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ABSTRACT

Existing losses used in deep metric learning (DML) for image retrieval often lead
to highly non-uniform intra-class and inter-class representation structures across
test classes and data distributions. When combined with the common practice of
using a fixed threshold to declare a match, this gives rise to significant perfor-
mance variations in terms of false accept rate (FAR) and false reject rate (FRR)
across test classes and data distributions. We define this issue in DML as thresh-
old inconsistency. In real-world applications, such inconsistency often compli-
cates the threshold selection process when deploying commercial image retrieval
systems. To measure this inconsistency, we propose a novel variance-based metric
called Operating-Point-Inconsistency-Score (OPIS) that quantifies the variance in
the operating characteristics across classes. Using the OPIS metric, we find that
achieving high accuracy levels in a DML model does not automatically guaran-
tee threshold consistency. In fact, our investigation reveals a Pareto frontier in
the high-accuracy regime, where existing methods to improve accuracy often lead
to degradation in threshold consistency. To address this trade-off, we introduce
the Threshold-Consistent Margin (TCM) loss, a simple yet effective regulariza-
tion technique that promotes uniformity in representation structures across classes
by selectively penalizing hard sample pairs. Extensive experiments demonstrate
TCM’s effectiveness in enhancing threshold consistency while preserving accu-
racy, simplifying the threshold selection process in practical DML settings.

1 INTRODUCTION

Deep metric learning (DML) has shown success in various open-world recognition and retrieval
tasks (Schroff et al., 2015a; Wu et al., 2017; Deng et al., 2019; Wang et al., 2018). Nevertheless,
the common DML losses, such as contrastive loss (van den Oord et al., 2018; Chen et al., 2020),
pairwise loss (Brown et al., 2020; Patel et al., 2022) and proxy-based losses (Kim et al., 2020;
Movshovitz-Attias et al., 2017; Qian et al., 2019; Deng et al., 2019), often yield highly varied intra-
class and inter-class representation structures across classes (Liu et al., 2019; Duan et al., 2019;
Zhao et al., 2019). Hence, even if an embedding model has strong separability, distinct classes may
still require varying thresholds to uphold a consistent operating point in terms of false reject rate
(FRR) or false acceptance rate (FAR). This challenge is particularly important in real-world image
retrieval systems, where a threshold-based retrieval criterion is preferred over a top-k approach due
to its ability to identify negative queries without matches in the gallery. However, selecting the
right threshold is difficult, especially when systems must cater to diverse use-cases. For instance, in
clothing image retrieval for online shopping, the similarity between two T-shirts can be significantly
different from that between two coats. A threshold that works well for coats may lead to poor
relevancy and give many false positives in the retrieved images for T-shirts, as shown in Figure 1.
These difficulties are more pronounced in the open-world scenarios (Scheirer et al., 2012; Bendale &
Boult, 2015; 2016), where the test classes may include entirely new classes not seen during training.

We define the phenomenon in DML, where different test classes and distributions require varying
distance thresholds to achieve a similar retrieval or recognition accuracy, as threshold inconsis-
tency. In commercial environments, particularly under the practical evaluation and deployment
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Figure 1: Here we show that (a) without threshold-consistent representation, selecting the right threshold for
a commercial image retrieval system that serves a diverse range of test classes and distributions is challenging.
It requires careful manual tuning of retrieval thresholds to strike a balance across multiple datasets. However,
(b) with threshold-consistent representation, different test distributions yield similar distance thresholds at the
performance target, effectively simplifying the otherwise complicated manual threshold tuning process. In the
plots, d∗ denotes the distance threshold selected to align the False Positive (FP) rate with a pre-defined target.

setting with one fixed threshold for diverse user groups (Liu et al., 2022), the significance of thresh-
old inconsistency cannot be overstated. Accurate quantification of this inconsistency is essential
for detecting potential biases in the chosen threshold. To this end, we introduce a novel evaluation
metric, named Operating-Point-Inconsistency-Score (OPIS), which quantifies the variance in the
operating characteristics across classes within a target performance range. Using OPIS, we observe
an accuracy-threshold consistency Pareto frontier in the high accuracy regime, where methods to
improve accuracy often result in a degradation in threshold consistency, as shown in Figure 3. This
highlights that achieving high accuracy does not inherently guarantee threshold consistency.

One solution to this problem is using posthoc calibration methods (Platt et al., 1999; Zadrozny &
Elkan, 2002; Guo et al., 2017a), which adjust a trained model’s distance thresholds to align with
specific operating points in FAR or FRR. However, in real-world settings, these methods can be
inefficient and lack robustness, as they involve constructing separate calibration datasets and may
require prior knowledge about the test distribution for effective calibration (Naeini et al., 2015; Guo
et al., 2017a). Moreover, they do not address the threshold inconsistency problem unless customized
calibration is done for each user. Another option is employing conformal prediction (Romano et al.,
2020; Gibbs & Candes, 2021), which guarantees confidence probability coverage and can handle
complex data distributions as well as covariate and label shifts. However, conformal prediction in-
herently assumes a closed-world setting, where training and test samples share the same label space.
In contrast, real-world image retrieval systems typically operate in an open-world environment, pre-
senting a more complex and realistic setting with unknown classes at test time.

Given these challenges, an essential question arises: Can we train an embedding model for open-
world image retrieval that sustains a consistent distance threshold across diverse data distributions,
thus avoiding the complexities of posthoc threshold calibration? This objective falls within the scope
of calibration-aware training. In closed-set classification, the goal of calibration-aware training is to
align predicted confidence probabilities with empirical correctness of the model (Guo et al., 2017a;
Müller et al., 2019; Mukhoti et al., 2020). However, our focus lies on what we term as threshold-
consistent DML, a paradigm that trains an embedding model with reduced threshold inconsistencies,
such that a universal distance threshold can be applied to different test distributions to attain a similar
level of FAR or FRR. This differentiation is crucial because in DML the output similarity score does
not strictly reflect the empirical correctness of the model (Xu et al., 2023) and may exhibit strong
variations across test data distributions. To address the unique challenges of threshold inconsistency
in DML, we propose a simple yet effective regularization technique called Threshold-Consistent
Margin (TCM) loss. Through experiments on four standard image retrieval benchmarks, we vali-
date the efficacy of the TCM regularization in improving threshold consistency while maintaining
accuracy. To summarize, our contributions are as follows:

• We propose a novel variance-based metric, named Operating-Point-Inconsistency-Score
(OPIS), to quantify the threshold inconsistency of a DML model. Notably, OPIS does not
need a separate hold-out dataset besides the test set, enhancing flexibility in evaluation.
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• We observe an accuracy-threshold consistency Pareto frontier in the high accuracy regime.
This finding underscores that achieving high model accuracy in DML does not automati-
cally guarantee threshold consistency, necessitating dedicated solutions.

• We introduce the Threshold-Consistent Margin (TCM) loss, a simple yet effective regular-
ization technique, that can be combined with any base losses and backbone architecture to
improve threshold consistency in DML. Our approach outperforms SOTA methods across
various standard image retrieval benchmarks, demonstrating substantial improvements in
threshold consistency while maintaining or even enhancing accuracy.

2 RELATED WORKS

DML losses for image retrieval Advancements in DML losses for image retrieval have focused
on improving accuracy, scalability and generalization Brown et al. (2020); Patel et al. (2022); Deng
et al. (2020); Kim et al. (2023); Roth et al. (2020); Kan et al. (2022); Ypsilantis et al. (2023). The
pioneering work of the Smooth-AP loss (Brown et al., 2020) optimizes a smoothed approximation
for the average precision. Similarly, the Recall@k Surrogate loss (Patel et al., 2022) approximates
the recall@k metric. Leveraging vision-transformer backbones and large batch sizes, Recall@k
Surrogate has achieved remarkable performance in several image retrieval benchmarks. However,
these pairwise methods are inefficient when dealing with a large number of classes. To reduce the
computational complexity, proxy-based methods such as ProxyAnchor (Kim et al., 2020), Prox-
yNCA (Movshovitz-Attias et al., 2017), SoftTriple (Qian et al., 2019), ArcFace (Deng et al., 2019),
and HIER (Kim et al., 2023) are employed, where sample representations are compared against class
prototypes. Despite high accuracy, these methods still face challenges in biases and fairness (Fang
et al., 2013; Ilvento, 2019; Dullerud et al., 2022) and display inconsistencies in distance thresholds
when applied in real-world scenarios (Liu et al., 2022).

Evaluation Metrics for threshold consistency (inconsistency) In closed-set classification, thresh-
old consistency is usually evaluated through calibration metrics, such as Expected Calibration Error
(ECE) (Naeini et al., 2015), Maximum Calibration Error (MCE) (Guo et al., 2017b) and Adaptive
ECE (Nixon et al., 2019). These metrics gauge how well a model’s predictions match actual correct-
ness. However, directly applying them to evaluate threshold consistency in DML (e.g., by replacing
confidence probability with similarity measures) is not straightforward. A key hurdle is that DML
uses distance measurements to represent semantic similarities, and these distances can vary widely
across different classes due to the intrinsic non-bijectiveness of semantic similarity in the data (Roth
et al., 2022). In the context of DML, OneFace (Liu et al., 2022) introduced the calibration threshold
for face recognition systems, which corresponds to the distance threshold at a given FAR of a sepa-
rate calibration dataset. They further propose the One-Threshold-for-All (OTA) evaluation protocol
to measure the difference in the accuracy performance across datasets at this calibration threshold
as an indicator for threshold consistency. However, this approach requires a dedicated calibration
dataset, which can be difficult to acquire in practice. To our knowledge, there is no widely accepted
and straightforward metric for threshold consistency in DML.

Calibration-aware training vs Posthoc threshold calibration Calibration-aware training has been
well studied in closet-set classification, where the goal is to align predicted probabilities with empir-
ical correctness (Guo et al., 2017a; Müller et al., 2019; Mukhoti et al., 2020). Common approaches
use a regularizer to guide the model in generating more calibrated predictions (Pereyra et al., 2017;
Liang et al., 2020; Hebbalaguppe et al., 2022). Yet, threshold-consistent training for DML dif-
fers from calibration-aware training. Instead of aligning model output with empirical correctness,
threshold-consistent DML seeks to maintain a consistent distance threshold across classes and data
distributions. In face recognition, Liu et al. (2022) introduces the Threshold Consistency Penalty to
improve threshold consistency among various face domains. The method divides mini-batch data
into 8 domains and computes each domain threshold using a large set of negative pairs from a fea-
ture queue. It then adjusts the loss contribution from each sample based on the ratio of its domain
threshold to the in-batch calibration threshold. However, this method is designed for face recog-
nition – a more constrained scenario. In contrast, our target is general image retrieval tasks which
can involve significantly more domains, making it impractical to construct negative pairs for all
domains. Besides train-time methods, another approach is posthoc threshold calibration, such as
Platt calibration (Platt et al., 1999), isotonic regression (Zadrozny & Elkan, 2002) and temperature
scaling (Guo et al., 2017a), which seeks to calibrate the operating point of a trained model using
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Figure 2: Utility - Distance Threshold Curves are presented for test classes in the iNaturalist-2018 and Cars-
196 datasets. Each curve represents a class in its respective dataset. The calibration range is underscored by
the red lines. As defined in Eq.2, the calibration range is based on a pre-defined FAR or FRR target. Thus,
changing the loss can result in minor shifts in the calibration range. After integration of the TCM regularization,
a significant enhancement in the alignment of utility curves across various classes is observed, accompanied by
a notable enhancement in threshold consistency, as indicated by the reduction in OPIS by up to 55%.

hold-out calibration datasets. However, it cannot solve threshold inconsistency unless customized
calibration is conducted for each user. Another category of posthoc calibration method is conformal
prediction (Tibshirani et al., 2019; Romano et al., 2020; Gibbs & Candes, 2021; Barber et al., 2023),
which can be applied beyond the setting of exchangeable data even when the training and test data
are drawn from different distributions. However, conformal prediction relies on a closed-set setting
where the training and test data share the same label space, which does not apply to open-world im-
age retrieval. Thus, in this work, we focus on developing a threshold-consistent training technique
tailored for DML, with the goal of simplifying the posthoc calibration process in practical settings.

3 THRESHOLD INCONSISTENCY IN DEEP METRIC LEARNING

Visualizing threshold inconsistency in image retrieval We visually illustrate the issue of thresh-
old inconsistency in DML using image retrieval datasets. First, we borrow the widely-used F -
score (Sasaki et al., 2007) to define the utility score, incorporating both sides of the accuracy metric
(e.g. precision and recall, or specificity and sensitivity). Specifically, we denote one side as ϕ and
the other side as ψ, and define the utility score, denoted as U, as follows:

U(d) =
(1 + c2) · ϕ(d) · ψ(d)

c2ϕ(d) + ψ(d)
(1)

where d is the distance threshold (d ∈ [0, 2] for hyperspherical embeddings), and c is the relative
importance of ψ over ϕ (c = 1 if not specified). Without loss of generality, we let ϕ be specificity
(same as TNR or 1− FAR) and ψ be sensitivity (same as recall or 1− FRR).1

In Figure 2, we present the accuracy utility-distance threshold curves for the test classes using mod-
els trained on the iNaturalist-2018 (Horn et al., 2017) and Cars-196 (Krause et al., 2013) datasets.
In the left column of each subfigure, we observe considerable variations in the operating character-
istics among distinct classes for models trained with the popular Smooth-AP loss. These variations
make it difficult to select a single distance threshold that works well across the entire spectrum of
test distributions. However, while we will elaborate on in later sections, incorporating our proposed
TCM regularization during training visibly improves the threshold consistency across classes, as
evidenced by the more aligned utility curves compared to those without the TCM regularization.

OPIS for overall threshold inconsistency To quantify threshold inconsistency in DML, we intro-
duce a variance-based metric, Operating-Point-Inconsistency Score (OPIS). Unlike the OTA evalu-
ation proposed in Liu et al. (2022), OPIS does not require a separate calibration dataset. It quantifies
the variance in the operating characteristics across test classes in a predefined calibration range of
distance thresholds. This calibration range, denoted as [dmin, dmax], is typically determined based
on the target performance metric operating ranges (e.g., a <FAR< b, where a, b are pre-determined
error constraints). Formally, the OPIS metric can be expressed as follows:

OPIS =

∑T
i=1

∫ dmax

dmin
||Ui(d)− Ū(d)||2 dd

T · (dmax − dmin)
(2)

1We employ the specificity and sensitivity pair because they are particularly relevant for visual recognition
applications and are not sensitive to changes in test data composition.
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where i = 1, 2, ..., T is the index for the test classes, Ui(d) is the accuracy utility for class i, and
Ū(d) is the average utility for the entire test dataset.

ϵ-OPIS for utility divide between groups The overall OPIS metric does not emphasize on the
outlier classes. For applications where outlier threshold consistency is essential, we also provide a
more fine-grained metric that focuses on the utility disparity between the best and worst sub-groups.
First, we define the utility of the ε percentile of best-performing classes as follows:

Uεbest
(d) =

ϕεbest
(d) · ψεbest

(d)

ϕεbest
(d) + ψεbest

(d)
(3)

where ϕεbest
(d), ψεbest

(d) are the expected accuracy metrics for the entirety of the ε percentile of
the best-performing classes. By replacing εbest with εworst, the same can be defined for Uεworst(d).
Then, we define the ε-OPIS metric as the following:

ε-OPIS =
1

dmax − dmin

∫ dmax

dmin

||Uεworst(d)−Uεbest(d)||
2 dd (4)

By definition, the ε-OPIS metric is maximized at ε → 0, and eventually becomes zero when ε →
100% as the best-performing set and worst-performing set become identical.

Figure 3: The plot depicts the relations between recog-
nition error (measured by 100−recall@1, the lower the
better) and threshold inconsistency (measured by OPIS,
the lower the better) across low- and high-accuracy
regimes. Each represents a trained DML model, with
its size indicating the batch size used during training. In
the low accuracy regime, located in the right side of the
plot, there is a simultaneous improvement in threshold
consistency and accuracy, as highlighted by↙. How-
ever, beyond a certain point, a Pareto frontier emerges
(indicated by↖), where enhancing accuracy comes at
the expense of threshold consistency. Notably, the in-
clusion of our proposed TCM regularization (marked in

) leads to a substantial OPIS reduction, well below the
marked Pareto frontier. Best viewed in color.

High accuracy ̸= High threshold consistency
In Figure 3, we employ the OPIS metric to ex-
amine the relations between threshold inconsis-
tency and recognition error in embedding mod-
els trained with various DML losses, backbones
and batch sizes. Notably, we observe distinct
behaviors across different accuracy regimes. In
the low-accuracy regime, located in the right of
the plot, we notice a simultaneous improvement
of accuracy and threshold consistency. This
aligns with the established notion that improv-
ing model discriminability helps threshold con-
sistency by strengthening the association be-
tween samples and their corresponding class
centroids. However, as the error decreases, a
trade-off surfaces in the high-accuracy regime.
Here, the reduction in error is correlated with
increased threshold inconsistency, leading to
the formation of a Pareto frontier.

The trade-off between recognition error and
threshold inconsistency highlights that achiev-
ing high accuracy alone does not automatically
guarantee threshold consistency. In this con-
text, introducing the proposed OPIS metric as
an additional evaluation criterion alongside re-
call@k is crucial for threshold-based commer-
cial DML applications, where the ability to identify negative queries without matching classes in
the gallery is of importance. To explain further, we compare OPIS with the widely-used accuracy
metric, recall@k. These two metrics evaluate different aspects of a model and can be used com-
plementarily: recall@k focuses on top-k relevancy (retrieving top-k similar samples as the query
from a collection), and OPIS measures the inconsistency in threshold-relevancy (retrieving similar
examples above a threshold from a collection). Moreover, unlike recall@k that solely gauges recall,
OPIS evaluates both the FAR and FRR (=recall), offering a more holistic error assessment.

4 TOWARDS THRESHOLD-CONSISTENT DEEP METRIC LEARNING

To tackle the threshold inconsistency problem, we introduce the Threshold-Consistent Margin
(TCM) loss. TCM specifically penalizes hard positive and hard negative sample pairs near the
decision boundaries outlined by a pair of cosine margins. This strategy is in line with several stud-
ies (Dong et al., 2017; Xuan et al., 2020; Robinson et al., 2020) that emphasize hard mining for
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Figure 4: (a) An overview of the threshold-consistent DML training framework. Here, the base loss and TCM
regularization are combined in an additive fashion to reduce the trade-off between accuracy and threshold
consistency. (b) Distinguishing TCM from Margin-Based Softmax Loss such as Deng et al. (2019). See TCM
vs Margin-based Softmax loss section for detailed explanation of the differences. In this illustration, θ1 and
θ2 represent the intra-class arc lengths for the blue and red classes, respectively. x1 and x3 are both instances
of the blue class with class centroid W1, whereas x2 belongs to the red class with centroid W2. In this case,
x1, x2 are hard negative sample pairs, and x1, x3 are hard positive sample pairs. Best viewed in color.

extracting more informative samples. Let S+ and S− be the sets of cosine similarity scores for
positive and negative pairs in a mini-batch, respectively, the TCM loss is formulated as follows:

LTCM = λ+ ·
∑

s∈S+(m+ − s) · 1s≤m+∑
s∈S+ 1s≤m+

+ λ− ·
∑

s∈S−(s−m−) · 1s≥m−∑
s∈S− 1s≥m−

(5)

where 1condition = 1 if the condition is true, and 0 otherwise. λ+ and λ− are the weights assigned to
the positive and negative regularizations, respectively. The TCM regularizer can be combined with
any base loss Lbase, resulting in the final objective function:

Lfinal = Lbase + LTCM (6)
Design justification: representation structures Several works have shown a strong correlation
between model accuracy and representation structures (Yu et al., 2020; Chan et al., 2022). Indeed,
SOTA DML losses are designed to optimize this relationship by encouraging intra-class compact-
ness and inter-class discrimination. However, when considering threshold consistency, the focus
shifts towards achieving consistent performance in FAR and FRR in the calibration range, with an
emphasis on local representation structures near the distance threshold. In this context, the TCM
regularization serves as a “local inspector" by selectively adjusting hard samples to prevent over
separateness and excessive compactness in the vicinity of the margin boundaries. This strategy also
aligns with previous work that found excessive feature compression actually hurts DML general-
ization (Roth et al., 2020). Since the margin constraints are applied globally, this helps encourage
more equidistant distribution of class centroids and more uniform representation compactness across
different classes in the embedding space.

Hard mining strategy TCM regularizes on hard samples, distinguishing it from techniques that
encourage similarity consistency by minimizing marginal variance (Kan et al., 2022). Specifically,
TCM’s hard mining strategy is different from the semi-hard negative mining strategy (Schroff et al.,
2015b) and its variants (Oh Song et al., 2016; Wu et al., 2017; Wang et al., 2019), as TCM’s hard
mining is based on the absolute cosine similarity values, rather than their relative differences. Mean-
while, TCM also differs from ROADMAP (Ramzi et al., 2021) in that TCM utilizes hard positive
and negative counts, whereas ROADMAP uses the total positive and negative counts. This makes
TCM well-suited for scenarios involving large batch sizes (as is the standard in DML) and significant
imbalances between the counts of positive and negative pairs2.

Connection to the calibration range TCM is implicitly connected to the calibration range of the
OPIS metric through the two cosine margins. Since cosine similarity is bijective with the L2 dis-
tance for hyperspherical embeddings, these margin constraints ensure that the model’s intra-class
and inter-class representation structures adhere to the desired distance threshold range, which is
[
√
2− 2m+,

√
2− 2m−]. However, due to the inevitable distributional shift between the training

and testing datasets, the selection of the margin constraints requires some hyper-parameter tuning
and cannot be directly estimated from the calibration range. In Figure 6, we give guidance on how
to select the margins, with details discussed in the ablation of TCM margin hyperparameters.

TCM vs Margin-based Softmax loss TCM has distinguishing characteristics when compared to
margin-based softmax losses (Deng et al., 2019; Qian et al., 2019), as illustrated in Figure 4(b).

2An detailed comparison between TCM and the method of Ramzi et al. (2021) is given in appendix A.2.2
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First, TCM is designed as a regularizer that operates in conjunction with a base loss. It specifically
applies to hard sample pairs that are located near the margin boundaries. Second, TCM employs
two cosine margins to regularize the intra-class and inter-class distance distributions simultaneously.
This allows TCM to capture both hard positive and hard negative examples, resulting in more hard
pairs within a mini-batch. Secondly, the TCM loss is specifically applied to the hard pairs, contrast-
ing with Arcface, which is applied to all pairs. Last, TCM is a sample-level pair-wise loss, which
better models the relationships between individual samples compared to proxy-based methods.

Figure 5: We present visualizations of 2D embed-
ding distributions for the MNIST dataset, both with and
without TCM regularization. In the figure, each arrow’s
direction corresponds to a class centroid and is labeled
with its respective digit in white. The width of the line
perpendicular to each arrow reflects the intra-class rep-
resentation compactness, with narrower lines indicating
more compact embeddings. The color intensity con-
veys the probability density distribution of embeddings
within each class, with higher density depicted in red.

Visualization of TCM effect We visualize the
effect of the TCM regularization on represen-
tation structures across the 10 classes in the
MNIST dataset of handwritten digits (LeCun
et al., 1998) by training a shallow CNN using
the Arcface loss (Deng et al., 2019). For clearer
visualization, we use two-dimensional features
and employ kernel-density estimation (Chen,
2017) to model the probability density function
for the embeddings of each class. As shown
in Figure 5, compared to using ArcFace (Deng
et al., 2019) only, the incorporation of TCM
(ArcFace+TCM) enhances the separation be-
tween digits 2 and 5 (lower middle), 0 and 8
(lower right), and 4 and 9 (upper left). This
observation supports our claims about TCM’s
ability in refining the representation structures
for improved threshold consistency.

5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets For training and evaluation, we use four commonly-used image retrieval benchmarks,
namely iNaturalist-2018 (Horn et al., 2017), Stanford Online Product (Song et al., 2015), CUB-200-
2011 (Wah et al., 2011) and Cars-196 (Krause et al., 2013). These benchmarks cover a diverse set
of data domains including natural species, online catalog images, birds, and cars. As in previous
works (Brown et al., 2020; Patel et al., 2022; An et al., 2023), the iNaturalist and Stanford Online
Product datasets use an open-world train-test-split, where the training classes are disjoint from the
ones in testing. For CUB and Cars, we use shared train-test classes to make fair comparisons with
prior DML methods3. The details to each dataset can be found in Table 1.

Evaluation metrics We measure model accuracy using the recall@k metric and assess threshold
inconsistency using the OPIS and ϵ-OPIS metrics as defined earlier. Similar to previous works (Veit
& Wilber, 2020; Liu et al., 2022), we estimate threshold inconsistency by comparing normalized
features of image pairs in 1:1 comparisons. In the case of the iNaturalist-2018 and Stanford Online
Product datasets, given the large number of classes, we only sample positive pairs exhaustively and
randomly sample negative pairs with a fixed negative-to-positive ratio of 10-to-1 for each class. All
positive and negative pairs in the CUB and Cars datasets are exhaustively sampled.

Implementation details We use two backbone architectures, namely ResNet (He et al., 2016) and
Vision Transformer (Dosovitskiy et al., 2020), both pretrained on ImageNet4. Since the original
papers do not report OPIS, we train both baseline models (without TCM) and TCM-regularized
models using the same configuration. The hyperparameters for each base loss are taken from the
original papers. For TCM, we set λ+ = λ− = 1. For OPIS, the calibration range is set to 1e-2 ≤
FAR ≤ 1e-1 for all benchmarks. The margin parameters (m+, m−) are tuned using grid search on
10% of the training data for each benchmark. We adopt the same optimization schemes as specified

3We also provide results for CUB and Cars in the open-world setting in Appendix A.2.5.
4For ResNet, we follow Brown et al. (2020) and use ImageNet-pretrained backbones. For ViTs, we fol-

low Patel et al. (2022) and use ImageNet-21k pretrained backbones released by timm library (Wightman, 2019).
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Table 1: Dataset statistics. The datasets with a open-
world train-test split are highlighted in light gray.

Train Test
Dataset # Ims # Cls # Ims/Cl # Ims # Cls # Im/Cl

iNat 325846 5,690 57.3 136093 2,452 55.5
SOP 59551 11318 5.3 60502 11316 5.3
CUB 5994 200 30.0 5794 200 29.0
Cars 8054 196 41.1 8131 196 41.5

Table 2: The influence of TCM regularization on dif-
ferent base losses for ResNet50512 backbones.

Lbase + Lreg R@1 R@4 R@16 OPIS×1e-3
ProxyNCA + TCM 63.1 (↑1.4) 78.6 (↑1.4) 88.3 (↑1.0) 0.38 (↓0.16)

ArcFace + TCM 63.6 (↑1.0) 78.6 (↑0.9) 88.3 (↑0.8) 0.25 (↓0.05)
SAP + TCM 69.1 (↑1.7) 82.9 (↑1.0) 91.1 (↑0.7) 0.17 (↓0.16)

RS@K + TCM 72.2 (↑1.5) 84.9 (↑1.2) 92.1 (↑1.0) 0.11 (↓0.17)

Table 3: Impact of TCM regularization on various
DNN models trained with the Recall@k Surrogate loss
at a batch size of 4000 as in Patel et al. (2022).

Arch.dim R@1 R@4 R@16 OPIS× 1e-3
ResNet50512 72.2 (↑1.5) 84.9 (↑1.2) 92.1 (↑1.0) 0.11 (↓0.17)

ResNet101512 73.8 (↑1.7) 85.8 (↑1.1) 92.6 (↑0.9) 0.14 (↓0.13)
ViT-S/16512 81.6 (↑0.7) 90.9 (↑0.5) 95.6 (↑0.5) 0.17 (↓0.04)
ViT-B/16512 84.8 (↑0.8) 92.7 (↑0.6) 96.5 (↑0.4) 0.17 (↓0.20)
ViT-L/16512 85.7 (↑0.7) 93.0 (↑0.7) 96.6 (↑0.7) 0.21 (↓0.13)

Table 4: Time complexities of TCM in compari-
son to the Recall@k Surrogate loss on the Cars-196
dataset. The ViT-B/16 backbone is utilized with 8×
Tesla V100 GPUs and a batch size of 392.

Method Complexity tloss (s) tbackbone (s) tepoch (s)
RS@k O(n2) 19.9 102.6 131.3

RS@k + TCM O(n2) 21.1 104.0 133.2
Delta O(1) +6.03% +1.36% +1.44%

in the original papers for each base loss. During training, mini-batches are generated by randomly
sampling 4 images per class following previous works (Brown et al., 2020; Patel et al., 2022).

5.2 ABLATION AND COMPLEXITY ANALYSIS

Unless stated otherwise, all ablation studies are conducted using the iNaturalist-2018 dataset. Owing
to space constraints, further ablations can be found in the appendix.

Effect of TCM margins We examine the impact of the cosine margins m+, m− on accuracy and
OPIS. As shown in Figure 6, adding TCM consistently enhances threshold consistency compared
to the baseline Smooth-AP loss across all combinations of margins, with up to 50% of reduction

Figure 6: Impact of TCM margins on recall@1 and
OPIS for ResNet50512 models. The Smooth-AP base
loss is utilized, yielding baseline results without TCM
as recall@1 = 67.4% and OPIS = 3.3e-4.

in OPIS. Regarding accuracy, we observe that
the negative margin (m−) has a greater in-
fluence than the positive margin (m+), which
aligns with previous works (Dong et al., 2017;
Xuan et al., 2020; Robinson et al., 2020). How-
ever, when the negative margin becomes exces-
sively stringent, such as m− = 0.25, the ac-
curacy drops below the baseline. We hypoth-
esize that an overly restrictive negative mar-
gin may interfere with the base loss, leading to
decreased accuracy. For ImageNet-pretrained
backbones, the recommended values for m+

and m− are around 0.9 and 0.5, respectively.

Compatibility with various base DML losses We select the most representative DML losses for
each method category, including proxy-based methods (Movshovitz-Attias et al., 2017; Deng et al.,
2020) and pairwise-based methods (Brown et al., 2020; Patel et al., 2022). Notably, the Recall@k
surrogate loss (Patel et al., 2022) represents the SOTA loss for fine-grained image retrieval tasks.
We run experiments using these base losses with and without the TCM regularization. As shown
in Table 2, there is a consistent improvement in both accuracy (> 1.0% increase in recall@1) and
threshold consistency (up to 60.7% in relative reduction) when TCM regularization is applied in
conjunction with different high-performing base losses.

Compatibility with different architectures We investigate the compatibility of TCM regularization
with different backbone architectures including ResNet variants and Vision Transformers. As shown
in Table 3, we observe significant improvements in threshold consistency across backbone architec-
tures when TCM is incorporated. On accuracy, ResNet models exhibit more notable improvements
in accuracy (> 1.5%) compared to Vision Transformers, which see a < 1.0% boost.

Time Complexity In a mini-batch with size n, the complexity of TCM is O(n2) as it compares
every sample with all samples in the mini-batch. For image retrieval benchmarks where the number
of training classes K is significantly greater than the batch size n, i.e., K ≫ n, this complexity
is comparable to most pair-based losses (O(n2)) and proxy-based losses (O(nK)). In Table 4, we
provide time complexities for the loss computation, the forward and backward passes and the overall
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Table 5: Performance of supervised image retrieval after incorporating TCM regularization in recall@k (the
higher the better) and OPIS (the lower the better) on 4 image retrieval datasets. The numbers in black represent
models trained with Lbase+LTCM, while the colored numbers indicate improvement / degradation in absolute
magnitude over models trained with Lbase alone. For Cars, with the same DINO backbone and ProxyAnchor
base loss as in Kim et al. (2023), TCM achieves a R@1 of 91.9, with a 46.3% relative OPIS reduction.

Benchmark Archdim Lbase + LTCM BS OPIS ×10−3↓ 10%-OPIS ×10−3↓ R@1 ↑ Previous SOTA with
ImageNet pretraining

iNaturalist-2018
ResNet50512 SAP + TCM 384 0.17 ↓0.16 (−48.5%) 1.77 ↓2.83 (−61.5%) 69.1 ↑1.7

RS@k + TCM 4000 0.11 ↓0.17 (−60.7%) 1.25 ↓2.49 (−66.6%) 72.2 ↑1.5 R@1: 83.9 ViT-B/16

ViT-B/16512 SAP + TCM 384 0.20 ↓0.19 (−48.7%) 2.81 ↓2.40 (−46.1%) 81.2 ↑1.8 (Patel et al., 2022)
RS@k + TCM 4000 0.17 ↓0.20 (−54.1%) 2.03 ↓5.63 (−73.5%) 84.8 ↑0.9

ResNet50512 SAP + TCM 384 0.06 ↓0.11 (−64.7%) 0.52 ↓1.17 (−69.2%) 82.7 ↑2.9

Stanford RS@k + TCM 4000 0.07 ↓0.03 (−30.1%) 0.74 ↓0.12 (−14.0%) 83.3 ↑0.6 R@1: 88.0 ViT-B/16

Online Product ViT-B/16512 SAP + TCM 384 0.04 ↓0.01 (−25.4%) 0.33 ↓0.11 (−25.0%) 87.3 ↑0.2 (Patel et al., 2022)
RS@k + HMC 4000 0.04 ↓0.00 (−3.7%) 0.38 ↓0.08 (−17.4%) 88.4 ↑0.4

CUB-200-2011
ResNet50512 SAP + TCM 384 0.11 ↓0.04 (−26.7%) 1.00 ↓0.43 (−30.1%) 80.8 ↑1.0

RS@k + TCM 384 0.10 ↓0.12 (−54.5%) 0.91 ↓1.04 (−53.3%) 80.0 ↑0.7 R@1: 85.7 ViT-S/16

ViT-B/16512 SAP + TCM 384 0.07 ↓0.14 (−66.7%) 0.58 ↓1.08 (−65.1%) 88.4 ↑0.0 (Kim et al., 2023)
RS@k + TCM 384 0.10 ↓0.34 (−77.3%) 0.91 ↓2.66 (−74.5%) 87.6 ↓0.1

Cars-196
ResNet50512 SAP + TCM 384 0.39 ↓0.06 (−13.3%) 3.33 ↓1.24 (−27.1%) 89.6 ↑2.7

RS@k + TCM 392 0.45 ↓0.02 (−4.3%) 2.93 ↓0.65 (−18.2%) 89.7 ↓0.2 R@1: 91.3 DINO

ViT-B/16512 SAP + TCM 384 0.54 ↓0.66 (−55.2%) 0.83 ↓1.79 (−68.3%) 87.8 ↑0.7 (Kim et al., 2023)
RS@k + TCM 392 0.60 ↓0.37 (−38.1%) 0.98 ↓1.73 (−63.8%) 87.7 ↑0.8

time per epoch. The results suggest that adding TCM regularization results in a negligible (< 1.5%)
increment in the overall training time per epoch.

5.3 IMAGE RETRIEVAL EXPERIMENT

The results for supervised fine-tuning for image retrieval benchmarks with and without the TCM
regularizer are summarized in Table 5. As is shown, our TCM loss is effective in improving threshold
consistency (measured by OPIS and ϵ-OPIS, the lower the better), by up to 77.3%, compared to the
various baseline losses considered. Meanwhile, adding TCM regularization consistently improves
accuracy across almost all benchmarks, base losses and backbone architectures. While we notice a
slight decrease in recall@1 on the two smaller datasets (as marked in red), namely CUB and Cars,
these are at the same magnitude as non-significant variations due to random initialization during
training. It’s worth highlighting that on iNaturalist-2018, arguably the largest public image retrieval
benchmark, adding our TCM regularization is shown to out-perform SOTA DML loss, recall@k
surrogate, reducing the OPIS threshold inconsistency score from 0.37×10−3 to 0.17×10−3, while
improving the recall@1 accuracy metrics from 83.9% to 84.8%.

6 CONCLUSION

In this work, we comprehensively study the issue of threshold inconsistency in deep metric learning.
We introduce a novel variance-based metric named Operating-Point-Inconsistency-Score (OPIS) to
quantify threshold inconsistency among different classes. Distinct from the One-Threshold-for-All
evaluation protocol proposed by Liu et al. (2022), a key advantage of OPIS is its elimination of the
need for a separate calibration dataset. As a result, OPIS can be easily utilized alongside existing
accuracy metrics, providing an added dimension for evaluating the threshold robustness of trained
DML models. With the OPIS metric, we find that achieving high accuracy in a DML model does
not necessarily guarantee threshold consistency. To address this issue, we propose the Threshold-
Consistent Margin loss (TCM), a simple and versatile regularization technique that can be integrated
with any base loss and backbone architecture to improve the model’s threshold consistency during
training. TCM is designed to enforce more uniform intra-class compactness and inter-class sep-
arability across diverse classes in the embedding space. By incorporating TCM, we demonstrate
state-of-the-art performance in both threshold consistency and accuracy across various image re-
trieval benchmarks. We hope that our work serves as a catalyst to encourage more explorations in
developing threshold-consistent DML solutions for practical open-world scenarios.
Limitations of OPIS The OPIS and ϵ-OPIS metrics necessitate a sufficient number of samples per
class to ensure statistical significance, making them unsuitable for few-shot evaluation scenarios.
Limitations of TCM Like other inductive deep learning methods, TCM can fail when there’s a
significant distribution shift between the training and test sets or when strong label noise is present.
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A APPENDIX

In the appendix, we offer in-depth theoretical analyses of our proposed OPIS metric (refer to Ap-
pendix A.1), conduct additional ablation studies for the TCM regularization (see Appendix A.2),
and provide more implementation details (see Appendix A.3).

A.1 OPERATING-POINT-INCONSISTENCY SCORE

In this section, we provide theoretical analyses for the utility score and the OPIS metric, grounded
in Gaussian assumptions. Leveraging these assumptions, we establish upper and lower bounds for
OPIS as benchmark values.

A.1.1 UTILITY SCORE ANALYSIS: A GAUSSIAN MODEL

For a specific class, we assume that its L2 distance distributions between the embeddings of positive
sample pairs and between the embeddings of negative sample pairs follow a Gaussian distribution.
We represent the L2 distance distribution for positive pairs as d ∼ N (µpos, σpos) and that for
negative pairs as d ∼ N (µneg, σneg), with the constraint 0 < µpos < µneg < 2 for hyperspherical
embeddings. Given a distance threshold d, we can estimate the fractions of true positive (TP), false
negative (FN), false positive (FP) and true negative (TN) as follows:

Predicted
Positive Negative

A
ct

ua
l Positive TP =

1+erf(tpos)
2 FN =

1−erf(tpos)
2

Negative FP =
1+erf(tneg)

2 TN =
1−erf(tneg)

2

Here, erf(t) represents the Gaussian error function (Andrews, 1998), and tpos =
d−µpos√
2σpos

and tneg =
d−µneg√
2σneg

. Thus we can express the accuracy metrics for precision, recall, specificity, and sensitivity
as follows:

precision =
1 + erf(tpos)

2 + erf(tpos) + erf(tneg)
, recall =

1

2

(
1 + erf(tpos)

)
(7)

specificity =
1

2

(
1− erf(tneg)

)
, sensitivity =

1

2

(
1 + erf(tpos)

)
(8)

Plugging these into the utility score Uroc defined by the specificity and sensitivity pair yields:

Uroc(d) =
(1 + erf(tpos)) · (1− erf(tneg))

2 + erf(tpos)− erf(tneg)
(9)

Similarly, the utility score defined based on the precision and recall pair, denoted as Upr (equivalent
to F1 score), can be expressed as the following:

Upr(d) =
2 · (1 + erf(tpos))

4 + erf(tpos) + erf(tneg)
(10)

Figure 7 gives typical utility score curves. These curves are derived from representative values
(indicated in the subtitles) for the mean and standard deviation of the intra-class and inter-class L2
distance distributions of embeddings generated using the Gaussian distribution model. Notably, the
left part of the Upr curve and the Uroc curve are nearly indistinguishable. This similarity arises
because erf(tneg) → −1 when tneg ≤ −2, leading to Upr(d) ≈ Uroc(d) ≈ 2

3+erf(tpos)
when

d < 1.0. Meanwhile, both Uroc and Upr utility score curves exhibit a concave shape, indicating a
maximum utility attainable at an optimal distance threshold.
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Figure 7: Utility score curves Upr (defined as the harmonic mean of precision and recall) and Uroc

(defined as the harmonic mean of specificity and sensitivity) plotted as functions of the L2 distance
thresholds. The L2 distance distributions of positive and negative embedding pairs are derived
from Gaussian distribution models whose means (µ) and standard deviations (σ) are shown in the
subtitles. In general, both Uroc and Upr exhibit concavity, indicating a maximum utility is achieved
at an optimal distance threshold.

A.1.2 LOWER AND UPPER BOUNDS OF OPIS

Lower bound The OPIS threshold inconsistency metric measures the variance in the utility curves
across different test classes. Consequently, its theoretical lower bound is zero, a value achieved
when utility curves for all test classes are perfectly aligned within the calibration range. However,
it’s essential to recognize that achieving a zero-variance is an idealistic scenario, unrealistic for real-
world datasets. From our evaluations on public image retrieval datasets, the lower bound of OPIS
for prevailing DML losses coupled with ViT backbones is around 1e-5.

Absolute upper bound The upper bound of OPIS depends on the degree of dispersion present in the
utility score curves, making it largely dataset-specific. Here, we provide an absolute upper bound.
Let’s consider an extreme case where a fraction (= α) of the test classes are perfectly accurate
within the calibration range, i.e., Ucorrect(d) = 1, d ∈ [dmin, dmax], while the remainder are entirely
inaccurate, i.e., Uwrong(d) = 0, d ∈ [dmin, dmax]. This leads to an average utility of Ū(d) = α and
an overall OPIS score of 2α(1− α). This OPIS score has an absolute upper bound of 0.5, which
is achieved at α = 50%.

Realistic upper bound Here we consider a more practical, realistic upper bound for OPIS. As-
suming a fraction (= α) of the classes have perfect utility score in the calibration range, i.e.,
Ucorrect(d) = 1, d ∈ [dmin, dmax], and the rest are perfectly “random", meaning their pairwise L2
distances are randomly drawn from a uniform distribution with a probability of p(d = x) = 1

2 , 0 ≤
x ≤ 2. Given these assumptions, the sensitivity and specificity for a random class are described as:

sensitivity(d) =
d

2
, specificity(d) = 1− d

2
(11)

Incorporating these assumptions into the utility score definition, the utility curves for a “random"
class can be expressed as follows5:

Uroc(d) = d(1− d

2
) (12)

Thus, the average utility score, represented by Ūroc(d), can be written as the following:

Ūroc(d) = (1− α)(1− d

2
) + α (13)

5We focus on Uroc(d), the definition used in the main paper, to establish the realistic upper bound of OPIS.
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We can then determine the upper bound of OPIS using the equation below:

OPIS =
(1− α) ·

∫ dmax

dmin
||Ū(d)− d(1− d

2 )||
2 dd

dmax − dmin
+
α ·

∫ dmax

dmin
||1− Ū(d)||2 dd

dmax − dmin

= α(1− α) ·
(
1 +

∫ dmax

dmin
(d− 1)2 dd

dmax − dmin

)
=
α(1− α)

3
·
(
(dmax)

2 + (dmin)
2 + dmax · dmin

)
(14)

This realistic upper bound α(1−α)
3 ·

(
(dmax)

2 + (dmin)
2 + dmax · dmin

)
is a function of α and the

calibration range. To illustrate, consider a scenario where α = 10% and [dmin, dmax] = [0.8, 1.2].
In this case, the computed OPIS upper bound stands at 9.12e-2.

A.1.3 SENSITIVITY OF OPIS TO CALIBRATION RANGES

In Figure 8, we show the variation of the OPIS metric across different FAR ranges – each repre-
senting a distinct calibration range. Notably, while the absolute values of the OPIS metric might
fluctuate across different calibration ranges, the relative rank orderings mostly stay consistent. The
only deviation observed is a rank flip between positions 5 and 6 when transitioning from the cal-
ibration range of 0.001 < FAR < 0.05 to 0.01 < FAR < 0.1; meanwhile, ranks 1, 2, 3 and 4
persistently remain stable. It’s worth noting that at high FAR, the magnitude of OPIS decreases
and variances in relative values will naturally increase when absolute metric values get small. This
behavior is attributed to the general tendency for relative ranks to become more unstable as absolute
metric values decrease – a phenomenon observed across numerous evaluation metrics including re-
call@k as shown in Brown et al. (2020); Patel et al. (2022); Kim et al. (2020); Movshovitz-Attias
et al. (2017); Teh et al. (2020). Given these observations, we consider OPIS to be largely unaffected
by the calibration range.

Figure 8: Sensitivity of OPIS to the calibration range: Evaluation of ResNet50512 models trained
using different losses on the iNaturalist-2018 dataset with a batch size of 384. Different methods
are ranked in ascending order according to their OPIS values, with the method exhibiting the lowest
OPIS (indicating the best threshold consistency) ranked first.
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A.2 ADDITIONAL ABLATION STUDIES FOR TCM

In this section, we present comprehensive ablation studies, including sensitivity analyses, compari-
son between TCM and other losses, TCM design variations, and an investigation into the compati-
bility of TCM with self-supervised pretraining. We also give results for the CUB and Cars datasets
in an open-world setting.

A.2.1 SENSITIVITY OF TCM TO RANDOM SEEDS

Table 6 gives the Recall@k and OPIS evaluation results for ResNet50 models trained using the
Smooth-AP base loss with the TCM regularization for different random seeds. As demonstrated, the
improvements in accuracy and calibration consistency due to the TCM regularization remain stable
across varied random seeds, exhibiting a small variation of 0.1 for recall@k and 4e-6 for OPIS.

Table 6: Effect of different random seeds on recall@k and OPIS for models trained on the
iNaturalist-2018 dataset, both with and without the TCM regularization, using Smooth-AP (SAP)
as the base loss. SAP* represents results taken from the original paper (Brown et al., 2020), while
SAP+TCM 1 corresponds to the results we reported in Table 5 of our main paper.

Method Recall@1 @4 @16 @32 OPIS ×1e-3

SAP* 67.2 81.8 90.3 93.1 -
SAP 67.4 81.9 90.4 93.1 0.330

SAP+TCM 1 69.1 82.9 91.1 93.8 0.168
SAP+TCM 2 69.0 82.9 91.0 93.7 0.172
SAP+TCM 3 69.2 83.0 91.2 93.9 0.175

Average 69.1± 0.1 82.9±0.1 91.1 ±0.1 93.8±0.1 0.172±0.004

A.2.2 COMPARISON WITH OTHER REGULARIZATIONS

In Table 7, we demonstrate the superiority of our proposed TCM loss over other DML losses, includ-
ing the ArcFace loss (Deng et al., 2019), the Triplet loss (Schroff et al., 2015a), and the contrastive
loss (Hadsell et al., 2006), when used as a regularizer. It’s worth noting that these losses can function
as stand-alone DML losses, whereas TCM is specifically designed as a regularizer. As indicated in
the table, although adding contrastive loss as the regularizer leads to the best threshold consistency,
it also causes some degradation in recall@1. In contrast, our TCM regularization concurrently en-
hances both accuracy and threshold consistency, resulting in a 1.7% boost in recall@1 and a relative
OPIS improvement of 48%.

Table 7: Comparison of our proposed TCM loss with other DML losses (Deng et al., 2019; Schroff
et al., 2015a; Hadsell et al., 2006) when employed as a regularizer on the iNaturalist-2018 dataset.

Method Archdim Batch size R@1 @4 @16 OPIS ×1e-3

SAP ResNet50512 384 67.4 81.9 90.4 0.330
SAP+ArcFace ResNet50512 384 62.3 ↓ 5.1 77.9 ↓ 4.0 87.6 ↓ 2.8 0.36 ↑ 0.03

SAP+Triplet ResNet50512 384 66.2 ↓ 1.2 81.3 ↓ 0.6 90.1 ↓ 0.3 0.35 ↑ 0.02

SAP+Contrastive ResNet50512 384 67.1 ↓ 0.3 82.1 ↑ 0.2 90.6 ↑ 0.2 0.10 ↓ 0.23

SAP+TCM (ours) ResNet50512 384 69.1 ↑ 1.7 82.9 ↑ 1.0 91.1 ↑ 0.7 0.17 ↓ 0.16

We also compare our TCM loss with the calibration loss introduced in ROADMAP (Ramzi et al.,
2021), which aims to address the decomposability gap for average precision during training. Their
approach, akin to ours, involves the imposition of constraints to regulate pairwise similarity scores.
However, a notable difference lies in the denominator’s composition: they use the total counts of
positive and negative pairs, whereas we employ hard positive and negative counts. An apparent
limitation of their design is that in scenarios with a large negative-to-positive ratio, the importance
of the negative term diminishes. Such scenarios often arise with large batch sizes (which is the
standard of DML), such as the case in Patel et al. (2022) where a batch size of 4000 is employed. This
limitation can have adverse effect on the model performance as a body of research (Schroff et al.,
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2015b; Oh Song et al., 2016; Wu et al., 2017; Wang et al., 2019) has consistently demonstrated that
hard negative pairs generally convey more information than hard positive pairs. As shown in Table 8,
when comparing RS@K+TCM and RS@K+ROADMAP at a batch size of 4000, using ROADMAP
as a regularization results in a significant reduction in accuracy, aligning with our earlier analysis.

Table 8: Comparison of our proposed TCM loss with ROADMAP at a large batch size.

Method Archdim Batch size R@1 @4 @16 OPIS ×1e-3

RS@K ViT-B/16512 4000 83.9 92.1 96.1 0.37
RS@K+ROADMAP ViT-B/16512 4000 79.4 ↓ 4.5 89.2 ↓ 2.9 94.3 ↓ 1.8 0.24 ↓ 0.13

RS@K+TCM (ours) ViT-B/16512 4000 84.8 ↑ 0.9 92.7 ↑ 0.6 96.5 ↑ 0.4 0.17 ↓ 0.20

A.2.3 COMPARISON OF TCM AND ITS DESIGN VARIANTS

We examine the impact of various components within TCM, namely the indicator function, the
positive term, and the negative term, to provide deeper insights into the design of the TCM regu-
larization. Specifically, we consider three design variations, each omitting just one of its three core
components: the positive term, the negative term, and the indicator functions. These TCM design
alternatives are described as follows:

LTCM− =
1

|Sm− |
∑
s∈S−

(s−m−) · 1s≥m− (15)

LTCM+ =
1

|Sm+ |
∑
s∈S+

(m+ − s) · 1s≤m+ (16)

LTCM′ =
1

|Sm+ |
∑
s∈S+

(m+ − s) + 1

|Sm− |
∑
s∈S−

(s−m−) (17)

where LTCM+ denotes the variant using only the positive term, LTCM− represents the variant with
just the negative term, and LTCM′ stands for the variant without the indicator functions.

Table 9: Performance of supervised image retrieval on the iNaturalist-2018 dataset using recall@k
surrogate loss with TCM regularization and its alternative designs at a batch size of 4000. The
results highlight the efficacy of the TCM regularization in comparison to its design alternatives in
terms of retaining the accuracy performance while improving OPIS.

Method Archdim Batch size R@1 @4 @16 OPIS ×1e-3

RS@K ViT-B/16512 4000 83.9 92.1 96.1 0.37
RS@K+TCM+ ViT-B/16512 4000 79.0 ↓4.9 88.9 ↓3.2 94.2 ↓1.9 0.06 ↓0.31

RS@K+TCM− ViT-B/16512 4000 72.5 ↓11.4 86.0 ↓6.1 93.0 ↓3.1 0.14 ↓0.23

RS@K+TCM′ ViT-B/16512 4000 78.1 ↓5.8 88.4 ↓3.7 93.7 ↓2.4 0.31 ↓0.06

RS@K+TCM (ours) ViT-B/16512 4000 84.8 ↑0.9 92.7 ↑0.6 96.5 ↑0.4 0.17 ↓0.20

In Figure 9, we give the progression of accuracy across training epochs. The accuracy and OPIS
corresponding to the epoch with the peak accuracy are detailed in Table 9. In general, excluding any
of the three components of TCM leads to a marked decrease in recall@1 of up to 12%. Moreover,
in scenarios where only the positive term is employed or when TCM operates without the indicator
function, we observe that the model stops improving its accuracy after the first epoch. When relying
solely on TCM’s negative term, we observe an initial dip in recall@1, which shows signs of recovery
after 20 epochs. Nevertheless, the eventual recall@1, even post-recovery, lags significantly behind
that achieved with the full TCM regularization with all three components included. In terms of
threshold consistency, our observations suggest that penalizing the TCM positive term, the negative
term, or both simultaneously can all improve the OPIS metric. Notably, regularizing solely with the
positive TCM term (LTCM+ ) yields the best OPIS result. However, omitting the indicator function
results in minimal improvements in OPIS, aligning closely with the baseline outcome observed
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Figure 9: Evolution of recall@1 across training epochs for ViT-B/16 backbones trained on the
iNaturalist-2018 dataset at a batch size of 4000. The Recall@k surrogate loss is used as the base
loss along with the TCM regularization and its design alternatives.

Figure 10: Distributions of L2 distances for intra-class and inter-class test embeddings of ViT-
B/16 models trained on the iNaturalist-2018 dataset using the recall@k surrogate loss with TCM
regularization and its variants. It shows that excluding any of the TCM loss components introduces
irregularities in the metric space, therefore diminishing accuracy.

without any regularization. This showcases the importance of the indicator function as an effective
quantile estimation mechanism to filter out the hard sample pairs.

We also visualize the intra-class and inter-class L2 distance distributions in Figure 10 for models
trained with TCM regularization and the other four alternative designs. The results reveal that a
regularizer focusing solely on penalizing hard negative pairs (RS@K+TCM−) causes the inter-class
embeddings to become overly dispersed, compromising the desired intra-class compactness. Con-

20



Published as a conference paper at ICLR 2024

versely, when only hard positive pairs are penalized (RS@K+TCM+), it results in the collapse of
intra-class embeddings, leaving the inter-class distribution unchecked. On the other hand, in the ab-
sence of the indicator function, the inter-class distribution manifests as multi-modal with dual peaks
with significantly increased overlap between the inter-class and intra-class L2 distance distributions.
This phenomenon may be attributed to the failure to distinguish hard negative pairs from the easy
ones. To conclude, to maintain accuracy on par with the baseline (without regularization), all three
components of TCM are indispensable.

A.2.4 COMPATIBILITY OF TCM WITH SELF-SUPERVISED PRETRAINING

We examine the compatibility of our proposed TCM regularization with self-supervised pretraining
methods, including CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2023), and Unicom (An
et al., 2023). In alignment with the approach in Unicom An et al. (2023), we adopt the ArcFace
loss (Deng et al., 2019) for this supervised fine-tuning. The results are presented in Table 10.

Table 10: Performance of supervised image retrieval on the Stanford Online Product dataset with
different pretraining methods including CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2023)
and Unicom (An et al., 2023). The pretraining dataset for each backbone model is specified in the
text next to each method. Following Unicom (An et al., 2023), we use the ArcFace loss (Deng et al.,
2019) for supervised fine-tuning. Same as Table 5 in the the main paper, the numbers displayed
in black represent models trained with Lbase + LTCM, while the colored numbers indicate the im-
provement / degradation in absolute magnitude over models trained with the base loss alone.

Pretraining Pretraining data Archdim R@1 ↑ OPIS ×10−3↓
CLIP Private400M ViT-B/16512 88.4 ↑4.50 (+5.3%) 0.94 ↓0.06 (−6.2%)

DINOv2 LVD-142M ViT-B/14768 84.2 ↑0.20 (+0.2%) 0.84 ↓0.09 (−9.7%)

Unicom LAION-400M ViT-B/16768 89.1 ↑0.30 (+0.3%) 0.82 ↓0.10 (−10.9%)

As shown in the table, incorporating TCM regularization in models initialized through various self-
supervised pretraining methods consistently delivers improvements in the OPIS metrics, observ-
ing gains of up to 10%. However, the relative improvement in OPIS doesn’t quite reach the lev-
els achieved with supervised pretraining as reported in the main paper. This discrepancy is likely
caused by the distinctive learning objectives of self-supervised pretraining and its use of completely
different pretraining datasets compared to ImageNet. As for accuracy, adding TCM is shown to
significantly boost recall@1 by up to 4.5% when paired with CLIP pretraining. Yet, for approaches
such as DINOv2 and Unicom, the enhancement in recall@1 is marginal.

A.2.5 OPEN-WORLD SETTING RESULTS FOR CUB AND CARS

In the main paper, we utilize shared train-test classes in the closed-set setting for the CUB and Cars
datasets to ensure fair comparisons with previous works. However, in this section, we present results
for these two datasets under the open-world setting, where training and testing classes are disjoint,
to align with our central focus on open-world scenarios. Specifically, we partition the datasets based
on the class indices: for CUB, classes 1-100 serve as the training set while the rest constitute the
test set; similarly, for Cars, classes 1-98 are used for training, with the remaining classes reserved
for testing. In Table 11, we present evaluation results for the CUB and Cars datasets under the open-
world setting. The results demonstrate that integrating TCM leads to a notable relative improvement
of 18% in OPIS for the Cars-196 dataset and a substantial 45% enhancement for the CUB dataset,
while preserving and improving the accuracy compared to the baseline without regularization.

Table 11: Evaluation results of incorporating TCM regularization on recall@k and OPIS for the
CUB and Cars-196 datasets in the open-world setting.

Dataset Archdim R@1 ↑ OPIS ×10−3↓ 10%-OPIS ×10−3↓
CUB ViT-B/16512 86.5 ↑0.0 0.92 ↓0.76 (−45.2%) 10.43 ↓9.04 (−46.4%)

Cars-196 ViT-B/16512 90.2 ↑0.7 0.63 ↓0.14 (−18.2%) 8.07 ↓2.33 (−22.4%)
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A.3 IMPLEMENTATION DETAILS

A.3.1 CONNECTIONS BETWEEN CALIBRATION RANGE AND COSINE MARGINS

We clarify the connection between the calibration range and the cosine margins introduced in TCM.
First, calibration range is determined by the FAR and FRR requirement specified by the use-
case. For a well-trained embedding model, optimal performance is typically achieved within an
intermediate range of distance thresholds. Thus, the left bound of the calibration range is determined
by the maximum FRR, as defined by the use-case. On the flip side, the right bound is determined by
the maximum FPR set by the same use-case. The margins m+ and m− of the TCM regularization
are defined in the cosine space. Given hyperspherical embeddings, there is a bijection between the
cosine similarity and the L2 distance. In the absence of a distribution shift between the training

and testing datasets, the cosine margins can be adeptly pinpointed as m+ =

√
2−dmin

2

2 and m− =√
2−dmax

2

2 to align the representation structures to the desired calibration range. However, while the
calibration range can serve as a useful reference, due to the inevitable distribution shifts between
training and testing data, the selection of the margin constraints requires some hyper-parameter
tuning and cannot be directly estimated from the calibration range.

A.3.2 ELABORATION ON FIG.5(B) OF THE MAIN PAPER

In Fig.5(b) of the main paper, θ1 and θ2 represent the angular arc lengths of the red and blue classes,
respectively. Applying TCM regularization promotes intra-class compactness, targeting a condition
where cos(θ) = m+, with θ representing the angular span of the given class in the embedding. Thus
training with TCM regularization would encourage θ1 ← arccos(m+) and θ2 ← arccos(m+).

A.3.3 IMPLEMENTATION DETAILS FOR OPIS METRIC AND TCM REGULARIZATION

In the following, we provide a brief description of our implementation for both the OPIS metric and
the TCM regularization in pseudo-code format.

Algorithm 1 Computation for OPIS metric
Require: Pairwise evaluation protocol for test embeddings with a total of T classes, calibration range

[dmin, dmax] with a grid number N .
1: Initialize OPIS← 0

2: for j = 1 to N do ▷ Iterate over calibration grid
3: d← dmin + dmax−dmin

n
· j

4: for i in T do ▷ Iterate over test classes
5: Gather all L2 distances for class i
6: Compute specificity (ϕ) and sensitivity (ψ) at d
7: Ui(d)← 2·ϕ(d)·ψ(d)

ϕ(d)+ψ(d)

8: Compute average utility score Ū(d) across all classes

9: OPIS← OPIS +
∑T

i=1 ||Ui(d)−Ū(d)||22
T ·(dmax−dmin)

return OPIS

In Algorithm 1, the number of grids in the calibration range, denoted as N , should be selected
in accordance with the maximum sharpness observed in the utility-distance curves within the
calibration range. It is recommended to maintainN ≥ 10. The calibration range itself is determined
by the desired False Acceptance Rate (FAR) range of the entire dataset, as specified by the user
case. Additionally, it is bound by the least achievable FAR of the dataset. In Algorithm 2, |Sm+ |
represents the number of hard positive pairs in S+ with similarity below m+ and |Sm− | represents
the number of hard negative pairs in S− with similarity above m−.
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Algorithm 2 Training with TCM regularization
Require: m+, m−, λ+, λ−, base loss Lbase.

1: for number of epochs do
2: for k steps do ▷ In each training iteration
3: LTCM ← 0

4: Sample mini-batch data {(x1, y1), ..., (xm, ym)}
5: Extract embeddings (denoted by f ) for each x
6: Compute cosine similarities for the entire mini-batch data. Let S+ be the set of positive pair

similarities and S− be the set of negative pair similarities
7: Compute |Sm

+

| and |Sm
−
|

8: for s in S+ do
9: LTCM ← LTCM + λ+ · (m

+−s)· 1s≤m+

|Sm+ |
▷ Sum over all hard positive pairs

10: for s in S− do
11: LTCM ← LTCM + λ− · (s−m

−)· 1s≥m−

|Sm− |
▷ Sum over all hard negative pairs

12: Loverall ← Lbase + LTCM

13: Update model using Loverall

A.3.4 DETAILS ON THE BASE DML LOSSES EMPLOYED

Smooth-AP Smooth-AP (Brown et al., 2020) is a pair-based DML loss that optimizes a smoothed
approximation of average precision (AP) using a sigmoid function. It is expressed as:

LSAP =
1

n

n∑
i=1

(1− 1

|S+
i |

∑
j∈S+

i

1 +
∑

k∈S+
i
Gjk,i

1 +
∑

k∈Si
Gjk,i

) (18)

Here, Gjk,i = (1 + eλ(sij−sik))−1 is a softmax function incorporating a temperature parameter, λ,
to rank similarity scores of mini-batch samples against an anchor sample xi. Si represents the set of
cosine similarity scores for the entire mini-batch against xi, while S+

i denotes the subset of Si for
the positive samples against xi,

Recall@k Surrogate The Recall@k Surrogate loss mirrors Smooth-AP’s approach but approxi-
mates the Recall@k metric rather than the average precision metric. Its detailed formulation is
available in Patel et al. (2022).

ArcFace ArcFace (Deng et al., 2019) introduces additive margin penalties based on the angle, θ,
between mini-batch samples and prototype representations. It aims to contrast samples against class
prototypes, and is formulated as:

LArcFace =
1

n

n∑
i=1

log(1 +

n∑
j=1,j ̸=i

eλ(sij−sii+δ)) (19)

where sij is the cosine similarity with inter-class margin penalty between the representation of an
image with class i and the prototypical representation for another image whose class is j, with
m1,m2 denoting different angular margins:

sij =

{
cos(m1θij +m2) for i = j

cos θij , for i ̸= j
(20)
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