
Under review as a conference paper at ICLR 2024

ADVERSARIAL ATTACKS ON COMBINATORIAL MULTI-
ARMED BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study reward poisoning attacks on Combinatorial Multi-armed Bandits (CMAB).
We first provide a sufficient and necessary condition for the attackability of CMAB,
which depends on the intrinsic properties of the corresponding CMAB instance
such as the reward distributions of super arms and outcome distributions of base
arms. Additionally, we devise an attack algorithm for attackable CMAB instances.
Contrary to prior understanding of multi-armed bandits, our work reveals a sur-
prising fact that the attackability of a specific CMAB instance also depends on
whether the bandit instance is known or unknown to the adversary. This finding
indicates that adversarial attacks on CMAB are difficult in practice and a general
attack strategy for any CMAB instance does not exist since the environment is
mostly unknown to the adversary. We validate our theoretical findings via extensive
experiments on real-world CMAB applications including probabilistic maximum
covering problem, online minimum spanning tree, cascading bandits for online
ranking, and online shortest path.

1 INTRODUCTION

Multi-armed bandits (MAB) (Auer, 2002) is a classic framework of sequential decision-making
problems that has been extensively studied (Lattimore & Szepesvári, 2020; Slivkins et al., 2019). In
each round, the learning agent selects one out of m arms and observes its reward feedback which
follows an unknown reward distribution. The goal is to maximize the cumulative reward, which
requires the agent to balance exploitation (selecting the arm with the highest average reward) and
exploration (exploring arms that have high potential but have not been played enough).

Combinatorial multi-armed bandits (CMAB) is a generalized setting of original MAB with many
real-world applications such as online advertising, ranking, and influence maximization (Liu &
Zhao, 2012; Kveton et al., 2015; Chen et al., 2016; Wang & Chen, 2017). In CMAB, the agent
chooses a combinatorial action (called a super arm) over the m base arms in each round, and observes
outcomes of base arms triggered by the action as feedback, known as the semi-bandit feedback. The
exploration-exploitation trade-off in CMAB is extremely hard compared to MAB because the number
of candidate super arms could be exponential in m.

Recent studies showed that MAB and its variants are vulnerable to adversarial attacks, especially
poisoning attacks (Jun et al., 2018; Liu & Shroff, 2019; Wang et al., 2022; Garcelon et al., 2020).
Under such attacks, an adversary observes the pulled arm and its reward feedback, and then modifies
the reward to misguide the bandit algorithm to pull a target arm that is in the adversary’s interest.
Specifically, the adversary aims to spend attack cost sublinear in time horizon T to modify rewards,
i.e., o(T ) cost, such that the bandit algorithm pulls the target arm almost all the time, i.e., T − o(T )
times. Liu & Shroff (2019) showed that no-regret MAB algorithms can be efficiently attacked under
any problem instance, while Wang et al. (2022) showed that there exist instances of linear bandits that
cannot be attacked without linear cost, indicating such instances are intrinsically robust to adversarial
attacks even provided vanilla bandit algorithms.

Due to the wide applicability of CMAB, understanding its vulnerability and robustness to poisoning
attacks is increasingly important. Applying the MAB concept of attackability to CMAB is tempt-
ing (Liu & Shroff, 2019; Wang et al., 2022), but it leads to a sublinear cost bound in T but exponential
in the number of base arms m. This approach follows the same attack strategy as in MAB. However,
in practice, the exponential cost in m can exceed T , resulting in vacuous results. Therefore, the

1



Under review as a conference paper at ICLR 2024

original attackability notion is insufficient, and we have the following research question(RQ): What
is a good notion to capture the vulnerability and robustness of CMAB?

1.1 OUR CONTRIBUTION

To answer the research question, we propose the definition of polynomial attackability (Section 3):
when the attack is “successful”, the cost upper bound should not only be sublinear in time horizon T ,
but also polynomial in the number of base arms m and other factors. Following the definition of poly-
nomial attackability, we propose the first study on adversarial attacks on combinatorial multi-armed
bandits under the reward poisoning attack (Jun et al., 2018; Liu & Shroff, 2019; Wang et al., 2022). We
provide a sufficient and necessary condition for polynomial attackability of CMAB, which depends
on the bandit environment, such as the reward distributions of super arms and outcome distributions
of base arms (Section 3). We analyze the attackability of several real-world CMAB applications
including cascading bandits for online learning to rank (Kveton et al., 2015), online shortest path (Liu
& Zhao, 2012), online minimum spanning tree (Kveton et al., 2014), and probabilistic maximum
coverage problem (Chen et al., 2016) (a special instance of online influence maximization (Wen et al.,
2017)). Our results can also be applied to simple reinforcement learning settings (Section 3), and to
the best of our knowledge, get the first “instance”-level attackability result on reinforcement learning.

Perhaps surprisingly, we discovered that for the same CMAB instance, polynomial attackability is
not always the same, but is conditioned on whether the bandit environment is known or unknown
to the adversary (Section 4). We constructed a hard example such that the instance is polynomially
attackable if the environment is known to the adversary but polynomially unattackable if it is unknown
to the adversary in advance. This hardness result suggests that adversarial attacks on CMAB may be
extremely difficult in practice and a general attack strategy for any CMAB instance does not exist
since the environment is mostly unknown to the adversary.

Finally, numerical experiments are conducted to verify our theory (Section 5).

1.2 RELATED WORKS

Adversarial attacks on bandits and reinforcement learning Reward poisoning attacks on bandit
algorithms were first studied in the stochastic multi-armed bandit setting (Jun et al., 2018; Liu &
Shroff, 2019), where an adversary can always force the bandit algorithm to pull a target arm linear
times only using a logarithmic cost. Garcelon et al. (2020) studied attacks on linear contextual
bandits. The notion of attackability is first termed by Wang et al. (2022), where they studied the
attackability of linear stochastic bandits. Adversarial attacks on reinforcement learning have been
studied under white box (Rakhsha et al., 2020; Zhang et al., 2020) and black-box setting (Rakhsha
et al., 2021; Rangi et al., 2022). Specifically, Rangi et al. (2022) showed there exist unattackable
episodic RL instances with reward poisoning attacks. However, none of the existing work analyzed
the attackability of a given instance. Besides reward poisoning attacks, other threat models such as
environment poisoning attacks Rakhsha et al. (2020); Sun et al. (2021); Xu et al. (2021); Rangi et al.
(2022) and action poisoning attacks Liu & Lai (2020) were also being studied. We focus on reward
poisoning attacks in this paper and leave investigation on other threat models as future work.

Corruption-tolerant bandits Another line of work studies the robustness of bandit algorithms
against poisoning attacks, also known as corruption-tolerant bandits. Lykouris et al. (2018); Gupta
et al. (2019) proposed robust MAB algorithms under an oblivious adversary who determines the
manipulation before the bandit algorithm pulls an arm. Dong et al. (2022) proposed a robust CMAB
algorithm under strategic manipulations where the corruptions are limited to only increase the
outcome of base arms in semi-bandit feedback. This is weaker than our threat model as we allow the
adversary to increase or decrease the outcome of base arms.

2 PRELIMINARY

2.1 COMBINATORIAL SEMI-BANDIT

In this section, we introduce our model for the combinatorial semi-bandit (CMAB) problem. The
CMAB model is mainly based on Wang & Chen (2017), which handles nonlinear reward functions,

2



Under review as a conference paper at ICLR 2024

approximate offline oracle, and probabilistically triggered base arms. A CMAB problem (Wang &
Chen, 2017) can be considered a game between a player and an environment. We summarize the
important concepts involved in a CMAB problem here:
• Base arm: The environment has m base arms [m] = 1, 2, . . . ,m associated with random vari-

ables following a joint distribution D over [0, 1]m. At each time t, random outcomes X(t) =

(X
(t)
1 , X

(t)
2 , . . . , X

(t)
m ) are sampled from D. The unknown mean vector µ = (µ1, µ2, . . . , µm)

where µi = EX∼D[X
(t)
i ] represents the means of the m base arms.

• Super arm: At time t, the player selects a base arm set S(t) from action space S (which could be
infinite) based on the feedback from the previous rounds. The base arm set, referred to as a super
arm, is composed of individual base arms.

• Probabilistically triggered base arms: When the player selects a super arm S(t), a random subset
τt ⊆ [m] of base arms is triggered, and the outcomes X(t)

i for i ∈ τt are observed as feedback. τt
is sampled from the distribution Dtrig(S(t),X(t)), where Dtrig(S,X) is the probabilistic triggering
function on the subsets 2[m] given S and X . We denote the probability of triggering arm i with
action S as pD,S

i where D is the environment triggering distribution. The set of base arms that can
be triggered by S under D is denoted as OS = {i ∈ [m] : pD,S

i > 0}.
• Reward: The player receives a nonnegative reward R(S(t),X(t), τt) determined by S(t),X(t),

and τt. The objective is to select an arm S(t) in each round t to maximize cumulative reward. We
assume that E[R(S(t),X(t), τt)] depends on S(t),µt, and denote rS(µ) := EX [R(S,X, τ)] as
the expected reward of super arm S with mean vector µ. This assumption is similar to Chen et al.
(2016); Wang & Chen (2017), and holds when variables X(t)

i are independent Bernoulli random
variables. We define optµ := supS∈S rS(µ) as the maximum reward given µ.

In summary, a CMAB problem instance with probabilistically triggered arms can be described as a
tuple ([m],S,D,Dtrig, R). We introduce the following assumptions on the reward function, which
are standard assumptions commonly used in the CMAB problem.

Assumption 2.1 (Monotonicity). For any µ and µ′ with µ ⪯ µ′ (dimension-wise), for any super
arm S ∈ S, rS(µ) ≤ rS(µ

′).

Assumption 2.2 (1-Norm TPM Bounded Smoothness). For any two distributions D,D′ with expec-
tation vectors µ and µ′ and any super arm S ∈ S, there exists a B ∈ R+ such that,

|rS(µ)− rS(µ
′)| ≤ B

∑
i∈[m]

pD,S
i |µi − µ′

i|.

CUCB algorithm The combinatorial upper confidence bound (CUCB) algorithms (Chen et al., 2013;
Wang & Chen, 2017) are a series of algorithms devised for the CMAB problem. Key ingredients
of a typical CUCB algorithm include (1) optimistic estimations of the expected value of the base
arms µ and (2) a computational oracle that takes the expected value vector µ as input and returns an
optimal or close-to-optimal super arm. For example, an (α, β)-approximation oracle can ensure that
Pr(rS(µ) ≥ α · optµ) ≥ β. A typical CUCB algorithm proceeds in the following manner: in each
round, the player tries to construct tight upper confidence bound (UCB) on the expected outcome
based on historical observations, and feeds the UCBs to the computational oracle; the oracle yields
which super arm to select. When combined with the two assumptions above, a legitimate CUCB
algorithm’s regret, or the (α, β)-approximation regret, can typically be upper bounded.

2.2 THREAT MODEL

We consider reward poisoning attack as the threat model (Jun et al., 2018; Liu & Shroff, 2019;
Garcelon et al., 2020; Wang et al., 2022). Under such threat model, a malicious adversary has a set
M of target super arms in mind and the goal of the adversary is to misguide the player into pulling
any of the target super arm linear times in the time horizon T . At each round t, the adversary observes
the pulled super arm S(t), the outcome of the base arms X(t) = {X(t)

i }i∈τt , and its reward feedback
R(S(t),X(t), τt). The adversary modifies the outcome of base arm from X

(t)
i to X̃

(t)
i for all i ∈ τt.

X̃(t) := {X̃(t)
i }i∈τt is thus the ‘corrupted return’ of the observed base arms. The cost of the attack is

defined as C(T ) =
∑T

t=1 ∥X̃(t) −X(t)∥0.

3



Under review as a conference paper at ICLR 2024

2.3 SELECTED APPLICATIONS OF CMAB

Online minimum spanning tree Consider an undirected graph G = (V,E). Every edge e = (u, v)

in the graph has a cost realization X
(t)
u,v ∈ [0, 1] drawn from a distribution with mean µu,v at

each time slot t. Online minimum spanning tree problem is to select a spanning tree S(t) at every
time step t on an unknown graph in order to minimize the cumulative (pseudo) regret defined as
R =

∑T
t=1 E

[∑
(u,v)∈S(t) Xt

u,v −
∑

(u,v)∈S∗ Xt
u,v

]
, where S∗ is the minimum spanning tree given

the edge cost µe for every edge e.

Online shortest path Consider an undirected graph G = (V,E). Every edge e = (u, v) in the
graph has a cost realization X

(t)
u,v ∈ [0, 1] drawn from a distribution with mean µu,v at each time slot

t. Given the parameters µe, the shortest path problem with a source s and a destination t is to select a
path from s to t with minimum cost, i.e., to solve the following problem minS

∑
(u,v)∈S µu,v where

S is a path from s to t. The online version is to select a path S(t) from s to t at time t on graph
G = (V,E) in order to minimize the cumulative regret.

Cascading bandit Cascading bandit is a popular model for online learning to rank with Bernoulli
click feedback under cascade click model (Kveton et al., 2015; Vial et al., 2022). There is a set of
items (base arms) [m] = {1, 2, 3, · · · ,m}. At round t, the bandit algorithm recommends a list of
K < m items [at,1, at,2, · · · at,K ] as a super arm to the user from which the user clicks on the first
attractive item (if any), and stops examining items after clicking. The user selects item j from the
list with probability µj , which should be estimated online by the algorithm. The cascading bandit
problem can be reduced to CMAB with probabilistic triggered arms (Wang & Chen, 2017).

Probabilistic maximum coverage Given a weighted bipartite graph G = (L,R,E) where each
edge (u, v) has a probability µu,v , the probabilistic maximum coverage (PMC) is to find a set S ⊆ L
of size k that maximizes the expected number of activated nodes in R, where a node v ∈ R can be
activated by a node u ∈ S with an independent probability of µu,v. In the online version of PMC,
µu,v are unknown. The algorithm estimates µu,v online and minimizes the pseudo-regret.

3 POLYNOMIAL ATTACKABILITY OF CMAB INSTANCES

Previous literature defined the following attackability notion for MAB instances (Jun et al., 2018; Liu
& Shroff, 2019; Garcelon et al., 2020; Wang et al., 2022): for any no-regret algorithm A (the regret of
A is o(T ) for large enough T ), the attack can only use sublinear cost C(T ) = o(T ) and fool the algo-
rithm A to play the arms in target set M for T −o(T ) times. It is worth noting that Wang et al. (2022)
is the first to observe that certain linear MAB instances are unattackable without linear cost, suggest-
ing intrinsic robustness of such linear bandit instances. However the notion of attackability needs to
be modified in the CMAB framework, since the number of super arms is exponential and will lead to
impractical guarantees. In this work, we propose to consider the polynomial attackability of CMAB.

For a particular CMAB instance ([m],S,D,Dtrig, R), we define p∗ := infS∈S,i∈OS{p
D,S
i }.

Definition 3.1 (Polynomially attackable1). A CMAB instance is polynomially attackable with respect
to a set of super arms M, if for any learning algorithm with regret O(poly(m, 1/p∗,K) · T 1−γ) with
high probability for some constant γ > 0, there exists an attack method with constant γ′ > 0 that
uses at most T 1−γ′

attack cost and misguides the algorithm to pull super arm S ∈ M for T − T 1−γ′

times with high probability for any T ≥ T ∗, where T ∗ polynomially depends on m, 1/p∗,K.

Definition 3.2 (Polynomially unattackable). A CMAB instance is polynomially unattackable
with respect to a set of super arms M if there exists a learning algorithm A with regret
O(poly(m, 1/p∗,K) · T 1−γ) with high probability for some constant γ > 0, such that for any
attack method with constant γ′ > 0 that uses at most T 1−γ′

attack cost, the algorithm A will
pull super arms S ∈ M for at most T/2 times with high probability for any T ≥ T ∗, where T ∗

polynomially depends on m, 1/p∗,K.

1We use the terms attackable and polynomially attackable interchangeably in the following discussion.

4



Under review as a conference paper at ICLR 2024

Remark 3.3 (Conventional attackability definition vs. polynomially attackable vs. polynomially
unattackable). 1. Compared to conventional attackability definitions for k-armed stochastic bandit
instance, both Definition 3.1 and Definition 3.2 require a polynomial dependency on m. 2. Note that
the ‘polynomially unattackable’ notion is stronger than ‘not polynomially attackable’.
Remark 3.4 (Polynomial dependency). T ∗’s dependency on m, 1/p∗,K is important to CMAB.
Otherwise, the problem reduces to a vanilla MAB with an exponentially large number of arms.
Definition 3.5 (Gap). For each super arm S, we define the following gap

∆S := rS(µ)− max
S′ ̸=S

rS′(µ⊙OS).

where ⊙ is the element-wise product. For a set M of super arms, we define the gap of M as
∆M = maxS∈M ∆S .

Algorithm 1 Attack algorithm for CMAB instance
Require: Target arm set M such that ∆M > 0, CMAB algorithm Alg.

1: Find a super arm S ∈ M such that ∆S > 0.
2: for t = 1, 2, . . . , T do
3: Alg returns super arm S(t).
4: Adversary returns X̃t

i = 0 for all i ∈ τ (t) \ OS and keep other outcome Xt
i unchanged.

5: end for

Theorem 3.6 (Polynomial attackability of CMAB). Given a particular CMAB instance and the target
set of super arms M to attack. If ∆M > 0, then the CMAB instance is polynomially attackable. If
∆M < 0, the instance is polynomially unattackalble.

We do not consider the special case of ∆M = 0 in Theorem 3.6 as the condition is ill-defined for
attackability: it relies on how the CMAB algorithm breaks the tie and we omit the case in the theorem.

Theorem 3.6 provides a sufficient and necessary condition for the CMAB instance to be polynomial
attackable. Specifically, we prove the sufficiency condition (∆M > 0) by constructing Algorithm 1
as an attack that spends poly(m, 1/p∗,K) ·m · (1/∆S∗) · T 1−γ attack cost to pull target super arms
linear time. The main idea is to reduce the reward of base arms that are not associated with the target
super arms to 0. On the other hand, we show that ∆M < 0 leads to polynomial unattackable instance,
which is stronger than and covers not polynomial attackable, and serves as the necessary condition.

Note that in Theorem 3.6, we do not specify the attack cost since the cost depends on not only the
CMAB instance but also the victim CMAB algorithm. If we specify the victim algorithm to be
CUCB, which is the most general algorithm for solving CMAB problem, we can have the following
results directly from the proof of Theorem 3.6.
Corollary 3.7. Given a particular CMAB instance and the target set of super arms M to attack. If
∆M > 0 and the victim algorithm is chosen to be CUCB, then the attack cost can be bounded by
poly(m,K, 1/p, 1/∆) · log(T ).

In general, the probability p∗ may be exponentially small, and there already exists analysis for the
combinatorial semi-bandit (Wang & Chen, 2017) that can remove this p∗ dependence. However,
there are still some differences between the original CMAB setting and our attack setting. The
following example shows the necessity of the term p∗: if we remove the dependency on 1/p∗

in Definition 3.1 and 3.2, we show that there exist instances such that it is neither “polynomial
attackable” nor “polynomial unattackable”. Consider the case that there are 3 base arms a, b, c.
µa = µb = 1/2, µc = 1/4, and two super arms S1,S2. Assume that when you pull S1, you observe
base arm b with probability 1, and a with probability p < 1

2 , and if you pull S2, you observe a, c with
probability 1. Thus, the reward of S1 is Rb + I[Ea]Ra where Ea is the event where a is triggered,
and the reward of S2 is Ra +Rc. Now note that if we set the time scale T large enough, we know
that CUCB will not play S1 for T − o(T ) time. However if T is not that large, it is still possible to
misguide CUCB to play S1 for T − o(T ) times. The attack strategy is that: whenever a is observed,
we first set the reward for a to be 0 and let UCB (a) < 1/4. Then CUCB will pull S1. However if S1

is not pulled by 1/p times, it may not observe base arm a and thus S1 can still be played for T − o(T )
times for T not large enough (say, not dependent on 1/p).

Following the Theorem 3.6, we now analyze the attackability of several practical CMAB problems.

5



Under review as a conference paper at ICLR 2024

Corollary 3.8. In online minimum spanning tree problem, for any super arm S, ∆S ≥ 0. In
cascading bandit problem, for any super arm S, ∆M=permutation(S) ≥ 0.

Notice that if the goal of the CMAB problem is to minimize the objective (cost) such as online
minimum spanning tree, we change line 3 of Algorithm 1 to X̃T

i = 1 where we modify the base arm
into having highest cost.

Corollary 3.8 is relatively straightforward. First, we know that every spanning tree has the same
number of edges. Then the edges in OS (where S is the target spanning tree we select) are the edges
with smallest mean cost under parameter µ⊙OS , since the other edges are set to have cost 1. Thus,
any other spanning tree will induce a larger cost. As for the cascade bandit, the selected items have
the highest click probabilities under the mean vector µ⊙OS for super arm S , and replacing them to
any other item will cause the total click probability to drop.

(α, β)-oracle Different from the previous CMAB literature, we do not consider the (α, β)-
approximation oracle and the (α, β)-regret (Chen et al., 2016) in this paper. The fundamental
problem for algorithms with (α, β)-regret is that the algorithms are not “no-regret” algorithms, since
they are not comparing to the best reward opt(µ), but α · β · opt(µ). Then, it is always possible to
change an (α, β)-oracle to (α, β− ϵ)-oracle by applying the original oracle with probability 1− ϵ and
do the random exploration with probability ϵ, which would make the problem unattackable. Thus, one
should not hope to get general characterizations or results of the attackability for CMAB instances,
and should discuss the attackability issue for a specific problem solved by specific algorithm and
oracles. In the following, we show the attackability for the probabilistic maximum coverage problem
solved by CUCB together with the Greedy oracle.
Theorem 3.9. In the probabilistic maximum coverage problem (PMC), CUCB algorithm with Greedy
oracle is polynomial attackable when ∆M > 0. Besides, for any PMC instance, ∆M ≥ 0.

The intuition of the proof is that although the Greedy oracle is an approximation oracle, by using
CUCB, it “acts” like an exact oracle when the number of observations for each base arm is large
enough, and thus we can follow the proof idea for Theorem 3.6.

Another interesting application of Theorem 3.6 is simple episodic reinforcement learning (RL) settings
where the transition probability is known, i.e., white-box attack (Rakhsha et al., 2020; Zhang et al.,
2020). Since the adversarial attacks on RL is a very large topic and little diverted from the current
paper, we only provide minimal details for this result. Please refer to Appendix B.3 for more details.
Corollary 3.10 (Informal). For episodic reinforcement learning setting where the transition probabil-
ity is known, the reward poisoning attack for the episodic RL can be reduced to the adversarial attack
on CMAB, and thus the “attackability” of the episodic RL instances are captured by Theorem 3.6.

Although the above corollary is a simple direct application of Theorem 3.6 to white-box episodic RL,
we anticipate that comparable techniques can be applied to analyze much more complex RL problems
and provide an attackability characterization at the “instance” level. This part is left as future work.

4 ATTACK IN UNKNOWN ENVIRONMENT

In previous section, we discussed polynomial attackability of a CMAB instance in a known en-
vironment, i.e., all parameters of the instance such as the reward distributions of super arms and
outcome distributions of base arms are given. However, in practice the environment is unknown to the
adversary. Previous studies of adversarial attack on MAB and linear bandits showed that attackability
of an instance in a known or an unknown environment Liu & Shroff (2019); Wang et al. (2022) are
the same. In this section, we show that the polynomial attackability can be different for the same
instance between a known or an unknown environment.
Theorem 4.1. There exists a CMAB instance satisfying Assumption 2.1 and 2.2 such that it is polyno-
mially attackable given the parameter µ (induced from the instance’s base arms’ joint distribution
D), but there exists no attack algorithm that can efficiently attack the instances for CUCB algorithm
with unknown parameter µ.

The following example construct hard instances that satisfying Theorem 4.1. We also illustrate the
example with n = 5 in Figure 4.

6



Under review as a conference paper at ICLR 2024

Example 4.2 (Hard example). We construct the following CMAB instance Ii. There are 2n base
arms, {ai}i∈[n] and {bi}i∈[n], and each corresponds to a random variable ranged in [0, 1]. We
have µaj = 1 − 2ϵ for all j ̸= i and µai = 1, and µbj = 1 − ϵ for all j ∈ [n] for some ϵ > 0.
Then we construct n + 2 super arms. Sj for all j ∈ [n] will observe base arms aj and bj , and
rSj = µaj + µbj . There is another super arm Sn+1 that will observe base arms bj for all j ∈ [n],
and rSn+1 =

∑
j∈[n] µbj + (1 − ϵ). Besides, there is also a super arm S0 with constant reward

S0 = 2− 2ϵ and does not observe any base arm. Then, the attack super arm set M = {Sj}j∈[n]. In
total, we can construct n hard instances Ii for all i ∈ [n].

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

S1 S2 S3 S4 S5

S6 S0

Figure 1: Example 4.2 with n = 5

The intuition of why this example is hard is that it “blocks”
the exploration of base arms a1, . . . , am simultaneously.
This means that the algorithm needs to visit exponential
super arms and the cost is also exponential, violating the
definition of polynomial attackable. Next, we give a proof
sketch of Theorem 4.1 and explain more about the intu-
ition, and the detailed proof is deferred to Appendix C.

Proof sketch of Theorem 4.1. First, given an instance Ii, if we know the environment parameters µ,
we can attack the CMAB instance by setting the rewards besides base arms ai, bi to 0. However in
the unknown setting, if we still want to attack the instance, we need to know the base arm aj for
which µaj = 1. Thus, the attack algorithm needs to pull at least Ω(n) super arms in M = {Sj}j∈[n].

For simplicity, assume that the attack algorithm lets CUCB pull super arms S1,S2 . . . ,Sn′ in order.
Now if CUCB pulls super arm Si, it means that UCB (ai) ≥ 1−2ϵ and UCB (bi) ≥ 1−2ϵ. Otherwise,
UCB (ai) + UCB (bi) < 2− 2ϵ and CUCB will choose to play S0 instead. Besides, we also require
UCB (bj) ≤ ϵ for all j ̸= i. Otherwise, UCB (bi) + UCB (bj) + 1− ϵ > UCB (ai) + UCB (bi), and
CUCB will choose Sn+1.

Suppose that CUCB first pulls S1, and then pulls S2. When pulling S1, we know that UCB (b2) ≤ ϵ,
but if it needs to pull S2, UCB (b2) ≥ 1− 2ϵ. Note that b2 can only be observed by S2 and Sn+1, and
without pulling S2, the attack algorithm needs to let CUCB to pull Sn+1 to change the UCB value of
b2. Then CUCB needs to pull Sn+1 for at least Ω(1/ϵ) times. Now say the attack algorithm needs
CUCB to pull S3, the UCB value of b3 needs to raise to at least 1− 2ϵ from at most ϵ. However, note
that b3 has already been observed by at least Ω(1/ϵ) times since Sn+1 is pulled by at least Ω(1/ϵ)
to observe S2. Then, Sn+1 need to be pulled by Ω(1/ϵ2) times. Now if the attack algorithm wants
CUCB to pull S4, CUCB will pull Sn+1 for Ω(1/ϵ3) times. Because the attack algorithm needs CUCB
to visit Ω(n) super arms in M, the total cost is at least 1/ϵΩ(n) = 1/ϵΩ(m) since m = 2n.

Despite the hardness result mentioned previously, an adversary can still attack the CMAB instance
using heuristics. For example, an adversary can just randomly pick a super arm S from the set M and
set S to be the target arm in Algorithm 1. The guarantee of this heuristic follows from Theorem 3.6.

Corollary 4.3. If S satisfies ∆S > 0, then running Algorithm 1 can successfully attack the CMAB
instance under Definition 3.1.

Note that we have ∆M ≥ 0 for cascading bandit and online minimum spanning tree problem. Thus
even in the unknown environment case, cascading bandit and online minimum spanning tree are
mostly polynomially attackable (by applying Algorithm 1). Also from Theorem 3.9, when solving
probabilistic covering problem using CUCB algorithm with Greedy oracle, ∆M ≥ 0 and thus it is
also mostly polynomially attackable. However, for the shortest path problem, we do not know its
attackability in the unknown environment since ∆M can be either positive or negative. Designing
attacking algorithms for certain CMAB instances in the unknown setting is left as a future work.

5 NUMERICAL EXPERIMENTS

In this section, we present the numerical experiments along with their corresponding results. We
empirically evaluate our attack on four CMAB applications: probabilistic maximum coverage, online
minimum spanning tree , online shortest path problems , and cascading bandits . Additionally, we
conduct experiments on the influence maximization problems discussed in Appendix A.3.

7



Under review as a conference paper at ICLR 2024

5.1 EXPERIMENT SETUP

General setup In our study, we utilize the Flickr dataset (McAuley & Leskovec, 2012) for the
probabilistic maximum coverage, online minimum spanning tree, and online shortest path problems.
We downsample a subgraph from this dataset and retain only the maximum weakly connected
component to ensure connectivity, which comprises 1,892 nodes and 7,052 directed edges. We
incorporate the corresponding edge activation weights provided in the dataset. For cascading bandits,
we employ the MovieLens small dataset (Harper & Konstan, 2015), which comprises 9,000 movies.
From this dataset, we randomly sample 5,000 movies for our experiments. Each experiment is
conducted a minimum of 10 times, and we report the average results along with their variances. For a
detailed setup, please refer to Appendix A.1.

Probabilistic maximum coverage We use the CUCB algorithm (Chen et al., 2016) along with a
greedy oracle. We consider two kinds of targets: In the first case, we calculate the average weight of
all outgoing edges of a node, sort the nodes with decreasing average weight, and select the nodes
K + 1, . . . , 2K, and the selected node set is denoted fixed target. The second type is the random
target, where we randomly sample K nodes whose average weight over all the outgoing edges is
greater than 0.5 to ensure no node with extremely sparse edge activation is selected.

Online minimum spanning tree We convert the Flickr dataset to an undirected graph, where use
the average probability in both directions as the expected cost of the undirected edge. We employ
a modified version of Algorithm 1, with line 4 changed to X̃T

i = 1 since now we are minimizing
the cost instead of maximizing the reward. We consider two types of targets: (1) the fixed target,
where M containing only the second-best minimum spanning tree; and (2) the random target, where
M contains the minimum spanning tree obtained on the graph with same topology but randomized
weight (mean uniformly sampled from [0, 1]) on edges.

Online shortest path We consider two types of targets M: In the first type, M contains an
unattackable path that is carefully constructed. We randomly draw a source node s, then use random
walk to unobserved nodes and record the path from s. When we reach a node k and the path weight
is larger than the shortest path length from s to k by a certain threshold θ, we set k as the destination
node t and set the path obtained from the random walk as the target path. If after 50 steps the target
path still can not be found, we re-sample the source node s. To avoid trivial unattackable cases, we
require the shortest path should have more than one edge. In our experiment, we set the threshold θ as
0.5. We call this type of M as unattackable target. The second type of M is generated by randomly
sampling the source node s and the destination node t, and then finding the shortest path from s to
t given a randomized weight on edges. We call this type of M as random target. We sample 100
targets for both unattackable and random ones, and repeat the experiment 10 times for each target.

Cascading bandit In this experiment, we test CascadeKL-UCB, CascadeUCB1 (Kveton et al.,
2015), and CascadeUCB-V (Vial et al., 2022). We compute a d-rank SVD approximation using the
training data, which is used to compute a mapping ϕ from movie rating to the probability that a user
selected at random would rate the movie with 3 stars or above. For further details, we direct the
reader to Section 6 and Appendix C of Vial et al. (2022). In our experiments, we select the target
super arm from the subset of a base arms M whose average click probability is greater than 0.1.

5.2 EXPERIMENT RESULTS

The experiment results are summarized in Figure 2, which show the cost and number of target super
arm played under different settings.

Probabilistic maximum coverage Fig. 2(a), 2(b) show the results of our experiments on two types
of targets. From Fig. 2(b) and 2(a), we observe that the number of target arm pulls increases linearly
after around 5, 000 iterations while the cost grows sublinearly. Considering the large number of
nodes and edges, the cost is clearly polynomial to the number of base arms. This result validated our
Theorem 3.9 that probabilistic maximum covering is polynomially attackable. We also report the
variance in the figures, highlighting that attacking a random target results in larger variances for both
cost and target arm pulls.

8



Under review as a conference paper at ICLR 2024

0.00 0.25 0.50 0.75 1.00
Iterations 1e5

0

2
Co

st

1e4 Total Cost
Random Target
Fixed Target

(a)

0.00 0.25 0.50 0.75 1.00
Iterations 1e5

0

2

Co
un

t

1e4 Target Arm Pulls
Random Target
Fixed Target

(b)

0 1 2 3
Iterations 1e3

0.5

1.0

1.5

2.0

Co
st

1e3 Total Cost

Random Target
Fixed Target

(c)

0 1 2 3
Iterations 1e3

0

1

2

3

Co
un

t

1e3 Target Arm Pulls

Random Target
Fixed Target

(d)

0 1 2 3
Iterations 1e3

0

1

2

Co
st

1e3 Total Cost
Random Target
Unattackable Target

(e)

0 1 2 3
Iterations 1e3

0

1

2

3

Co
un

t

1e3 Target Arm Pulls
Random Target
Unattackable Target

(f)

0.00 0.25 0.50 0.75 1.00
Iterations 1e5

0

1

2

3

Co
st

1e4 Total Cost
CascadeKLUCB
CascadeUCB1
CascadeUCB-V

(g)

0.00 0.25 0.50 0.75 1.00
Iterations 1e5

0

2

4

Co
un

t

1e3 Target Arm Pulls
CascadeKLUCB
CascadeUCB1
CascadeUCB-V

(h)

Figure 2: Cost and target arm pulls for: (2(a), 2(b)) probabilistic max coverage; (2(c), 2(d)) online
maximum spanning tree; (2(e), 2(f)) online shortest path; (2(g), 2(h)) cascading bandits. Experiments
are repeated for at least 10 times and we report the averaged result and its variance.

a b

c d

e

ts
0.50 0.62

1

0.88

0.88

0.67 1

Figure 3: An unattackable shortest path
from s to t in the Flickr dataset. Optimal path:
(s, a, b, e, t). Target path: (s, a, v, c, d, t).
The cost on (b, c, d, t) is larger than the num-
ber of edges on (b, e, t), and the attacker can-
not fool the algorithm to play the target path.

Online minimum spanning tree As demonstrated in
Figs 2(c) and 2(d), the total cost is sublinear and the rounds
pulling the target arm are linear. This result aligns with
our Corollary 3.8: since the number of edges in spanning
tree is the same and the ‘reward’ of the super arm is a
linear combination of base arms, ∆M ≥ 0. Thus online
minimum spanning tree problem is always attackable as
suggested by experiments on a random target if there is
only one minimum spanning tree.

Online shortest path In Figs 2(e) and 2(f), we show
that for the random target M, the total cost is sublinear,
and the target arm pulls are linear. For the unattackable targets M, the total cost is linear while the
target arm pulls are almost constant, which means they are indeed unattackable. We show an example
from the Flickr dataset in Figure 3.

Cascading bandits We can clearly observe from Fig. 2(h) & 2(g) the number of times the target
arm is played increases linearly, while the cost of attack is sublinear. Considering the large number of
base arms m, the results validated our Corollary 3.8 that cascading bandits is polynomially attackable.

6 CONCLUSION

In this paper, we provide the first study on attackability of CMAB and propose to consider the
polynomial attackability, a definition accommodating the exponentially large number of super arms
in CMAB. We first provide a sufficient and necessary condition of polynomial attackability of CMAB.
Our analysis reveals a surprising fact that the polynomial attackability of a particular CMAB instance
is conditioned on whether the bandit instance is known or unknown to the adversary. In addition, we
present a hard example, such that the instance is polynomially attackable if the environment is known
to the adversary and polynomially unattackable if it is unknown. Our result reveals that adversarial
attacks on CMAB are difficult in practice, and a general attack strategy for any CMAB instance does
not exist since the environment is mostly unknown to the adversary. We propose an attack algorithm
where we show that the attack is guaranteed to be successful and efficient if the instance is attackable.
Extensive experimental results on real-world datasets from four applications of CMAB validate the
effectiveness of our attack algorithm. As of future work, we will further investigate the impact of
probabilistic triggered arm to the attackability, e.g., the attackability of online influence maximization
given different diffusion models. It is also important to generalize the hardness result in unknown envi-
ronment, e.g., a general framework to reduce unattackable CMAB problems to the hardness example.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3:397–422, 2002.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework and
applications. In International conference on machine learning, pp. 151–159. PMLR, 2013.

Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-armed bandit and its
extension to probabilistically triggered arms. The Journal of Machine Learning Research, 17(1):
1746–1778, 2016.

Jing Dong, Ke Li, Shuai Li, and Baoxiang Wang. Combinatorial bandits under strategic manipulations.
In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining,
pp. 219–229, 2022.

Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud, Alessandro
Lazaric, and Matteo Pirotta. Adversarial attacks on linear contextual bandits, 2020.

Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for stochastic bandits with
adversarial corruptions. In Conference on Learning Theory, pp. 1562–1578. PMLR, 2019.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. Adversarial attacks on stochastic bandits. In
Advances in Neural Information Processing Systems, pp. 3640–3649, 2018.

Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Brian Eriksson. Matroid bandits:
Fast combinatorial optimization with learning. arXiv preprint arXiv:1403.5045, 2014.

Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits: Learning to
rank in the cascade model. In International conference on machine learning, pp. 767–776. PMLR,
2015.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. In International Conference
on Machine Learning, pp. 4042–4050, 2019.

Guanlin Liu and Lifeng Lai. Action-manipulation attacks on stochastic bandits. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
3112–3116. IEEE, 2020.

Keqin Liu and Qing Zhao. Adaptive shortest-path routing under unknown and stochastically varying
link states. In 2012 10th International Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks (WiOpt), pp. 232–237. IEEE, 2012.

Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to adversarial
corruptions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pp. 114–122. ACM, 2018.

Julian McAuley and Jure Leskovec. Image labeling on a network: using social-network metadata for
image classification. In Computer Vision–ECCV 2012, pp. 828–841. Springer, 2012.

Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla. Policy teaching
via environment poisoning: Training-time adversarial attacks against reinforcement learning. In
International Conference on Machine Learning, pp. 7974–7984. PMLR, 2020.

Amin Rakhsha, Xuezhou Zhang, Xiaojin Zhu, and Adish Singla. Reward poisoning in reinforce-
ment learning: Attacks against unknown learners in unknown environments. arXiv preprint
arXiv:2102.08492, 2021.

10



Under review as a conference paper at ICLR 2024

Anshuka Rangi, Haifeng Xu, Long Tran-Thanh, and Massimo Franceschetti. Understanding the
limits of poisoning attacks in episodic reinforcement learning. arXiv preprint arXiv:2208.13663,
2022.

Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in Machine
Learning, 12(1-2):1–286, 2019.

Yanchao Sun, Da Huo, and Furong Huang. Vulnerability-aware poisoning mechanism for online {rl}
with unknown dynamics. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=9r30XCjf5Dt.

Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-linear time: A
martingale approach. In Proceedings of the 2015 ACM SIGMOD international conference on
management of data, pp. 1539–1554, 2015.

Daniel Vial, Sujay Sanghavi, Sanjay Shakkottai, and R Srikant. Minimax regret for cascading bandits.
arXiv preprint arXiv:2203.12577, 2022.

Huazheng Wang, Haifeng Xu, and Hongning Wang. When are linear stochastic bandits attackable?
In International Conference on Machine Learning, pp. 23254–23273. PMLR, 2022.

Qinshi Wang and Wei Chen. Improving regret bounds for combinatorial semi-bandits with probabilis-
tically triggered arms and its applications. Advances in Neural Information Processing Systems,
30, 2017.

Zheng Wen, Branislav Kveton, Michal Valko, and Sharan Vaswani. Online influence maximization
under independent cascade model with semi-bandit feedback. Advances in neural information
processing systems, 30, 2017.

Hang Xu, Rundong Wang, Lev Raizman, and Zinovi Rabinovich. Transferable environment poisoning:
Training-time attack on reinforcement learning. In Proceedings of the 20th international conference
on autonomous agents and multiagent systems, pp. 1398–1406, 2021.

Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. Adaptive reward-poisoning attacks
against reinforcement learning. arXiv preprint arXiv:2003.12613, 2020.

11

https://openreview.net/forum?id=9r30XCjf5Dt


Under review as a conference paper at ICLR 2024

APPENDIX

A ADDITIONAL EXPERIMENTS

In this section, we provide additional information regarding the experiments. In Appendix A.1, we
give more details for the experiments in Section 5. In Appendix A.3, we show the results of our
experiments on online influence maximization.

A.1 MORE EXPERIMENT DETAILS

For the online shortest path, online minimum spanning tree and probabilistic maximum coverage
we use the Flickr dataset (McAuley & Leskovec, 2012). We first select a fraction of the nodes such
that their degree is in the range [m,n]. Here, we take m = 2, n = 75. We then clean up the graph by
selecting the largest connected component, which has 1892 nodes and 7052 edges.

For cascading bandits, we use the small version of the MovieLens Dataset (Harper & Konstan, 2015),
which contains 9000 movies. Each movie has a rating (in the range of one to five stars) given to
it by several users. To convert the ratings from stars to average click probability by any user, we
consider the click probability close to the probability that the movie has a rating of 3 stars or above.
We follow Vial et al. (2022) to generate a mapping ϕ that goes from ratings in stars to the average
click probability for some user selected at random. However, as the average click probabilities are
sparse, we use only the top 5000 movies in our experiments.

A.2 ADDITIONAL RESULTS ON CASCADING BANDITS

We provide additional results for the Cascading Bandits setting here. Fig. 4(a), 4(b), show the cost and
trigger rate of when selecting 25 items out of 5000 (K = 25,m = 5000). However, we can see that
the total number of times the target super arm S is played is much lesser than the number of iterations.
To assert that our algorithm is still capable of efficiently attacking cascading bandits, we run additional
experiments with K = 25,m = 1000 (Fig. 4(c), 4(d)) and K = 5,m = 1000 (Fig. 4(e), 4(f)). We
clearly observe that as we simplify the problem, the target arm trigger rate substantially increases,
and the slope of the curves nears 1, showing that the target set S is selected linear number of times.
Furthermore, the sublinearity of the cost is more apparent from these experiments. This substantiates
our claim that our attack algorithm successfully attacks the cascading bandit environment, and with
more compute and iterations/time, it is possible to attack the scenario with 5000 and 9000 items.

A.3 EXPERIMENT RESULTS ON INFLUENCE MAXIMIZATION

Here we provide additional experiment results for the online influence maximization (IM) problem.

Basic influence maximization settings. The IM problem involves selecting (activating) an initial
set of K nodes. Each node u can attempt to activate its neighbor v with probability pu,v. If node v
was not activated by node u in time instant i, it cannot be activated by u in any further time instant
i + 1, i + 2, · · · . This is called one step of diffusion. We continue this process until time step T0,
such that no new node can be activated in time step T0 + 1. The goal of the IM problem is to select a
set of K nodes that maximize the final number of activated nodes. The goal in online IM is to select
a set of K nodes at each round t that minimizes the total regret. At each round, the player observes
the diffusion process, and receives the number of activated nodes as the reward. Note that the IM
problem is very similar to the probabilistic maximum coverage problem, where the only difference is
the length of the diffusion process since the probabilistic maximum coverage problem can be viewed
as influence maximization when there is only one diffusion step.

Attack heuristics. Note that the IM problem is NP-hard and only has (1− 1/e)-approximation
oracle. Thus, we do not have an attack strategy that has a theoretical guarantee from Theorem 3.6.
However, we can still have heuristics to attack the online influence maximization problem.

We define a set Sℓ
ex that represents the extended target set. This set includes the target nodes and all

other nodes v at a distance of at most ℓ from any node u in the target set S,
S′ = {v : ∃u ∈ S, v ∈ V, d(u, v) < ℓ}, Sℓ

ex = S ∪ S′

12



Under review as a conference paper at ICLR 2024

0.00 0.25 0.50 0.75 1.00
Iterations 1e5

0

1

2

3

Co
st

1e4 Total Cost
CascadeKLUCB
CascadeUCB1
CascadeUCB-V

(a)

0.00 0.25 0.50 0.75 1.00
Iterations 1e5

0

2

4

Co
un

t

1e3 Target Arm Pulls
CascadeKLUCB
CascadeUCB1
CascadeUCB-V

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e5

0

1

2

3

4

Co
st

1e3 Total Cost
CascadeKLUCB
CascadeUCB1
CascadeUCB-V

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e5

0

2

4

Co
un

t

1e4 Target Arm Trigger Rate
CascadeKLUCB
CascadeUCB1
CascadeUCB-V

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e5

0

2

4

6

8

Co
st

1e3 Total Cost
CascadeKLUCB
CascadeUCB1
CascadeUCB-V

(e)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e5

0

2

4

6

8

Co
un

t

1e4 Target Arm Trigger Rate
CascadeKLUCB
CascadeUCB1
CascadeUCB-V

(f)

Figure 4: Cost and target arm pulls for cascading bandits on the MovieLens-small dataset with
(4(a), 4(b)) m = 25,K = 5000, (4(c), 4(d)) m = 35,K = 1000, (4(e), 4(f)) m = 5,K = 1000.
Experiments are repeated for at least 10 times and we report the averaged result and its variance.

where d(u, v) is the distance function between two nodes u and v. We do not attack the edge between
u and v if either of the nodes lies in Sℓ

ex. For all other observed edges, we modify the realization
to 0 (thus attack it). Note that if ℓ = ∞, then Sℓ

ex contains all nodes, and thus there is no viable
attack. If ℓ = 1, then Sℓ

ex only includes the target set, and then the reward feedback is very similar to
the probabilistic maximum coverage problem, and the “expected value after attack” for each arm is
exactly the same as the probabilistic maximum coverage attack strategy (Theorem 3.9). This attack
heuristic simplifies the strategy for the attacker as there are more nodes in the extended set than in the
target set, making the attack easier. In all the experiments, we use an (α, β)-approximation oracle
based on (Tang et al., 2015) (IMM oracle) and Fig 5 shows the corresponding results. Experiments
are repeated for at least 5 times and we report the averaged result and its variance.

13



Under review as a conference paper at ICLR 2024

0 1 2 3 4 5
Iterations 1e3

0

1

2

3

Co
st

1e4 Total Cost
CUCB (l=3)
CUCB (l=2)
CUCB (l=1)

(a)

0 1000 2000 3000 4000 5000
Iterations

0

10

20

30

40

Pe
rc

en
ta

ge

Percentage of Base Arms Selected
CUCB (l=3)
CUCB (l=2)
CUCB (l=1)

(b)

0 2000 4000
Iterations

0

1000

2000

3000

4000

5000

Co
st

Total Cost
Random Target
Fixed Target

(c)

0 1000 2000 3000 4000 5000
Iterations

0

20

40

60

80

Pe
rc

en
ta

ge

Percentage of Base Arms Selected
Random Target
Fixed Target

(d)

Figure 5: Cost and percentage of base arms selected for: (5(a), 5(b)) Influence Maximization; (5(c),
5(d)) Probabilistic Maximum Coverage.

Discussions of the results. Figure 5(b) and Figure 5(d) show the percentage of target nodes played
in each round for online influence maximization and probabilistic maximum coverage respectively.
This value represents the percentage of base arms in the target super arm that is selected at a given
time instant. For example, if we consider a target set containing 5 nodes (base arms), 20% of base
arms selected would imply that at that round, 1 node belonging to the target set was played.

From Figure 5, we can clearly find that although the attack cost in each round decreases as the number
of iterations increases2, the number of target set played is a constant 0. This may happen because (1)
attacking online influence maximization is hard, and (2) the number of iterations is not large enough.
To prove the attacking influence maximization is harder, we also show the result of probabilistic
maximum coverage only with T = 5000 (Figure 5). Although for probabilistic maximum coverage,
there is also no target set pulled in the first 5000 rounds, we can clearly observe that the percentage
of target nodes selected is increasing, and there is a clear trend to select all the nodes in the target
arm set when the number of iteration is large enough (which is the case in Figure 2(b)). However,
for the online influence maximization problem, the algorithm selects none or 20% of the target node
set for ℓ = 1, 2, 3 for a majority of the experiment, and there is no trend indicating that the number
of target nodes selected would increase. Note that when ℓ = 1, the reward structure of influence
maximization and probabilistic maximum coverage are nearly the same, and the difference is the
oracle. This finding corroborates our claim that when the oracle for a CMAB instance is not exact
(α-approximation oracle), we need to analyze the instance case by case.

Although we do not have a promising attack strategy for online influence maximization, it does
not mean that it is unattackable. Further developing efficient attack methods for online influence
maximization problem or proving its intrinsic robustness is a very interesting future work.

B MISSING PROOFS IN SECTION 3

In this section, we give the missing proofs in Section 3. We first prove Theorem 3.6 in Appendix B.1,
which characterizes the “attackability” issue of different CMAB instances under the exact oracle.
Then in Appendix B.2, we prove Theorem 3.9, which has an approximation oracle.

B.1 PROOF OF THEOREM 3.6

In this section, we prove Theorem 3.6, which is restated below.

Theorem 3.6 (Polynomial attackability of CMAB). Given a particular CMAB instance and the target
set of super arms M to attack. If ∆M > 0, then the CMAB instance is polynomially attackable. If
∆M < 0, the instance is polynomially unattackalble.

The proof of Theorem 3.6 is divided into two cases: ∆M > 0 or ∆M < 0. We first show the case
when ∆M > 0, and then we prove the theorem when ∆M < 0.

2Here in theory, in our attack strategy, the attack cost can never be sublinear, since no matter what l parameter
we choose, there is a “constant” probability (independent on the time t) that the diffusion happens to the nodes
outside Sl

ex. However, if we choose l large enough, the probability to attack will decrease, and if we choose
the hyperparameter l appropriately to make sure the probability to attack is o(1), the attack cost can still be
“sublinear” with respect to a given time scale T .

14



Under review as a conference paper at ICLR 2024

Proof of Theorem 3.6 when ∆M > 0. The proof of this direction is relatively straightforward: we
only need to show that there exists an attacking strategy that successfully attacks the CMAB instance
when the number of rounds T is polynomially large. The attacking strategy is exactly Algorithm 1.

Note that if ∆M > 0, we can find S∗ such that ∆S∗ > 0. The regret of the CMAB algorithm Alg is
bounded by poly(m, 1/p∗,K)T 1−γ with high probability, then in the modified CMAB environment
with µ′ = µ⊙OS∗ , Alg will only play super arms other than S∗ for poly(m, 1/p∗,K)T 1−γ/∆S∗

times. Each time when Alg pulls super arm other than S∗, the attacking algorithm (Algorithm 1)
might need to modify the reward, leading to the cost bounded by m. Therefore the total budget
can be bounded by poly(m, 1/p∗,K) · m · (1/∆S∗) · T 1−γ . We conclude the proof by choosing
T γ/2 ≥ poly(m, 1/p∗,K) ·m · (1/∆S∗) and set γ′ = γ/2.

Proof of Theorem 3.6 when ∆M < 0. Now we prove the other direction: when ∆M < 0, the
CMAB instance is polynomially unattackable (Definition 3.2). The intuition of the proof is that:
when all base arms i ∈ ∪S∈MOS are observed for a certain number of times (say, T 1−γ′/2 times for
each base arm), CUCB will not choose to play the super arms in M. Since the budget is bounded by
B ≤ T 1−γ′

, the estimated upper confidence bound of CUCB after corrupted by the attacker should be
still close to the real empirical mean. Thus, because ∆M < 0, the CUCB algorithm will not try to
play the arms in M anymore. The following part formalizes this intuition. The following proof is
organized as follows: we first present the necessary notations, technical propositions, definitions, and
lemmas; then, we formalize the intuition in the main lemma (Lemma B.8); finally, we conclude the
proof base on Lemma B.8.

We use µ̃
(t)
i to denote the mean of base arm i estimated by the CUCB algorithm (possibly after

attacker’s corruption). We use T
(t)
i to denote the number of times base arm i is observed before

round t. We use ρ
(t)
i to denote the confidence bound of base arm i. Because we are interested in

a high-probability event, we choose ρ
(t)
i =

√
ln(4mt3/δ)

2Ti,t
. We also define µ̂i,t to be the empirical

mean generated by the environment before the corruption by the attacker (or the empirical mean
observed by the attacker from the environment). We define UCBt = min{µ̃(t) + ρ(t), 1} to be the
upper confident bound at round t.

First, we show two standard concentration inequalities (Proposition B.1 and B.2) and several technical
results.

Proposition B.1 (Hoeffding Inequality). Suppose Xi ∈ [0, 1] for all i ∈ [n] and Xi are independent,
then we have

Pr

{∣∣∣∣ 1n
n∑

i=1

Xi − E

[
1

n

n∑
i=1

Xi

] ∣∣∣∣ ≥ ϵ

}
≤ 2 exp

(
−2nϵ2

)
.

Proposition B.2 (Multiplicative Chernoff Bound). Suppose Xi are Bernoulli variables for all i ∈ [n]
and E[Xi|X1, . . . , Xi−1] ≥ µ for every i ≤ n. Let Y = X1 + · · ·+Xn, then we have

Pr {Y ≤ (1− δ)nµ} ≤ exp

(
−δ2nµ

2

)
.

Next, we define the following event that the empirical means of different base arms returned by the
environment is close to the mean µ. This definition is similar to that in Wang & Chen (2017).

Definition B.3 (Sampling is Nice). We say that the sampling is nice at the beginning of round t if for

any arm i ∈ [m], we have |µ̂(t)
i − µ

(t)
i | < ρ

(t)
i , where ρ

(t)
i =

√
ln(4mt3/δ)

2T
(t)
i

(∞ if T (t)
i = 0). We use

N s
t to denote this event.

The following lemma shows that the defined event should hold with high probability. The proof is a
straightforward application of Hoeffding’s inequality (Proposition B.1).

Lemma B.4. For each round t ≥ 1, we have Pr{¬N s
t } ≤ δ

2t2 . Besides, Pr{∪t(¬N s
t )} ≤ δ.

15



Under review as a conference paper at ICLR 2024

Proof. For each round t ≥ 1, we have

Pr{¬N s
t } = Pr

{
∃i ∈ [m], |µ̂(t)

i − µi| ≥
√

ln(4mt3/δ)

2T
(t)
i

}

≤
∑
i∈[m]

Pr

{
|µ̂(t)

i − µi| ≥
√

ln(4mt3/δ)

2T
(t)
i

}

=
∑
i∈[m]

t−1∑
k=1

Pr

{
T

(t)
i = k, |µ̂(t)

i − µi| ≥
√

ln(4mt3/δ)

2T
(t)
i

}
.

Then we apply Hoeffding’s inequality, and we have

Pr

{
T

(t)
i = k, |µ̂(t)

i − µi| ≥
√

ln(4mt3/δ)

2T
(t)
i

}
≤ 2e−2k

ln(4mt3/δ)
2k =

δ

2mt3
.

Plugging in the previous bound, we have Pr{¬N s
t } ≤ δ

2t2 . Now we take the union bound over t, we
have

Pr{∪t(¬N s
t )} ≤

∞∑
t=1

δ

2t2
≤ δ,

and we conclude the proof.

Because of the probabilistic triggered arms, a base arm may only be observed with some probability
when some super arm is pulled. For the sake of simpler analysis, we define the following notion
“Counter”, which characterizes how many times a base arm may be triggered by some super arm.
Definition B.5 (Counter). In an execution of the CUCB algorithm, we define the counter Ni,t as the
following number

Ni,t :=

t∑
s=0

I
{
pD,Ss

i > 0
}
.

The following event (Definition B.6) bridges the observation time of a base arm and the notion
“Counter”. Then, Lemma B.7 shows that the following event should hold with high probability. The
proof of Lemma B.7 is a direct application of the multiplicative Chernoff bound (Proposition B.2).
Definition B.6 (Triggering is Nice). We call that the triggering is nice at the beginning of round t if
for any arm i, as long as ln(4mt3/δ) ≤ 1

4Ni,t−1 · p∗, we have

T
(t−1)
i ≥ 1

4
Ni,t−1 · p∗.

We use N t
t to denote this event.

Lemma B.7. We have for every round t ≥ 1,

Pr{¬N t
t } ≤ δ

4t3
.

Then, we have

Pr{∪(¬N t
t )} ≤ δ

2
.

Proof. We directly apply the Multiplicative Chernoff Bound (Proposition B.2). Note that as long as
Ni,t−1 · p∗ ≥ 4 ln(4mt3/δ), we have

Pr

{
T

(t−1)
i ≤ 1

4
Ni,t−1 · p∗

}
≤ exp

(
−32Ni,t−1 · p∗

2× 42

)
≤ exp

(
−9× 4 ln(4mt3/δ)

32

)
≤ exp

(
ln(4mt3/δ)

)
≤ δ

4mt3
.

16



Under review as a conference paper at ICLR 2024

Now applying the union bound on i ∈ [m] and Ni,t−1, we can get

Pr{¬N t
t } ≤ δ

4t2
.

Then apply the union bound on t, we have

Pr{∪(¬N t
t )} ≤

∑
t≥1

δ

4t2
≤ δ

2

π2

6× 2
≤ δ

2
.

Given the previous technical lemmas, we now show the main lemma to prove Theorem 3.6 when
∆M < 0. The following lemma upper bounds the number of times the CUCB algorithm plays the
arms in M under certain budget constraint B.

Lemma B.8. Suppose that the adversary only has budget B = o(T ) and assume that ∩N s
t holds.

For any S ∈ M, if ∆M < 0, and S is pulled in round t, then there must exist i ∈ OS such that

T
(t)
i ≤ T0 :=

6KBB
|∆M|

+
18K2B2 log(4mT 3/δ)

|∆M|2
.

Proof. We’ll use proof by contradiction. Let’s suppose there exists a round t where S is pulled and
T

(t)
i ≥ T0 for all i ∈ S. Since the adversary only has budget B = o(T ), each arm i can receive the

corrupted value for at most B times. Thus, we have for all i ∈ S,

|µ̃(t)
i − µ̂

(t)
i | ≤ B

T0
≤ |∆S |

6KB
,

where we use the fact that |∆S | ≥ |∆M|. Besides, given ∩N s
t , for all i ∈ S we have

|µ̂(t)
i − µi| ≤ ρ

(t)
i =

√
log(4mt3/δ)

2T
(t)
i

≤ |∆S |
6KB

.

Then under ∩N s
t , we have

UCBt ⊙OS − µ⊙OS = ((µ̃(t) + ρ(t))⊙OS)− µ⊙OS

= (µ̃(t) + ρ(t) − µ)⊙OS

⪯ (µ̂(t) +
|∆S |
6KB

1+ ρ(t) − µ)⊙OS

⪯ (µ+
|∆S |
6KB

1+ 2ρ(t) − µ)⊙OS

⪯ (
|∆S |
6KB

1+ 2
|∆S |
6KB

1)⊙OS

⪯ |∆S |
2KB

⊙OS .

17



Under review as a conference paper at ICLR 2024

Let S ′ denote a super arm such that rS′(µ⊙OS) = rS(µ)−∆S , under ∩N s
t , we have

rS′(UCB(t)) = rS′(µ̃(t) + ρ(t))

≥ rS′((µ̃(t) + ρ(t))⊙OS)

≥ rS′

((
µ̂(t) − |∆S |

6KB
1+ ρ(t)

)
⊙OS

)
≥ rS′

(
(µ̂(t) + ρ(t))⊙OS

)
−

∑
i∈S′

B
|∆S |
6KB

≥ rS′(µ⊙OS)−
|∆S |
6

= rS(µ⊙OS) +
5

6
|∆S |

≥ rS(UCBt)−
∑
i∈S

B
|∆S |
2KB

+
5

6
|∆S |

≥ rS(UCBt) +
1

3
|∆S |,

which means that CUCB will not play S , which contradicts our assumption that S is pulled in round
t. Thus, our original proposition that there exists an element i ∈ OS such that T (t)

i ≤ T0 holds true,
completing the proof.

Then we are ready to prove Theorem 3.6 when ∆M < 0.

Proof of Theorem 3.6 when ∆M < 0. First we assume that ∩N s
t and ∩N t

t hold, which should hap-
pen with probability at least 1− 3

2δ.

Now under ∩N s
t , if S ∈ M is pulled, then at least one of the base arm i ∈ OS has not been observed

for T0 times. Besides, under ∩N t
t , we know that when S is pulled at time t, at least one of its base

arm i ∈ OS satisfies Ni,t−1 ≤ 4T0/p
∗.

Note that there are m arms in total, thus the CUCB algorithm will only play super arms be-
longing to M for at most 4mT0/p

∗ times in total. Since every time CUCB pulls S ∈ M,
the quantity

∑
i Ni,t increases by at least 1. Note that if B ≤ T 1−γ′

, T0 can be bounded
by poly(m, 1/p∗,K, 1/|∆M|, log(1/δ)) · T 1−γ′

. Thus there must exist some polynomial on
T ∗ = poly(m, 1/p∗,K, 1/|∆M|, log(1/δ)) such that when T > T ∗, 4nT0/p

∗ ≤ T
2 , and thus

we conclude the proof.

B.2 PROOF OF THEOREM 3.9

In this section, we prove Theorem 3.9. The intuition of Theorem 3.9 is that, although the Greedy
oracle is an approximation oracle, by using CUCB, it “acts” like an exact oracle when the number of
observations for each base arm is large enough, and thus we can follow the proof idea for Theorem
3.6. We first present some technical lemmas to leverage the submodular structure of the reward
function.
Lemma B.9 (Chen et al. (2013)). Probabilistic maximum coverage is 1-TPM bounded smoothness
(Assumption 2.2).

Lemma B.10. Suppose S = {u1, u2, . . . , uk} denote one super arm the probabilistic maximum
coverage problem, then for any u ∈ S and any set S ′ ⊆ S and u /∈ S ′, we have,

rS′∪{u}(µ⊙OS)− rS′(µ⊙OS) ≥ ∆S .

Besides, ∆S ≥ 0.

Proof. First for any u ∈ S and u′ /∈ S, we have

rS(µ⊙OS)− r(S\{u})∪{u′}(µ⊙OS) ≥ ∆S .

18



Under review as a conference paper at ICLR 2024

Observe that OS will assign 0 to all edges without an endpoint in S, and thus

r(S\{u})∪{u′}(µ⊙OS) = rS\{u}(µ⊙OS).

Then because the reward function of the probabilistic maximum coverage problem is submodular in
terms of the set L (Chen et al., 2013), we then have for any S ′ ⊆ S such that u /∈ S ′,

rS(µ⊙OS)− rS\{u}(µ⊙OS) ≤ rS′∪{u}(µ⊙OS)− rS′(µ⊙OS).

Then we show that ∆S ≥ 0 for any S . Suppose that S ′ is the super arm such that

rS(µ⊙OS)− rS′(µ⊙OS) = ∆S .

Then because any u /∈ S will not increase the reward under the mean vector µ⊙OS , we have

rS′(µ⊙OS) = rS∩S′(µ⊙OS).

Then, because the reward function is monotone in terms of the set L, we have

∆S = rS(µ⊙OS)− rS′(µ⊙OS) = rS(µ⊙OS)− rS∩S′(µ⊙OS) ≥ 0,

and we conclude the proof.

The following lemma is the main lemma for the proof of Theorem 3.9. It claims that if CUCB does
not choose the target super arm S , then there must be an arm not observed for enough times, and that
arm must be observed.
Lemma B.11. Suppose ∩T

t=1N s
t hold during the execution of Algorithm 1, and S is a super arm

such that ∆S > 0. Then for time t, if the Greedy oracle does not choose S, then there must be a
selected node such that a base arm corresponds to that node has ρ(t)i > ∆S

4m .

Proof. Suppose that the Greedy oracle chooses super arm S ′ ̸= S , and denote u′ to be the first node
picked by the Greedy oracle that does not belong to S. Besides, we denote A to be the set of nodes
before u′ is picked, and u to be a node in S \A. We denote MA, Mu and Mu′ to be the set of base
arms connected to the node set A, the node u and u′ respectively. Then we use UCBt to denote the
upper confidence value of the arms. Then we show that there exists a base arm i connected to the
node in {u′} ∩A such that ρ(t)i > ∆S

4m .

We prove by contradiction, suppose that there does not exist a base arm i connected to the node in
{u′} ∩A such that ρ(t)i > ∆S

4m .

We first show a lower bound on rA∪{u}(UCBt) − rA(UCBt). First under ∩T
t=1N s

t , we know that
UCBt ⪰ µ⊙OS , thus because of the monotonicity (Assumption 2.1), we have rA∪{u}(UCBt) ≥
rA∪{u}(µ). Besides, because ∩T

t=1N s
t hold, we also have UCBt ⪯ µ ⊙ OS + 2ρ(t). Thus from

Lemma B.9, we have

rA(UCBt) ≤ rA(µ⊙OS+2ρ(t)) = rA(µ⊙MA+2ρ(t)⊙MA) ≤ rA(µ)+2m·∆S

4m
= rA(µ)+

∆S

2
.

Thus we have

rA∪{u}(UCBt)− rA(UCBt) ≥ rA∪{u}(µ)− rA(µ)−
∆S

2

≥ ∆S − ∆S

2

=
∆S

2
,

where we apply Lemma B.10 in the second inequality.

Then we show an upper bound on rA∪{u′}(UCBt) − rA(UCBt). Since u′ does not belong to the
super arm S, we have

rA∪{u′}(UCBt)− rA(UCBt) ≤ r{u′}(UCBt) ≤ m
∆S

4m
=

∆S

4
.

Thus because we assume ∆S > 0, we have

rA∪{u}(UCBt)− rA(UCBt) > rA∪{u′}(UCBt)− rA(UCBt),

which means that the Greedy oracle will not select u′, and we conclude the proof.

19



Under review as a conference paper at ICLR 2024

Now with Lemma B.11, we can prove Theorem 3.9.

Proof of Theorem 3.9. The proof is a straightforward application of Lemma B.11. First, under
∩T
t=1N s

t , which happen with probability 1− δ, if CUCB does not choose S at round t, it means that
there exists a base arm i belongs to OS such that ρ(t)i > ∆S

4m , which means that√
ln(4mT 3/δ)

2T
(t)
i

≥
√

ln(4mt3/δ)

2T
(t)
i

>
∆S

4m
.

Thus we have

T
(t)
i ≤ 8m2 ln(4mT 3/δ)

∆2
S

.

However after not choose S, T (t)
i will increase by 1. Thus, the total number of times not choosing

S is bounded by 8m3 ln(4mT 3/δ)
∆2

S
since there are at most m base arms. The attack cost is bounded

by 8m4 ln(4mT 3/δ)
∆2

S
since the attack cost at each time is bounded by m. Thus, there exist T ∗ =

poly(m, 1/∆S , log 1/δ) such that for all T ≥ T ∗,

8m4 ln(4mT 3/δ)

∆2
S

≤
√
T .

Thus, the probabilistic maximum coverage problem with CUCB and Greedy oracle is polynomially
attackable.

B.3 PROOF OF COROLLARY 3.10

In this part, we prove Corollary 3.10. We first state our settings, and then show how to reduce the
simple RL setting to CMAB.

Episodic MDP We consider the episodic Markov Decision Process (MDP), denoted by the tuple
(State,Action, H,P,µ), where State is the set of states, Action is the set of actions, H is
the number of steps in each episode, P is the transition metric such that P(·|s, a) gives the transition
distribution over the next state if action a is taken in the current state s, and µ : State×Action →
R is the expected reward of state action pair (s, a). We assume that the states State and the actions
Action are finite. We work with the stationary MDPs here with the same reward and transition
functions at each h ≤ H , and all our analyses extend trivially to non-stationary MDPs. We assume
that the transition probability P is known in advance.3

An RL agent (or learner) interacts with the MDP for T episodes, and each episode consists of H steps.
In each episode of the MDP, we assume that the initial state s(1) is fixed for simplicity. In episode t
and step h, the learner observes the current state st(h) ∈ State, selects an action at(h) ∈ Action,
and incurs a noisy reward rt,h(st(h), at(h)). Also, we have E[rt,h(st(h), at(h))] = µ(st(h), at(h)).
Our results can also be extended to the setting where the reward is dependent on step h ≤ H .

A (deterministic) policy π of an agent is a collection of H functions {πh : State → Action}.
The value function V π

h (s)is the expected reward under policy π, starting from state s at step h, until
the end of the episode, namely

V π
h (s) = E

[
H∑

h′=h

µ(sh′ , πh′(sh′)|sh = s

]
.

where sh′ denotes the state at step h′. Likewise, the Q-value function Qπ
h(s, a) is the expected reward

under policy π, starting from state s and action a, until the end of the episode, namely

Qπ
h(s, a) = E

[
H∑

h′=h+1

µ(sh′ , πh′(sh′)|sh = s, ah = a

]
+ µ(s, a).

3Unlike most RL literature with unknown transition probability P , we need to know the transition probability
of the MDP, i.e., the white-box setting, for a direct reduction from this simple RL setting to CMAB and solved
by CUCB. We believe similar techniques can also be applied to study the attackability of RL instances with
unknown transition probability.

20



Under review as a conference paper at ICLR 2024

Since State, Action and H are finite, there exists an optimal policy π∗ such that V π∗

h (s) =
supπ V

π
h (s) for any state s.

The regret RA(T,H) of any algorithm A is the difference between the total expected true reward
from the best fixed policy π∗ in hindsight, and the expected true reward over T episodes, namely

RA(T,H) =

T∑
t=1

(
V π∗

1 (s(1))− V πt
1 (s(1))

)
.

The objective of the learner is to minimize the regret RA(T,H).

Reward poisoning attack (reward manipulation) For the reward poisoning attack, or reward
manipulation, the attacker can intercept the reward rt,h(st(h), at(h)) at every episode t and step h,
and decide whether to modify the reward rt,h(st(h), at(h)) to r̃t,h(st(h), at(h)). The goal of the
attack process is to fool the algorithm to play a target policy π for T − o(T ) times. The cost of the
whole attack process is defined as C(T ) =

∑T
t=1

∑H
h=1 I{rt,h(st(h), at(h)) ̸= r̃t,h(st(h), at(h))}.

Reduction to CMAB problem Note that in this simple RL setting where the transition probability
is known in advance, it can be reduced to a CMAB problem and thus solved by the CUCB algorithm.
We now construct the CMAB instance.

1. There are |State| × |Action| base arms, each base arm (s, a) denote the random reward
r(s, a), with unknown expected value E[r(s, a)] = µ(s, a).

2. Each policy π is a super arm, and the expected reward of super arm π is just the value
function V π

1 (s(1)).

3. Note that when we select a policy π (a super arm) and execute π for this episode t, a
random set of base arms τt will be triggered and observed following distribution D, and the
distribution D is determined by the episodic Markov Decision Process. Define Aπ

h(s, a) as
the probability that it will go to state s with π(s) = a at time h, then the base arm (s, a) is
triggered with probability

∑H
h=1 A

π
h(s, a) in each episode, thus pD,π

(s,a) =
∑H

h=1 A
π
h(s, a),

where pD,π
(s,a) is the probability to trigger arm (s, a) under policy π (defined in Section 2).

Now the episodic MDP problem is reduced to a CMAB instance, and the remaining problem is to
validate Assumption 2.1 and Assumption 2.2. Note that the reward of the super arm (policy) under
the expected reward µ is given as

rπ(µ) =V π
1 (s(1))

=E

[
H∑

h′=1

µ(sh′ , πh′(sh′)|s1 = s(1)

]

=

H∑
h′=1

E [µ(sh′ , πh′(sh′)|s1 = s(1)]

=

H∑
h′=1

∑
s,a

µ(s, a)Aπ
h(s, a)

=
∑
s,a

µ(s, a)

H∑
h′=1

Aπ
h(s, a)

=
∑
s,a

µ(s, a)pD,π
(s,a).

Thus, Assumption 2.1 and Assumption 2.2 hold naturally, and we can apply Theorem 3.6 to determine
if an episodic MDP is polynomially attackable or not.

21



Under review as a conference paper at ICLR 2024

C MISSING PROOFS IN SECTION 4

In this section, we prove Theorem 4.1. We first restate the theorem as below.
Theorem 4.1. There exists a CMAB instance satisfying Assumption 2.1 and 2.2 such that it is polyno-
mially attackable given the parameter µ (induced from the instance’s base arms’ joint distribution
D), but there exists no attack algorithm that can efficiently attack the instances for CUCB algorithm
with unknown parameter µ.

As presented in Section 4, the hardness result for CMAB instances comes from the combinatorial
structure of the super arms, which may “block” the exploration for other base arms. However when
the attacker does not know the vector µ, she needs to observe different base arms to get some
estimation of the problem parameter µ, and choose a super arm S to attack. The following section
formalizes this idea.

Before we go to the proof, we restate the hard instances we constructed (Example 4.2) as follows.
Example C.1 (Hard example). We construct the following CMAB instance Ii. There are 2n base
arms, {ai}i∈[n] and {bi}i∈[n], and each corresponds to a random variable ranged in [0, 1]. We
have µaj

= 1 − 2ϵ for all j ̸= i and µai
= 1, and µbj = 1 − ϵ for all j ∈ [n] for some ϵ > 0.

Then we construct n + 2 super arms. Sj for all j ∈ [n] will observe base arms aj and bj , and
rSj

= µaj
+ µbj . There is another super arm Sn+1 that will observe base arms bj for all j ∈ [n],

and rSn+1
=

∑
j∈[n] µbj + (1 − ϵ). Besides, there is also a super arm S0 with constant reward

S0 = 2− 2ϵ and does not observe any base arm. Then, the attack super arm set M = {Sj}j∈[n]. In
total, we can construct n hard instances Ii for all i ∈ [n].

The following lemma claim that the instances we construct are actually polynomially attackable
(Definition 3.1 by computing the Gap (Definition 3.5).
Lemma C.2. For instance Ii, we have ∆Si

= ϵ > 0 and ∆Sj
= −ϵ < 0 for all j ̸= i, j ∈ [n].

Proof. First recall the definition of Gap (Definition 3.5) of a super arm S ∈ M is defined as

∆S := rS(µ)− max
S′ ̸=S

rS′(µ⊙OS).

Now for the instance Ii, we have

∆Si
= rSi

(µ)− max
Si′ ̸=Si

rSi′ (µ⊙OSi
)

= rSi
(µ)− rS0

(µ)

= (µai
+ µbi)− (2− 2ϵ)

= 1 + (1− ϵ)− (2− 2ϵ)

= ϵ.

Similarly, we have

∆Sj = rSj (µ)− max
Sj′ ̸=Sj

rSj′ (µ⊙OSj )

= rSj
(µ)− rS0

(µ)

= (µaj + µbj )− (2− 2ϵ)

= (1− 2ϵ) + (1− ϵ)− (2− 2ϵ)

= −ϵ.

The next two lemmas (Lemma C.3 and C.4) show that, if the attacker let the CUCB algorithm to
observe l different super arms in the attack set M, then the attacker needs to suffer exponential cost
(1/ϵ)Ω(l).
Lemma C.3. For a specific base arm a, suppose that during the attack of CUCB, there exists two
rounds t1 < t2 such that UCBt1 (a) ≤ ϵ at time t1 and has already been observed by x times, and
UCBt2 (a) ≥ 1 − 2ϵ at time t2, then a should be observed for at least x/(2ϵ) times during (t1, t2)
for ϵ < 1/8.

22



Under review as a conference paper at ICLR 2024

Proof. Note that UCBt1 (a) ≤ ϵ, which means that µ̃a,t1 ≤ ϵ and ρa,t1 ≤ ϵ. Then since ρa,t will not
increase and t2 > t1, we have

µ̃a,t2 ≥ UCBt2 (a)− ρa,t2 ≥ UCBt2 (a)− ρa,t1 = 1− 2ϵ− ϵ = 1− 3ϵ.

Now suppose a has been observed for x′ times during (t1, t2] and x times during [0, t1], we have

µ̃a,t2 ≤ µ̃a,t1 · x+ 1 · x′

x+ x′ ≤ ϵ · x+ 1 · x′

x+ x′ .

We know that µ̃a,t2 ≥ 1− 3ϵ, and thus

ϵ · x+ 1 · x′

x+ x′ ≥ 1− 3ϵ ⇒ x′ ≥ 1− 4ϵ

ϵ
x ≥ 1

2ϵ
x,

and we conclude the proof.

Lemma C.4. For any instance Ii, suppose that there exist l different time t1, . . . , tl such that CUCB
pulls Stj at tj and Stj are different for j ∈ [l], then tl ≥ (1/2ϵ)l−1 and Sn+1 is pulled by at least
(1/2ϵ)l−1 times when l > 1.

Proof. We prove this by induction. When l = 1, the argument holds trivially.

Now suppose that the argument holds when l = k, then for l = k + 1, we first apply the induction
argument for time t1, . . . , tl−1 and we have at time tl−1, Sn+1 has already been pulled for at least
(1/2ϵ)l−2 times if k > 1, which means that Stl has already been observed by (1/2ϵ)l−2 times. If
k = 1 (l = 2), we also know that Stl needs to be observed by at least once, since UCBt1 (btl) ≤ ϵ.

Now assume that t′l−1 and t′l satisfies that tl−1 ≤ t′l−1 < t′l ≤ tl such that at time t′l−1 CUCB pulls
Stl−1

and at time t′l CUCB pulls Stl , and during the period (t′l−1, t
′
l−1) CUCB never pulls the super

arm Stl−1
and Stl . Then because CUCB will pull Stl at time t′l, we have UCBt′l

(btl) ≥ 1 − 2ϵ.
Besides, at time t′l−1, since CUCB pulls Stl−1

, we have UCBt′l−1
(btl) ≤ ϵ. Applying Lemma C.3,

we know that btl is observed for at least (1/2ϵ)l−1 times during (t′l−1, t
′
l). Also note that during

(t′l−1, t
′
l), super arm Stl is never pulled, and the only way to observe btl is to pull the super arm Sn+1.

Thus, we conclude the induction step.

Now we can finally prove Theorem 4.1. In Lemma C.4, we already show that if the attacker lets
CUCB to pull l different arms in the attack set M, the attacker needs to suffer for loss exponential in
l. Then the intuition is that: without knowing the parameter µ, the attacker needs to visit at least Ω(n)
different arms in M to guarantee a high probability of attack success, and thus suffer for exponential
cost.

Proof of Theorem 4.1. We prove this by contradiction. Suppose that an attack algorithm A with
constant γ′ successfully attacks CUCB on the random instance I, which is uniformly chosen from
{I1, . . . , In} with high probability. Here we assume ϵ < 1/4. Then, for T ≥ P (n,K) where
P (n,K) denotes a polynomial with variable n,K, we know that A uses at most T 1−γ′

budget and
play the super arms in M = {S1, . . . ,Sn} with at least T 1−γ′

times.

Now we choose n such that 1/(2ϵ)n/2 ≥ P (n,K), which is possible since P (n,K) can be bound
by some polynomials of n, and we consider T = 1/(2ϵ)n/2. Then by Lemma C.4, we know that
at time T , CUCB visits at most n/2 different arms in M. Recall by Lemma C.2, we know that for
instance Ii, only super arm Si has gap ∆Si

= ϵ > 0 and all other super arms Sj for j ̸= i, j ∈ [n]
has gap ∆Sj

= −ϵ < 0. Because I is uniformly chosen from {I1, . . . , In}, then with probability at
least 1/2, CUCB does not visit the super arm with gap ϵ at time T .

However if the super arm Sj has gap Sj = −ϵ < 0, from Lemma B.8, Sj can only be observed by
P ′(n, 1/ϵ, log(1/δ) ·T 1−γ′

times for some polynomial P ′ on n, 1/ϵ, log(1/δ), under event ∩(¬N s
t ),

which happens with probability 1− δ. Thus, with probability at least 1/2− δ, CUCB can only play
super arms in M for n/2 · P ′(n, 1/ϵ, log(1/δ) · T 1−γ′

times. However, by Definition 3.1, CUCB
needs to pull arms in M for at least T − T 1−γ′

times, choosing n large enough will get

T − T 1−γ′
> n/2 · P ′(n, 1/ϵ, log(1/δ) · T 1−γ′

,

23



Under review as a conference paper at ICLR 2024

since T = 1/(2ϵ)n/2 exponentially depends on n, which means that with probability at least 1/2− δ,
CUCB will not pull arms in M with at least T − T 1−γ′

times. Note that the number of base arms
m = 2n, we conclude the proof.

D LIMITATION

One limitation of our findings is that our attackability characterization is limited to one threat
model: reward poisoning attacks. The characterization cannot be directly generalized to environment
poisoning attacks Rakhsha et al. (2020); Sun et al. (2021); Xu et al. (2021); Rangi et al. (2022)
where the adversary can directly change the environment such as reward function. Environment
poisoning is more powerful than reward poisoning and perturbation in environment will invalidate
our analysis regarding ∆M.On the other hand, our attackability characterization can be applied to
action poisoning attacks Liu & Lai (2020), which in principle is still reward poisoning where the
reward cannot be arbitrarily changed but has to be replaced by another action’s reward. We leave the
study of attackability of CMAB under other threat models as future work.

24


	Introduction
	Our contribution
	Related works

	Preliminary
	Combinatorial semi-bandit
	Threat model
	Selected applications of CMAB

	Polynomial Attackability of CMAB Instances
	Attack in Unknown Environment
	Numerical Experiments
	Experiment setup
	Experiment results

	Conclusion
	Additional Experiments
	More experiment details
	Additional Results on Cascading Bandits
	Experiment results on Influence Maximization

	Missing proofs in sec:poly-attack
	Proof of Theorem 3.6
	Proof of Theorem 3.9
	Proof of cor:connection-rl-informal

	Missing Proofs in Section 4
	Limitation

