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ABSTRACT

The mission of active learning is to iteratively identify the most informative data
samples to annotate, and therefore to attain decent performance with much fewer
samples. Despite the promise, the acquisition of informative unlabeled samples can
be unreliable — particularly during early cycles — owning to limited data samples
and sparse supervision. To tackle this, the data augmentation techniques seem
straightforward yet promising to easily extend the exploration of the input space.
In this work, we thoroughly study the coupling of data augmentation and active
learning whereby we propose Controllable Augmentation ManiPulator for Active
Learning. In contrast to the few prior work that touched on this line, CAMPAL
emphasizes a tighten and better-controlled integration of data augmentation into the
active learning framework, as in three folds: (i)-carefully designed data augmenta-
tion policies applied separately on labeled and unlabeled data pool in every cycle;
(ii)-controlled and quantifiably optimizable augmentation strengths; (iii)-full but
flexible coverage for most (if not all) active learning schemes. Through extensive
empirical experiments, we bring the performance of active learning methods to a
new level: an absolute performance boost of 16.99% on CIFAR-10 and 12.25%
on SVHN with 1,000 annotated samples. Complementary to the empirical results,
we further provide theoretical analysis and justification of CAMPAL.

1 INTRODUCTION

The acquisition of labeled data serves as a foundation for the remarkable successes of deep supervised
learning over the last decade, which also incurs great monetary and time costs. Active learning (AL)
is a pivotal learning paradigm that puts the data acquisition process into the loop of learning, locating
the most informative and valuable data samples for annotation (Settles, 2009; Zhang et al., 2020; Kim
et al., 2021a; Wu et al., 2021). With much-lowered sample complexity but comparable performance
compared to its supervised counterpart, active learning is widely used in real-world applications
and ML productions (Bhattacharjee et al., 2017; Feng et al., 2019; Hussein et al., 2016). In spite of
its meritorious practicality, active learning often suffers from unreliable data acquisition, especially
from the early stages. Notably, the models obtained around the early stages are generally raw and
undeveloped due to the insufficient data curated and sparse supervision signal being consumed. The
subsequent cycle of the data query is based on the model produced from the current cycle.

While this problem can probably be mitigated after adequate cycles are conducted, we argue that the
problems at the early stages of AL cannot be overlooked. Indeed, few works have resorted to data
augmentation techniques to generate additional data examples for data distribution enrichment, e.g.
GAN-based (Tran et al., 2019) and STN-based (Kim et al., 2021b) methods. In this work, we attempt
to take a further step in investigating the role of data augmentation for AL.

To begin with, we provide a straightforward quantitative observation in Figure 1. The setup of
these results is rather simple: we directly apply vanilla DA operations, such as flipping and rotation,
to data samples and linearly increase the augmentation strengths. We may conclude from these
scores as follows. First, the simple augmentation (loosely) integrated into AL has led to surprisingly
enhanced results, albeit their complicated designs. Secondly and perhaps more important, we have
a counterfactual observation that the same augmentation policy facilitated on different data pools
manifests notably different impacts. As shown in Figure 1, when gradually stacking the augmentation
operations, the labeled and unlabeled data pools achieves the best performance at different levels of
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Augmented
Views

△ACC(Both) +10.49%+4.87% +10.67% +7.38%+0.00%
△ACC(Labeled) +8.36%+4.81% +6.47% +6.03%+0.00%
△ACC(Unlabeled) +3.03%+2.32% +3.60% +4.99%+0.00%

Figure 1: A visualization for data augmentation and their corresponding performance change as we stack aug-
mentations over images when integrating them into active learning cycles. We test 3 cases where augmentations
are applied to 1) unlabeled samples only; 2) labeled samples only; 3) Both. Details of experimental setups can
be found in Appendix B.2.

augmentation strengths. In hindsight, we hereby post our reasoning. To fully and tightly incorporate
DA into AL schemes, the augmentation ought to serve different objectives on the labeled and
unlabeled pools. In particular, the labeled pool favors label-preserving augmentation in order to
obtain a strong and reliable classifier. By contrast, the unlabeled pool may require relatively more
aggressive augmentation so as to maximally gauge the unexplored distribution. The phenomenon in
Figure 1 preliminarily validates this reasoning. Noted, this counterfactual observation has not been
studied or investigated by prior works (Tran et al., 2019; Gao et al., 2020; Kim et al., 2021b).

Motivated by it, we propose Controllable Augmentation ManiPulator for Active Learning. Core to
our method is a purposely designed form of better controlled and tightened the integration of data
augmentation into active learning. By proposing CAMPAL, we aim to fill this integration gap and
unlock the full potential of data augmentation methods integrated into active learning schemes. In
particular, CAMPAL integrates several mechanisms into the whole AL framework:

• CAMPAL constructs separate augmentation flows distinctly on labeled and unlabeled data
pools towards their own objectives;

• CAMPAL composes a strength optimization procedure for the applied augmentation policies;

• CAMPAL complies with most common active learning schemes, with carefully designed
acquisition functions for both score- and representation-based methods.

Besides the theoretical justification of CAMPAL offered in Section 4, we extensively conduct wide
experiments and analyses on our approach. The empirical results of CAMPAL are stunning: a 16.99%
absolute improvement at a 1,000-sample cycle and a 13.34% lead with 2,000 samples on CIFAR-10,
compared with previously best methods. Arguably, we may postulate that these significantly enhanced
results may have the chance to greatly extend the boundary of active learning research.

2 METHODOLOGY

In this section, we describe CAMPAL in detail. CAMPAL is chiefly composed of two components. On
one hand, CAMPAL formulates a decoupled optimization workflow to locate feasible augmentations
being applied to labeled/unlabeled data pools with distinct optimization objectives. This optimization
difference is eventually manifested by their augmentation strength (Section 2.2). On the other hand,
CAMPAL aggregates the information provided by properly-controlled augmentations with modified
acquisition functions (Section 2.3), so as to be adaptable with most (if not all) active learning schemes.
Hence we may posit that CAMPAL forms a much more tightened integration of DA and AL, due to
not only its controllable mechanism on both data pools but also its full adaptability for all common
active learning schemes. The framework for CAMPAL is summarized in Figure 2.

2.1 SETUP AND DEFINITIONS

Active Learning. The problem of active learning (AL) is defined with the following setup. Consider
D ⊂ Rd as the underlying dataset consisting of a labeled data pool DL and an unlabeled data pool
DU , with |DU | ≫ |DL|. Based on a fully-trained classifier fθ that assigns a label to each data point,
a data acquisition function hacq(x, fθ) : DU → R calculates the score for each data instance. We
also use P(y|x; fθ) to denote the probabilistic label distribution of x given by fθ. Then AL selects
the most informative sample batch and updates the labeled set accordingly. In the remainder of this
paper, we omit parameter fθ in hacq when the reliance on acquisitions over classifiers is clear.
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Figure 2: An active learning cycle for the CAMPAL framework. We optimize strengths su, sl for the
unlabeled/labeled pool separately, then generate the corresponding strength-guided augmented views. We train
an enhanced classifier over augmented labeled samples and induce an enhanced acquisition with augmented
unlabeled samples. Finally, the acquisition selects informative samples to be labeled by an oracle.

Data Augmentation. We denote a single data augmentation (DA) operator by T (x) that transforms
a data point x to another view via translation, rotation, or other augmentation operations. Then
we denote the set consisting of these augmentations by T . In practice, several studies also provide
extended augmentation operators consisting of multiple operators (Hendrycks et al., 2019; Xu et al.,
2022). The number of operators s in the composition is named the strength of T , then T (s) denotes
the augmentation set with strength s. Intuitively, s also quantifies how far an augmentation drifts
images away from their original counterparts. Given a data point x, we also use T (x) to denote all its
augmented views. With the notations given above, we continue our controllable augmentation-induced
acquisition in the following sections.

2.2 CONTROLLABLE AUGMENTATIONS FOR ACTIVE LEARNING

As shown in Figure 1, data augmentation plays different roles in different data pools. On labeled
data, it targets to improve the model prediction performance such that requires the generated virtual
examples to be label invariant. In contrast, on unlabeled examples, it enlarges the exposed data
distribution in the pursuit of better acquisition distribution. In this section, we propose a principled
framework that searches for feasible DA configurations for different data pools in their own natural
habits. It is worth noting that we adopt a dynamic control on the strength of augmentations across
different cycles, making them adaptable to changes in AL as the cycle proceeds. It can be empirically
verified that such dynamic control is better than a fixed augmentation strategy (Section 3.3). Through
appropriate strength control, we expect to increase the quality of augmentations for AL.

Strength for Unlabeled Data. The primary goal for augmenting unlabeled data is to offer precise
informativeness evaluation with an enriched distribution induced accordingly, thus inducing a more
reliable acquisition. A problem with this is the invalid information introduced by potential unde-
sirable augmentations. In detail, weak augmentations contain trivial augmentations that contribute
little to the distribution enrichment, while drastic augmentations introduce excessive distribution
drifts that mislead the acquisition. We resolve this problem by proposing a proper strength that
maximizes the overall informativeness of the augmented unlabeled pool. Specifically, we maximize
the least information augmentations can provide, ensuring that an optimized strength offers reliable
informativeness, which can be formulated as follows:

su = argmax
s

∑
xU∈DU

min{H(x̃U ) | x̃U ∈ T (s)(xU ), fθ(x̃U ) = fθ(xU )}, (1)

where H can be an arbitrary informativeness metric, and we adopt entropy here as it is sufficient to
derive a proper su. By adopting a max-min optimization procedure, we can eliminate the potential
negative impact brought by the corruption from aggressively augmented samples with min{H(x̃U )},
and maximize the overall informativeness of the augmented unlabeled pool with argmax.

Strength for Labeled Data. By involving augmentations in model training, we aim at obtaining a
dependable model from limited labeled data and further enhancing the acquisition process. Different
from augmentation for unlabeled data that maximize overall informativeness, augmentations for
labeled data are prone to training stability and convergence. To give out proper control over labeled

3



Under review as a conference paper at ICLR 2023

augmentations while avoiding extra training costs, we introduce a virtual loss term Lf and search the
proper strength sl for labeled samples by minimizing it:

sl = argmin
s

1

|DL|
∑

xL∈DL

Lf (xL, s),

where Lf (x, s)=L(x)+λ1 JS
(
{P(y | x̃; fθ) | x̃ ∈ T (s)

single(x)}
)
+

λ2

|T (s)
mix(x)|

∑
ẋ∈T (s)

mix(x)

L(ẋ),
(2)

where L(x),Lf (x) denotes the normal loss term and the augmented loss respectively, λ1, λ2 denotes
fixed weights. For single-image augmentations T (s)

single, we integrate the augmented information into
the model by making them produce similar outputs, in which the dissimilarity is quantified with a
Jensen-Shannon (JS) divergence term. For Image Mixing T (s)

mix, we just follow the setup of Mixup.

With the strengths su, sl given above, we locate augmentations Tu that effectively enlarge the
distribution, and the augmentations Tl that help deduce dependable classifiers. The combination of
the two enables us to enhance acquisitions by making classifiers and informativeness evaluations
in the AL framework work collaboratively and efficiently. We will show how augmentations for
unlabeled samples (UA) and labeled samples (LA) contribute to the acquisition in Section 3.3.

2.3 CONTROLLABLE AUGMENTATION-INDUCED ACQUISITION FOR ACTIVE LEARNING

With the properly-controlled augmentations in Section 2.2, we proceed by providing a fast and
efficient approach to integrate the functionalities of acquisitions and augmentations, i.e. controllable
augmentation-induced acquisition. A key challenge for inducing the augmented acquisition hacq

arises from the complicated forms for hbase, which denotes basic acquisitions and varies across
different studies. In this section, we highlight two types of acquisitions, i.e., score-based acquisition
and representation-based acquisition. We treat these two types of hbase differently and describe
the corresponding augmented acquisition forms. Notably, CAMPAL can adopt various kinds of
acquisitions and enhance them, see Section 3. Since training a classifier fθ with augmentations is
straightforward, we focus on formulating augmented acquisition with augmented unlabeled data.

Integrating Augmentations into Score-based Acquisitions. Score-based acquisition calculates an
information score for each data point and selects samples with the highest score, like Max Entropy
(Settles, 2009). We enhance them by aggregating the information provided by augmentations, which
are given by real value scores. Specifically, for methods that calculate an acquisition score hbase(x)
for each sample x, we calculate an information score hbase(x̃) for every augmented counterpart
x̃ ∈ T (x) and aggregate them into one score. We propose several variants of hacq , including:
1. hacq(x) = minx̃∈Tu(x) hbase(x̃) reduces potential redundant information with a minimum acqui-
sition score within the augmented batch;
2. hacq(x) =

∑
x̃∈Tu(x)

hbase(x̃) sums up all the informativeness provided by augmentations;

3. hacq(x) =
∑

x̃∼Tu(x)
sim(x, x̃)hbase(x) weights the informativeness of x̃ by its similarity to its

non-augmented counterpart, thus introducing the inter-sample information.

Integrating Augmentations into Representation-based Acquisitions. For representation-based
acquisitions, hbase provides a feature vector embedded into a representation space and performs
sampling according to this space, like Core-set (Sener et al., 2018). Notice that representation-based
methods rely on a distance function to measure the correlation between instances, we generalize the
distance functions between individual samples to point-set distance functions between augmented
sample batches. By adopting set distance functions, we enhance the acquisition process by taking the
correlation across augmentations over different samples into consideration. To this end, we focus on
well-defined set distance functions and propose the corresponding variants as follows:
1. Standard distance: d(x, z) = minx̃∈Tu(x),z̃∈Tu(z) ∥x̃− z̃∥22;

2. Chamfer distance: d(x, z) =
∑

x̃∈Tu(x)
minz̃∈Tu(z) ∥x̃− z̃∥22 +

∑
z̃∈Tu(z)

minx̃∈Tu(x) ∥x̃− z̃∥22
considers pairwise similarities for the augmented views from two samples;
3. Pompeiu–Hausdorff distance: d(x, z) = max{maxx̃∈Tu(x) d (x̃, Tu(z)) ,maxz̃∈Tu(z) d (Tu(x), z̃)}
highlights the maximal potential difference between two samples.
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Table 1: Comparison of the averaged test accuracy on benchmark datasets and different AL strategies. Since
CAMPAL has multiple versions, we choose the one with the best performance and denote it with CAMPAL*.
The best performance in each category is indicated in boldface. NL denotes the number of labeled samples.

Dataset Method NL = 500 NL = 1, 000 NL = 1, 500 NL = 2, 000

SVHN

Random 52.42±2.10 64.38±1.91 68.55±1.30 71.43±1.34
Entropy 55.86±1.66 66.42±2.49 73.08±2.84 75.40±2.43
BADGE 56.19±1.97 67.30±2.19 76.35±0.57 80.03±1.68

BGADL 40.18±0.43 50.58±1.30 64.56±1.34 69.73±1.34
CAL 56.98±1.07 66.22±0.92 72.09±1.83 75.22±2.11

LADA 56.61±1.50 66.56±1.21 72.48±1.66 75.84±1.12

CAMPAL* 61.34±4.26 78.81±0.93 82.86±0.42 85.66±0.79

CIFAR-10

Random 38.54±2.28 49.77±3.08 58.61±2.75 61.49±2.06
Entropy 39.80±1.60 55.43±1.71 60.76±2.64 65.95±1.36
BADGE 44.18±2.09 55.97±1.57 62.40±2.15 67.03±0.62

BGADL 37.54±1.88 47.57±1.38 51.81±1.00 56.73±0.75
CAL 40.05±1.68 54.24±2.30 59.83±2.66 64.24±0.91

LADA 41.87±2.33 56.37±2.24 62.76±1.99 66.26±1.29

CAMPAL* 52.26±2.01 73.36±1.11 77.87±0.61 80.37±0.86

(a) SVHN (b) CIFAR-10 (c) CIFAR-100

Figure 3: Test accuracy on the number of labeled samples over different datasets.

Controllable DA-Driven Active Learning Cycles. With those augmentation-induced acquisitions,
we complete the active learning cycle within CAMPAL. First, we generate the labeled augmentations
Tl with properly controlled strength sl, then produce an augmented classifier fθ trained over them.
This makes up for the insufficient labeled information and further brings a reliable model. Second,
we generate the unlabeled augmentations with an optimized strength su and induce the enhanced
acquisition hacq with Tu and fθ. Notably, CAMPAL offers a dynamic strength control on augmen-
tations across cycles, which also leads to a controllable acquisition adapting itself to the changing
data pools. This augmentation-induced acquisition step provides precise information evaluation and
guarantees the positive impact of augmentations, which finally helps produce better querying results.
As a result, these two steps jointly ensure the quality of data to label at the end of the active learning
cycle, largely boosting the performance. Our experiments in Section 3 show their separate effects as
well as the combined impacts in detail. The pseudo-code of our algorithm is provided in Appendix C.

3 EXPERIMENTS

3.1 BASELINES AND DATASETS

We instantiated our proposed CAMPAL with several existing strategies, including 1) Entropy, 2)
Least Confidence (LC), 3) Margin, 4) Core-set (Sener et al., 2018), and 5) BADGE (Ash et al., 2020).
We also implement several augmentation-aggregation modes that integrate augmentations into an
enhanced acquisition, including 1) MIN, 2) SUM, 3) DENSITY for Entropy, LC, Margin, and 1)
STANDARD, 2) CHAMFER, 3) HAUSDORFF for Core-set, BADGE, as shown in Section 2.3 and
Table 2. In this section, we specify the instantiated augmentation-acquisition with basic strategy hbase

as its subscript and the augmentation-aggregation mode as its superscript, e.g. CAMPALMIN
Entropy.
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Table 2: Performance of CAMPAL with different hbase and aggregation modes. The experiment is conducted
over CIFAR-10 with 2,000 labeled samples.

Method Aggregation Mode

Type of hbase hbase MIN SUM DENSITY

Score
Entropy 76.90±0.76 75.87±0.32 78.89±0.74

LC 76.82±0.62 72.74±1.31 76.76±0.54
Margin 78.70±0.58 71.33±0.76 79.16±0.48

Type of hbase hbase STANDARD CHAMFER HAUSDORFF

Representation Core-set 78.20±0.28 79.67±0.68 78.49±0.51
BADGE 79.71±0.51 80.37±0.86 79.84±0.24

Table 3: Comparison of CAMPAL with its non-augmented counterpart with different AL strategies. ∆ indicates
the performance boost brought by CAMPAL.

Dataset Method Entropy LC Margin Coreset BADGE

Fashion
baseline 81.33±0.86 81.15±1.16 80.71±1.16 83.36±0.82 82.89±0.95
+CAMPAL 85.89±0.29 84.63±1.31 84.82±0.62 84.36±0.48 86.24±1.04
∆ +4.56±0.91 +3.48±1.75 +4.11±1.32 +1.00±0.95 +3.35±1.41

SVHN
baseline 75.40±2.43 76.39±1.30 76.32±1.87 77.81±0.93 80.03±1.68
+CAMPAL 85.36±0.45 84.34±0.62 84.90±0.57 84.35±0.81 85.66±0.79
∆ +9.96±2.47 +7.95±1.44 +8.58±1.95 +6.54±1.23 +5.63±1.86

CIFAR-10
baseline 65.95±1.36 66.97±1.87 66.76±1.77 66.90±0.93 67.03±0.62
+CAMPAL 78.89±0.74 76.82±0.62 79.16±0.48 79.67±0.68 80.37±0.86
∆ +12.94±1.55 +9.85±1.97 +12.40±1.83 +12.77±1.15 +13.34±1.06

CIFAR-100
baseline 45.18±0.13 45.70±0.18 45.64±0.25 46.52±0.21 47.75±0.09
+CAMPAL 48.76±0.30 49.24±0.70 49.63±0.65 46.80±0.27 49.46±0.65
∆ +3.58±0.33 +3.54±0.72 +3.99±0.70 +0.28±0.34 +1.71±0.66

We also denote the version with the best performance for CAMPAL, i.e. CAMPALCHAMFER
BADGE as

CAMPAL*, as shown in Table 2. We repeat every experiment 5 times.

In this work, we compare our method to 1) Random, 2) Coreset, 3) BADGE, 4) Max Entropy, 5) Least
Confidence 6) Margin. We also compare our method with other active learning strategies with data
augmentations, including 1) BGADL (Tran et al., 2019), 2) CAL (Gao et al., 2020), and 3) LADA
(Kim et al., 2021b) in Table 1. For a fair comparison, CAL does not use its original semi-supervised
setting but uses a supervised procedure. Since LADA has multiple versions, we choose the one
with the best performance for comparison in Table 1. We further prove the efficacy of CAMPAL by
comparing its performance with the corresponding baseline versions in Table 3.

3.2 MAIN EMPIRICAL RESULTS

CAMPAL achieves SOTA results. As shown in Table 1 and Figure 3, CAMPAL significantly
outperforms their rivals on many datasets and data scales. Specifically, on the CIFAR-10 dataset,
we improve upon the best baseline by 8.08%, 16.99%, 15.11%, 13.34%, where the labeled set has
500, 1000, 1500, 2000 instances respectively. Moreover, CAMPAL exhibits the most significant
performance boost with a moderately small NL, which is approximately around 1,000 for CIFAR-10
and SVHN. Besides, we can see that different versions of CAMPAL consistently achieve superior
results on CIFAR-10, as shown in Table 2. As shown in Table 3, in all combinations of baselines
and datasets, CAMPAL variations exhibit the best performance. Notably, CAMPAL also brings a
consistent performance boost with strong scalability.

In addition, it is worth noting that previous works (Tran et al., 2019; Kim et al., 2021a) are typically
evaluated with a large number of labeled samples (e.g., 10% ∼ 40% of labeled samples for CIFAR-
10). We also challenge this by querying fewer samples over benchmark datasets, shown in Table 1.
When NL = 500 or 2,000 on CIFAR-10, recent augmentation-based AL strategies fail to outperform
other simple baselines like BADGE. Notably, BGADL performs the worst, because of the inadequate
training with insufficient instances in the current active learning setting. Since CAL is originally
designed for a semi-supervised setting, it fails to outperform simple baselines like BADGE under
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Table 4: Test accuracy of CAMPAL when UA or LA are individually applied over CIFAR-10 with 2,000 labeled
samples. The results are produced over 5 different AL strategies.

Components Entropy LC Margin Core-set BADGE
UA LA

65.95±1.36 66.97±1.87 66.76±1.77 66.90±0.93 67.03±0.62
✓ 67.49±1.87 69.59±2.55 71.86±3.16 68.83±1.29 71.24±0.75

✓ 74.30±0.94 75.92±0.85 77.73±0.44 77.73±0.20 78.89±0.22
✓ ✓ 76.90±0.76 76.82±0.62 78.70±0.58 78.20±0.28 79.71±0.51

(a) Entropy (b) Least-Confidence (c) Margin

Figure 5: A heatmap visualization of performance boost brought by augmentations of different strengths, when
attached to the labeled pool and unlabeled pool. The experiments are performed over CIFAR-10 with 2,000
labeled samples and are conducted over Entropy, LC, and Margin.

our supervised setting. LADA outperforms other baselines on CIFAR-10 but fails on SVHN since
maximal-entropy augmentations can easily change the semantics of the digit data. In contrast, our
proposed CAMPAL remains competitive, indicating its superiority.

Figure 4: The learned strength
on CIFAR-10, with CAMPAL in-
stantiated with Entropy/BADGE.

The learnt augmentation strength differs for unlabeled/labeled
data. In Figure 4, we visualize the dynamics of the learnt strength
s∗u, s

∗
l across active learning cycles. In particular, we conduct

the experiment 5 times on CIFAR-10 with CAMPALMIN
Entropy and

CAMPALSTANDATD
BADGE and figure out the average optimal strength

value. We can observe that the s∗u is generally larger in comparison
with s∗l across the AL cycles. This verifies our postulations that
labeled requires moderate augmentation for label preserving. In
contrast, unlabeled data prefers relatively stronger augmentations to
enrich the data distribution such that a wider range of informative
regions can be explored. We conclude that AL is better enhanced by
DA with a combinatorial scheme of weak and strong augmentations applied to labeled and unlabeled
data in our framework, which also corroborates our theoretical findings in Section 4.

3.3 EMPIRICAL ANALYSIS

In this section, we present our ablation results to show the effectiveness of our framework. We
exemplify the superiority of your CAMPAL by using scored-based acquisition with MIN as the
aggregation; see Appendix B for more ablation experiments.

Impact of Unlabeled/Labeled Augmentations. Here, we compare the performance boost of
augmentation-induced acquisitions based on different AL strategies and the results are reported in
Table 4. We can see that without augmented labeled information, the enhanced acquisition gives
out a consistent performance boost over several strategies, and the maximal boost is presented by
Margin (∆5.10%). The enhanced training process also plays an important role in promoting the
performance of the existing strategies by 8.35% ∼ 11.86%. A combination of these two components
also shows consistently best performance compared to other ablation versions, indicating that they
can work well with each other and unleashes different types of information. We can conclude that
both the augmented unlabeled information and the labeled ones help resolve the problem of unreliable
judgment in AL strategies.
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Compare with fixed augmentation strengths. Since we emphasize the importance of a strength
control over sl, su in Section 2.2, we will provide more details here. In brief, augmentations with
various strengths contribute to the performance but can be inefficient when strengths are not chosen
appropriately. To further look at the impact of augmentation sets with different strengths, we fix
the value for sl, su and see how they decide the final performance. Specifically, we test different
combinations of sl and su in the range [0, 4], with other settings following the main empirical studies.
The relative performance boost compared to their non-augmented counterparts is shown in Figure 5.
Without proper strength control, the performance boost can decrease. For instance, CAMPALMIN

Margin
with sl = 3, su = 1 leads to a 4.32% performance drop compared to the optimal one, when the worst
case in CAMPALMIN

Entropy causes a 3.28% drop similarly. In addition, we can also see a trend similar
to Section 3.2 that the classifier fθ prefers weakly labeled augmentations when stronger unlabeled
augmentations induce stronger acquisitions, even without a dynamic strength control.

4 THEORETICAL ANALYSIS

In this section, we theoretically analyze why weak and strong augmentations being strategically
applied to labeled and unlabeled data exhibit the best performance when combining AL with DA.
Following the previous sections, we use fθ to denote the model fully trained over augmented labeled
samples. When an unlabeled sample lies within the augmented region for a particular labeled sample,
we can propagate the labeled information to the corresponding unlabeled samples. Formally, with a
feature map f emb

θ derived from fθ we define a covering relation between augmented labeled batches
and unlabeled samples as follows:
Definition 1. Given a collection of augmentations T , we say that an image x is covered by xi with
respect to the augmentation set T , if the feature embedding of x lies within the convex hull of the
augmented views of xi: f emb

θ (x) ∈ conv
(
f emb
θ (T (xi))

)
. We denote the covering relation by x ◁xi.

Without loss of generality, assume there are L labeled samples x1, . . . , xL, together with the unlabeled
samples covered by its augmentations, constituting L components. For each component Ci(i =
1, . . . , L), let Pi be a probability that a data point sampled from the underlying data distribution
covered by Ci. To make the analysis tractable, we assume the properly controlled augmentations for
labeled samples, eliminating the potential overlaps across different components:
Assumption 2. With moderately weak augmentations for labeled samples, Ci’s do not overlap with
each other, i.e. ∀i ̸= j, P(Ci ∩ Cj ̸= ∅) = 0.

With Assumption 2, the error for fθ can be estimated by how these components cover the data space.
To further illustrate this, we provide a comparison between different augmentations in Figure 6. The
following proposition characterizes the relationship between the error and the components.
Proposition 3. Let E denote the probability that the fθ cannot infer the correct label of a test example.
Then E is upper bounded by

E ≤
∑L

i=1
Pi(1− Pi)

m +

(
1−

∑L

i=1
Pi

)
, (3)

where m denotes the number of samples that lie within the labeled components.

In Eq. (3), the first term denotes the risk brought by ill-defined augmentations, while the second term
denotes sub-sample empirical risk. With Eq. (3), we continue to reduce the error as much as possible
by acquiring informative samples. By adding a newly queried sample xL+1, the error reduction is
estimated as follows:

∆E(∆m,PL+1)≈
∑L

i=1
Pi(1− Pi)

m
(
1− (1− Pi)

∆m
)
−PL+1

(
1−(1− PL+1)

m+∆m
)
, (4)

where ∆m is the number of samples newly covered after labeling xL+1.

We take a step further by illustrating two terms in Eq. 4. The first term denotes the performance boost
brought by better coverage with newly-annotated samples. Specifically, the samples that drift farthest
from the existing components better cover the under-explored data space, indicating a larger ∆m – in
turn – the performance boost. This is also consistent with the max-min optimization objective for
unlabeled samples described in Eq. (1), with the intuition provided in Figure 6(c),(d). The second

8
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term characterizes the potential error induced from augmentations on unlabeled samples, i.e., too
strong augmentation excessively increases the value of PL+1, leading to its increase. Therefore, it is
important to locate moderately strong augmentations for unlabeled data in AL.

Theorem 4. With properly selected augmentation sets and sufficient large L, the maximal value for
error reduction ∆E(∆m,PL+1) with newly-annotated samples can be estimated as follows:

∆E(∆m,PL+1) ⪅ E
(
1−Ke−m/L

)
, (5)

where U denotes the number of unlabeled samples, with K = m+L(log(L+U)−logL−1)
L+U .

From the theorem, we can see that properly selected samples and augmentations give out a signif-
icant error reduction. Specifically, m/L denotes the average number of samples covered by each
component, which indicates better coverage induced from properly controlled components when
being larger. Revisiting our theoretical proof, we further explain that DA indeed serves different
goals in AL. On the one hand, the augmentations on labeled data guarantee that Assumption 2
holds, indicating that we need a dependable model and weak augmentations. On the other hand, this
theorem emphasizes the importance of acquiring newly-labeled samples guided by moderately strong
augmentation, ensuring better coverage while also avoiding potential misleading information. With
all the discussions above, augmentation-acquisition integration effectively relies on the quality of
augmentations, where better augmentations result in more dependable classifiers for AL and larger
error reduction across AL cycles. This echoes our discussion of the benefit of appropriately controlled
data augmentations for AL. A more detailed analysis is given in Appendix A.

5 RELATED WORKS

Data Augmentation is a technique that improves the generalization ability of models by increasing
the number of images and their variants in a dataset (Xu et al., 2022). The most commonly used
augmentation techniques include geometric transformations (Shorten & Khoshgoftaar, 2019), random
erasing (Devries & Taylor, 2017; Zhong et al., 2020) and generative adversarial networks (Zhu et al.,
2018; Bowles et al., 2018). Another type of augmentation is image mixing (Zhang et al., 2018; Yun
et al., 2019), which blends multiple images and their corresponding labels. Instead of designing
new types of augmentations, recent studies also collect a group of augmentations and optimize their
strength (a.k.a strength) (Cubuk et al., 2020), which quantifies how far an augmented image drift from
its original counterpart. By optimizing this strength, several studies attain state-of-the-art performance
over several benchmarks (Zheng et al., 2022; Yang et al., 2022).

Active Learning is a machine learning paradigm in which a learning algorithm actively selects the
data it wants to learn from the unlabeled data sources (Settles, 2009; Ren et al., 2021). The crucial
part of active learning in most existing strategies is exactly the data acquisition process, which targets
selecting the most informative examples. Current studies mostly focus on specific parts of samples
and can be roughly categorized as follows: (a) Uncertainty-based methods that prefer the hardest
samples (Choi et al., 2021; Mai et al., 2022) or the ones the current fully-trained model uncertain
about (Kirsch et al., 2019; Wang et al., 2022); (b) Representation-based methods searching for the
samples that are the most representative of the underlying data distribution (Sener et al., 2018; Ash
et al., 2020; Kim & Shin, 2022). To date, the unreliable informativeness evaluation with very few
samples remains a critical issue for Active Learning.

6 CONCLUSIONS

In this work, we propose a novel active learning framework CAMPAL. Based on the observation that
the impacts of augmentations applied to the disparate data pools differ due to their different goals,
CAMPAL conducts appropriate controls on data augmentation integrated into active learning. We
empirically find CAMPAL attains state-of-the-art performance with a significant performance boost,
especially with fewer labeled samples. Our theoretical analysis further guarantees this difference
and claims the reliance of AL on the quality of introduced augmentations. In the future, we hope to
generalize CAMPAL to more tasks and investigate the impact of DA over AL in more detail.
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(a) (b) (c) (d)

Figure 6: The coverage on the data space presented by augmentations, where colored circles are labeled
samples, white circles are unlabeled samples and the colored shade denotes the region covered by corresponding
augmentations. A double circle denotes the unlabeled sample to be annotated. The figures above show: a) Proper
augmentation for labeled samples; b) Drastic augmentation for labeled samples; c) Sub-optimal unlabeled sample
with the corresponding augmentation; d) A proper unlabeled sample with the corresponding augmentation.

A THEORETICAL ANALYSIS

This section provides a complete derivation for the analysis given in Section 4. An intuition for
this is given in Figure 6. Before the actual acquisition process, we must ensure convergence for the
underlying classifier. Specifically, with proper augmentations over labeled data and the approximate
loss term in equation 3, we can deduce the upper bound for Pr(A) and guarantee the convergence
for training, shown as follows:

Theorem 1. Under the setting for CAMPAL, Let E denote the probability that the classifier cannot
infer the label of newly given samples drawn from the underlying data space, with L labeled samples
given in DL and augmentation set T . Then E is upper bounded by Ê as follows:

E ≤ Ê(DL, fθ, T ) =

L∑
l=1

Pi(1− Pi)
m +

(
1−

L∑
i=1

Pi

)
, (6)

With properly selected augmentation set T and sufficient large L, Ê can be estimated by O(ε) with
O(L/ε) samples covered by labeled components, i.e.

m = O(L/ε) ⇒ Ê ⪅ O(ε) ⇒ E ≤ O(ε). (7)

Proof. With proper control over augmentations, we assume that each component does not overlaps
with at most one other component in Proposition 3, which can be controlled with appropriate
augmentations, and generalizable to multiple components. Let x be the sampled example, the
probability of x not covered only in one of Ci’s is

Ê = P (∃i ̸= j, x′ ∈ Ci ∩ Cj) + P (x′ is uncovered)

=

L∑
l=1

Pi(1− Pi)
m +

(
1−

L∑
i=1

Pi

)

With sufficiently large L, we can also have a component set that covers the entire dataset, leading
to
∑

i Pi = 1. Now it remains to find the maximum value of
∑L

l=1 Pi(1− Pi)
m to bound the error

term, with the following optimization objective:

min
C

−
∑
i

Pi(1− Pi)
m, s.t.

∑
i

Pi = 1.

With the KKT condition, we attain its maximum value when all Pi is set to 1
L , i.e. Ê ⪅ (1− 1

L )
m.

With O(L/ε) and sufficiently large L, we have

Ê ⪅ exp
(
−m

L

)
= exp

(
−O(

1

ε
)

)
≤ O(ε).
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With the conditions in theorem 1, it remains to consider the approximate boost provided by the
reduction on upper bound Ê :

∆Ê(∆m,PL+1) = Ê(DL ∪ {xL+1}, fθ, T })− Ê(DL, fθ, T ))

=

L∑
i=1

Pi(1− Pi)
m
(
1− (1− Pi)

∆m
)
− PL+1

(
1− (1− PL+1)

m+∆m
)
.

where ∆m is the number of samples newly covered after labeling xL+1.
Theorem 2. With the conditions given in Theorem 1, the maximal value for error bound reduction
∆Ê(∆m,PL+1) with newly-annotated samples can be estimated as follows:

∆E(∆m,PL+1) ⪅ E
(
1−Ke−m/L

)
, (8)

where U denotes the number of unlabeled samples, with

K =
m log(L+ U)− L (logL− 1)

L+ U
.

Proof. Under this setting, PL+1 appears to be proportional to ∆m, when no unnecessary overlap
appears across components (guaranteed by Theorem 1). Therefore, we can estimate PL+1 ≈
∆m/(L+U), where U denotes the number of unlabeled samples. With those conditions, we estimate
the relative error reduction as follows:

∆Ê
Ê

=

∑L
i=1 Pi(1− Pi)

m
(
1− (1− Pi)

∆m
)
− PL+1

(
1− (1− PL+1)

m+∆m
)

∑L
i=1 Pi(1− Pi)m +

(
1−

∑L
i=1 Pi

)
⪅

(
1−

(
1− 1

L

)∆m
)

− exp
(
−m

L

) ∆m

L+ U

(
1−

(
1− ∆m

L+ U

)m+∆m
)

Since m is large with sufficient labeled samples, we can further estimate this term as:

∆Ê
Ê

⪅ 1−
(
1− 1

L

)∆m

− exp(−m

L
)

∆m

L+ U
.

Then the maximum value for this is attained when ∆m reaches

∆m∗ =
1

log
(
1− 1

L

) (m

L
− log

(
1

L+ U

)
− log

(
− log

(
1− 1

L

)))
≈ L

(
m

L
− log

(
1

L+ U

)
+ log(

1

L
)

)
= m+ L (log (L+ U)− logL)

Then

∆Ê
Ê

≈ 1 +
1

L+ U

(
1

log(1− 1
L )

−∆m∗
)
exp

(
−m

L

)
≈ 1− m+ L (log(L+ U)− logL− 1)

L+ U
exp

(
−m

L

)
.

B ADDITIONAL EXPERIMENTAL SETUPS AND RESULTS

B.1 IMPLEMENTATION DETAILS

We conduct experiments on four benchmark datasets: FashionMNIST, SVHN, CIFAR-10, and
CIFAR-100. We will construct a random initial dataset with 100 instances for FashionMNIST,
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Table 5: The list of all the augmentations used in the experiments. The letter x or x∗ denotes given
images. U(a, b) denotes a continuous uniform distribution at interval [a, b], when B(a, b) denotes a
beta distribution with parameters a and b.

Augmentation Parameters Description
AutoContrast(x) Maximizing the (normalize) image contrast
Brightness(x,v) v ∼ U(1, 1.18): an enhancing factor Enhancing the brightness of a given image

Color(x,v) v ∼ U(1, 1.18): an adjustment factor Adjust the color balance of a given image
Contrast(x,v) v ∼ U(1, 1.18): Enhancing the contrast of a given image
CutOut(x,v) v ∼ U(0.09, 0.11): CutOut ratio Cut out a part of image and fill with black

CutOutAbs(x,v) v ∼ U(0.09, 0.11): CutOut ratio Cut out a part of image and fill with gray
Equalize(x) Equalize the image histogram
Identity(x) Return the image itself
Invert(x) Invert all pixel values

Posterize(x,v) v ∼ U(6.0, 6.4): Posterizing degree Posterizing the image
Rotate(x,v) v ∼ U(20, 30): Rotation degree Rotating the image

Sharpness(x,v) v ∼ U(1, 1.18): Sharpen degree Sharpen the image
ShearX(x,v) v ∼ U(0.15, 0.18): Affinity degree Affine transformation in x-axis
ShearY(x,v) v ∼ U(0.15, 0.18): Affinity degree Affine transformation in y-axis
Solarize(x,v) v ∼ U(96, 128): Solarization degree Solarizing the image

SolarizeAdd(x,v) v ∼ U(50, 60): Solarization degree Solarizing the image and add back
TranslateX(x,v) v ∼ U(0.1, 0.15): translation ratio Translating the image in x-axis
TranslateY(x,v) v ∼ U(0.1, 0.15): translation ratio Translating the image in y-axis
MixUp(x,x∗, λ) λ: the mixing ratio Mix up the two given images

SVHN, and CIFAR-10, and 1,000 instances for CIFAR-100. Then we acquire 100 instances for
FashionMNIST, SVHN, and CIFAR-10, and 500 instances for CIFAR-100 at each cycle. We repeat
the cycle 20 times. Then we generate 10 single-image augmentations and 5 mix-up augmentations
for each sample. We normalize the images with the channel mean and standard deviation over all
the datasets. For CIFAR-10 and CIFAR-100, we apply a standard augmentation after conducting
augmentations in the pipeline. We adopt ResNet-18 as the architecture and train the model for 300
epochs with an SGD optimizer of learning rate 0.01, momentum 0.9, and weight decay 5e-4. For the
virtual loss term in equation 2, we also set λ1 = λ2 = 1.

B.2 IMPLEMENTATION DETAILS FOR THE SIMPLE APPLICATION OF DA FOR AL IN FIGURE 1

We integrate DA into AL with fixed augmentations T as follows. This experiment is also conducted
on dataset CIFAR-10 with a ResNet-18 architecture. The basic acquisition here is Max Entropy. First,
we augment the labeled pool with T , and train the classifier fθ accordingly. Then we augment the
unlabeled pool with T and performs acquisitions directly on the augmented unlabeled pool. Other
settings are the same as the main empirical experiments.

B.3 AUGMENTATIONS INCLUDED

The details of the 19 augmentations in the (CAMPAL) with their parameters are shown in Table
5. In brief, the augmentations we use can be categorized into single-image augmentations and
image-mixing. Formally, we provide an augmentation functional set that covers (i)-singular input
augmentation means such as rotation for low-level image processing. The corresponding functional
set is denoted by Tsingle = {ω(x;λ)} where ω points to an instantiated augmentation function. The
sample x is taken as an input to ω together with varying augmentation hyper-parameters λ, such as
the angle in the image rotation function. Similarly, we also construct a combinatorial augmentation
functional set, Tmix = {γ(x, x′;λ)}, where the augmentation function γ takes two input samples x
and x′ together with hyper-parameter. With slight abuse of notations, we uniformly use λ to refer to
augmentation-related hyper-parameters. In the implementation of CAMPAL, we simply adopt MixUp
for combinatorial augmentation. As we can see, upon fixed input, both singular and combinatorial
augmentation functional sets can be arbitrarily expanded, by varying λ in a continuous scalar space.
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Table 6: Test accuracy of CAMPAL and augmentation-induced acquisition with learned RandAug-
ment.

Method Fashion SVHN CIFAR-10 CIFAR-100

Ent w. RA 86.15±0.89 82.84±1.12 76.83±0.82 46.70±0.34
CAMPALDENSITY

Entropy 86.17±0.58 83.49±0.96 78.89±0.74 48.76±0.30

Table 7: Comparison of the averaged test accuracy when each type of augmentation is separately
integrated into CAMPAL. We ran each experiment on CIFAR-10 with 2,000 samples annotated at the
last cycle, and repeat them 5 times. NL denotes the number of labeled samples.

Augmentation NL = 500 NL = 1, 000 NL = 1, 500 NL = 2, 000

None 39.80±1.60 55.43±1.71 60.76±2.64 65.95±1.36
AutoContrast 48.59±1.12 63.35±0.30 72.77±0.12 76.36±0.28

Brightness 45.63±0.26 60.16±2.25 69.50±0.26 74.25±0.16
Color 50.84±3.50 62.04±1.75 72.24±0.25 76.64±0.46

Contrast 49.77±3.91 56.52±1.32 68.95±1.61 74.47±0.63
CutOut 47.91±2.66 62.29±3.69 71.37±1.19 76.62±0.34

CutOutAbs 53.59±0.30 63.96±0.57 67.94±0.19 71.94±0.18
Equalize 49.38±1.93 63.18±1.86 69.86±0.78 74.25±0.27

Invert 51.73±0.29 63.65±0.12 71.89±0.33 75.98±0.28
Posterize 49.02±1.16 64.24±1.30 72.25±0.90 75.62±0.64

Rotate 44.60±1.39 56.47±0.21 63.08±1.22 67.60±0.45
Sharpness 47.31±2.35 62.40±1.15 70.98±1.26 74.38±2.46

ShearX 45.19±0.39 58.22±0.99 67.96±0.54 72.16±1.20
ShearY 48.09±4.96 62.13±1.98 70.98±0.05 76.75±0.96
Solarize 48.72±1.55 63.58±1.12 70.14±0.73 73.94±0.02

SolarizeAdd 52.48±2.06 64.95±0.34 69.17±0.20 71.91±0.49
TranslateX 41.41±1.39 54.97±0.94 64.88±0.39 70.03±0.68
TranslateY 55.12±1.12 68.23±0.53 73.44±0.02 76.98±0.48

B.4 ADDITIONAL RESULTS COMPARED TO RANDAUGMENT.

Since CAMPAL locate feasible augmentations guided by their strength, we also compare CAMPAL
with RandAugment (Cubuk et al., 2020). To show the effectiveness of a separate control on unla-
beled/labeled data in CAMPAL, we trained RandAugment on the labeled data within each AL cycle,
then applied the optimized augmentation to both the labeled pool and unlabeled pool. As shown in
Table 6, CAMPAL shows better performance than the RandAugment, indicating the superiority of the
separate control. It should be noted that RandAugment is originally designed for training over full
labeled data, but is obliged to be conducted over the labeled pool with limited samples under the AL
setting. Therefore, directly adopting RandAugment to AL is infeasible, since it can be heavily biased
towards limited labeled data, contributing little to the distribution enrichment on unlabeled data.

B.5 ABLATION STUDIES OVER TYPES OF AUGMENTATIONS

The impact of each single-image augmentation operator on CAMPAL. To further dive into the
impact of the contribution of augmentations, we also provide the results when each augmentation
is separately applied to CAMPAL with different strengths, shown in Table 7 on CIFAR-10 with
CAMPALDENSITY

Entropy . We can see the impact of different types of single-image augmentations varies.
An interesting observation is that different augmentation operator does not contribute equally at
the different AL cycles. For example, Sharpness performs better than Rotate when NL = 500, but
underperforms Rotate when NL = 2000. It reveals a sophisticated mechanism of the benefit of
these augmentation operators on AL. However, the profound theory behind why data augmentation
works have not been fully revealed to date, making it difficult to principally pick up the best optimal
augmentation type. Hence, we naively adopt a simple strategy that uniformly selects and stacks these
operators to enjoy their mixed benefits to AL.
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Table 8: Test accuracy of CAMPAL when integrated with different combinations of single-image
augmentations and the MixUp.

Augmentations Entropy LC Margin Core-set BADGE
Single MixUp

✓ 75.87±0.32 76.04±0.41 77.61±0.91 76.62±0.50 77.78±0.45
✓ 75.41±0.25 74.89±0.64 77.76±0.48 75.21±0.32 75.69±0.62

✓ ✓ 76.90±0.76 76.82±0.62 78.70±0.58 78.20±0.28 79.71±0.51

Table 9: Test accuracy of CAMPAL when integrated with different combinations of single-image
augmentations and the MixUp.

Coefficients Entropy LC Margin Core-set BADGE
λ1 λ2

1.0 0 75.87±0.32 73.36±2.25 70.15±2.19 76.62±0.50 77.78±0.45
1.0 0.5 75.62±0.76 75.89±0.73 77.20±0.52 79.23±0.51 77.07±0.38
0 1.0 75.41±0.25 72.93±0.65 67.69±0.72 73.99±0.03 75.69±0.62

0.5 1.0 75.95±0.62 76.55±0.62 76.25±0.60 75.21±0.32 74.88±0.14
1.0 1.0 76.90±0.76 76.82±0.62 78.70±0.58 78.20±0.28 79.71±0.51

Effect of single-image augmentations and mix-up. To prove the efficacy of including both single-
image augmentations of image-mixing into one query batch, we further explore the effect of these
two kinds of augmentations separately. To verify this, we conduct experiments over two variants of
CAMPAL that only use one type of augmentations, i.e. single-image augmentations and MixUp. The
tests are performed by the ResNet-18 model with 4% (2000) data from CIFAR-10. For fairness, when
only one kind of augmentation is used, we generate 15 augmented samples of this type. In Table 8,
we can see a consistent performance boost when using both kinds of augmentations over Entropy
(∆ 1.03), LC (∆ 0.78), Margin (∆ 0.94), Coreset (∆ 1.58), and BADGE (∆ 1.93). In conclusion,
an integration of both single-image augmentations and image-mixing better unleashes the potential
information of each sample than they separately do.

Effect of λ1, λ2 in the virtual loss term. To optimize ml, i.e. the strength for augmentations per-
formed over labeled samples, we use λ1, λ2 to trade off the impact of single-image augmentations and
image mixing. We dive deeper into this scheme by applying different combinations of λ1, λ2, shown
in Table 9. Specifically, the experiment is conducted on the following versions: 1) CAMPALMIN

Entropy;
2) CAMPALMIN

LC ; 3) CAMPALMIN
Margin; 4) CAMPALSTANDARD

Coreset ; 5) CAMPALSTANDARD
BADGE .

B.6 FURTHER EXTENSION: AUGMENTATIONS VS. UNSUPERVISED TRAINING

Recall that several studies tried to involve unlabeled samples in training auxiliary networks to assist
querying(Sinha et al., 2019; Zhang et al., 2020; Kim et al., 2021a; Caramalau et al., 2021), which
inevitably brings high computational costs. We claim that data augmentations are sufficient to enforce
the acquisition process without much extra cost over unsupervised training. To verify this, we
compare the running time and performance of augmentation-based strategies and those utilizing extra
unsupervised architectures, shown in Table 10. We can see that augmentation-based methods with the
best performance consistently outperform other strategies when becoming computationally efficient.
Since active learning usually faces the problem of heavy computational cost in acquisitions, data
augmentation may serve as an effective tool for both boosting the speed and performance at once.
More importantly, this thought restricts the training process merely over labeled data, thus reducing
the need for numerous unlabeled data in AL and making AL paradigms more applicable. We also
adopt augmentations for labeled samples for methods with unsupervised representations.
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Table 10: Comparison of the averaged test accuracy and the run-time of a single AL cycle over
CIFAR-10. The run-time is calculated as the ratio to Random Sampling. Bold indicates the best
performance of different data scales within each category.

Method NL = 500 NL = 1, 000 NL = 1, 500 NL = 2, 000 Time

Random 38.54±2.28 49.77±3.08 58.61±2.75 61.49±2.06 1
Entropy 39.80±1.60 55.43±1.71 60.76±2.64 65.95±1.36 1.03

LC 38.50±1.10 53.83±2.71 59.74±2.12 66.97±1.87 1.01
Margin 40.03±2.49 54.22±2.47 62.61±1.91 66.76±1.77 1.07
Core-set 43.42±2.09 53.54±2.74 62.00±1.44 66.90±0.93 1.33
BADGE 44.18±2.09 55.97±1.57 62.40±2.15 67.03±0.62 1.28

Unsupervised
Representation

TA-VAAL 61.72±0.47 66.67±0.92 70.53±0.50 74.41±0.70 5.82
SRAAL 60.53±0.89 67.08±0.28 71.02±0.66 75.05±0.15 6.04

CoreGCN 56.03±1.73 59.81±1.31 65.19±1.49 69.61±2.34 2.73

CAMPAL-based
Augmentation

Entropy 62.78±1.33 69.34±1.35 71.84±1.35 76.90±0.76 5.13
LC 61.89±0.80 69.06±1.00 73.49±0.92 76.82±0.62 5.08

Margin 65.46±0.63 72.77±0.55 75.96±0.85 78.70±0.58 5.10
Core-set 62.59±0.89 71.55±0.29 75.69±0.62 78.20±0.28 5.42
BADGE 66.40±1.01 73.48±0.42 77.38±0.53 79.71±0.51 5.54

B.7 ADDTIONAL RESULTS FOR ABLATION STUDIES OVER STRENGTHS

Heatmap visualization for Core-set and BADGE. We also provide different combinations of
strengths on CAMPALSTANDARD

Coreset and CAMPALSTANDARD
BADGE , which have similar phenomena as

described in Section 3.3 and shown in Figure 7. Specifically, augmentations over unlabeled samples
tend to produce better results as strength increases and produce the best results mostly with strength
4, indicating that drastic augmentations help induce a stronger acquisition. In contrast, augmentations
over labeled samples produce the best results mostly with a strength of 2, fitting with the conclusion
in Section 3.2 that weak augmentations for labeled samples are better at boosting the classifier. These
phenomena show the difference between the impacts of augmentations over training and acquisition
in active learning, and further guarantee the importance of a combinatorial scheme of weak and
strong augmentations being strategically applied to labeled and unlabeled data.

(a) Core-set (b) BADGE

Figure 7: A heatmap visualization of performance boost brought by augmentations of different
strengths, when attached to the labeled pool and unlabeled pool. The experiments are performed over
CIFAR-10 with 2,000 labeled samples and are conducted over Core-set and BADGE.

Strength Change Across Different Cycles. Since we show the strength on CIFAR-10 change
across AL cycles for CAMPALMIN

Entropy and CAMPALSTANDARD
BADGE in the main content, we also show

other versions of strength change on CIFAR-10 in Figure 8. We can also see that larger mu’s in
comparison with ml’s. We ran each experiment with 100 cycles and repeat them 5 times. In more
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detail, the difference between mu,ml is not clear in the early stages of active learning, since the
model lacks the ability to uncover information from images.

C PSEUDO CODE

We summarize the pseudo-code of our CAMPAL within one active learning cycle in Algorithm 1.

Algorithm 1: An active learning cycle for CAMPAL.

Require :Labeled data pool D̂L, Unlabeled data pool DU , Model fθ .
θ ← argminθ

1
|DL|

∑
x∈DL

L (fθ(x), y);
ml = argminm

1
|DL|

∑
xL∈DL

Lf (xL,m), where Lf is shown in equation 2;

Generate an augmentation set T (ml) with strength ml;
θ ← argminθ

1

|T (mlab)(DL)|

∑
x∈T (ml)(DL)

L (fθ(x), y);
mu = argmaxm

∑
xU∈DU

min{H(x̃U ) | x̃U ∈ T (m)(xU ), fθ(x̃U ) = fθ(xU )};
Generate an augmentation set T (mu) with strength mu;
Deduce the enhanced acquisition hacq with T (mu) and fθ as shown in Section 2.3;
Select optimal sample batchQ according to hacq;
DU ← DU −Q;
DL ← DL ∪Q.
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(a) CAMPALMIN
Entropy (b) CAMPALSUM

Entropy (c) CAMPALDENISTY
Entropy

(d) CAMPALMIN
LC (e) CAMPALSUM

LC (f) CAMPALDENISTY
LC

(g) CAMPALMIN
Margin (h) CAMPALSUM

Margin (i) CAMPALDENISTY
Margin

(j) CAMPALSTANDARD
Coreset (k) CAMPALCHAMFER

Coreset (l) CAMPALHAUSDORFF
Coreset

(m) CAMPALSTANDARD
BADGE (n) CAMPALCHAMFER

BADGE (o) CAMPALHAUSDORFF
BADGE

Figure 8: The average optimal strength ml,mu across different AL cycles on CIFAR-10 with different
instantiated versions for CAMPAL.
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