3: Prediction accuracy for SEMs demonstrating the effectiveness of KMEx as an SEM baseline.
Reported numbers are averages over 5 runs along with standard deviations.

MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA
ResNet34 99.4±0.0 92.4±0.1 92.6±0.2 85.6±0.1 91.8±0.1 86.5±0.1 98.5±0.0

R34+KMEx 99.4±0.0 92.3±0.1 92.4±0.1 85.3±0.1 91.9±0.2 86.6±0.2 98.3±0.0

FLINT 99.2±0.1 91.8±0.5 91.1±0.7 82.2±1.1 87.5±0.6 87.3±0.2 97.2±0.3

ProtoPNet 99.4±0.1 92.4±0.2 94.4±0.1 84.9±0.2 88.1±0.6 87.8±0.2 98.1±0.0

ProtoVAE 99.4±0.0 92.7±0.5 93.8±0.6 83.0±0.2 85.6±1.1 85.1±0.8 98.6±0.0

of QuickDraw (Parekh et al., 2021) and binary classification for male and female for the CelebA dataset (Liu
et al., 2015). We use a vanilla ResNet34 (He et al., 2016) as the encoder for all the models and fix the number
of prototypes per class as 20 for CelebA and 5 for all other datasets. Further implementation details are
provided in Appendix A.2. For baselines, we train ProtoPNet (Chen et al., 2019b), FLINT (Parekh et al.,
2021), and ProtoVAE (Gautam et al., 2022) for learning image-level prototypes. For ProtoPNet, we use
average pooling to generate image-level prototypes. For FLINT, we use the interpreter network FLINT-g.

4.1 Traditional evaluation of KMEx

In this section, we evaluate KMEx following previous lines of works (Wang & Wang, 2021; Gautam et al.,
2022). We start with comparing the predictive performance of KMEx, which is then followed by an evaluation
of explanations consisting of visualization of prototypes and evaluating the robustness of explanations. In
Appendix A.4, we present preliminary results for a patch-based KMEx.

4.1.1 Predictive performance

We report the accuracy achieved by KMEx, as well as selected baselines in Table 3. As can be observed,
KMEx performs on par with its corresponding ResNet34 black-box base model, thereby validating the change
of classifier. On the other hand, other SEMs, i.e., FLINT, ProtoPNet, and ProtoVAE, suffer some loss of
accuracy for some datasets when compared to the black-box.

4.1.2 Evaluation of explanations

In previous works, the evaluation of explanations is in two folds: 1) Qualitative evaluation of prototypes and
2) Evaluation of robustness of prototypical explanations.

Qualitative evaluation We visualize prototypes learned by KMEx for MNIST and STL-10 datasets in
Figure 2 (top row). Additional visualizations for other datasets are given in Appendix A.5.1 and A.5.2. We
demonstrate the “this looks like that" behavior exhibited by KMEx for test images in the bottom row of
Figure 2, along with their corresponding PRP maps, demonstrating the regions activated in the test images
by their closest prototypes. As observed, for the MNIST dataset, the activations are in response to the shape
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Figure 2: Qualitative evaluation of KMEx: Prototypes learned by KMEx for MNIST for class ‘7’ (left) and
STL-10 for class ‘bird’ (right) are shown at the top, demonstrating global explainability. This looks like that
behavior for test images are shown at the bottom, along with PRP maps demonstrating the regions activated
by closest prototypes for the test images, exhibiting local explainability.

of the digit in the prototype. Similarly, for STL-10, the closest prototype has emphasized key features of a
bird, such as the head, beak, and eyes, as well as a portion of the sky in the background.

Robustness evaluation We evaluate the robustness of the local explanations using the AD, AI of the
similarity scores, as well as RO test (Lee et al., 2021; Gautam et al., 2023; MacDonald et al., 2019). AD
estimates the average decrease in similarity scores with respect to each prototype when the 50% least important
pixels are set to zero for black and white images and to random noise for colored datasets, respectively. AI
corresponds to the frequency with which the similarly disturbed input increases the similarity. A low AD and
a high AI suggest robustness. We report in Table 4 average AI and AD scores and standard deviation over
1000 test images and five runs. For the RO test, the most important pixels from the PRP maps are added
gradually in an image to measure the change in predicted class probability. The RO curves are shown in
Figure 3 for MNIST, CIFAR-10, and CelebA, along with the respective random baselines (MacDonald et al.,
2019). A larger area-under-the-curve suggests more robustness. The curves are computed as mean for 1000
test images selected at random, averaged over 5 runs. We employ PRP maps for generating local explanation
maps for all baselines and tests, thus ensuring equitable and consistent analysis across all SEMs. FLINT is
excluded here because of the lack of clear PRP rules for such an architecture.

First, except for CelebA, none of the results of Table 4 are statistically different. Overall, ProtoPNet returns,
on average, the lowest AD scores (except for STL-10). As for AI scores, the highest averages alternate
between ProtoPNet and ProtoVAE. Although KMEx’s AD scores remain worse than that of the black-box
ResNet34, the AI scores of both models are overall very similar, with an average difference of about 0.030%.
This behavior is also visible in Figure 3, where the curve of ResNet34+KMEx (orange) stays very close to
the black-box baseline (blue), while other SEMs show different behaviors. These results suggest that KMEx
does not produce more robust explanations on its own. This is anticipated as KMEx aims to facilitate the
interpretation of a learned latent representation but does not enforce robustness or stability of the prototypes
during the training process, unlike other SEMs.

4.2 Quantitative evaluation of SEMs

Having demonstrated the traditional evaluation of the proposed KMEx, we now address the lack of a
comprehensive evaluation framework for SEMs that quantitatively evaluates the predicates. First, we expose
for the first time how transparency is often undermined by unused prototypes (ghosting) and measure the
phenomenon. Next, we objectively quantify the faithfulness of local explanations and the diversity of the
prototypes without resorting to visual inspection. Again, the rationale is to propose a framework to assess
objectively each model’s strengths and weaknesses.

4.2.1 Notations

Let us consider an image dataset X = {(xi, yi)}N
i=1 made of N > 0 images split into C > 0 classes, where

xi ∈ RW ×H×J is an image of width W >0, height H >0, and with J >0 channels, and yi ∈ [1 . . . C] encodes
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Table 4: AI and AD scores for robustness of explanations.
AD similarity (lower is better)

MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA
ResNet34 0.076±0.142 0.121±0.155 0.136±0.158 0.130±0.153 0.096±0.129 0.085±0.134 0.399±0.155

R34+KMEx 0.121±0.234 0.156±0.207 0.178±0.213 0.167±0.189 0.117±0.172 0.150±0.201 0.662±0.158

ProtoPNet 0.045±0.113 0.095±0.138 0.025±0.083 0.010±0.038 0.125±0.276 0.036±0.114 0.099±0.101

ProtoVAE 0.157±0.352 0.146±0.297 0.083±0.232 0.102±0.221 0.051±0.138 0.054±0.157 0.573±0.454

AI similarity (higher is better)
ResNet34 0.650±0.434 0.466±0.492 0.416±0.474 0.386±0.480 0.478±0.4946 0.592±0.426 0.032±0.168

R34+KMEx 0.638±0.420 0.461±0.495 0.434±0.474 0.348±0.469 0.509±0.4957 0.514±0.418 0.003±0.026

ProtoPNet 0.765±0.422 0.530±0.480 0.834±0.367 0.889±0.312 0.742±0.4309 0.834±0.371 0.363±0.479

ProtoVAE 0.774±0.417 0.684±0.461 0.761±0.422 0.710±0.450 0.669±0.4690 0.851±0.343 0.375±0.484

Figure 3: Relevance Ordering curves computed on different datasets and with different architectures, along
with the respective random baselines (dashed).

its label. We consider a set of K > 0 prototypes {p1 . . . pK}⊂RD that are vectors of the embedding space
R

D. Any model in the following contains both an encoder f such that zi = f(xi) ∈RD and a similarity
measure s between vectors of the embedding space that returns larger values to pairs of vectors deemed
similar.

4.2.2 Transparency and concept ghosting

The transparency predicate allows the user to backtrack the influence of the learned concepts on the predictions
and is usually enforced through architecture design. However, we observe for state-of-the-art SEMs that, in
practice, some learned prototypes are not reachable from the predictions. More specifically, they are never
activated by any training data point of their class, i.e., they are never the most similar prototype of any
training data. This so-called ghosting of the prototypes not only gives a false sense of needed concepts but
also undermines the notion of transparency itself, as the link between prototypes and prediction can not be
fully trusted.

In the case of a distance-based similarity measure (Gautam et al., 2022; Chen et al., 2019b), if k =
argmaxl s(zi, pl), then prototype pk is the closest to zi. If several points activate pk, this indicates that the
data embedding aggregates around a concentration point close to pk. In contrast, if pk never maximizes any
s(zi, ·), then there might be no data in its neighborhood. The prototype is either out-of-distribution or lies in
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Table 5: Transparency: frequency of ghosted prototypes by SEMs.
MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA

ProtoPNet 0.580±0.060 0.528±0.027 0.300±0.076 0.164±0.056 0.232±0.083 0.156±0.050 0.670±0.141

FLINT 0.160±0.101 0.188±0.254 0.060±0.025 0.112±0.076 0.240±0.077 0.228±0.409 0.215±0.411

ProtoVAE 0.0±0.0 0.004±0.009 0.0±0.0 0.0±0.0 0.760±0.037 0.552±0.070 0.155±0.060

KMEx 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

an area of low density. In the case of a dot-product-based similarity measure (Parekh et al., 2021), if pk is
activated by zi, then zi and pk are aligned. Assuming that zi is not the only maximizer of s(·, pk), then pk

carries a direction along which the data accumulates. In contrast, if pk never maximizes any s(zi, ·), then the
data does spread along its direction and may represent either a variation within a class or, in the worst case,
noise.

We propose to quantify this ghosting phenomenon based on the average activation frequencies over the
prototypes on the training set:

Dtsp = 1 −
K∑

k=1

#{i, argmax1≤l≤K

(
s(zi, pl)

)
= k}

KN
, (1)

where # stands for the cardinal of the set. The values of Dtsp range between 0 and 1, with lower values
indicating less ghosting.

In Table 5, we report average Dtsp scores (Equation 1) with standard deviation over five runs. We observe
that ghosting affects all models but, unsurprisingly, not KMEx. Indeed, for such a low number of prototypes,
relative to the size of the data, k-means is unlikely to create an empty cluster. Interestingly, ProtoVAE
almost never ghosts any prototype on four out of the seven datasets, suggesting that SEMs with geometrical
constraints are more robust to ghosting.

4.2.3 Trustworthiness and faithfulness

According to its definition, the trustworthiness predicate encompasses two major axes. The first is the faith-
fulness of the predictions, which we have quantified in terms of accuracies. The second aspect concerns
the robustness of the explanations, which we measured using AI, AD, and RO (Lee et al., 2021; Gautam et al.,
2022). An often overlooked aspect of the trustworthiness predicate is the faithfulness of the explanations.
Indeed, SEMs differ from black-box models in their architecture and training and, therefore, also in their local
explanations. However, as we move towards methods that convert black-box models into self-explainable, it
becomes crucial to quantitatively evaluate this discrepancy. We propose to use the Kullback-Leibler (KL)
divergence (DKL) between the Layer-wise Relevance Propagation (LRP) maps (Bach et al., 2015) for the
prediction probabilities produced by the SEM and the black-box baseline. Since the divergence acts on
distributions, the relevance maps need to be normalized. The use of LRP aligns with the previous utilization
of PRP. Other methods could be used, yet our intention here is not to evaluate the SEMs with respect to
these methods but rather with respect to the predicates.

Let us denote the output of the local explanation method for an input x as e(x)∈RW×H×C . The corresponding
normalized relevance en(x)∈RW×H is defined as:

en(x)= maxj=1...J |e(x)|(·, ·, j)∑
w=1...W

∑
h=1...H maxj=1...J |e(x)|(w, h, j) (2)

The divergence of en(x) with respect to the normalized local explanation maps produced by the black-box
backbone ebbox

n (x) is measured by Dfdl defined as follows:

Dfdl =
W∑

w=1

H∑
h=1

en(x)(w, h) log
(

en(x)(w, h)
ebbox

n (x)(w, h)

)
(3)
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Table 6: Faithfulness of explanations: divergence of LRP explanation maps from the black-box.
MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA

ProtoPNet 0.438±0.173 0.279±0.182 0.316±0.183 0.225±0.146 0.455±0.168 0.689±0.441 0.800±0.318

ProtoVAE 0.829±0.239 0.678±0.221 0.838±0.033 1.106±0.420 0.361±0.086 0.953±0.649 0.828±0.721

KMEx 0.086±0.141 0.169±0.163 0.199±0.159 0.159±0.163 0.354±0.109 0.082±0.141 0.554±0.219

The KL divergence is zero if, and only if, the distributions are equal. Consequently, Dfdl can be null if, and
only if, the SEM and the black-box models always produce the same explanations.

In Table 6, we report the average Dfdl based on LRP and standard deviation over five runs for each SEM
on 1000 images of each dataset. FLINT is excluded here because of the lack of clear LRP rules for such an
architecture. Normalized LRP maps for each model and on different datasets are represented in Appendix A.3.
Despite the quite large standard deviations, KMEx produces the most faithful feature importance maps. This
is expected since most of the operations happen in the encoder, which originates from the black-box model.
It is closely followed by ProtoPNet. On the other hand, ProtoVAE, which has the most different architecture,
also yields the most different local explanations.

4.2.4 Interpreted diversity

The abundance of existing strategies to guarantee the diversity of an SEM reflects the subjectivity of the
notion. Thus, it is not obvious how to evaluate this predicate in the input space, especially given that very
few public image datasets provide attributes describing the image. Thus, the evaluation has to be done in the
embedding space. However, using a metric based on distances in the embedding space would disadvantage
methods relying on a dot-product-based similarity measure and the other way around. We therefore propose
to evaluate SEMs on the basis of their own interpretation of diversity and to base our diversity metric on the
models’ own similarity function. In other words, the idea is to assess the extent to which models achieve
diversity on the basis of their own model choices.

The overarching objective of existing approaches for diversity is to prevent prototype collapse. In such a case,
the information captured by the prototypes highly overlaps, yielding inter-prototype similarities (s(pk, pl)
with k ̸= l) as high as prototypical self-similarities (s(pk, pk)). On the other hand, if prototype collapse is well
alleviated, the inter-prototype similarities are low, while the self-similarities remain high. This observation
motivates the use of the entropy function.

Accordingly, we quantify the diversity of a set of class concepts using Ddvs defined as the class average of the
normalized entropy of the similarities between each prototype of the class. The computation is done per class
and without discarding the ghosted prototypes, as they may indicate a collapse.

Ddvs = 1
K

K∑
k=1

H (Softmax (s(pk, p·)))
log(K) , (4)

where H is the entropy function. The log(K)-normalization restricts the measure to [0, 1] and allows
comparisons between different runs, number of prototypes, as well as models. Large values indicate more
similarity between the clusters and, thereby, less diversity.

In Table 7, we report the average Ddvs (Equation 4) score with standard deviations over five runs for
each SEM on each dataset. Recall that Ddvs estimates how well a model satisfies its own interpretation of
diversity. Following this, ProtoVAE and FLINT are, respectively, the most and the least satisfying models.
We emphasize here that a low diversity doesn’t reflect the caliber of the learned embedding space and
only suggests an important overlap of information between the representative prototypes learned for the
embeddings.
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Table 7: Interpreted diversity: quantitative evaluation of diversity for different SEMs.
MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA

ProtoPNet 0.691±0.067 0.717±0.020 0.708±0.031 0.768±0.081 0.548±0.052 0.687±0.102 0.741±0.158

FLINT 0.941±0.010 0.943±0.013 0.911±0.025 0.930±0.020 0.989±0.002 0.901±0.047 0.918±0.023

ProtoVAE 0.367±0.050 0.301±0.044 0.349±0.101 0.186±0.012 0.215±0.042 0.147±0.025 0.445±0.081

KMEx 0.453±0.067 0.402±0.083 0.389±0.087 0.399±0.058 0.373±0.071 0.374±0.085 0.443±0.068

Table 8: Quantitative evaluation of diversity by applying KMEx to learned SEM embeddings.
MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA

ProtoPNet+KMEx 0.698±0.073 0.649±0.024 0.640±0.040 0.688±0.030 0.401±0.018 0.641±0.068 0.742±0.062

Diff. 0.007 −0.068 −0.068 −0.080 −0.147 −0.046 0.001
FLINT+KMEx 0.205±0.039 0.161±0.014 0.109±0.015 0.138±0.029 0.313±0.077 0.180±0.051 0.228±0.019

Diff. −0.737 −0.782 −0.803 −0.793 −0.675 −0.721 −0.691
ProtoVAE+KMEx 0.331±0.052 0.244±0.069 0.208±0.072 0.127±0.017 0.520±0.067 0.067±0.007 0.434±0.075

Diff. −0.037 −0.057 −0.141 −0.059 0.305 −0.080 −0.012

4.2.5 Summary

In Figure 4, we summarize the results of Tables 3, 4 and 5 to 7 using an average radar plot for each model.
Axes are inverted when necessary such that a larger polygonal area is better. This visualization makes it easy
to identify the strengths and weaknesses of each SEM and thus determine the most suitable model according
to the problem statement at hand.

Figure 4: Summary of each model’s
strengths and weaknesses.

KMEx suffers the least of ghosting (good transparency) and is the most
faithful model with respect to the original black-box both in terms of
accuracy and explanation. ProtoPNet performs well in terms of pre-
dictions and robustness of the local explanations, but it underperforms
in terms of diversity. This is due to the lack of an inter-class diversity
constraint in the ProtoPNet’s design. On the other hand, ProtoVAE
leads in terms of diversity, but its explanations resemble the black-box
base model explanations the least. This is due to the utilization of
a VAE backbone, which deviates a lot from the architecture of the
black-box baseline. FLINT, for which local explanations could not
be evaluated, is satisfactory in terms of ghosting and fidelity of its
predictions. On the other hand, despite having an entropy constraint
for promoting diversity of the attributes, it obtains the worst results
in terms of measured diversity.

4.3 Diversity and embedding

In this section, we show that for the same embedding learned by an SEM, the KMEx paradigm for prototypes
may also be used to improve both the measured and qualitative diversity without retraining the embedding.

KMEx improves measured diversity We evaluate first how changing the paradigm of an SEM to KMEx
may improve the quantified diversity (Ddvs). We report in Table 8 average scores and standard deviations
over five runs for the KMEx of each SEM baseline and the average difference with Table 7. We observe
that KMEx almost always improves Ddvs scores (negative Diff.). The most significant gain is for FLINT,
which, after transformation, returns the lowest scores for several data sets. Recall that Ddvs can only serve
as an internal evaluation, therefore any further analysis of the prototypes requires an external criterion.
Visualizations of the prototypes are given in Appendix A.5.3.
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Figure 5: Analysis of the attributes captured by SEMs for different numbers of prototypes for CelebA.

KMEx improves minority subclass representation We further study here the diversity of the
prototypes in light of the representation of the attributes they capture. We interpret the notion of a fair
subclass representation for SEMs as whether prototypes are able to capture the information about the
underrepresented subclasses. For this experiment, we trained ResNet34+KMEx, ProtoPNet, ProtoVAE,
FLINT, and their KMEx on the CelebA dataset for male and female classification with varying numbers of
prototypes. Prototypes are represented in the input space by their nearest training images, which come with
40 binary attributes as annotations.

To put the observations in the other figures into perspective., we plot first in Figure 5.a the number of
prototypes ghosted against the number of prototypes trained. We see here clearly the depth of the issue for
FLINT and ProtoPNet. The two following plots (Figure 5.b) depict the number of captured attributes given
a number of trained prototypes, including ghosted ones. The left plot shows the results for the baselines and
the right one for their KMEx. FLINT starts and ends with fewer captured attributes, and it seems unstable
with a large number of prototypes. As for ProtoPNet, it caps at 32 attributes when trained with 12 or more
prototypes. On the other hand, the KMEx of any method (right plot), including ResNet34+KMEx (red),
always captures more attributes as the number of prototypes increases. The last experiment aims to evaluate
how many combinations of attributes are captured using the mean absolute error (MAE) between the attribute
correlation matrices computed from the training set and the prototypes. (Figure 5.c). The correlations based
on ProtoPNet’s prototypes are the most divergent, whereas ProtoVAE and ResNet34+KMEx consistently
come closer to the ground truth as the number of prototypes increases. Again, the attribute correlation
computed for any KMEx consistently improves as more prototypes are available.

Overall, KMEx of FLINT improves the most its original model in both criteria: the number of captured
attributes and the faithfulness of the attributes correlations. This observation reinforces the intuition that
FLINT learns an embedding with much more potential in terms of global explanations than it is able to
leverage through the prototypes it learns.

5 Conclusion

In this paper, we introduce KMEx, the first approach for making any black-box model self-explainable. KMEx
is a universally applicable, simple, and resource-efficient method that, unlike existing methodologies, does not
require re-training of the black-box model. Furthermore, we reconsider the subjective evaluation practices for
SEMs by introducing a quantitative evaluation framework that facilitates objective comparisons among SEM
approaches. The proposed framework adopts a set of novel metrics to quantify how well SEMs adhere to
the established predicates. An extensive evaluation with the help of the proposed framework highlights the
strengths and weaknesses of existing SEM approaches when compared to the models obtained from KMEx.
This work, therefore, additionally serves as a foundational step towards an objective, comprehensive, and
resource-efficient advancement of the SEM field.

One notable limitation of the proposed KMEx is its reliance on selecting a priori the number of prototypes, a
characteristic it shares with current state-of-the-art SEMs (Parekh et al., 2021; Gautam et al., 2022; Chen
et al., 2019b). Additionally, note that the proposed detailed quantitative evaluation framework is meant to
provide an additional perspective and not replace qualitative evaluations of SEMs, which are still required
due to the subjective nature of explanations.
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A Appendix

In this section, we provide additional details for the proposed evaluation framework. First, we provide
additional datasets and implementation details. We then provide qualitative results for the faithfulness
of explanations for completeness. Further, we provide preliminary results on a more complex dataset
CUB200 (Welinder et al., 2010), followed by additional qualitative results for KMEx.

A.1 Dataset details

All datasets used in this work are open-source. For all datasets, we use the official training and testing splits,
except for QuickDraw (Ha & Eck, 2018) for which we use a subset of 10 classes that was created by (Parekh
et al., 2021). This subset consists of the following 10 classes: Ant, Apple, Banana, Carrot, Cat, Cow, Dog,
Frog, Grapes, Lion. Each of the classes contains 1000 images of size 28×28 out of which 80% are used for
training and the remaining 20% for testing. The MNIST (Lecun et al., 1998), fMNIST (Xiao et al., 2017),
CIFAR-10 (Krizhevsky, 2009) datasets consist of 60,000 training images and 10,000 test images of size 28×28,
28×28 and 32×32, respectively. The MNIST, fMNIST and QuickDraw images are resized to 32×32 to obtain
a consistent latent feature size. SVHN (Netzer et al., 2011) consists of 73,257 training images and 26,032
images for testing of size 32×32. STL-10 (Coates et al., 2011) consists of 5000 images for training and 8000
for testing of size 96×96. All datasets have 10 classes, except for CelebA (Liu et al., 2015) for which we
perform binary classification of male vs female. The number of training and testing images for CelebA are
162,770 and 19,962, respectively, of size 224×224. The licenses for the datasets are provided in Table 9.

For preprocessing, every dataset’s respective mean and standard deviation for training data is used for
normalization. For MNIST, fMNIST, SVHN and QuickDraw, no augmentations were performed. For STL-10,
CIFAR-10 and CelebA, we apply a horizontal flip with a probability of 0.5 followed by random cropping after
zero-padding with size 2 was applied for augmentation.

Table 9: Licenses for datasets used in this work. N-C is used to denote that the data is free for non-commercial
use.

MNIST fMNIST SVHN CIFAR-10
License CC BY-SA 3.0 MIT CC0 1.0 MIT

STL-10 QuickDraw CelebA
License N-C CC BY 4.0 N-C

A.2 Implementation details

The experiments in this work were conducted on an NVIDIA A100 GPU. The backbone network used for all
models as well as all datasets consists of an ImageNet (Deng et al., 2009) pretrained ResNet34 (He et al., 2016).
The size of the latent vector is 512 and the batch size is 128 for all datasets as well as models. Stochastic
gradient descent (SGD) is used as the optimizer for training ResNet34 with momentum 0.9 for CelebA and
0.5 for all other datasets. For ProtoVAE and FLINT, an Adam (Kingma & Ba, 2015) optimizer is used.
Other hyperparameters including learning rate, number of epochs and number of prototypes are mentioned
in Table 10. Note that unlike other SEMs, KMEx requires tuning of only one additional hyperparameter i.e.,
the number of prototypes per class, compared to the closest black-box model.
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Table 10: Hyperparameter values for KMEx, ProtoPNet, FLINT and ProtoVAE for all the datasets.
MNIST fMNIST SVHN CIFAR-10 STL-10 QuickDraw CelebA

KMEx

No. of prototypes
per class 5 5 5 5 5 5 20

No. of epochs 10 10 10 30 30 30 10
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001

ProtoPNet

No. of prototypes
per class 5 5 5 5 5 5 20

No. of epochs
•warm 5 5 5 5 5 5 5
•train 15 15 15 15 15 15 15
•push interval 5 5 5 5 5 5 5
Learning rates
•joint, warm,
last layer
& prototypes

0.001 0.001 0.001 0.001 0.001 0.001 0.001

Loss weights
•Cross entropy 1 1 1 1 1 1 1
•Clustering 0.8 0.8 0.8 0.8 0.8 0.8 0.8
•Separation -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08
•l1 0.004 0.004 0.004 0.004 0.004 0.004 0.004

FLINT

No. of prototypes
per class 5 5 5 5 5 5 20

No. of epochs 10 10 10 30 30 30 10
Loss weights
•Cross entropy 0.8 0.8 0.8 0.8 0.8 0.8 0.8
•Input fidelity 0.8 0.8 0.8 0.8 0.8 0.8 0.8
•Output fidelity 1.0 1.0 1.0 1.0 1.0 1.0 1.0
•Conciseness 0.1 0.1 0.1 0.1 0.1 0.1 0.1
•Entropy 0.2 0.2 0.2 0.2 0.2 0.2 0.2
•Diversity 0.2 0.2 0.2 0.2 0.2 0.2 0.2

ProtoVAE

No. of prototypes
per class 5 5 5 5 5 5 20

No. of epochs 20 20 20 60 60 60 20
Loss weights
•Cross Entropy 1 1 1 1 1 1 1
•Reconstruction 0.1 0.1 0.1 0.1 0.1 0.1 0.1
•KL Divergence 1 100 100 100 100 100 100
•Orthogonality 0.1 0.1 0.1 0.1 0.1 0.1 0.1

A.3 Faithfulness of explanations

In this section, we qualitatively evaluate the faithfulness of explanations generated by an SEM to the closest
black-box. For this, as mentioned in the main text, we compute Layer-wise Relevance Propagation (LRP)
maps (Bach et al., 2015) for prediction probabilities. In Figure 6, we visualize the LRP maps for random
images from the CIFAR-10, CelebA and MNIST datasets. The LRP maps for the black-box ResNet34
and SEMs ProtoPNet, ProtoVAE and KMEx are shown. For MNIST, we also show LRP maps for a CNN
backbone. The CNN architecture used is from (Gautam et al., 2022). As observed, instead of producing
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non-robust explanations, KMEx remains most faithful to the black-box. This makes KMEx the SEM closest
to the corresponding black-box, thereby proving to be an efficient baseline.

CIFAR-10

CelebA

MNIST with a ResNet34 backbone

MNIST with a CNN backbone

Figure 6: Normalized LRP maps computed on different datasets and with different architectures.

A.4 Preliminary results for a patch-based KMEx on CUB200

We report here preliminary results for the CUB200 (Welinder et al., 2010) dataset. The data consists of 6000
images of 200 classes of birds. We also present a naive extension of KMEx at the patch level. The idea is to
compute the patch prototypes right before the final average pool (7 × 7 = 49 patches per image). The class
predictions for an image are then derived as the majority vote of the KMEx predictions for each patch.

We report accuracy in percentage in Table 11 for a ResNet34 and its KMEx based on the full images and
patches both with 10 prototypes per class. Similarly to (Chen et al., 2019b), we show in Figure 7 the patch
prototypes for 10 classes as red rectangles in the closest training image. Note, that some prototypes capture
background regions, indicating that the model has learned to exploit background cues.

The drop in accuracy when using patches is not surprising, since the task is more complex. Yet, the results
are encouraging and highlight the versatility of KMEx.
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Table 11: Classification performance on CUB200 dataset.

ResNet34 ResNet34+KMEx
Full images Patches

Accuracy 78.6 78.4 70.0

Figure 7: Patch prototypes labeled with class id, importance and patch id.

A.5 Additional qualitative results

As mentioned in the main text, quantitative evaluation is not meant to replace the qualitative evaluation
of SEMs. Therefore, in this section, we provide qualitative results including prototype visualizations for
KMEx. We also show the visual classification strategy used by KMEx using the prototypes for different test
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examples, thereby exhibiting this (image) looks like that (prototype). We show this for both correctly and
incorrectly test examples to further understand the decision-making process of our SEM. Additionally, we
also qualitatively compare the diversity of prototypes for different SEMs.

A.5.1 Prototypes learned by KMEx: Figure 8

We visualize the prototypes of KMEx as the images in the training set that have the closest embedding in
the latent space to the prototypes. The prototypes are shown for MNIST, fMNIST, SVHN and STL-10 in
Figure 8. It can be observed that the prototypes are very diverse and therefore efficiently represent different
subgroups of classes.

A.5.2 KMEx: This looks like that: Figure 9

We now visually demonstrate the decision-making process of the proposed SEM. In Figure 9, for random test
examples, we show the closest prototype for the MNIST, fMNIST, CelebA, SVHN, STL-10, and CIFAR-10
datasets. It can be observed that the images look very similar to the closest prototypes, which illustrates
that representative prototypes are learned. Additionally, we also demonstrate this behavior for misclassified
examples (marked by a red rectangle) in Figure 9. As can be seen, the misclassified test images look very
similar to prototypes from different classes. Therefore, the simple this looks like that behavior exhibited by
KMEx is able to provide meaningful and transparent decisions.

A.5.3 KMEx improves the diversity of prototypes: Figures 10-12

We now compare the prototypes of different SEMs, thereby qualitatively comparing the diversity of the
prototypes. For consistency and fair comparison, we visualize the closest training images for all the models.
In Figure 11, we visualize the prototypes learned by KMEx and ProtoPNet for the MNIST dataset. As
observed, ProtoPNet’s prototypes lack diversity, which is especially visible for classes 1, 4, 5, and 7. Applying
KMEx on ProtoPNet’s embeddings drastically improves the diversity, as shown in Figure 11 (right). Similarly,
we compare the prototypes for KMEx and ProtoVAE in Figure 12 for the STL-10 dataset and for KMEx and
FLINT in Figure 10. In all the cases, KMEx efficiently improves the diversity of the prototypes.
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MNIST FMNIST

SVHN STL10

Figure 8: Prototypes learned by KMEx for several datasets. The class label is written on the top of each
prototype image along with its importance in the brackets.
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Figure 9: This looks like that behavior exhibited by KMEx for MNIST, fMNIST, QuickDraw, SVHN, STL-10
and CIFAR-10 datasets. The classification is based on 1-nearest-neighbor, therefore only the closest prototype
for each input image is required as the explanation. Misclassified examples are marked in red.

KMEx

FLINT

FLINT + KMEx

Figure 10: Prototypes learned by KMEx (top) and FLINT (middle) and FLINT-KMEx (bottom) for the
CelebA dataset. KMEx generates more diverse prototypes and is again additionally able to improve the
prototypes learned over FLINT’s embeddings.
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KMEx ProtoPNet ProtoPNet + KMEx

Figure 11: Prototypes learned by KMEx (left) and ProtoPNet (middle) and ProtoPNet-KMEx (right) for the
MNIST dataset. KMEx generates more diverse prototypes and is additionally able to improve the prototypes
learned over ProtoPNet’s embeddings.

KMEx ProtoVAE ProtoVAE + KMEx

Figure 12: Prototypes learned by KMEx (left) and ProtoVAE (middle) and ProtoVAE-KMEx (right) for
the STL-10 dataset. KMEx generates more diverse prototypes and is again additionally able to improve the
prototypes learned over ProtoVAE’s embeddings.
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