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ABSTRACT

Convolutional neural networks use regular quadrilateral convolution kernels to
extract features. Since the number of parameters increases quadratically with the
size of the convolution kernel, many popular models use small convolution ker-
nels, resulting in small local receptive fields in lower layers. This paper proposes
a novel log-polar space convolution (LPSC) layer, where the convolution kernel
is elliptical and adaptively divides its local receptive field into different regions
according to the relative directions and logarithmic distances. The local receptive
field grows exponentially with the number of distance levels. Therefore, the pro-
posed LPSC not only naturally encodes local spatial structures, but also greatly
increases the single-layer receptive field while maintaining the number of param-
eters. We show that LPSC can be implemented with conventional convolution via
log-polar space pooling and can be applied in any network architecture to replace
conventional convolutions. Experiments on different tasks and datasets demon-
strate the effectiveness of the proposed LPSC.

1 INTRODUCTION

Convolutional neural networks (LeCun et al.| [1998; [Krizhevsky et al.| [2012) have achieved great
success in the field of computer vision. The size of the convolution kernel determines the locally
weighted range of the image or feature map, which is called the local receptive field (LRF). In many
computer vision tasks such as image classification and intensive prediction, larger LRF is generally
desired to capture the dependencies between long-distance spatial positions and a wide range of
context information. Simply increasing the size of the convolution kernel is not plausible because
the number of parameters increases quadratically with the size.

In practice, commonly used techniques to obtain larger receptive fields include replacing a single-
layer large convolution kernel with multi-layer small convolution kernels, adding pooling layers, and
using dilated convolutions (Holschneider et al.,[1990; Yu & Koltun, 2015)). Increasing the number of
convolutional layers may cause vanishing gradients and make training more difficult. The pooling
process often causes information loss. Dilated convolution kernels are not continuous since not all
pixels in the LRF are involved in convolution calculation. The skipped pixels are regularly selected.
With the same number of parameters, the larger the LRF, the more pixels are skipped, which may
miss some details and cause discontinuity of information.

Moreover, conventional and dilated convolutions use regular square kernels. Each position is as-
signed a different weight within the LRF. All positions are equally treated regardless of the size of
the kernel. However, intuitively, the correlation between neighboring pixels and the center pixel is
usually higher, while the farther the pixel, the smaller the impact on the center pixel. The effects
of two adjacent pixels that are far away from the center are usually similar, thus they can share the
same parameter rather than be assigned different weights separately. As shown in red in Fig. [I(a)
according to the configuration of surrounding regions, it can be inferred that the center position is
located on the upper edge of the nose. Pixels in the same upper-left outer half-fan-shaped region
show that the far upper left of the center point is white fur, but there is little difference in the effects
of two specific fur points.

In this paper, we propose a novel log-polar space convolution (LPSC) method. The shape of the
LPSC kernel is not a regular square, but an ellipse. Parameters of the kernel are not evenly distributed
in the LRF, but are assigned in the log-polar coordinate space. As shown in Fig. [[(b)} the LPSC
kernel divides the LRF into different regions, where regions become larger with the increase of the
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Figure 1: (a) At different locations of an image, local contextual pixels can be divided into different
regions according to their relative distances and directions in the log-polar space. For each location,
pixels falling in the same region are generally similar and can share the same weight. (b) The LPSC
kernel. For this example, L, = 3, Ly = 6,9 = 2, thus there are only 18+1 parameters. The LRF
can be arbitrarily large.

distance to the center. Pixels that fall into the same region share the same weight. In this way, LPSC
can increase the LRF exponentially without increasing the number of parameters. Besides, LPSC
naturally imposes a contextual structure on the local neighboring distribution.

The main contributions of this paper include: 1. We propose a new convolution method where the
kernel lies in the log-polar space to capture the structured context information and greatly expand
the LRF without increasing the number of parameters. 2. We propose log-polar space pooling to
up-sample the feature map, by which conventional convolution can be conveniently used to achieve
LPSC. 3. We apply LPSC to replace the conventional and dilated convolution in different network
architectures including AlexNet, VGGNet, ResNet, DeepLabv3+, and CE-Net. We demonstrate the
effectiveness of LPSC through empirical evaluations on different tasks and datasets.

2 RELATED WORK

Context pooling. Our method is highly motivated by shape context (Belongie et al., 2001} 2002).
Centered at a reference point, all other points are divided into bins that are uniformly distributed in
the log-polar space. The histogram among these bins is used as the descriptor. Geometric blur (Berg
& Malik, [2001)) sparsely samples and aggregates a blurred signal in the log-polar space. Pyramid
context (Barron et al.,|2013)) pools log-spaced context points at multiple scales. Different from these
methods, we design a kernel in the log-polar space for convolution, each region is assigned a weight
to aggregate information from the bins. We incorporate the kernel into deep neural networks.

Methods to increase LRFs. In|Simonyan & Zisserman| (2014) and He et al.|(2016), it is found that
imposing a regularization on large convolution kernels is equivalent to the superposition of multiple
convolution layers with smaller kernels. Based on this observation, many state-of-the-art network
architectures use multi-layer small kernels. However, deeper layers may cause vanishing gradients,
making the network more difficult to train. Moreover, according to [Luo et al.| (2016), the effective
receptive field (ERF) is proportional to the square root of the depth and proportional to the kernel
size. Thus it is easier to achieve a large ERF by increasing the kernel size than by adding layers. We
provide a way to increase the LRF without increasing either the number of layers or the number of
parameters. In cases where large input or LRF is required but very deep networks are not allowed
restricted by resources, our method may be applied to construct a lightweight model.

In Holschneider et al.| (1990), atrous (or dilated) convolution increases the LRF by inserting holes
(zeros) between parameters in the kernel, where the interval is determined by a dilation rate. Dilated
convolution has been applied in different tasks (Dai et al., 2016; [Yu & Koltun, 2015} |Chen et al.,
2017a};|Sevilla-Lara et al.,[2016; | Yang et al., 2018} |Chen et al., [2018a)). In Zhang et al|(2017a)) and
Zhang et al.| (2019)), scale-adaptive convolution learns adaptive dilation rate with a scale regression
layer. Due to the insertion of holes, not all pixels in the LRF are used for calculating the output.



Under review as a conference paper at ICLR 2022

InWang et al.|(2018) and [Wu et al.| (2019), this problem is alleviated by hybrid dilated convolution
and Kronecker convolution that uses the Kronecker product to share parameters.

Other convolution methods. Fractionally strided convolution (Zeiler et al.l 2010;[2011)) up-samples
the input by padding. In/Jaderberg et al.| (2015)), a spatial transformer transforms the regular spatial
grid into a sampling grid. Active convolution (Jeon & Kim, |2017) learns the shape of convolution
by introducing the convolution unit with position parameters. Deformable convolution (Dai et al.|
2017) learns additional offsets to augment the sampling locations, thereby adaptively changing the
LRF into a polygon. For active and deformable convolutions, the adapted LRF contains holes, the
positions and offsets are learned through additional convolutions, which increases the parameters.
Deformable kernels (Gao et al |2019) resample the original kernel space and adapt it to the defor-
mation of objects. The offsets for kernel positions also need to be learned.

Group convolution (Krizhevsky et al.l 2012; Zhang et al.| [2017b; [2018) and separable convolu-
tion (Chollet, 2017) do not increase the LRF of kernels. Octave convolution (Chen et al., [2019) de-
composes the feature map into high-frequency and low-frequency features. Multi-scale convolution
is performed in |[Peng et al.|(2019) and [L1 et al.| (2020). In/Ramachandran et al.[|(2019)) and |Cordon-
nier et al.[(2019), stand-alone self-attention is used to replace convolution. The filter in the attention
module also lies in a regular and square grid. In|Esteves et al.|(2018]), the polar transformer network
(PTN) generates a log-polar representation of the input by differentiable sampling and interpolation
techniques. The polar transform is only applied to a single predicted origin location. In contrast,
LPSC performs log-polar pooling via binning and can be applied at any location.

Differences. For dilated and other advanced convolutions, the kernel is still performed in a regular
grid and all parameters are treated equally. Regardless of the distance from the center, the interval
or the sharing range of a parameter is the same among different positions. In contrast, the proposed
LPSC expands the LRF in the log-polar space, where near and far regions are distinguished in
parameter sharing. The farther away from the center, the larger the range of parameter sharing.

3 LOG-POLAR SPACE CONVOLUTION

Let X € R¥XWXC be the input image or feature map, where H, W, and C are the height, width,
and number of channels of X, respectively. W € REM+DxEN+1)xC j5 5 conventional convolu-
tion kernel with a size of (2M + 1) x (2N + 1). The central parameter of W is indexed by (0, 0),
parameters of W lie in a regular grid {(-M,—-N),(-M,—-N +1),---,(M —1,N),(M,N)}.
The convolution operation is performed in the 2D spatial domain across the channels. For a spatial
location (i, j), the output of the conventional convolution is calculated as

M N
(X+W)(i,5)= Y Y (X(i+mj+n)-W(mn))+b, (D)
m=—M n=—N
where b is the bias. Strictly, Eq. actually performs cross-correlation. For convolution, W needs
to be rotated 180 degrees. However, since we can view the learned W as the rotated kernel, we
follow the common practice of CNN to formulate convolution into Eq. (T). Parameters of the kernel
are uniformly distributed in the regular grid, thus each pixel of X falling into the field is weighted
by a separate parameter, i.e., all positions are equally treated. However, pixels that have different
distances and directions from the center may have different impacts, e.g., pixels adjacent to the
center should have larger contributions to the output. Pixels in the input image usually change
gently, adjacent pixels far away from the center often have similar impacts on the center. Based on
these intuitions, we design a convolution kernel with a special structure, namely Log-Polar Space
Convolution (LPSC) kernel, to express a wide range of contextual configurations.

3.1 LPSC KERNEL

As shown in Fig. [I(b)] the proposed LPSC kernel lies in the log-polar space and is shaped by the
size 2R + 1, the number of distance levels L,, the number of direction levels Ly, and the growth
rate g. The LRF of the kernel is the area of the outermost circle whose radius is R. It is uniformly
divided into L,. X Ly regions in the log-polar space. Specifically, the log radius is uniformly divided
into L, levels, i.e.,

log(Ri11) — log(Ry) = log(R;) — log(Ry—1) = log(g), (2)
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Figure 2: (a) The LPSC kernel is slide through
the feature map. (b) The shape and inclination of
the LPSC kernel can be changed.
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Figure 3: (a) At each position, log-polar space
(b) pooling generates a 2L,. X Ly /2 matrix using the
pre-computed mask. (b) To perform LPSC on
the original input (left), log-polar pooling gener-
ates a matrix for each pixel, resulting in an up-
sampled map (middle), conventional convolution
with kernel size and stride equaling (2L, Ly/2)
is applied to this map (right).

where R;,l = 1,---, L, is the radius of the [-th level and the growth rate g is a hyperparameter
controlling the expansion speed. When the center of the kernel is located at position (cy,, ¢,,), all
pixels of X in the range of A = [¢;, — R, ¢, + R] X [cy, — R, ¢y, + R] are divided into L, levels
according to their relative squared distances to the center position. The position (7, j) € A belongs
to the [-th distance level if R, < d; ; < R;, where d; ; = (i — cn)? + (j — cw)?. From Eq. (2),
we have R; = ¢!~ R;. When the innermost radius R; is fixed, the LRF grows exponentially with
the increase of L,. The LRF is determined by R which can be set arbitrarily. Given Ry, = R?
and g, we calculate Ry = maz (2, R?/g* ~1). We use R = /R, as a hyperparameter instead of
R1, which is more flexible. Since we use the squared distance, we impose a minimum value of 2 to
ensure that all 8-neighborhood pixels fall into the 1-st level.

All positions in the range of A are also uniformly divided into Ly levels according to their relative
directions from the center. The position (i, j) belongs to the m-th level if 2m(m — 1)/Lg < 6, ; <
2mm/ Ly, where 0; ; is the counterclockwise angle from the vector (0, 1) to the vector (i—cp,, j—Cu).
Combining the distance levels and the direction levels, the LRF is divided into L, x Lg regions.

The LPSC kernel assigns a parameter to each region. All pixels of X falling into the same region
share the same parameter. For the region with the [-th distance level and m-th direction level, the
assigned parameter is denoted by wy ,,,. The areas of regions increase with [, the farther away from
the center, the larger the area, the more pixels sharing parameters. Because the center position of
the kernel is important and forms the basis of regions, we assign an additional separate parameter
wo,o for the center pixel. A conventional kernel with a size of (2R + 1) x (2R + 1) has (2R + 1)?
parameters, while a LPSC kernel only has L, x Ly + 1 parameters no matter how large R is. When
R ranges from 2 to 9, a single conventional kernel has 25 to 361 parameters. In this range, it is
sufficient to set L, to 2 or 3 and set Lg to 6 or 8, so an LPSC kernel only has 13 to 25 parameters.

Let N; ,,, denote the number of pixels falling into the region bin(l, m) with the [-th distance level
and the m-th direction level. In faraway regions with large [, IV ,,,, the impacts of pixels in them
should be weakened. Therefore, we regularize the weight w;_,,, of each region by Ny ;.0 Wy 1, /Ni .
As aresult, the LPSC kernel aggregates finer information from pixels nearing the center and is less
sensitive to those of pixels farther away. Similar to conventional convolution, the LPSC kernel is
slide along the input feature map X with a pre-defined stride to perform convolution, as shown in
Fig. When the kernel is located at a spatial location (i, j), the output response is calculated as
L. Lg
(X W) =WO.0 - XGd)+ X S Whm) (s & Xwo)+b
=1n= w,vebin(l,m .

For the LPSC kernel, the shape of its LRF is not necessarily a standard circle, but can be an oblique
ellipse. As shown in Fig. 2(b)l two additional hyper-parameters are introduced: the initial angle o
and the eccentricity of the ellipse e. When dividing the regions, the distances are calculated accord-
ing to the squared ellipse distance and the initial angle is added to the calculated directions. In this
way, the LPSC kernel can better fit objects with different rotations and scales. In our experiments,
we only evaluate the standard circular LRF by setting « = 0 and e = h/w = 1.
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3.2 LPSC VIA LOG-POLAR SPACE POOLING

Due to the special structure and parameter sharing, LPSC cannot be directly performed by popular
deep learning frameworks. In this subsection, we show that LPSC can be readily implemented by
conventional convolutions via log-polar space pooling to utilize efficient convolution modules.

Given the hyper-parameters R, L,, Lg, and g of the proposed LPSC, we can pre-compute a mask
matrix I to indicate the region indexes of positions. The size of the mask I is (2R + 1) x (2R +1).
1,---,Lp x L, in I indicates the region index of the corresponding position. O indicates that the
corresponding position does not fall into the LRF, since the region of the mask is the circumscribed
rectangle of the LRF. The mask is slide through the input feature map X with the same stride of the
LPSC convolution. As shown in Fig. when the mask is located at a spatial location (3, j), pixels
of X in the range are divided into regions indicated by the mask. All pixels in the same region are
encoded into a single pixel by mean pooling. We re-arrange the pooled pixels of different regions
into a matrix of 2L, X Lg/2 to preserve their relative spatial positions, as shown in Fig. In this
way, given H' x W’ convolution locations (H' = H and W’ = W if the stride is 1 with padding),
the spatial size of the output map X, after log-polar space pooling equals 2H'L, x W’Lgy/2.

We perform conventional convolution with C” output channels on the output map X, without
padding. The size of the conventional convolution kernel is set to (2L,, Ly/2) and the stride is
also (2L,, Ly/2). The output feature map Y, has a size of H" x W’ x C’. This is equivalent to
performing the second term in Eq. (3). To model the first term, we use a separate 1 x 1 conventional
convolution with the same C’ channels on the original X. The stride is the same as the log-polar
space pooling. The output feature map Y, contains the convolution responses of the center pixels.
We add this separate center pixel convolution output Y, to the contextual convolution output Y,.
Y. + Y, serves as the output feature map of the proposed LPSC.

3.3 INCORPORATING LPSC INTO DIFFERENT CNNS

LPSC can be integrated into different CNN architectures. A straightforward way is to replace all con-
ventional convolution kernels with LPSC kernels in a part of convolution layers. For plain CNN ar-
chitectures such as AlexNet (Krizhevsky et al.,[2012) and VGGNet (Simonyan & Zisserman, |[2014)),
we simply perform this strategy in lower layers to increase the LRFs. However, some network archi-
tectures such as ResNet (He et al., 2016)) are constituted of specifically designed blocks. In ResNet,
either the bottleneck or the basicblock structure only contains 3 x 3 and 1 x 1 convolutions. Due to
the difference in the local receptive field, the information captured by these small convolutions and
LPSC may be different. In order to better incorporate these two types of information, we propose a
cross convolution strategy as an alternative to replacing all convolutions in each layer of the block.
Specifically, we set a ratio p. For each of several consecutive layers, we replace p% of all convolu-
tion kernels to LPSC kernels, while the remaining (100 — p)% of conventional kernels remain the
same. In this way, each convolution kernel in the next layer, whether it is a conventional or an LPSC
kernel, perceives the outputs generated by both the conventional and LPSC kernels of the previous
layer. We denote this cross-convolution strategy by LPSC-CC. Details on how to incorporate LPSCs
depend on the CNN architecture and will be presented in Section

3.4 DISCUSSIONS

Complexity. Fora (2M +1) x (2N +1) x C kernel, conventional convolution involves (2M 4 1) x
(2N 41) x C multiplications and (2M +1) x (2N +1) x C additions. LPSC with L, distance levels
and Ly direction levels only involves 2 * L,. X Ly x C multiplications, (2M + 1) x (2N +1) x C
additions, and (2M + 1) x (2N + 1) lookups. The complexity of pre-computing the mask for
lookup is O(R?), which only needs to be calculated once when initialing the layer. Typically, if
L, =2, Ly = 6, LPSC only executes 24C' multiplications for any size. However, even for a small
(2M 4 1) x (2N + 1) = 5 x 5 kernel, conventional convolution executes 25C multiplications; for
a 9 x 9 kernel, multiplications increase to 81C'.

Structural benefits. With the special log-polar structure, the LPSC kernel naturally encodes the
local spatial distribution of pixels w.r.t. the center and puts more attention to those adjacent pix-
els. Pixels with similar relative distances and directions share the same parameter, which not only
reduces the number of parameters, but also makes the filter more robust and compact. Due to the
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logarithm effect, when located at different objects, small objects are relatively enlarged, while large
objects are relatively reduced. Therefore, LPSC is less sensitive to the size of objects.

Advantages of log-polar space pooling. In log-polar space pooling, we use mean pooling to
achieve the regularization for regions. However, other pooling methods are also allowed. For ex-
ample, if sum pooling is used, it is equivalent to remove the regularization. If max pooling is used,
LPSC can be viewed as a special dilated convolution with irregular and data-driven holes.

Relation with effective receptive field (Luo et al.,2016). In Luo et al.[|(2016), it is found that the
effective receptive field only occupies a fraction of the full theoretical receptive field. Therefore,
convolutions with large LRF are required. It is also found that not all pixels in the LRF contribute
equally, where the impacts of pixels near the center are much larger. The LPSC kernel follows this
spirit to treat pixels near the center finely and increase the LRF exponentially.

Relation with advanced convolution methods. For the proposed LPSC, parameters distribute in
the log-polar space. Most advanced convolution methods discussed in Section [2|do not change the
regular sampling grid and focus on different aspects with LPSC. Therefore, these advances may be
propagated to LPSC as well. For example, group and separable convolution (Chollet, 2017} [Zhang
et al.} 2018)) separates the channel dimension into groups and hence can be combined with the LPSC
kernel in spatial dimensions. Graph convolution can also take advantage of LPSC as long as the
relative distance and direction between nodes are defined.

Drawbacks. LPSC has two main drawbacks. (1) It introduces three additional hyper-parameters:
L,, Ly, and g. However, in practice, their selectable ranges are quite limited. Generally, to
make the 8-neighborhoods of the center pixel have finer and non-redundant regional resolution,
L, is set to 2 or 3, Ly is set to 6 or 8, and g is set to 2 or 3. (2) Its implementation via
log-polar space pooling incurs large memory overhead. The space complexity of the upsam-
pled feature map X, is O(H'W'L,LyC). For a single layer, the space complexity of LPSC is
OH'W'L,LyC + L.LyCC" + HW'C").

4 EXPERIMENTS

We empirically study the effects and potential of the proposed LPSC on two tasks: image classifica-
tion and semantic segmentation.

4.1 IMAGE CLASSIFICATION EXPERIMENTS

For image classification, we evaluate the behaviors of LPSC integrated with different CNN archi-
tectures on three datasets: CIFAR-10, CIFAR-100 (Krizhevskyl|2009), and ImageNet (Russakovsky
et al., 2015). We plug LPSC into three typical CNN architectures, including AlexNet (Krizhevsky
et al., [2012), VGGNet-19 (Simonyan & Zisserman), |2014), and ResNet20 (He et al.| [2016)), by re-
placing a part of the conventional convolution layers. We use the Pytorch (Paszke et al.l 2019)
implementatiorﬂ of these architectures as our baseline. For the AlexNet, there are 5 convolution
layers each followed by a ReLU activation layer. The sizes of the convolution kernels are 11 x 11,
5x5,3x3,3x3,and 3 x 3, respectively. For the VGG19 Net, there are sixteen convolution layers.
The kernel size for all convolution layers is 3 x 3. For the ResNet-20, there are 9 basic blocks.
Each block contains two 3 x 3 convolution layers. A 3 x 3 convolution layer is applied before all
blocks. When the conventional convolutions in a layer or block are replaced by LPSCs, the number
of kernels and the size of the output feature map remain the same as the original convolution layer.

To make a fair comparison, all experimental setup and details including the learning rate, batch
size, number of filters per layer, hyper-parameters for the optimizer (e.g., 7, momentum, weight
decay) remain exactly the same as in the baseline. We did not tune any of these setups for our
LPSC. Therefore, the differences in performances only come from the changes in convolution layers.
The numbers of parameters are computed on the CIFAR-10 dataset. Top-1 accuracy is used as the
performance measure.

Results on the CIFAR10 and CIFAR100 dataset. We train the AlexNet, VGGNet-19, and ResNet-
20 with conventional convolution, dilation convolution, and LPSC five times by using different ran-

"https://github.com/bearpaw/pytorch-classification
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Table 1: Comparison of different convolution methods.
(a) AlexNet
[ Convolution [ Ori Dilation LPSC ]

# Params (M) 2.47 2.34 2.31
Acc. CIFAR-10 (%) |77.43 (0.25) 75.42 (0.06) 78.44 (0.12)
Acc. CIFAR-100 (%) | 43.98 (0.43) 44.43 (0.10) 47.43 (0.20)

(b) VGGNet-19
[ Convolution [ Ori Dilation LPSC ]

# Params (M) 20.04 20.08 20.08
Acc. CIFAR-10 (%) |93.54 (0.06) 93.46 (0.14) 93.92 (0.06)
Acc. CIFAR-100 (%) | 72.41 (0.17) 73.03 (0.34) 73.13(0.12)

(c) ResNet-20
[ Convolution [ Ori Dilation LPSC LPSC-CC |

# Params (M) 0.27 0.27 0.27 0.27
Acc. CIFAR-10 (%) [91.66 (0.13) 91.44 (0.10) 91.81 (0.21) 92.01 (0.08)
Acc. CIFAR-100 (%) | 67.56 (0.27) 66.90 (0.25) 67.63 (0.27) 68.09 (0.27)

dom seeds for initialization, respectively, and compare the average accuracies and standard devia-
tions. “Mean accuracy (standard deviation)” results are reported in Table[I] We use LPSC in the first
two convolution layers for AlexNet, in the added first convolution before all blocks for VGGNet-19,
and in the first convolution layer before all residual blocks for ResNet-20. Hyper-parameters of the
LPSC kernels in different layers and networks are the same as the first three columns in Table d),
respectively. These choices are based on the ablation study as described in the appendix[A.T|and[A.7]
For dilation convolution, we replace the conventional convolutions with dilation convolution in the
same layers in the three architectures, respectively, where the kernel size and dilation rates are set so
that the LRF and number of parameters are comparable with LPSC. Specifically, for AlexNet, the
kernel size and dilation rate are set to 5 and 2 in the first convolution layer, respectively, and 4 and
2 in the second convolution layer, respectively. For VGGNet-19, the kernel size and dilation rate
are set to 4 and 2 in the added first convolution layer before all blocks, respectively. For ResNet-20,
the kernel size and dilation rate are set to 4 and 3 in the first convolution layer before all residual
blocks, respectively. These choices are based on the evaluations in Table [7] of the appendix [A.2]
From Table[I] we observe that LPSC outperforms dilation convolutions with comparable LRF and
parameters. The standard deviations for LPSC are limited, which shows that LPSC is not particu-
larly sensitive to initializations. In some cases, the worst results also exceed those of the original
networks with conventional convolutions and dilation convolutions by a margin.

We also evaluate the cross convolution strategy for ResNet-20. We apply LPSC-CC to the layer
before all blocks and all 3 x 3 layers of the first block with a fixed p of 50. We observe that the cross
convolution strategy further improves the performances.

Comparison of FLOPs. On the CIFAR10 dataset with AlexNet, the FLOPs (recorded by the fvcore
toolboxﬂ) of conventional convolution, dilated convolution, and LPSC are 14.95M, 24.71M, and
11.42M, respectively. LPSC has much lower FLOPs than other convolution methods.

Results on the ImageNet dataset. ImageNet (Russakovsky et al.l[2015) contains 1.28 million train-
ing images and 50k validation images from 1000 classes. We again use the Pytorch implementatiorﬂ
of ResNet-18 as the baseline. We replace conventional convolution with LPSC in the first convolu-
tion layer before all blocks of ResNet-18. Due to the limitation of computing resources, we reduced
the batch size and learning rate by 4 times. Other hyper-parameters remain the same and we com-
pare with the reported results in Tab. [2| LPSC slightly improves both top-1 and top-5 accuracies of
ResNet-18 on this large-scale dataset.

2https://github.com/facebookresearch/fvcore
3https://github.com/bearpaw/pytorch-classification
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Table 2: Results on the ImageNet dataset.

[ Model | ResNet-18  ResNet-18-LPSC |
#params(M) 11.69 11.69
Top-1 Acc (%) 69.91 70.09
Top-5 Acc (%) 89.22 89.26

Table 3: Results on the VOC 2012 dataset. “-”” means that the results are not reported. “*” indicates
our reproduced results.

[ Method | oAcc mAcc fAcc mloU |
DeepLabv3 - - - 0.701
DeepLabv3+ - - - 0.711
DeepLabv3+* 0.9230 0.8332 0.8652 0.7144

DeepLabv3+LPSC | 0.9273 0.8388 0.8714 0.7260

4.2 SEGMENTATION ON PASCAL AND MEDICAL IMAGES

LPSC can also be applied to other vision tasks. On the PASCAL VOC 2012 dataset (Everingham
et al.,[2010; 2015)) for general image semantic segmentation, we adopt the Pytorch implementatio
of DeepLabv3+ (Chen et al.l 2018b) with the MobileNet (Howard et al., 2017) backbone as the
baseline. The training set is augmented by extra annotations provided in Hariharan et al.| (2011)).
Overall accuracy (oAcc), mean accuracy (mAcc), freqw accuracy (fAcc), and mean IoU (mloU) on
the validation set are evaluated. In DeepLabv3+, the atrous spatial pyramid pooling (ASPP) module
probes multi-scale features by applying atrous/dilated convolutions with three different rates. For
DeepLabv3+LPSC, we replace the dilated convolution with the largest rate by LPSC in ASPP. The
kernel size, L,., Ly, and g of LPSC are set to 9, 2, 8, 2, respectively. Comparisons with the reported
and reproduced results are shown in Tab. [3} LPSC improves DeepLabv3+ by a margin of 1.1% on
mloU. All hyper-parameters and setups such as the learning rate, batch size, etc, remain the same,
so the performance gains are only attributed to the proposed LPSC.

On the DRIVE dataset (Staal et al.l [2004)) for retinal vessel detection, we adopt CE-Net (Gu et al.
2019) as the baseline. Sensitivity (Sen), accuracy (Acc), and AUC are evaluated on the test set.
The dense atrous convolution (DAC) block of CE-Net uses four cascade branches with increasing
numbers of dilated convolutions. For CE-Net-LPSC-1, we replace the dilated convolutions with
rates of 3 and 5 by LPSCs with sizes of 5 and 11 in DAC, respectively, so that LPSCs have the same
LRFs with dilated convolutions. L., Ly, and g of LPSCs are set to 2, 6, 3, respectively. For CE-Net-
LPSC-2, we increase the kernel sizes of LPSCs to 9 and 15, respectively, to further increase LRFs.
We accordingly use more parameters by setting L,., Ly, and g to 3, 8, 1.5, respectively. Other hyper-
parameters remain the sameﬂ We run our models ten times and report the average performances.
Comparisons with the reported results are shown in Tab. ] Our LPSC achieves good generalization
performances on medical image segmentation with limited training samples.

*https://github.com/VainF/DeepLabV3Plus-Pytorch
Shttps://github.com/Guzaiwang/CE-Net

Table 4: Results on the DRIVE dataset (Staal et al.,|2004). “*” indicates our reproduced results.

[ Method [ Sen Acc AUC |
HED (Xie & Tu[2015) 0.7364 0.9434 0.9723
Azzopardi et al. (Azzopardi et al.l 2015) 0.7655 0.9442 0.9614
Zhao et al. (Zhao et al.| [2015) 0.7420 0.9540 0.8620
U-Net (Ronneberger et al.,2015) 0.7537 0.9531 0.9601
Deep Vessel (Fu et al.,[2016)) 0.7603 0.9523 0.9752
CE-Net (Gu et al.[[2019) 0.8309 0.9545 0.9779
CE-Net™ (Gu et al.|[2019) 0.8266 (0.0106)  0.9550 (0.0009)  0.9782 (0.0008)
CE-Net-LPSC-1 0.8300 (0.0079)  0.9552 (0.0011)  0.9782 (0.0008)
CE-Net-LPSC-2 0.8312 (0.0075) 0.9548 (0.0011)  0.9784 (0.0007)
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Figure 4: Visualization of the learned circular LPSC kernels without center convolution in the first
convolution layer of Alexnet on the CIFAR-10 dataset.

Normalized gradient map Normalized gradient map

(@) () (©) (d)
Figure 5: Estimated RFs with (a) conventional convolution and (b) LPSC. The normalized gradient
map with (c¢) conventional convolution and (d) LPSC a sampled location.

4.3  VISUALIZATION

Visualization of the learned LPSC kernels. In Fig. [d we visualize the learned LPSC kernels in
the first convolution layer of AlexNet on the CIFAR-10 dataset. The 11 x 11 LPSC kernels have
3 distance levels and 8 direction levels. In LPSC kernels, the closer to the center, the higher the
regional resolution; the more outward, the larger the range for parameter sharing. We observe that
the learned LPSC kernels capture some special local structures and contextual configuration. In
some kernels, the weights for adjacent regions are continuous; some kernels are sensitive to specific
directions, edges, colors, or local changes; in some other kernels, specific combinations of regions
are highlighted. More visualizations are shown in the appendix [A.3]

Comparison of effective receptive field (ERF): Fig. Eka) and (b) show the estimated RFs of Sim-
pleVGGNet on the default example using conventional convolutions and LPSCs in the first two
layers by the gradient-based RF estimatiorﬂ respectively. LPSC enlarges the estimated RFs from
14 x 14 to 22 x 22. The normalized gradient maps w.r.t. a position of the output for estimating
the RF using conventional convolutions and LPSCs are shown in Fig. Ekc) and (d). With LPSC,
gradients can be back-propagated to more pixels of the input image.

5 CONCLUSION

In this paper, we have presented LPSC that naturally encodes the local contextual structures. LPSC
distinguishes regions with different distance levels and direction levels, reduces the resolution of
remote regions, and reduces the number of parameters by weight sharing for pixels in the same
region. The LRF of LPSC increases exponentially with the number of distance levels. We impose a
regularization on the parameters and implement LPSC with conventional convolutions by log-polar
space pooling and separable center pixel convolution. We analyze the interests and drawbacks of
LPSC from different aspects. We empirically show the effectiveness of the proposed LPSC on five
datasets for classification and segmentation tasks.

Ohttps://github.com/fornaxai/receptivefield
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ETHICS STATEMENT

This paper proposes a new log-polar space convolution kernel and a method to achieve log-polar
space convolution with conventional convolution. CNN has been applied to a wide range of appli-
cations. The proposed kernel can be applied to any CNN backbone to increase the local receptive
field and reduce the number of parameters. Because this work presents such a general convolution
module, we did not see any particular foreseeable ethics consequence.

REPRODUCIBILITY STATEMENT

We specify all the details on architectures, hyper-parameters, experimental settings, etc in Section[d]
Appendix [A.T|and Appendix [A.2] Code is attached in the supplementary file.
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A APPENDIX

A.1 ABLATION STUDY

Influence of hyper-parameters. The proposed LPSC kernel has four hyper-parameters: the kernel
size 2R+ 1, the number of distance levels L,., the number of direction levels Ly, and the growth rate
g. For small kernels, since we set a minimum value 2 for the smallest distance level, the largest L,
can be determined by R? and g. If L, is too large, no pixels will fall into regions of large distance
levels. Ly can be set to 6 or 8, since in most cases there are only about 8 pixels in the smallest
circle in Fig. [[(b)) We evaluate the influences of L,, Ly, and g by replacing the large 11 x 11
convolution kernels with the LPSC kernels in the first layer of AlexNet in Tab.[5(a) and by applying
LPSC kernels with different sizes in the first convolution layer before all blocks of VGGNet and
ResNet in Tab. [5{(c) and (d), respectively. We run all models for only one time. Increasing the values
of L, and Ly results in finer regions and improves the performances, but the number of parameters
also increases.

VGGNet and ResNet use small 3 x 3 kernels. To make the number of parameters comparable, we
fix (L, Lg) to (2,6) and evaluate the influence of the kernel size 2R + 1 in Tab. [5[c)(d). When
2R + 1 is too small, the LRF is limited. When 2R + 1 is too large, the regions with large distance
levels may be coarse, i.e., a large amount of positions share the same weight, which may decrease
the resolutions of parameters. Overall, for large kernels (11 x 11), we can set (L,., Lg, g) to (3, 8, 2).
For small kernels (5 x 5), we may fix (L,, Lg, g) to (2,6, 3)[1

Influence of the plugged layer. Tab.[5(b) and (d) show the results of using LPSC in different layers
or blocks for AlexNet and ResNet-20, respectively. It seems that performing LPSC in low layers
is more beneficial. This may be because pixels in high layers have merged information from large
LRFs so that even adjacent pixels may have different influences on the center pixel and the weights
for different positions are not suitable for sharing. Applying LPSC in low layers is conducive to
increase the LRFs, filter redundant details, and back-propagate the gradients to more bottom pixels.
In the last column of Tab. [B|d), the two successive convolution layers in each block are replaced
with a single LPSC layer, so the number of convolution layers is reduced by half and the number
of parameters is reduced by one third, but the performances are only reduced by 2% using half the
layers with LPSC in ResNet.

Effects of weight regularization. In Tab. [] we evaluate the effects of the weight regularization in
Eq. (3) based on AlexNet. “Sum” shows the results by using sum pooling instead of mean pooling in
log-polar space pooling in the first two LPSC layers. This is equivalent to remove the regularization
and the performances are severely degraded. This is because far regions are exponentially larger
than nearer regions. If positions in all regions are treated equally, even the weight for a far region
is not too large, the accumulation of less relevant distant pixels will still produce an overwhelming
response. We also try max pooling. It also performs worse than mean pooling. Due to the large
LRF, regions with large distance levels for many adjacent center locations will have large overlaps.

7In this case, since we set a lower bound of the first level distance, g = 2 and 3 will result in the same LPSC
kernel.
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Table 5: Ablation study based on (a)(b) AlexNet (¢) VGGNet-19 and (d) ResNet-20.

(a) 11 x 11 LPSC kernels with different hyper-parameters
are used in the first convolution layer of AlexNet.

[(Lr, Lo, 9) [3.82) (3.6,2) 283) (282)]
# Params (M) 245 245 245 245
Acc. CIFAR-10 (%) | 77.27 76.83 76.23 75.95
Acc. CIFAR-100 (%) | 46.35 45.86 45.07 44.61

(b) Effects of using LPSCs in different con-
volution layers of AlexNet. Kernel size re-
mains the same as in the corresponding layer.
(Lr, Lo, g) is fixed to 3,8,2 and 2, 6,3 when
applied to the 1st and 2nd layer, respectively.

[LPSC layer [ 1 2 1+2]

# Params (M) 245 233 231
Acc. CIFAR-10 (%) |77.27 78.31 78.28
Acc. CIFAR-100 (%) | 46.35 44.81 47.31

(c) LPSCs with different sizes and hyper-parameters are
used in an additionally added convolution layer before all
blocks in VGGNet-19.

2R+1 5 9 3 17
(Lr, Lo, g) (2,6,3) (2,6,3) (2,6,3) (3,84
#Params (M) 20.08 20.08 20.08 20.08

Acc. CIFAR-10(%) | 93.66 94.01 93.86 93.73
Acc. CIFAR-100(%) | 72.95 73.13 73.08 73.37

(d) Effects of using LPSCs in different layers and blocks of
ResNet-20. The first two rows denote the sizes and hyper-
parameters of LPSCs in the first convolution layer before all
blocks. The third row denotes the sizes of LPSCs with fixed hyper-
parameters (2,6,2) in all blocks. “-” means that no LPSCs are used
in blocks. “B” means that two successive 3 x 3 convolution layers
are replaced with a single LPSC layer in the BasicBlock.

2R+ 1 5 9 13 5 13
(Ly, Lo, g) (2,6,2) (2,63) (2,6,3) (2,6,2) (2,6,2)
2R + 1 for Blocks - - - 5 9(B)
# Params (M) 027 027 027 039 0.18
Acc. CIFAR-10 (%) | 91.55 91.67 9211 91.82 89.78
Acc. CIFAR-100 (%) | 67.23 67.19 6697 67.98 65.10

Table 6: Effects of the weight regularization and center pixel convolution based on AlexNet.

[Method [ Sum  Max No CenterConv Mean |
Acc. CIFAR-10(%) |21.61 76.65 78.51 78.28
Acc. CIFAR-100(%) | 5.53 44.63 47.13 47.31

Some large responses may dominant repeatedly in many regions for different center locations, which
suppress other useful local information.

Effects of center pixel convolution. In the fourth column of Tab.[6] we remove the center pixel con-
volution, i.e., the first term in Eq. (3). Center pixel convolution enlarges the importance of the center
pixel. Contextual information itself may be sufficient for classification when there are few classes.
For more complex tasks with more classes, center pixel convolution may provide complementary
information.

Running times. On the CIFAR10 dataset, the training time for one epoch and the testing time for
AlexNet are 3.4808 and 0.9083, respectively; after replacing conventional convolutions with LPSCs
in the first two layers, the training time for one epoch and the testing time are 23.3981 and 3.7476,
respectively. In our implementation, LPSC runs much slower than conventional convolution, but this
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Table 7: Comparison with different convolution methods based on different architectures.

(a) AlexNet
. Dilation Square
Conv Type Ori (size, dilation rate) Deformable (size, pool size)
hy.-para. L-1 53 712 - - 7,2 11,5 - 11,5
hy.-para. oth. | ~ - - 32 33 33 - 93 93
Layer - 1 1 2 2 1,2 1 2 1,2 all 1 2 1,2
#params(M) | 2.47 | 245 246 228 228 226|247 255 321 7.04 245 228 2.26
CIFAR10 772217343 757 7494 78.11 75.95|75.98 55.34 3296 55.22|76.10 75.17 73.26
CIFAR100 |43.87|44.86 4598 41.08 44.21 44.26(41.96 30.30 30.36 30.82|44.50 42.43 41.89
(b) VGGNet-19
Conv T Ori Dilation Def. bl Square
onv 1ype n (size, dilation rate) ctormable (size, pool size)
hy.-para. L-1+ - - - - 134 93 9,3
hy.-para. oth. . 32 32 32 32 - - 53
Block - 1 2 1,2 123 1+ 1+1 1412 1+all| 1+ 1+ 1+,
#params(M) |20.04 | 20.04 20.04 20.04 20.04 |20.04 20.11 20.48 58.53|20.04 20.04 20.04
CIFAR10 93.34191.53 91.97 89.61 89.56(92.53 70.37 90.64 90.02|87.42 90.01 89.4
CIFAR100 71.95168.46 69.30 63.75 63.83]69.32 37.50 64.37 61.26|62.51 66.64 65.79
(c) ResNet-20
. Dilation Square
Conv Type Ori (size, dilation rate) Deformable (size, pool size)
hy.-para. L-1+ 32 33 52 3,2 134 93 93 9,3
hy.-para. oth. ) - - - 32 - - 53 53
Block Ori 1+ 1+ 1+ 1+,1,2,3| 1+ 1,2,3| 1+ 1+  1+1 1+,12
#params(M) 0.27 | 0.27 0.27 027 0.27 0.27 0.78 | 0.27 027 0.27 0.28
CIFAR-10 91.9691.39 91.77 91.33 86.09 |90.27 46.57|88.09 89.84 88.43 87.19
CIFAR-100 67.83166.95 67.58 67.08 59.26 |65.44 13.45|61.43 63.54 62.05 60.37
(d) Results of LPSC with different architectures
Architecture | AlexNet | VGGNet | , . ResNet
(size, Ly, Lo, g)
hy.-para. L-1+| 11,3,8,2 | 9,2,6,3 |13,2,6,3 5,2,6,2
hy.-para. oth. | 9,2,6,3 - - 5,2,6,2
Layer/Block 1,2 1+ 1+ 1+,all
#params(M) 2.31 20.08 0.27 0.39
CIFAR-10 78.28 94.01 92.11 91.82
CIFAR-100 47.31 73.13 66.97 67.98

is because we use of-the-shell conventional convolution modules to implement LPSC. To this end,
we must first apply log-polar space pooling with the fold and unfold operations in Pytorch, which
consume much time and space complexity. LPSC can be greatly accelerated if it is directly imple-
mented with CUDA or by directly adapting the underlying code of convolutions in the integrated

framework.

A.2 COMPARISON WITH OTHER CONVOLUTION METHODS

Dilated convolution (Chen et al.,2017b) can also exponentially increase the LRF without increasing
the number of parameters. Deformable convolution (Dai et al.,|2017) adaptively adjusts the LRF by
using additional parameters to infer the offsets for each position. We use the Pytorch implementation
of deformable convolutio in our experiments. Different from LPSC where regions are divided in
the log-polar space, we can also averagely divide the kernel into different square regions, e.g., a
9 x 9 kernel can be divided into 3 x 3 regions with a size of 3 x 3. All positions in the same
square region share the same parameter. We denote this alternative convolution method by square

8https://github.com/oeway/pytorch-deform-conv
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(b)

Figure 6: Visualization of the learned circular LPSC kernels without center convolution in the first
convolution layer of Alexnet on (a) the CIFAR-10 dataset and (b) the CIFAR-100 dataset.

convolution, which also increases LRF with fewer parameters. Similarly, they can also be used to
replace conventional convolution at different layers in different architectures.

In Tab. |/} we compare LPSC with conventional convolution, dilation convolution, deformable con-
volution, and square convolution in the three architectures, respectively. For dilation convolution,
square convolution, and LPSC, the second and third rows show the hyper-parameters of the corre-
sponding kernels in the first convolution layer and in other layers or blocks, respectively. We run all
models for only one time. “Size” indicates the kernel size. For VGGNet and ResNet, “1+” indicates
the first convolution layer before all blocks. The fourth row indicates the indexes of layers or blocks
in which conventional convolution is replaced by the corresponding convolution.

The second columns show the results of the three original architectures. With fewer or compara-
ble parameters, LPSC outperforms conventional convolution in AlexNet and VGGNet, and obtains
comparable results in ResNet.

The third column blocks show the results of dilated convolution with different hyper-parameters in
different layers. The hyper-parameters, including the kernel size and the dilation rate, are set to keep
the total number of parameters and the LRF comparable to conventional convolution and LPSC.
In AlexNet and VGGNet, LPSC outperforms dilated convolution with different hyper-parameters
significantly. This shows the effectiveness of spatial structure and parameter sharing in LSPC. Ap-
plying dilated convolution in higher layers also leads to worse performances, which further verifies
our analysis in Sec. [A:T] but LPSC outperforms dilated convolution. When only used in the first
layer of ResNet, sometimes dilated convolution achieves slightly better results than LPSC. The rea-
son may be that ResNet can stack deeper layers with residual connections and hence achieve large
LRF using multi-layer small regular kernels, which eases the need for large LRF in lower layers.
Moreover, the non-uniform distribution of parameters in LPSC may cause information dispersion
and over-smoothing, therefore it is more difficult to model residuals.

Deformable convolution introduces additional parameters. When applied to all blocks of VGGNet
or ResNet, the parameters are more than doubled. Deformable convolution causes performance
degradation of different architectures. LPSC also outperforms the average square convolution with
different hyper-parameters. This indicates that the spatial structure designed in log-polar space can
better capture the contextual information.
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(b)

Figure 7: Visualization of the filled 11 x 11 LPSC kernels without center convolution in the first
convolution layer of Alexnet on (a) the CIFAR-10 dataset and (b) the CIFAR-100 dataset.
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Figure 8: Estimated RFs with (a) conventional convolution and (e) LPSC. The normalized gradient
map with (b-d) conventional convolution and (f-h) LPSC at different locations.

A.3 VISUALIZATION

Visualization of the learned LPSC kernels. In Fig. (6] we visualize the learned LPSC kernels in
the first convolution layer of AlexNet on the CIFAR-10 and CIFAR-100 datasets. The LPSC kernels
have a size of 11 x 11, 3 distance levels, 8 direction levels, and a growth factor of 2. Since LPSC
kernels in the first layer have three channels, we normalize the values of kernels into the range
of [0, 255] and view each position of the kernel as an RGB pixel. Different from conventional
convolution kernels, in LPSC kernels, the closer to the center, the higher the regional resolution;
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the more outward, the larger the range for parameter sharing. We observe that the learned LPSC
kernels capture some special local structures and contextual configuration. In some kernels, the
weights for adjacent regions are continuous; some kernels are sensitive to simple directions and
edges, some others are sensitive to complex boundaries and color combinations, and in some other
kernels, specific combinations of regions are highlighted. To fully utilize the space circumscribed by
the LRF of the kernel, we fill four corners (positions that do not fall into the LRF) with the weights
of corresponding nearest regions in all experiments, respectively, as shown in Fig.

Comparison of effective receptive field (ERF): Fig.[8(a) and (e) show the estimated RFs of Sim-
pleVGGNet on the default example using conventional convolutions and LPSCs in the first two
layers by the gradient-based RF estimatiorﬂ respectively. LPSC enlarges the estimated RFs from
14 x 14 to 22 x 22. The normalized gradient maps w.r.t. different positions of the output for estimat-
ing the RFs using conventional convolutions and LPSCs are shown in Fig. [§(b-d) and Fig. [§[f-h),
respectively. With LPSC, gradients can be back-propagated to more pixels of the input image.

*https://github.com/fornaxai/receptivefield
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