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Abstract

Gradient clipping is increasingly important in centralized learning (CL) and feder-
ated learning (FL). Many works focus on its optimization properties under strong
assumptions involving Gaussian noise and standard smoothness. However, practical
machine learning tasks often only satisfy weaker conditions, such as heavy-tailed
noise and (L0, L1)-smoothness. To bridge this gap, we propose a high-probability
analysis for clipped Stochastic Gradient Descent (SGD) under these weaker as-
sumptions. Our findings show a better convergence rate than existing ones can be
achieved, and our high-probability analysis does not rely on the bounded gradient
assumption. Moreover, we extend our analysis to FL, where a gap remains between
expected and high-probability convergence, which the naive clipped SGD can not
bridge. Thus, we design a new Federated Clipped Batched Gradient (FedCBG)
algorithm, and prove the convergence and generalization bounds with high proba-
bility for the first time. Our analysis reveals the trade-offs between the optimization
and generalization performance. Extensive experiments demonstrate that FedCBG
can generalize better to unseen client distributions than state-of-the-art baselines.

1 Introduction

Gradient clipping has proven effective in training vision and language models [53, 56]. Many studies
demonstrated an optimal convergence rate of O(T− 1

2 ) under a finite-variance assumption, where T
is the number of iterations or communication rounds. However, recent studies [54, 14] pointed out
that assuming finite-variance noise is overly optimistic for modern machine learning tasks. Instead, it
is more appropriate to assume that the noise has a bounded p-th moment, as stated in Assumption 3
below (the first weaker assumption), which is called heavy-tailed regime. This assumption brings
significant challenges for theoretical analysis. Attempts to establish the convergence rate under this
assumption have been made. For example, Zhang et al. [54] showed that clipped SGD achieves the
state-of-the-art convergence rate in expectation. In practice, models are usually trained only once due
to the long training process. Thus, Cutkosky and Mehta [7], Nguyen et al. [35], Puchkin et al. [37]
studied high-probability convergence, offering a stronger guarantee for each individual run.

However, the above high-probability results are achievable only under standard smoothness. Works
have demonstrated that some language and vision models [53, 46] can not satisfy the standard
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Figure 1: Gradient norm vs estimated Lipschitz smoothness (left) and gradient noise distribution
(right) during training for AWD-LSTM [34] on the PTB dataset. Local smoothness positively
correlates with gradient norm instead of a constant, which satisfies Assumption 2. The gradient noise
exhibits a heavy-tailed behavior and its norm can be as large as 2.5. Similar phenomena also appeared
in the Shakespeare dataset, as shown in Fig. 2.

smoothness assumption. Instead, Assumption 2 (the second weaker assumption) applies. Zhang
et al. [53] first analyzed the convergence properties of clipped SGD under the (L0, L1)-smoothness
assumption, which covers many large language models [6, 18].

The two types of works focus on the single weaker condition, but both conditions can appear in the
same model, which can be verified in Fig. 1. Thus, there is an urgent need for analysis under both
weaker conditions. Besides, these methods mentioned above focus on optimization, not including the
generalization properties. Li and Liu [24, 25] first analyzed the generalization of clipped SGD, but
both depend on the bounded gradient assumption, which is stronger than Assumption 3 and can not
hold even when f is quadratic.

As for federated learning (FL) [10, 40, 48, 38, 33, 39], heavy-tailed noise also exists. The works
[45, 44, 47] focuses on this issue. The most related work to our paper is [47]. Their analysis is in
expectation, which offers a weak guarantee for each single run. Besides, their analysis depends on
the restrictive assumption that local gradients are bounded, which may not hold even for the quadratic
function and the independent Gaussian random variables. In addition, they focus on the optimization
performance under the standard smoothness assumption. In summary, there is a lack of studies jointly
considering the optimization and generalization properties under weaker conditions in the FL setting.

The above analysis naturally raises the following questions:

Q1: Can we analyze the clipped methods under only weaker conditions such as heavy-tailed noise
and (L0, L1)-smoothness assumptions in high probability?

Q2: Can the analysis in CL inspire to design an FL algorithm to achieve the convergence rate
matching the lower bound under weaker conditions?

Q3: Can we analyze the high-probability generalization properties under weaker assumptions for
both CL and FL?

1.1 Contributions

To answer these questions, we summarize our contributions as follows:

• By induction, we prove a faster convergence rate of the clipped SGD under the weaker condi-
tions. By carefully choosing clipping parameter, we obtain a convergence rate O(T

2−2p
3p−2 log

2p−2
2p−1 1

δ )
with a probability of at least 1 − δ, δ ∈ (0, 1), which improves existing high-probability bound
O(T

2−2p
3p−2 log2 1

δ ) (p ∈ (1, 2]). Interestingly, our analysis does not rely on the bounded gradient
assumption used in [7, 24, 25]. Besides, we provide the generalization analysis for the first time.

• We design a new Federated Clipped Batched Gradient (FedCBG) algorithm for FL under weaker
assumptions. We creatively prove the bounded variance of batch gradients, which opens the door
to analyzing batch gradients under the heavy-tailed scenario. Then, we prove that FedCBG can
achieve the advanced convergence rate of O((mKT )

2−2p
3p−2 log

p−1
p T

δ ), where m and K is the number
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of clients and local iterations, respectively. Finally, we provide a generalization upper bound for
the federated setting for the first time. Our analysis reveals the trade-off between optimization and
generalization. A summary of our theoretical contributions can be found in Tables 1 and 2 below.

2 Related Work

2.1 Existing analysis under weaker conditions

Many works such as [54, 47] have shown that there exists heavy-tailed noise in many applications. An-
alyzing convergence under this scenario is more challenging than for light-tailed noise (e.g., Gaussian
noise) due to the unbounded variance, which makes most existing proof techniques inapplicable. The
first type of analysis addressed this issue by assuming the bounded gradient Et[∥∇f(xt; ξjt)∥p] ≤ Gp

[54, 47, 25]. However, this assumption is strong and cannot hold even when the loss is quadratic.
As a comparison, our inductive analysis only needs the weakened Assumption 3, which is also used
in works [35, 30]. Besides, the loss functions of many language and vision models can not satisfy
the standard smoothness but rather a weaker (L0, L1)-smoothness [53, 23]. (L0, L1)-smoothness
assumption is applied by the works [53, 51, 6, 18, 23] under the light-tailed noise. As for the heavy-
tailed noise, the existing works [54, 29] only analyzed the expected rather than high-probability
convergence rates as shown in Table 4 in the Appendix. In contrast, we propose tight high-probability
analysis under both weaker conditions, offering a stronger guarantee for each individual training.

2.2 Optimization properties for clipped methods

In centralized learning settings, existing studies [54, 29] focused on clipping for the heavy-tailed
scenario and analyzed the convergence bounds in expectation. Besides, works such as [24, 25, 35, 30]
provide high-probability analysis, which matches the lower bound in expectation. However, the order
of log T

δ is at least 2 as shown in Table 1. We reduce this order to 2p−2
2p−1 as shown in the same table.

In FL, to the best of our knowledge, there is only one work [47] analyzing convergence rates under
the heavy-tailed noise. However, they focus on expected rather than high-probability analysis, and
optimization properties rather than generalization aspects.

2.3 Generalization for nonconvex problems

Existing generalization analysis contains three types: 1) in expectation [5, 9, 15, 21, 22, 36, 43, 50],
2) high probability [12, 32, 13, 20, 16], and 3) information theory [1, 4, 52]. For example, Hardt
et al. [15] pioneered generalization analysis in expectation based on stability. However, their analysis
requires a very small step size, which leads to an exponential number of iterations. As a comparison,
the high-probability analysis allows the constant step size, which controls the generalization error and
makes the optimization error decay faster. Besides, it can provide a stronger guarantee for each single
run and is a tighter criterion for bounded losses [1]. As for the information-theoretic analysis, they
are usually algorithm-independent [3]. In this paper, we provide the high-probability upper bounds
for optimization and generalization and focus on their joint perspective.

3 Preliminaries

Problem setting: In this paper, we focus on the clipped methods for solving the problems in both CL
and FL settings. For the CL setting, the population loss is defined as:

F (x) = Eξ∼Pξ
f(x; ξ), (1)

where the loss function f is nonconvex w.r.t. x, x is network weights, and one sample ξ is sampled
from the distribution Pξ. Normally, the population risk F (x) is used for generalization but is compu-
tationally invisible and it can only be estimated using the empirical risk FS(x) :=

1
n

∑n
i=1 f(x; ξi).

FL [31] allows multiple participants to share model training results but not data, reducing the risk of
data leakage. FL usually addresses the following problem:

F (x) := Ei∼P{Fi(x) := Eξj∼Pif(x; ξj)}, (2)
where f(x; ξj) is the loss at sample ξj , ξj is sampled from the local distribution Pi, each client i is sam-
pled from a meta-distribution P . We define the client empirical risk by fi(x) :=

1
ni

∑ni

j=1 fi(x; ξj)

3



and the empirical risk on the participating training client data is defined by FS(x) :=
1
m

∑m
i=1 fi(x),

where ni is the number of samples of the i-th client and m is the number of participating clients.
Generalization research in FL includes the performance gap on unseen client data and unseen client
distributions. For the former, the CL can provide help. In this paper, we focus on the latter. For
example, Problem (2) is common in the cross-device FL setting, where m is generally large and it
is reasonable to sample from a meta-distribution to model local distributions of clients [49], which
makes it clear the generalization to non-participating clients.

Notation: We use lower-case letters to denote vectors. For a differentiable function f , ∇f(x) is
the gradient of f at x. We let Ft be the natural filtration for the algorithms. Et is used to denote
E[·|Ft−1] for brevity.
Assumption 1 (Bounded Function). F admits a finite lower bound, i.e., F ∗ = infx F (x) > −∞.
Assumption 2 ((L0, L1)-Smoothness). The smoothness of the function FS means that for ∀x, y
satisfying ∥x − y∥ ≤ 1

L1
, ∥∇FS(x) − ∇FS(y)∥ ≤ (L0 + L1∥∇FS(x)∥)∥x − y∥ holding with

smoothness parameter ℓ = L0 + L1∥∇FS(x)∥.

For the federated setting, the local (L0, L1)-Lipschitz continuous gradient for each client means
∥∇fi(x)−∇fi(y)∥ ≤ (L0+L1∥∇fi(x)∥)∥x−y∥. When L1 = 0, they become standard smoothness.
Assumption 3 (Heavy-tailed Noise). For the centralized setting, the stochastic gradient estimator
is unbiased, i.e., E[∇f(x; ξ)] = ∇FS(x). Besides, the gradient noise satisfies the heavy-tailed
condition Eξ∥∇FS(x)−∇f(x; ξ)∥p ≤ σp, p ∈ (1, 2].

For the federated setting, the local gradient estimator is unbiased, i.e., E[∇fi(x; ξ)] = ∇fi(x).
Besides, the local stochastic gradient noise in the i-th client follows the heavy-tailed distribution, i.e.,
Eξ∥∇fi(x)−∇fi(x; ξ)∥p ≤ σp, p ∈ (1, 2].

Many works such as image classification [42], training the large language models [54] and FL [47]
have shown that stochastic gradient noise usually follows the heavy-tailed distribution, which is also
corroborated by Fig. 1. Some works [7, 25] have made this assumption concrete to that the stochastic
gradients are bounded in p-th moment, i.e., Et∥∇f(xt, ξjt)∥p ≤ Gp (or Et∥∇fi(xt, ξjt)∥p ≤ Gp in
FL), for some G > 0. However, it does not hold even when f is quadratic and ∇f(x; ξ)−∇FS(x)
(or ∇fi(x; ξ) −∇fi(x) in FL) is an independent centered Gaussian random variable. In contrast,
Assumption 3 is weaker. In this paper, we focus on the analysis under Assumptions 1-3.

4 Tighter High-probability Bounds in the Centralized Setting

To answer Q1, we first consider the optimization properties of clipped SGD in Subsection 4.1.
Besides, we prove its generalization bound in Subsection 4.2.

4.1 Tighter high-probability convergence under weaker conditions

The pseudocode of clipped SGD is shown
in Algorithm 1. In each iteration, clipped
SGD performs gradient descent along the
clipped gradient ∇̃f(xt; ξjt).

We extend the analysis in [35] to the
(L0, L1)-smoothness assumption, which
can cover more applications. In Theorem
1, we propose better parameter choices
and prove a faster convergence rate than
existing analyses such as [35, 30].

Algorithm 1 Clipped SGD
Initialize: x0, step size η and clipping parameter λ.

1: for t = 0, 1, . . . , T − 1 do
2: Draw i.i.d. ξjt stochastic sample;
3: ∇̃f(xt; ξjt) = min{1, λ

∥∇̃f(xt;ξjt )∥
}∇f(xt; ξjt);

4: xt+1 = xt − η∇̃f(xt; ξjt);
5: end for
6: Randomly draw x̂ from x1, . . . , xT at uniform;

Output: x̂.

Theorem 1. We assume that Assumptions 1, 2 and 3 hold. If we choose λ and η satisfying λ =

O(T
1

3p−2 (log T
δ )

1
1−2p ), η = O(T

−p
3p−2 (log T

δ )
2−2p
2p−1 ), where R = L0 + 2(L1 + 1)R, the constant

R ≥ 4∆1L1 + 4
√
∆2

1L
2
1 + L0∆1, ∆1 = FS(x1) − F ∗, ρ = max{log 4T

δ , 1}, the clipped SGD

(Algorithm 1) can achieve the convergence rate of 1
T

∑T
t=1 ∥∇FS(xt)∥2 = O(T

2−2p
3p−2 (log T

δ )
2p−2
2p−1 )

with the probability at least 1− δ for any δ ∈ (0, 1).
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Theorem 1 offers a new high-probability optimization bound for clipped SGD. According to Jensen’s
inequality, the bound implies that 1

T

∑T
t=1 ∥∇FS(xt)∥ ≤ O(log

p−1
2p−1 T

δ /T
p−1
3p−2 ), which matches the

lower bound Ω(T
p−1
3p−2 ) in [54] up to a logarithmic factor. Compared with existing results, our bound

has the following advantages.

Table 1: Comparison of existing high-probability (HP) analysis in centralized learning (CL). We use
1
T

∑T
t=1 ∥∇FS(xt)∥2 and 1

T

∑T
t=1 ∥∇F (xt)∥2 as the criterion in high probability. Abbreviation:

Standard smoothness (SS), (L0, L1)-smoothness ((L0, L1)), Heavy-tailed (HT), Theorem (Th.). Here,
G is a constant, δ ∈ (0, 1), and p ∈ (1, 2]. It can be seen that our Theorems 1 and 2 achieve better
optimization convergence and the state-of-the-art generalization bound under weaker assumptions.

Methods
Assumptions

Additional Assumptions
Bounds

Smooth Noise Optimization Generalization

[24] SS HT η∥∇FS(xt)∥ ≤ G O( log T
T 1/2 log2 1

δ ) O(( dn )
p−1
3p−2 log

2p−2
2p−1 (

√
n

δ2d ))

[25] SS HT Et[∥∇f(xt; ξjt)∥p] ≤ Gp O(T
2−2p
3p−2 log 1

δ ) O(( dn )
p−1
3p−2 log

2p−2
2p−1 (

√
n

δ2d ))

[35] SS HT —— O(T
2−2p
3p−2 log

p
p−1 T

δ ) ——

[30] SS HT —— O(T
2−2p
3p−2 log2 T

δ ) ——

Th. 1, 2 (L0, L1) HT —— O(T
2−2p
3p−2 log

2p−2
2p−1 T

δ )O(( dn )
p−1
3p−2 log

2p−2
2p−1 (

√
n

δ2d ))

• Addressed the challenges under the weaker assumption. In our analysis, the clipped SGD can
deal with the (L0, L1)-smoothness rather than only standard smoothness. The generalized smoothness
increased analysis difficulty due to extra ∥∇FS(x)∥ in the upper bound ((L0, L1)-smoothness makes
the gradient upper bound implicit in an inequality, which complicates the analysis). Specifically, it
can lead to a high-order term containing ∥∇FS(x)∥. The previous works like [51] keep it till the end
and use the boundedness of clipped gradients to choose step size η. Instead, Zhang et al. [53] chooses
carefully clipped step size min{η, ηλ

∥∇FS(x)∥} to achieve convergence. But they focus on noise with
bounded variance or need additional assumption ∥∇f(x; ξ)−∇FS(x)∥ ≤ σ, which are not practical
even when the loss is quadratic. However, the noise variance can not be easily bounded under the
heavy-tailed scenario, and the boundedness of clipped gradients and clipped step sizes can not be
used for high-order terms. Thus, this paper still faces the challenge of high-order terms.

Inspired by the analysis in [11, 23] for bounded variance, we prove Theorem 1 by induction. In
Appendix B.1, we show how to use induction arguments to handle (L0, L1)-smoothness and remove
the bounded gradient assumption, and here we give a proof sketch.

Proof sketch. The key in the convergence rate analysis is to show that ∥∇FS(xt)∥ ≤ λ
2 . By induction

hypothesis at l (l ≤ t), we creatively solve a quadratic inequality w.r.t. ∥∇FS(x)∥ so that the gradient
∥∇FS(x)∥ can be controlled under the (L0, L1)-smoothness when λ is greater than a constant.
Based on these, we construct a new martingale difference sequence

∑l−1
t=0(L1η

2∥∇FS(xt)∥ −
η)⟨∇FS(xt), θ

a
t ⟩ produced by (L0, L1)-smoothness, which does not appear in standard analysis like

in [35], where θat = ∇̃f(xt; ξjt) − Et[∇̃f(xt; ξjt)]. Next, by carefully choosing λ and η, we can
obtain the following induction ∆T+1 +

η
4

∑T
t=1 ∥∇FS(xt)∥2 ≤ 2∆1 with the probability at least

1− δ, thereby achieving the desired convergence rate.

• Tighter convergence bound. We analyzed the parameter selection in [35] and found that O(T
2−2p
3p−2 )

is already tight but the order of log T
δ can be reduced. By analyzing the inequalities that λ satisfies

in our induction, we set λ = O(T
1

3p−2 (log T
δ )

1
1−2p ) and η = O(T

−p
3p−2 (log T

δ )
2−2p
2p−1 ), which yields a

tighter convergence rate on the logarithmic factor compared with [35, 30], as shown in Table 1.

4.2 Generalization bound under weaker assumptions

In addition to optimization, we analyze the generalization bound of clipped SGD to answer Q3. We
use the term ∥∇F (xt)∥2 to estimate this bound. Similar criteria can be found in [25, 20].
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Theorem 2. We assume that Assumptions 1, 2 and 3 hold. We set the same step size and clipping
parameter as Theorem 1. If we choose T = O

(√
n
d

)
, then with probability at least 1− δ, Algorithm

1 can achieve 1
T

∑T
t=1 ∥∇F (xt)∥2 ≤ O(( dn )

p−1
3p−2 log

2p−2
2p−1 ( 1δ

√
n
d )).

Theorem 2 shows that clipped SGD can guarantee the generalization bound of the order
O(( dn )

p−1
3p−2 log

2p−2
2p−1 ( 1δ

√
n
d )) under weaker assumptions, such as heavy-tailed noise and (L0, L1)-

smoothness. Besides, Theorem 2 is the first high-probability generalization analysis without bounded
gradient assumption. For clarification, we provide a proof sketch.

Proof sketch. We estimate the term ∥∇F (xt)∥2 as follows ∥∇F (xt)∥2 ≤ 2∥∇FS(xt)∥2 +
2∥∇F (xt) − ∇FS(xt)∥2. The first term is optimization error and we can bound it by Theorem
1. The second term is generalization error due to approximating the true gradient with its em-
pirical counterpart and we bound it by generalized uniform convergence as shown in Lemma 5.
In Lemma 5, the value of R needs to be quantified. We prove that the generalization error in-
creases as training progresses and we can choose R = max1≤t≤T ∥xt∥. Next, we decompose
∥xt∥ into A1, A2, A3 by Triangle Inequality and combine them with our inductive Lemma 6 to get
∥xt+1∥ = O(T

2p−1
3p−2 / log

p−1
2p−1 T

δ ). Along this line of thought, we successfully bounded ∥∇F (xt)∥2.

Advantages compared with existing analysis

• We offer generalized uniform convergence for (L0, L1)-smooth objective as shown in Lemma 5,
which generalizes the results in [20, 25].

• Remove the bounded gradient assumption. We use our induction Lemma 6, which can guarantee
that ∥∇FS(xt)∥ ≤ λ

2 with the probability at least 1− δ. This analysis removes the bounded gradient
assumption in [25], i.e., Et[∥∇FS(xt; ξt)∥p] ≤ Gp and achieves the first generalization upper bound.

5 The Proposed FedCBG Algorithm for the Federated Setting

As we discussed above, heavy-tailed noise also exists in FL. To answer Q2, we extend Theorems
1 and 2 to FL, which inspires us to design an FedCBG algorithm to match the optimization lower
bound. Besides, we provide the high-probability generalization bound for the first time.

5.1 Federated clipped batch gradient algorithm

To handle the heavy-tailed noise, we design a Federated Clipped Batch Gradient (FedCBG) algorithm
as shown in Algorithm 2, which mainly contains two parts:

• In the client, we use clipped batch
gradient ∇̃fi(x

k
t,i; ξ

k
t,i) to perform gra-

dient descent, where ∇̃fi(x
k
t,i; ξ

k
t,i) =

min{1, λ
∥∇fi(xk

t,i;ξ
k
t,i)∥

}∇fi(x
k
t,i; ξ

k
t,i)

and ξkt,i = {(ξkt,i)j}bj=1, which is
different from the existing methods such
as [47], where they use a single sample
in each local update. This difference is
one of the key reasons why we obtain
a convergence rate matching the lower
bound under the more difficult criterion,
i.e., in high probability.

• In the server, we design a “sum-
aggregation” paradigm xt+1 = xt −
γ
∑m

i=1 ∆̃t, which is the other reason
why our FedCBG can achieve the con-
vergence rate in high probability match-
ing the lower bound.

Algorithm 2 FedCBG Algorithm
Initialize: Initial point x0, local step size η, global learn-

ing rate γ and clipping parameter λ.
1: for t = 0, 1, . . . , T − 1 (communication round) do
2: for each client i ∈ [m] in parallel do
3: Update local model: x0

t,i = xt.
4: for k = 0, · · · ,K − 1 (local update step) do
5: Draw i.i.d. stochastic samples ξkt,i;
6: xk+1

t,i = xk
t,i − η∇̃fi(x

k
t,i; ξ

k
t,i);

7: end for
8: Send ∆̃i

t =
∑K−1

k=0 ∇̃fi(x
k
t,i; ξ

k
t,i) to the server.

9: end for
10: Global sum-aggregation at server:
11: Server update: xt+1 = xt − γ

∑m
i=1 ∆̃t;

12: Broadcasting xt+1 to clients.
13: end for
Output: xT .

6



5.2 Convergence rate of our FedCBG algorithm

To prove the convergence rate of FedCBG, we need to bound the variance of the batch gradient under
the heavy-tailed noise assumption. Compared to the Gaussian noise (light-tailed) assumption, such
analysis is more difficult. Fortunately, by Hölder Inequality and Markov’s Inequality, we have proved
an upper bound on this variance for the first time in Lemma 1.

Lemma 1 (Batch gradient variance bound). If Assumptions 3 holds and ∥∇fi(xt)∥ ≤ λ
2 , ∀i ∈ [m],

for batch gradient ∇fi(x
k
t,i; ξ

k
t,i) =

1
b

∑
ξkt,i∈ξk

t,i
∇fi(x

k
t,i; ξ

k
t,i), we have the batch gradient variance

bound

Et[∥∇fi(x
k
t,i)−∇fi(x

k
t,i; ξ

k
t,i)∥2] ≤

3σpλ2−p

b
. (3)

Remark 1. In Lemma 1, we provide the first upper bound for batched gradient variance under
the heavy-tailed noise. In our high-probability analysis, b > 1 provides one parameter of freedom
for choosing the clipping parameter λ, thereby achieving the convergence rate matching the lower
bound in expectation. Specifically, we set b = O((mKT )

2p−2
3(3p−2) ), which allows us to choose

λ = O((mKT )
1

2(3p−2) ), thereby achieving the desired convergence rate.

Inspired by the definitions of θat and θbt (θbt = Et[∇̃f(xt; ξjt)]−∇FS(xt)) in the centralized setting,
we construct three errors in the federated setting: stochastic batch error ϵt, the clipped batch gradient
deviation ϵat , and the bias ϵbt between the expected clipped batch gradient and full gradient, where ϵat =
1

mK

∑m
i=1

∑K
k=1(∇̃fi(x

k
t,i; ξ

k
t,i)−Et[∇̃fi(x

k
t,i; ξ

k
t,i)]), ϵ

b
t =

1
mK

∑m
i=1

∑K
k=1 Et[∇̃fi(x

k
t,i; ξ

k
t,i)]−

∇FS(xt), and ϵt = ϵat + ϵbt . Based on Lemma 1, we analyze their upper bounds in Lemma 2.

Lemma 2. For Algorithm 2, ∀t ∈ [T ], we have ∥ϵat ∥ ≤ 2λ. Besides, if ∥∇fi(xt)∥ ≤ λ
2 , there is

∥ϵbt∥ ≤ 12σpλ1−p

b and Et[∥ϵat ∥2] ≤ 100σpλ2−p

mKb .

Lemma 2 shows that the clipped batch gradient can add a parameter of freedom b compared with
[35, 37], which relaxes the conditions for choosing hyperparameters. Now, we begin to prove the
convergence rate of our FedCBG algorithm. The key to our derivation lies in Lemma 3.
Lemma 3. For 1 ≤ N ≤ T + 1, let E′

N be the event that for all l = 1, · · · , N,

∆′
l +

γmK

2

l−1∑
t=1

∥∇FS(xt)∥2 ≤ ∆′
1 + γmK

l−1∑
t=1

[(1 + L1∥∇FS(xt)∥)(∥ϵat ∥2 − Et[∥ϵat ∥2])

+ L1∥∇FS(xt)∥(⟨ϵat ,∇FS(xt)⟩+ ∥∇FS(xt)∥∥ϵbt∥)] +
L1γ

2m2K2

2

l−1∑
t=1

∥∇FS(xt)∥3

+ γmK

l−1∑
t=1

(1 + L1∥∇FS(xt)∥)(∥ϵbt∥2 + Et[∥ϵat ∥2]) ≤ 2∆′
1.

(4)

Then E′
N happens with probability at least 1− (N−1)δ

T for each N ∈ [T ].

Lemma 3 explains why our Algorithm 2 can achieve a convergence rate matching the lower bound.
Specifically, in our inductive analysis, we focus on constructing the martingale difference sequences
{∥ϵat ∥2 − Et[∥ϵat ∥2]} and {⟨ϵat ,∇FS(xt)⟩} and bound them in high probability by Freedman’s
inequality. Besides, by induction hypothesis at l (l ≤ t), we also creatively solve a quadratic inequality
w.r.t. ∥∇FS(x)∥ and ∥∇fi(x)∥ so that they can be controlled under the (L0, L1)-smoothness when
λ is greater than a constant. Then, we leverage Lemma 2 and choose appropriate η, γ, b and λ to
balance all the terms to achieve the desired convergence rate. Based on Lemma 3, we prove the
convergence rate of Algorithm 2 as shown in Theorem 3.

Theorem 3. We assume that Assumptions 1, 2 and 3 hold. If we choose b = O((mKT )
2p−2

3(3p−2) ), λ =

O((mKT )
1

3(3p−2) /ρ
1
2p ), γ = O((mKT )

−p
3p−2 /ρ

p−1
p ), η = O(

log
1
p T

δ

K
17p−8

4(3p−2) (mT )
5p

4(3p−2)

), where R′ =

1 + 2(L1

L0
+ 1)R′, R′ ≥ 4∆′

1L1 + 4
√

(∆′
1)

2L2
1 + L0∆′

1, ρ = max{log 4T
δ , 1}, ∆′

t =

FS(xt) − F ∗, and β = min{ 32Rρ
L0

, 3
4 ,

3L0

8L1R′ }, Algorithm 2 can achieve the convergence rate
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of 1
T

∑T
t=1 ∥∇FS(xt)∥2 = O((mKT )

2−2p
3p−2 log

p−1
p T

δ ) with the probability at least 1 − δ for any
δ ∈ (0, 1).

Table 2: Comparison of the existing analysis in FL. “AA” indicates whether the additional gradient
boundedness assumption Et[∥∇fi(xt; ξjt)∥p] ≤ Gp are required, and “LB” refers to the lower bound.

Methods Assumptions Criteria AA Bounds
Smooth. Noise Optimization Generalization

[47] SS HT Exp ✓ O((mT )
2−2p
3p−2K

4−2p
3p−2 ) ——

[47] SS HT Exp ✓ O((mKT )
2−2p
3p−2 ) ——

LB SS HT Exp ✗ Ω((mKT )
2−2p
3p−2 ) ——

Th. 3, 4 (L0, L1) HT HP ✗ O((mKT )
2−2p
3p−2 log

p−1
p 1

δ ) O
(
( dn )

p−1
7p−6 log( 1δ (

n
d )

3p−2
2(7p−6) )

)
Theorem 3 shows that our FedCBG algorithm can achieve the desired convergence rate for the
heavy-tailed noise setting. The size of b is consistent with our intuition that the smaller p is, the more
sensitive the algorithm is to noise, the gradient differences between different samples may be large,
thus a small b can achieve an ideal convergence rate. This convergence rate O((mKT )

2−2p
3p−2 log

p−1
p T

δ )
matches the lower bound proposed in [47] up to a logarithmic factor as shown in Table 2. Thus,
FedCBG effectively reduces the number of communication rounds. Besides, our clipping parameter
λ is smaller than that of [47]. Small λ is typically used and often leads to good performance [34, 55],
as stated in [17]. The specific parameter choices and the inequalities they need to satisfy can be found
in Appendix C.1. Compared with the state-of-the-art methods in [47], our analysis has the following
advantages. 1) Our analysis is in high probability and provides a stronger guarantee for a single
run. 2) Our analysis use the weaker Assumption 3 rather than the bounded gradient assumption,
i.e., Et[∥∇fi(xt; ξjt)∥p] ≤ Gp. 3) Our analysis use the weaker Assumption 2 rather than standard
smoothness. Thus, our analysis can apply to a wider range of applications than existing methods.

5.2.1 Challenges and techniques for our analysis

In our analysis, we attempt to extend our Theorem 1 to the federated setting, but we find it is very
difficult or even impossible to match the lower bound. The reasons are the following: a faster
convergence rate requires a larger step size, but the inductive property requires a smaller step size.
Thus, a contradiction arises. We balance the contradiction by addressing the following challenges.

Construct high-probability criteria. Starting from the smoothness of the function FS(x), we use
our proposed “sum-aggregation” paradigm and −⟨a, b⟩ = 1

2∥a− b∥2 − 1
2∥a∥

2 − 1
2∥b∥

2 to handle
the tricky inner product term ⟨∇FS(xt), xt+1 − xt⟩. It helps to produce the term γmK

2 ∥∇FS(xt)∥2
and construct martingale difference sequences in Lemma 9, which constructs the high-probability
criteria and relaxes the restrictions on parameter selection in the induction.

Difficulty of the analysis in high probability. Many upper bounds in expectation are usually
tighter and more concise than those of high probability. For example, there is the bound Et∥θat ∥2 ≤
10σpλ2−p but only the bound ∥θat ∥2 ≤ 4λ2 in the centralized setting, where λ is usually of the order
O(Tα), α > 0. A similar phenomenon also appears in federated learning, which makes the analysis
difficult. Fortunately, we prove that our clipped batch gradient can provide one extra parameter of
freedom to handle these rough upper bounds in Lemma 1.

Weaker assumptions. In FL, the difficulties caused by heavy-tailed noise and (L0, L1)-smoothness
were addressed by induction and our martingale difference sequence, just like in CL.

5.3 Generalization bound for our FedCBG algorithm

In FL, there is no work jointly considering the optimization and generalization. To answer Q3, we
analyze the generalization upper bound for our FedCBG in Theorem 4.

Theorem 4. We assume that Assumptions 1, 2 and 3 hold. We choose the same parameter setting

as in Theorem 3. If we choose T = O
( (

n
d

) 3p−2
2(7p−6

)
/m

6p−5
7p−6

)
and K = O

(
(nd )

3p−2
2(6p−5)

)
, then with
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probability at least 1− δ, Algorithm 2 can achieve the generalization bound 1
T

∑T
t=1 ∥∇F (xt)∥2 =

O
(
( dn )

p−1
7p−6 log( 1δ (

n
d )

3p−2
2(7p−6) )

)
.

To the best of our knowledge, this generalization bound is the first upper bound for FL with heavy-
tailed noise. If we set a small global learning rate γ to obtain better generalization, the convergence
speed will be slower, which reflects the trade-off between optimization and generalization.

6 Experiments

In this section, we evaluate our FedCBG algorithm against only FL algorithms FAT-clipping-PR (PR)
and FAT-clipping-PI (PI) [47] that can theoretically handle heavy-tailed noise. We also compare the
well-known FedAvg algorithm [31]. We test these methods on the CIFAR-10, CIFAR-100 [19] and
Shakespeare [41] datasets. By the way, our goal is to compare the relative performance of FedCBG
and baselines and larger models can achieve better performance on these datasets. All the experiments
were performed on the GeForce RTX 2080Ti platform with the PyTorch framework.

Training an LSTM only satisfying the weaker Assumptions 2 and 3. Firstly, to verify that the
federated scenarios may only meet weaker assumptions (i.e., Assumptions 2 and 3), we evaluate the
smoothness and gradient noise distribution of a stacked LSTM as in [26] training on the Shakespeare
dataset. We show smoothness and the histograms of gradient noise probability density for two
randomly selected clients i in Fig. 2. More results are shown in the Appendix. It can be seen that
local smoothness ∥∇fi(xt)−∇fi(xt−1)∥

∥xt−xt−1∥ positively correlates with gradient norm ∥∇fi(xt)∥ instead
of a constant, which satisfies weaker Assumption 2. Besides, the gradient noise meets heavy-tailed
distribution, i.e., Assumption 3, rather than light-tailed Gaussian distribution.
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Figure 2: Gradient norm vs estimated Lipschitz smoothness (left) and distributions of the gradient
noises (right) during training a stacked LSTM [26] on the Shakespeare dataset.

Hyperparameter selection. We conducted ablation experiments on hyperparameters γ, λ, b and
K as shown in Fig. 3 and Fig. 6 in the Appendix. When global learning rate γ = 0.2 or 0.3 and
λ = 3.0, our FedCBG algorithm performs better than other choices. The performance of b = 100
and K = 10× ni/b exceeds that of other values.
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Figure 3: Test accuracy with different global learning (GL) rate (left) and clipping (C) parameter
(right) on the Shakespeare dataset.

Table 3: Comparison of the training loss (TLoss.), testing classification accuracy (TAcc.) and the
number of communication rounds (Round) to reach target test accuracy (84.5% for CIFAR-10,
45.0% for CIFAR-100 and 35.5% for Shakespeare datasets) in FL with heavy-tailed noise on various
datasets.

Datasets Evaluation CIFAR-10 CIFAR-100 Shakespeare

PR
TLoss 0.16 3.25 3.17

TAcc. (%) 83.1 42.2 34.8
Round 282 (3.1×) 412 (1.9×) 219 (2.2×)

PI
TLoss 0.10 3.16 3.18

TAcc. (%) 84.0 42.8 35.2
Round 189 (2.1×) 346 (1.6×) 178 (1.8×)

FedAvg
TLoss 0.12 3.20 3.52

TAcc. (%) 83.8 42.0 32.0
Round 201 (2.3×) 409 (1.9×) 268(2.7×)

FedCBG
TLoss 0.07 3.00 3.04

TAcc. (%) 85.6 44.2 36.5
Round 89 221 98

Experimental details. Firstly, we choose η = 1, λ = 3.0, γ = 0.3, K = ni/b and b = 100 to
train all the methods. Device distributions are non-IID. We use 100 randomly selected clients to
train the model and the remaining 39 clients to test the model performance, which can quantify the
performance gap on unseen client distributions. We report the average experimental results of 10
random initializations in Table 3. Secondly, we also conducted an experimental comparison based on
the well-chosen hyperparameters and more results are shown in the Appendix. Table 3 shows that
FedCBG can achieve 1.6-3.1 times gains over the competitors on all the tasks including vision and
text models, which verifies the validity of our analysis: our FedCBG converges faster and performs
better generalization ability than baselines on unseen client distributions.

7 Conclusions and Future Work

In this paper, we study clipped SGD for heavy-tailed noise. We prove a tighter optimization upper
bound and the advanced generalization bound in high probability under weaker conditions. We
extend our analysis to the federated setting based on our batch gradient variance bound and propose a
FedCBG algorithm, which first achieves the high-probability convergence rate matching the lower
bound and the first high-probability generalization bound. In future work, we will explore the role of
recursive momentum [8] and minimax optimization [27, 28, 2] in heavy-tailed scenarios.
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Answer: [Yes]

Justification: The paper provides the full set of assumptions and a complete (and correct)
proof in Sections 3, 4 and 5.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see Section Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Please see the section Experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see the section Experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see the section Experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see the section Experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is of a theoretical nature. The main contribution is to weaken the
conditions. There are no positive and negative societal impacts from this work, and as a
result we did not discuss it.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used public datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We propose a new analytical method.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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