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Abstract

Vision-and-Language Navigation (VLN) poses significant challenges for agents
to interpret natural language instructions and navigate complex 3D environments.
While recent progress has been driven by large-scale pre-training and data augmen-
tation, current methods still struggle to generalize to unseen scenarios, particularly
when complex spatial and temporal reasoning is required. In this work, we propose
SkillNav, a modular framework that introduces structured, skill-based reasoning
into Transformer-based VLN agents. Our method decomposes navigation into a set
of interpretable atomic skills (e.g., Vertical Movement, Area and Region Identifica-
tion, Stop and Pause), each handled by a specialized agent. To support targeted skill
training without manual data annotation, we construct a synthetic dataset pipeline
that generates diverse, linguistically natural, skill-specific instruction-trajectory
pairs. We then introduce a novel training-free Vision-Language Model (VLM)-
based router, which dynamically selects the most suitable agent at each time step by
aligning sub-goals with visual observations and historical actions. SkillNav obtains
competitive results on commonly used benchmarks and establishes state-of-the-art
generalization to the GSA-R2R, a benchmark with novel instruction styles and
unseen environments.
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Figure 1: SkillNav decomposes complex nav-
igation instructions into atomic skills, which
can be flexibly recomposed to address new
environments.

Vision-and-Language Navigation (VLN) [2, 48] is a
critical subfield of embodied AI that integrates natural
language understanding, visual perception, and se-
quential decision-making to allow autonomous agents
to navigate and interact within visual environments.
With the rise of foundation models [53, 40, 21, 44],
VLN has seen notable progress in multimodal ground-
ing and generalization.

Despite recent advances, a key challenge in VLN lies
in enabling agents to generalize reliably and interact
with unseen environments and novel instructions. Pre-
vious approaches have enhanced VLN agents’ gener-
alization ability through extensive training on large-
scale synthetic instruction-trajectory pairs across var-
ied environments [14, 9, 37, 38]. While data-driven
methods improve VLN agents’ generalization, their
main limitation is reliance on black-box, end-to-end
models [2, 16] that tend to memorize training ex-
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amples. This restricts their effectiveness in unobserved scenarios requiring deeper compositional
reasoning, such as understanding diverse instructions, temporal relationships, or complex landmarks,
and generalizing across a wide range of visual environments. Beyond data-driven approaches, recent
work has explored zero-shot approaches leveraging Large Language Models (LLMs) for VLN tasks to
improve generalization ability [54, 26, 5, 45]. Although zero-shot LLM-based agents show relatively
stable performance across seen and unseen environments, they still considerably lag behind fine-tuned
VLN models. Specifically, we observe a significant performance gap (approximately 36% in Success
Rate), primarily arising from intrinsic limitations of LLMs, including their insufficient grounding in
embodied environments and imprecise alignment of linguistic instructions with specific navigational
actions. This gap highlights the urgent need for methods that combine the broad generalization and
compositional reasoning capabilities of LLMs with the domain-specific adaptability of fine-tuning
strategies.

To address these limitations, we propose SkillNav, a modular VLN framework that decomposes
navigation learning into individual and reusable skills, enabling flexible re-composition and enhanced
generalization in new environments (as shown in Figure 1). Unlike prior methods that treat instruction
execution as an end-to-end mapping from instructions directly to actions, SkillNav explicitly captures
the compositional nature of navigation tasks. Furthermore, we introduce a novel Vision-Language
Model (VLM)-based router that leverages multi-modal reasoning to dynamically select the most
appropriate skill at each navigation step, conditioned on the current sub-instruction, visual observation,
and historical actions. SkillNav not only improves interpretability by making the decision-making
processes more transparent but also facilitates robust adaptation to diverse instructions and unseen
visual environments.

Specifically, we build on previous research [39], and identify a set of atomic skills required for
effectively completing the VLN task. For each skill, we construct a dataset containing relevant
instructions paired with corresponding visual observations, and fine-tune a dedicated agent on top
of a strong VLN backbone. This process yields five specialized skill agents, each proficient in its
designated capability. After obtaining these agents, we then integrate them into a unified framework
to perform complex navigation tasks. Moreover, we introduce a temporal reordering module to
generate chronologically ordered sub-goals, facilitating effective temporal reasoning during skill
selection. Finally, we integrate a VLM-based router that dynamically identifies the next relevant
sub-goal and selects the most suitable skill-based agent to execute the corresponding navigation
action.

SkillNav attains a strong performance on the Room-to-Room (R2R) benchmark [2], and achieves
state-of-the-art (SOTA) generalization to the GSA-R2R benchmark [15] which introduces novel
instructions and diverse visual environments, including both unseen residential and non-residential
settings. Additionally, we evaluate individual skill-based agents using NavNuances [39], a dataset
specifically designed for fine-grained skill evaluation. We provide comprehensive ablation studies and
qualitative analysis to thoroughly assess the effectiveness of each component within our framework
and justify our router design choices. Our contributions are summarized as follows:

1. We propose SkillNav, a modular framework that explicitly decomposes the navigation task into
atomic, reusable skills, then recomposes them for execution, leveraging the specialization of
fine-tuned VLN architectures together with the generalization capability of VLMs. This design
significantly enhances generalization to novel instructions and visual environments.

2. We construct a synthetic dataset pipeline that enables skill-specific supervision without human
annotation, producing diverse and linguistically natural data.

3. We demonstrate SOTA generalization on the challenging GSA-R2R dataset and provide a compre-
hensive analysis with ablation studies.

2 Related Work

Vision-and-Language Navigation Models. A wide range of methods have been proposed for
addressing VLN tasks. These methods have evolved from early LSTM-based architectures [2, 34]
to Transformer-based models [8, 10, 1] and, most recently, to Large Language Model (LLM)-based
agents [54, 5, 24, 55, 52, 49]. A critical challenge in VLN research is enhancing the generalization
capability of agents, allowing them to navigate effectively in unfamiliar environments and handle
novel instructions. To enhance generalization, most existing methods utilize data-driven augmentation
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strategies, focusing either on augmenting visual observations [23, 25, 22] or synthesizing additional
navigation instructions [37, 38, 14, 46, 47]. However, a fundamental limitation of purely data-
driven augmentation approaches lies in their reliance on end-to-end training paradigms. Such
monolithic models often memorize training examples rather than genuinely generalize, failing to
fundamentally address the compositional reasoning required in novel or unseen scenarios. More
recently, some approaches [54, 5, 26, 45] have explored zero-shot navigation by heavily depending
on the general reasoning capabilities of LLMs without explicit training on task-specific datasets.
However, their effectiveness remains constrained by the LLMs’ inherent lack of detailed spatial
understanding and precise grounding in real-world action execution. In contrast, we propose SkillNav,
a modular framework that explicitly decomposes VLN tasks into reusable navigation skills. Each
skill is individually fine-tuned for precise spatial grounding, while high-level reasoning and flexible
skill composition leverage LLMs and VLMs, significantly improving generalization to unseen
environments and varied instructions.

Skill-based MoE Systems. Mixture-of-Experts (MoE) models traditionally operate at the parameter
level, distributing input across multiple expert networks to improve capacity and efficiency [17, 19,
43]. Sparsely activated MoEs [32, 20, 50, 57] further scale this idea by routing each input to a small
subset of experts, making it possible to train trillion-parameter models while controlling inference
cost. More recently, large language models have begun to employ skill-based MoEs at the module or
LLM level, where different LLMs are specialized through fine-tuning or task profiling [31, 36, 12, 18,
41, 6, 56, 42], and expert selection is performed via prompting or routing mechanisms based on task
semantics. While these skill-based MoE methods focus on video understanding [42] and visual or
textual question-answering [6], they largely overlook embodied tasks such as VLN. Although a recent
model, SAME [56], introduces a state-adaptive MoE framework for VLN, this approach lacks explicit
skill representations and independent spatial grounding, limiting its interpretability and extensibility.
In contrast, our framework explicitly defines skill-based MoE agents for VLN tasks, employing
specialized skills to significantly enhance generalization, interpretability, and extensibility.

3 Preliminaries

In the VLN problem setting, an agent navigates through an environment by following a natural
language instruction I to reach a specified target location. The environment is discretized into a
connectivity graph G = (V,E), where V denotes a non-empty set of navigable nodes, and E is a
set of undirected connectivity edges. At each time step t, the agent located at viewpoint vt receives
a panorama represented by n images, denoted as Dt = {oi}ni=0. The agent is aware of a subset of
views Ot ⊆ Dt heading towards its navigable neighboring nodes N (vt). The local action space At

contains navigating to node v ∈ N (vt) or stopping at current node vt.

In this work, we leverage DUET [10] as our base VLN agent. It is a dual-scale graph transformer
solution that fuses the topological map with local observations for decision-making. We formulate it
as

a∗t = π(I,Ot,Mt). (1)

where Mt ⊆ G denotes the online constructed topological map observed after t steps of navigation,
and a∗t ∈ At is the predicted action.

4 Methodology

We propose a framework, SkillNav, for VLN that coordinates a set of atomic skill-based agents to
solve navigation tasks. SkillNav enhances generalization by treating navigation as a composition
of atomic skills rather than a direct language-to-action mapping. This design mirrors how humans
transfer sub-skills across unfamiliar situations, preventing overfitting to specific trajectories and en-
abling systematic reuse of skills across environments and instruction styles. As shown in Figure 2, the
framework comprises three components: a temporal reordering module for instruction decomposition,
a VLM-based router for skill selection, and a set of skill-specific agents. Each agent is built upon
the DUET architecture and trained with tailored synthetic data to make skill-conditioned decisions.
This section introduces the proposed skill taxonomy, skill-specific synthetic dataset construction, and
reasoning framework for acquiring these modular skills.
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Original Instruction

Visual Observations

“Exit the stairs, and then 
make a right. Walk nearby 
a sofa and then make a 
right. Continue walking 
until you reach game room 
with a pool table and then 
wait there.”

Prompt for 
router

Temporal 
Reordering

Module

1. Exit the stairs. 

‘instr_id’: ‘374_0’,
‘scan’: ‘EU6Fwq7SyZ’,
‘Instruction’: "Exit the stairs, and then make a right. Walk straight 
for a few feet and then make a right. Walk straight until you 
reach the pool table and then wait there.",
‘Image_list’: 
['/Users/sue/Downloads/MapGPT/R2R/generated_images/EU6F
wq7SyZv/c058a34d7f1b4b1586aa8466263acee4/18.jpg', 
'/Users/sue/Downloads/MapGPT/R2R/generated_images/EU6F
wq7SyZv/ef6ef26f03364dd897ca5f93fbeeeee8/20.jpg', 
'/Users/sue/Downloads/MapGPT/R2R/generated_images/EU6F
wq7SyZv/e6076af6f5214c9c91e81d468e644ca5/23.jpg', 
'/Users/sue/Downloads/MapGPT/R2R/generated_images/EU6F
wq7SyZv/d604bbfa690d46e5b18b59fdbb0a2031/12.jpg', 
'/Users/sue/Downloads/MapGPT/R2R/generated_images/EU6F
wq7SyZv/b2c25cc46d304142970917a600cba311/12.jpg']

2. Turn right.

3. Walk forward 
about few feet. 

4. Turn right. 

5. Walk forward to 
the game room. 

6. Wait at the pool 
table.

Action Image

1. Exit the stairs.

2. Turn right.

3. Walk nearby a sofa. 

5. Walk forward 
to the game room. 

6. Wait at the 
pool table.

4. Turn right.

✅

✅

✅

✅

✅

✅

Phase 1: Sub-Instruction Localizor

Purpose:
Identify the next navigation step from a natural language instruction, 
using visual history and prior completed steps.

Key Actions:

● Break the full instruction into smaller sub-instructions.
● Match these steps against previous images and a list of 

already-completed sub-instructions.
● Determine which sub-instruction should be executed next.

Critical Rules:

● Use exact phrasing from the original instruction.
● Stop reasoning if all sub-instructions are completed.
● Return only the next contextually justified step based on visual 

clues.
● Output strictly in this JSON format:

Sub-instruction 
Localizor

Skill 
Selector

Sub-instruction to be 
executed

+ Reasoning

Atomic Skill Expert 
Selection

1. Exit the stairs.

2. Turn right.

3. Walk nearby a sofa. 

4. Turn right.

5. Walk to the game room. 

6. Wait at the pool table.

Turning navigation instructions into clear, step-by-step 
directions for an agent.
- Break the instruction into short, goal-focused 

steps.
- Make all implicit temporal or spatial relationships 

explicit.
- Keep the correct action order

Landmark Detection

Move past 
the bed.

✅

Area and Region Identification

Enter the 
kitchen.

✅

Stop and Pause

Stop by the 
wheelchair.

✅

Vertical Movement

Go to the 
upper level.

✅

Direction Adjustment

Take a right 
turn.

✅

Prompt for Reordering 

Prompt for Router

  Turn navigation instructions into clear, step-by-step 
actions for an agent by breaking them into short, 
goal-focused steps. Make all hidden temporal or spatial 
cues explicit and preserve the correct order of 
actions.

Phase 1. Subgoal Localizer: Identify the next navigation 
step from the reordered instruction, using visual history 
and prior completed subgoals.

Phase 2. Skill Router: Classify the primary skill needed 
to execute the selected sub-instruction with the full 
instruction, subgoal to be executed (from Phase 1), and 
reasoning behind the sub-goal selection.

Fine-tuned Model

Inference Model

Activated Expert

VLM-based 
Action Router

Phase 2: Skill Router

Purpose:
Classify the primary skill needed to execute the selected sub-instruction.

Input:

● Full instruction
● Sub-instruction to be executed (from Phase 1)
● Reasoning behind the sub-instruction's selection

Available Skills:

1. Directional Adjustment
2. Vertical Movement
3. Stop and Pause
4. Landmark Detection
5. Area and Region Identification

Instruction Matching Logic:

● Choose only one skill.
● Match phrases and context clues from the sub-instruction and 

reasoning to select the best-fit skill.

Skill-based Agents

5. Walk to the 
game room. 

Subgoal

Topological Map

Top-1 
Routing

Reordered Instruction

Figure 2: SkillNav Architecture. SkillNav takes visual observations, original instructions and the
topological map as input. A temporal reordering module first leverages an LLM to reorder instructions
into structured action goals. Subsequently, a VLM-based action router localizes the current focused
sub-goal and dynamically selects the most suitable skill-based agent. For each skill, we construct
specialized instruction-visual observation datasets for targeted skill learning.

4.1 Skill Taxonomy

We use the defined skills in NavNuances [39] that appear to be essential for building a robust VLN
agent. NavNuances provides skill categories and creates a diagnostic dataset to analyze models’
errors. However, it does not provide solutions for improving the agent skills. In this work, we extend
the initially proposed skill categories and provide solutions for acquiring them by the skill-based
agents. We adopt four frequently observed atomic skills from NavNuances, Direction Adjustment,
Vertical Movement, Landmark Detection, and Area and Region Identification. Moreover, we
find persistent challenges in temporal reasoning and stop criteria. Errors in temporal reasoning often
disrupt the correct order of subgoal execution. Critical stop decisions are sometimes made too early or
too late, reducing navigation success. To address these issues, we extend the skill taxonomy with two
additional skills: Stop and Pause and Temporal Order Planning. In the following, we elaborate on
these two new skills and their roles in navigation.

Stop and Pause captures the agent’s ability to dynamically control motion termination and temporary
halting in response to visual or linguistic cues. This includes recognizing explicit stop commands
(e.g., “Stop at the doorway”) or context-sensitive halts triggered by landmarks or obstacles (e.g.,
“Pause when you see the red sign”). The stop and pause skill emphasizes precise temporal-spatial
control to ensure safe, context-aware navigation.

Temporal Order Planning reflects the agent’s capability to reason over the sequence and structure of
subgoals. This includes understanding conditional immediacy (e.g., “Once you enter the hallway, turn
left”), maintaining actions for a bounded duration (e.g., “Keep walking until you see the staircase”),
executing forward sequential steps (e.g., “Go forward, then turn right, and finally stop”), and handling
backward references to prior states (e.g., “Before turning, make sure you’re at the hallway entrance”).
Effective temporal order planning involves temporal relations that guide both when and how atomic
skills should be executed.

To quantify the presence and frequency of these skills in R2R [2], we perform a keyword-based
analysis of the navigation instructions as shown in Figure 4 in Appendix A. Each instruction is
scanned for a curated set of indicative keywords, compiled for each skill category based on linguistic
patterns observed in prior datasets and real-world navigation discourse. For instance, terms like “wait”
or “stay” are used to detect Stop and Pause, while words such as “stairs” or “elevator” signal Vertical
Movement. An instruction can be counted for multiple skills if it exhibits multiple relevant keywords.
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4.2 Skill-Specific Data Synthesis and Agent Training

Table 1: Statistics of skill-specific synthetic
datasets and existing VLN training datasets.

Dataset # Instr # Vocab Instr Len

R2R 14, 039 4, 597 26.28
GSA-R2R 4, 675 2, 797 26.06

Temporal 2, 000 1, 653 56.60
Direction 450 707 26.78
Vertical 450 705 26.23
Stop 450 774 27.03
Landmark 450 1, 025 27.62
Region 450 971 27.50

To enable the training of skill-specialized agents, we
construct a set of synthetic datasets in which each
trajectory–instruction pair is specifically designed to
emphasize a single navigation skill.

We begin with a random starting node in the Matter-
port3D [4] environment and sample diverse naviga-
tion paths through graph traversal. For each skill, we
define filtering heuristics to select trajectories where
this skill is the primary factor for successful naviga-
tion. For instance, we emphasize frequent orientation
changes or non-trivial turning sequences for the Di-
rection Adjustment category. We explain detailed
primary factors of skill-based trajectory generation
in Appendix A. Each selected trajectory consists of
a sequence of panoramic observations. Besides, we
constrain trajectory length to 4–7 steps to keep the difficulty and temporal context comparable to
human-annotated VLN data. The analysis of path length constraints used during trajectory generation
to ensure temporal consistency and alignment with existing VLN datasets are provided in Figure 5 in
Appendix B.

To generate skill-focused instruction, we feed the observation sequence of each candidate trajectory
into GPT-4o [27] with a structured prompt. We design the prompts such that the generated instructions
preserve the general linguistic quality of real VLN datasets, including comparable sentence length,
vocabulary diversity, and fluency, while emphasizing the content toward the targeted skill. This
is achieved by providing GPT-4o with explicit skill-focused cues during generation, encouraging,
for example, frequent references to orientation change for the Direction Adjustment skill or strong
emphasis on landmark description for the Landmark Detection skill. For each skill, we synthesize N
such trajectory–instruction pairs, forming six separate datasets. A summary of dataset statistics is
provided in Table 1.

The training of each skill-based agent is conducted in two stages. In the first stage, we fine-tune
the pre-trained DUET model using the original R2R training dataset, the ScaleVLN augmentation
data [37], and our Temporal Synthetic dataset to obtain a strong, skill-agnostic backbone. We provide
the analysis of the effectiveness of the Temporal Order Planning agent in Appendix C. In the second
stage, this backbone is further fine-tuned on a skill-specific synthetic dataset to obtain a specialized
agent in the targeted skill. Following this process, we obtain five specialized skill-based agents:
the Direction Adjustment agent (πda), Vertical Movement agent (πvm), Stop and Pause agent (πsp),
Landmark Detection agent (πld), and Area and Region Identification agent (πar). We denotes the
predefined set of five skill-based agents as S = {πda, πvm, πsp, πld, πar}.

4.3 SkillNav Framework

After training specialized agents for different navigation skills, we build our SkillNav framework.
SkillNav first employs a temporal reordering module to generate chronologically ordered execution
plans. Then, we introduce a VLM-based action router to accurately identify the current subgoal and
dynamically select the corresponding skill-based agent to choose the appropriate action.

4.3.1 Temporal Reordering Module

The Temporal Reordering Module only takes the original natural language instruction as input. It
applies the instruction reordering prompt to turn navigation instructions into a list of subgoals Ireorder.
It follows the four temporal relations described in the Temporal Order Planning skill in Section 4.1,
making implicit temporal details explicit and ensuring the correct subgoal execution order. This
procedure is formulated as

Ireorder = LLMTemporalReorder(I). (2)
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Table 2: Performance comparison on R2R and GSA-R2R benchmarks. † indicates large-scale data
augmentation. SRDF performs best on R2R due to extensive pretraining on data that mimics R2R-
style instructions; however, it struggles to generalize effectively to the GSA-R2R dataset.

Methods #
R2R GSA-R2R

Val-Unseen Test-Unseen Test-R-Basic Test-N-Basic Test-N-Scene
NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

LLM-based VLN
MapGPT (GPT4v) [5] 1 5.63 58 44 35 – – – – 34 30 25 23 25 23
NavCoT (LLaMA2) [24] 2 6.26 42 34 29 – – – – 37 35 29 26 29 26
NavGPT-2 (FlanT5-5B) [55] 3 3.13 81 72 61 3.33 80 72 60 58 45 48 35 57 43
NaviLLM (Vicuna-7B) [52] 4 3.51 – 67 59 3.71 – 68 60 – – – – – –

Supervised VLN
HAMT [8] 5 2.29 – 66 61 3.93 72 65 60 48 44 42 38 34 30
DUET [10] 6 3.31 81 72 60 3.65 76 69 59 58 47 48 37 40 30
BEVBERT [1] 7 2.81 84 75 64 3.13 81 73 62 58 45 46 35 39 27
GR-DUET [15] 8 – – – – – – – – 69 64 57 52 48 43
ScaleVLN [37] † 9 2.34 87 79 70 2.73 84 77 68 78 67 69 57 55 43
SRDF [38] † 10 1.83 89 84 78 1.88 88 84 77 71 63 59 49 52 43

Mixture of Skill-based VLN
SAME† [56] 11 2.73 – 76 66 3.03 – 74 64 – – – – – –
SkillNav† (ours) 12 1.97 89 83 77 2.53 83 78 70 79 69 72 61 57 48

4.3.2 VLM-based Action Router

To coordinate skill-based agents during navigation, we introduce an Action Router that dynamically
selects the most suitable agent at each time step. Inspired by LLM-based planning systems such
as LLM-Planner [33], Mic [28], and A2Nav [7], our router leverages a large VLM model (e.g.,
GPT-4o [27], Qwen2.5-VL-7B-Instruct [3]) in a zero-shot in-context fashion. We structure the
routing process into two distinct reasoning phases:

Phase 1: Subgoal Localizer. Given the reordered subgoals Ireorder = [p1, p2, . . . , pm], observed
history Ht−1, and the sequence of previously executed subgoals Gt−1 = [p∗1, . . . , p

∗
t−1], the model

identifies the next subgoal p∗t to be executed for the current time step t and outputs the corresponding
reasoning trace rt, later used by the router for decision verification. The output can be formalized as:

p∗t , rt = Localize(Ireorder, Ht−1, Gt−1). (3)

The sequence of executed subgoals is then updated as:

Gt = Gt−1 ∥ p∗t . (4)

Phase 2: Skill Router. At time step t, the skill router determines which skill-based agent π∗
t ∈ S is

most appropriate for executing the selected subgoal p∗t . Besides, it receives the original instruction I
as a part of the input context to capture additional linguistic cues such as verbs and spatial references.
It also uses the reasoning trace rt from Phase 1 to enhance its understanding of the current subgoal.
At each step, exactly one skill is selected, formulated as

π∗
t = argmax

π∈S
Router(I, p∗t , rt). (5)

Once the appropriate skill-based agent is selected, it is invoked by the following Equation 1 to predict
the navigation action at time step t:

a∗t = π∗
t (I,Ot,Mt). (6)

Our router enables modular skill execution by integrating natural language, visual inputs, and observed
history, using the Temporal Reordering LLM to bridge instructions with actionable skill modules.

5 Experiments

Evaluation Datasets. We primarily use the Room-to-Room (R2R) dataset [2], especially the unseen
split of validation (Val Unseen) and test (Test Unseen) splits. R2R is a commonly-used benchmark
in VLN consisting of panoramic RGB-D scans from the Matterport3D [4] simulator and providing
crowd-sourced instructions paired with navigation paths. Moreover, we evaluate the generalization
ability of SkillNav on GSA-R2R [15] which includes residential (R) and non-residential (N) scenes
(e.g., shops, restaurants, and museums) from Habitat-Matterport3D [30], and diverse instruction
styles with role-specific dialogues (e.g., travel guides (Scene) beyond the basic style of R2R (Basic).
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Table 3: Evaluation of each skill-based agent on the NavNuances benchmark across four skill
categories: Direction Change (DC), Vertical Movement (VM), Landmark Recognition (LR), and
Room Recognition (RR). Following the NavNuances, evaluation metrics differ across skill subsets:
DC and LR are reported only with SR, VM includes SR/OSR/SPL, and RR provides SR/OSR. We
retain this heterogeneous metric design to ensure comparability with prior work. Ident.: Identification.

Methods DC VM LR RR

SR SR OSR SPL SR SR OSR

VLN Agents ScaleVLN [37] 68.39 81.76 88.82 76.34 28.32 82.91 95.27
SRDF [38] 59.93 82.94 91.18 80.98 26.28 77.09 94.55

Skill-based Agents

Direction Adjustment 70.81 81.76 91.18 76.28 31.39 81.82 94.91
Vertical Movement 70.68 87.65 89.41 83.83 30.22 82.18 96.00
Landmark Detection 70.29 82.35 85.29 78.94 31.53 83.64 97.09
Area and Region Ident. 67.53 84.12 88.82 80.49 29.20 85.09 96.36
Stop and Pause 68.91 84.71 87.06 80.67 29.78 83.64 97.09

Evaluation Metrics. We use the standard metrics to evaluate the navigation performance [2, 51]: (1)
Navigation Error (NE): the distance between the stop location and the target; (2) Oracle Success Rate
(OSR): the agent ever gets close enough to the goal at any point along its trajectory, regardless of
where it decides to stop; (3) Success Rate (SR): the ratio of agents stopping within 3 meters of the
target; (4) Success rate weighted by Path Length (SPL): measure navigation efficiency by weighting
the success rate with the ratio between the shortest path length and the agent’s actual path length,
penalizing unnecessarily long trajectories.

Implementation Details. We utilize CLIP-B/16 [29] as the visual backbone and BERT-base-
uncased [13] as the language backbone within our DUET-based skill agents. During the skill
training, we fine-tune the DUET pre-trained model with Temporal Order synthetic data, ScaleVLN
augmentation data, and R2R Train data for 50, 000 iterations using a batch size of 32 and a learning
rate of 5× 10−5 on 1 NVIDIA A6000 GPU with the random seed 0. The best finetuned Temporal
DUET model is selected based on the SPL performance on the R2R Validation Unseen dataset. Based
on the Temporal DUET, we employ the second round fine-tuning with atomic skill synthetic data for
30, 000 iterations with a batch size of 16 on the same GPU. In our SkillNav LLM-based architecture,
we adopt GPT-4o [27] as the Temporal Reordering module due to its superior instruction-following
capabilities and employ Qwen2.5-VL-7B-Instruct [3] as the action router because of its strong multi-
modal alignment and reasoning abilities. All inferences with the action router are performed using
in-context prompting.

5.1 Main Results

As shown in Table 2, SkillNav achieves strong overall performance across both R2R datasets and
demonstrates robust generalization on GSA-R2R, outperforming most fine-tuned and LLM-based
agents. On the R2R unseen environments, SkillNav (Method #12) achieves 83% SR and 77% SPL,
ranking second highest after SRDF (Method #10). While SRDF achieves the highest performance
on R2R Test-Unseen, this can be largely attributed to its pretraining on large-scale data that closely
follows R2R-style instruction patterns. However, this reliance weakens its generalization ability,
leading to a 13% and 5% SR drop on GSA-R2R Test-N-Basic and Test-N-Scene, respectively. SRDF
requires additional tuning to remain competitive when transferred to new environments or novel
instruction styles. In contrast, SkillNav is trained only on R2R and synthetic skill-specific data,
yet achieves strong cross-dataset generalization without any retraining. Additionally, SkillNav also
demonstrates SOTA generalization performance in GSA-R2R, ranking 1st in SPL across all GSA-
R2R splits and demonstrating its ability to predict more efficient and precise navigation trajectories.
Notably, on Test-N-Scene, which combines non-residential environments with more complex and
role-specific instructions, SkillNav matches the best SR tied with NavGPT-2 (Method #3), while
significantly outperforming it in SPL. NavGPT-2 benefits from fine-tuning on FlanT5-XXL [11],
which likely enhances its ability to interpret stylized instructions. However, its lower SPL reveals
inefficiencies in path planning and execution. While LLMs can help parse diverse instructions, they
often introduce noise or lose critical spatial details when translating, limiting their effectiveness in
downstream navigation tasks. This highlights the need for tightly integrated skill reasoning and
grounded visual understanding, beyond language interpretation alone.
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failure ScaleVLN, any success -> failure id -> R2R Val Unseen SkillNav success -> 
routing.log -> instruction, sub-plans, skill, reasoning, 
preds/json -> candidates -> action 

4668_0, part_8

5789_0, part_3

6303_1, part_10  (fail)

4972_1, part_3 (fail)

Walk down the corridor and 
upstairs. Stop halfway up the stairs.

VLM-based 
Action Router

Action Image

Visual Observations

Original Instruction

Vertical Movement 
Agent

Temporal 
Reordering

LLM

Walk down the corridor. Reach 
the stairs. Walk upstairs. Stop 
halfway up the stairs.

Sub-instruction: Walk upstairs

Reasoning: The agent has reached 
the stairs and is now positioned to 
ascend them, as indicated by the 
visual context of the corridor leading 
to the stairs.

“Turn around and exit out the door to 
the far right of the bed. Once out, Walk 
down the hallway. Once you get to where 
the hallway opens up, turn left and walk 
past the stairs. Stop looking into the next 
door to your left facing the sitting room. 
”

VLM-based 
Action Router

Action Image

Visual Observations

Original Instruction

Vertical Movement Agent

Temporal 
Reordering

LLM

Walk down the corridor. Reach 
the stairs. Walk upstairs. Stop 
halfway up the stairs.

Sub-instruction: Walk upstairs
Reasoning: The agent has reached 
the stairs and is now positioned to 
ascend them, as indicated by the 
visual context of the corridor 
leading to the stairs.

"Alright, so what you'll want to do is 
walk straight ahead, and then, um, 
take a left turn. Keep going forward 
until you reach the pillars, and, let's 
see, just wait there in the middle. It's 
hard to miss."

Visual Observations

Original Instruction

Temporal 
Reordering

LLM

Temporal Reordering LLM:
- Sub-goals:
Walk straight ahead. Turn left. 
Continue forward. Reach the pillars. 
Stop and wait in the middle of the 
pillars.

Action Image

Direction 
Adjustment Agent

VLM-based Action Router:
- Previous sub-goals:
[ 'Walk straight ahead', 'Turn left', 
'Continue forward', 'Reach the pillars' ]

- Sub-goal (current): 
Stop and wait in the middle of the 
pillars

- Reasoning: 
The agent has reached the pillars and is 
positioned in the middle, as indicated 
by the previous images showing the 
agent approaching and then standing 
in the middle of the pillars.

Action Image

ScaleVLN Agent

Stop and Pause
 Agent

Action Image

❌

✅

"Walk down the corridor and 
upstairs. Stop halfway up the 
stairs."

Visual Observations

Original Instruction

Temporal Reordering LLM:
- Sub-goals:
Walk down the corridor. Reach the 
stairs. Walk upstairs. Stop halfway up 
the stairs.

VLM-based Action Router:
- Previous sub-goals:
['Walk down the corridor']

- Sub-goal (current): 
Reach the stairs

- Reasoning: 
The current image shows the entrance 
to the house, and the next logical step 
is to move towards the stairs as 
instructed.

Action Image

ScaleVLN Agent

✅

❌

(b) A sample in GSA-R2R Test-N-Scene(a) A sample in R2R Val Unseen

Figure 3: Qualitative examples of routing and navigation results. These examples include cases where
the instruction is temporally complex, colloquial, or spatially ambiguous.

Table 4: Ablation results on GSA-R2R across residential (R) and non-residential (N) scenarios
with varying instruction styles (Basic and Scene). Reorder: ✗ = LLM-guided Temporal Reordering
disabled, ✔ = enabled. Router: Random = randomly select skill-based agents without utilizing action
router; Qwen = Qwen2.5-VL-7B-Instruct; GLM = GLM-4.1V-9B-Thinking.

Reorder Router # Test-R-Basic Test-N-Basic Test-N-Scene
SR SPL SR SPL SR SPL

✗ Random 1 78.39 67.46 70.93 59.71 54.61 43.17
✗ Qwen 2 78.42 67.80 71.01 59.62 55.46 45.43
✔ GLM 3 78.60 67.93 71.13 59.73 56.80 46.51
✔ Qwen 4 78.83 68.88 71.58 61.34 56.66 47.96

5.2 Ablation Study

Skill Evaluation. To further probe the capabilities of our skill-based agents, we have a fine-grained
evaluation on the NavNuances, which categorizes navigation instructions into four atomic skills:
(1) Direction Change (DC), (2) Vertical Movement (VM), (3) Landmark Recognition (LR), and
(4) Region Recognition (RR). These subsets isolate specific reasoning capabilities and allow us to
assess each agent’s specialization. As shown in Table 3, each skill-based agent in SkillNav excels
in its corresponding category. The Vertical Movement agent achieves the highest SR (87.65%) and
SPL (83.83%) on VM, while the Direction Adjustment agent leads in DC with an SR of 70.81%.
The Landmark Detection agent performs best in LR with 31.53% SR, and the Area and Region
Identification agent reaches 85.09% SR on RR. We report the effectiveness of the Stop and Pause
agent in Appendix D. These results validate our skill-based training and data augmentation strategy,
confirming that targeted supervision fosters functional specialization that outperforms generalist VLN
baselines in isolated skill settings.

Temporal Reordering Module. We conduct an ablation study to evaluate SkillNav’s two key
components: the LLM-guided Temporal Reordering module and the VLM-based action router. The
results, shown in Table 4, are reported across GSA-R2R splits, covering both residential (R) and non-
residential (N) environments with varying instruction styles. First, we evaluate the effectiveness of
the temporal reordering module. As shown in rows #2 and #4, when using the same router (Qwen2.5-
VL-7B-Instruct), incorporating the reordering module consistently improves performance across
all benchmarks. Notably, in Test-N-Basic, SPL increases +1.72%, demonstrating that temporally
structured subgoals offer clearer guidance for effective skill selection.

Action Router. To evaluate the effectiveness of our action router, we compare the performance
of randomly selected skills without a router (row #1) against our proposed Qwen router. The
observed improvements in both SR and SPL metrics clearly indicate the router’s effectiveness:
specifically, Test-N-Scene SR increases from 54.61% to 55.46%, and SPL rises notably from 43.17%
to 45.43%. These results confirm that our VLM-based router effectively selects appropriate skills
even in the absence of temporal structuring. We further examine the significance of router selection by
comparing rows #3 and #4, where the instruction reordering is fixed, and only the router model varies.
Qwen2.5-VL-7B-Instruct consistently achieves superior SPL across all splits, particularly notable
in Test-N-Scene (47.96% vs. 46.51%), underscoring its enhanced visual grounding capabilities
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compared to GLM-4.1V-9B-Thinking [35]. This emphasizes that high-quality vision-language
representations are essential for effective skill routing, and the primary driver of success in VLN
appears to be the skill-based agents.

5.3 Efficiency Analysis

Training Cost. Fine-tuning five skills on the Temporal Order Planning agent with R2R and
synthetic skill-specific datasets requires approximately 3, 329 minutes (∼ 55.5 hours) in to-
tal. For comparison, SRDF training on R2R with larger data augmentation takes 2, 521 min-
utes (∼ 42 hours), suggesting that SkillNav’s skill-based training introduces a relatively higher
training cost. However, this represents a one-time training investment; unlike prior super-
vised VLN models that require repeated retraining to adapt to new environments or instruc-
tion styles, SkillNav achieves strong generalization across datasets without additional retraining.

Table 5: Runtime and throughput of baselines
and SkillNav. Numbers are wall-clock run-
time in seconds. Random = randomly select
skill-based agents without utilizing the action
router.

Method Split Runtime (s) Inferences/s
Supervised VLN

ScaleVLN Test-R-Basic 513.8 28.03
Test-N-Basic 342.7 26.26

LLM-based VLN

MapGPT Test-R-Basic ∼ 597, 000 0.02
Test-N-Basic ∼ 373, 000 0.02

Our Mixture of Skill-based VLN

Random (ours) Test-R-Basic 2, 223.4 6.48
Test-N-Basic 1, 507.9 5.97

SkillNav (ours) Test-R-Basic ∼ 27, 000 0.54
Test-N-Basic ∼ 18, 360 0.49

Inference Cost. We provide inference time and
throughput comparison in Table 5. SkillNav in-
troduces overhead due to its Temporal Reordering
LLM and VLM-based action router, reaching 0.49
throughput on Test-N-Basic of GSA-R2R, which is
roughly 50× slower than ScaleVLN but still nearly
20× faster than MapGPT. The Random variant, de-
spite sharing the DUET as the backbone and selecting
only one DUET for action prediction, is 4.3× slower
than ScaleVLN due to the per-observation skill se-
lection overhead that prevents batch inference. Over-
all, while SkillNav is less efficient than supervised
models, it achieves a better efficiency-generalization
trade-off. Also, it advances both efficiency and gen-
eralization compared to LLM-based VLN agents.

5.4 Qualitative Examples

Figure 3 shows two qualitative examples highlighting SkillNav’s capability to dynamically select the
appropriate skill at each navigation step. These examples illustrate the effectiveness of our approach
in reordering temporal action plans, accurately identifying the currently focused subgoal via the
router, and subsequently selecting the correct action. Specifically, in Figure 3 (a), the router correctly
reasons that the agent has reached the target pillars and decides it is time to stop, resulting in the agent
appropriately choosing the stop action at the view containing the pillars. Similarly, in Figure 3 (b),
the router identifies the need to move toward the stairs and accordingly selects the vertical movement
skill. Overall, SkillNav successfully interprets diverse instruction styles and performs robustly across
both residential and non-residential scenes.

6 Conclusion

We introduce SkillNav, a VLN agent that combines skill-based learning with VLM-based routing to
dynamically select the most suitable actions based on the decision of the most relevant expert. We
evaluate SkillNav on R2R to show strong navigation performance and demonstrate its generalization
capabilities on the GSA-R2R dataset. While the utilization of LLM for temporal reordering and
VLM for routing introduces computational overhead, SkillNav is more efficient than relying solely
on LLMs or VLMs for navigation and achieves stronger performance than supervised VLN agents by
exploiting both paradigms. Our framework provides a novel and interpretable approach that advances
compositional reasoning and generalization for the VLN research community.
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Appendix

A Primary Factors of Trajectory
Generation

As introduced in Section Skill-Specific Data Syn-
thesis and Agent Training in Methodology, we
construct 5 skill-specific datasets and train the
agents based on them. The primary factors for
the construction of each skill are as follows:

Temporal Order Planning. (1) A random ini-
tial move is selected. (2) Staying in the same
region (e.g., hallway → hallway) for the first half
of the trajectory to encourage temporal continu-
ity at first. (3) Once halfway through, the agent
is allowed (and encouraged) to transition to new
regions.

Direction Adjustment. (1) The direction
change is based on the heading degree. (2) It
should be significant enough to indicate a direc-
tional shift, but not so large as to cause a reversal
or double-turn behavior.

Vertical Movement. (1) Only candidates with
significant elevation (more than ±2) are consid-
ered, which filters out nearly flat or slight incli-
nes/declines. (2) The candidate viewpoint must
be explicitly marked as vertically relevant (e.g.,
stairs). (3) The elevation sign determines move-
ment type, and it must be consistent with the
applied trajectory. For instance, it is impossible
to go upstairs and then go downstairs in one case.

Stop and Pause. (1) The stop should occur at a
place with or after semantically relevant context
for pausing, e.g., in front of a painting, at the foot
of stairs. (2) The candidate image is very similar
to the previous viewpoints.

Landmark Detection. (1) The viewpoint must
include obvious, visually distinctive landmarks or
objects (e.g., sofa, desk, painting, lamp) clearly
visible in the image. (2) If a landmark is to be ref-
erenced over multiple steps, it should appear per-
sistently in successive views, allowing the agent
to maintain spatial awareness relative to that ob-
ject.

Figure 4: Distribution of instructions in the R2R
dataset categorized by the proposed skill taxon-
omy.

Area and Region Identification. (1) A trajec-
tory must include at least one region change. (2)
Paths with "Error" or unrecognized regions are
ignored or sanitized. (3) All horizontal region
changes are isolated.

B Path Length in Trajectory
Generation

We constrain trajectory length to 4–7 steps to keep
the difficulty and temporal context comparable to
natural VLN data. Figure 5 shows the statistics of
the path length. To be noted, the R2R, ScaleVLN,
SRDF datasets, and our Temporal Order Planning
datasets have quite less instructions with a 4-step
trajectory.

C Temporal Order Planning Agent

As introduced earlier, the training of each skill-
based agent follows a two-stage fine-tuning strat-
egy. In the first stage, we fine-tune a pre-trained
DUET model using a combination of the R2R
training split, ScaleVLN augmentation data, and
our proposed Temporal Synthetic dataset, result-
ing in a strong skill-agnostic backbone. We evalu-
ate this first-stage model on the R2R Val Unseen
split across four temporal logic subsets.
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Figure 5: The statistics of the path length of our
synthetic datasets compared with existing VLN
datasets. The R2R, ScaleVLN, SRDF datasets,
and our 6 skill-specific datasets are all for training,
while only GSA-R2R is for evaluation.

Temporal Order Planning captures the agent’s
ability to reason over the sequence and structure
of subgoals. Compared to ScaleVLN, our model
demonstrates improved temporal reasoning capa-
bilities, as detailed in Table 6. This improvement
comes from enhanced Temporal Order Plan-
ning, which enables the agent to reason about the
sequence and structure of subgoals. The Tempo-
ral Order Planning subsets include:

• Conditional immediacy: The agent
must execute an action immediately af-
ter a specific condition is met. These
instructions are typically triggered by
phrases such as once, as soon as, or
upon. (e.g., “Once you enter the hall-
way, turn left”)

• Bounded duration: The agent is re-
quired to maintain an action until a spe-
cific condition becomes true. These in-
structions use keywords such as until or
while. (e.g., “Keep walking until you
see the staircase”)

• Forward sequential: These instructions
describe a sequence where Action B fol-
lows Action A in order. Temporal cues
include then, finally, before, and after.
(e.g., “Go forward, then turn right, and
finally stop”)

• Backward sequential: Action B is de-
scribed first but should occur only af-
ter Action A. These often use similar
cues as (e.g., “Before turning, make sure
you’re at the hallway entrance”), but the
order of mention and execution differs.

Unlike low-level action chaining, temporal order
planning involves higher-level temporal logic that
determines when and how atomic skills should
be executed in sequence. As shown in Table 6,
our Temporal Synthetic Data improves naviga-

tion in failure cases where prior methods such as
ScaleVLN struggle.

Table 6: Navigation performance across 4 tem-
poral logic instructions from R2R Val Unseen
dataset. Bold values denote metrics that exceed
the R2R Val Unseen average, while gray values
indicate metrics that fall below the average. Tem-
poral DUET is the agent fine-tuned with the Tem-
poral Order Planning synthetic dataset in the first
training stage.

Environment Metric ScaleVLN Temporal DUET
Conditional Immediacy SR 84.29 88.57

SPL 76.29 82.18

Bounded Duration SR 76.27 84.18
SPL 67.45 74.90

Forward Sequential SR 79.53 85.83
SPL 68.92 76.93

Backward Sequential SR 74.29 88.57
SPL 66.97 81.72

D Stop and Pause Agent

The Stop and Pause agent integrates two stopping
mechanisms within the DUET framework: (1) the
agent can explicitly issue a stop action at a given
viewpoint; and (2) if the agent does not explic-
itly stop when the navigation loop ends, DUET
retrospectively selects the visited location with
the highest stop probability and optionally ap-
pends a shortest path to reach it. Since we apply
a stopping-focused data augmentation strategy
that exposes the model to diverse stop-relevant
cues during training, this supervision enables the
agent to distinguish between the two stopping
mechanisms and to learn when stopping aligns
with the instruction intent and visual context. Al-
though NavNuances does not include a dedicated
stopping split, our Stop agent still outperforms
generalist baselines like ScaleVLN and SRDF
across all skill categories (Table 3), suggesting
that effective stopping is a foundational capability
that influences the success of diverse navigation
behaviors.

E Efficiency Analysis

All experiments in efficiency analysis in Sec-
tion 5.3 run on NVIDIA A6000. For the infer-
ence cost in Table 5, the number of predictions
is 14, 400 for Test-R-Basic and 9, 000 for Test-N-
Basic. For fairness, MapGPT is re-implemented
with Qwen2.5-VL-7B-Instruct.

F LLM Usage

We used LLM-based tools for polishing gram-
mar and aiding the writing. In addition, we uti-
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lize LLM to generate synthetic instructions for
skill-specific datasets as described in Section 4.2.
Moreover, LLMs and VLMs serve as our tempo-
ral reordering module and action router in Sec-
tion 4.3.1 and 4.3.2.

G Limitations

First, SkillNav is evaluated only in discrete VLN
simulator environments (R2R, GSA-R2R, and
NavNuances), leaving open the challenge of
extending to continuous or real-world robotic
navigation. Second, the approach depends on
synthetic, skill-specific datasets generated via
prompting, which may introduce distributional
biases compared to human-authored instructions.
We do a human evaluation on 20 cases with ac-
tion routing, and the result shows 100% accuracy.
This means with high confidence, the true accu-
racy is at least 84% on R2R Val Unseen.

H LLM and VLM Prompts

In this section, we provide the prompts used in
data construction and all components of SkillNav.

H.1 Prompts for Skill-specific Data
Synthesis

To generate skill-focused instruction, we feed the
observation sequence of each candidate trajectory
into GPT-4o with the structured prompt, in List-
ing 1 and Listing 2. Both of the two prompts are
tailored for GPT-4o.

Temporal Order Planning Skill Data Construc-
tion. The detailed prompt for Temporal Order
Planning Skill data construction can be seen in
Listing 1.

Atomic Skills Data Construction. The 5
atomic skills in VLN share the same prompt (in
Listing 2) for their skill-specific data synthesis. .

H.2 Prompt for Temporal Reordering
Module

The Temporal Order Module only takes the orig-
inal natural language instruction as input. It ap-
plies the instruction reordering prompt to turn
navigation instructions into subgoals Ireorder. The
prompt is shown in Listing 3, utilizing GPT-4o as
the generation model.

H.3 Prompts for Action Router

The Action Router dynamically selects the most
suitable agent at each time step, which can be

structured into two distinct reasoning phases:
Phase 1 Subgoal Localizer and Phase 2 Skill
Router. We provide the detailed prompt for the
two phases, respectively. They can be used for
either Qwen2.5-VL-7B-Instruct or GLM-4.1V-
Thinking-9B .

Subgoal Localizer. The Subgoal Localizer
identifies the next subgoal to be executed for the
current time step and outputs the corresponding
reasoning trace. Listing 4 claims the prompt for
the subgoal localizer, which takes all reorder sub-
goals, the previously executed subgoals, and the
prior selected viewpoints as input.

Skill Router. The skill router determines which
skill-based agent is most appropriate for execut-
ing the selected subgoal among the 5 skill-based
agents. Besides, it receives the original instruc-
tion as contextual input to capture additional lin-
guistic cues such as verbs and spatial references.
It also uses the reasoning trace from the subgoal
localizer to enhance its understanding of the cur-
rent subgoal. The whole process is displayed in
Listing 5.
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You are an expert in Vision-and-Language Navigation (VLN) and Language.

<Task>
Your task is to write natural, human-like navigation instructions based on a sequence of visual

observations from an indoor environment.

<Instruction Guidelines>
- Do not use explicit temporal markers like ‘‘then’’, ‘‘next’’, ‘‘before’’, or ‘‘after’’.
- Imply sequence using spatial or contextual phrasing instead.
- Include only essential visual cues, such as layout, furniture, doorways, or notable landmarks that

help clarify the path.
- Avoid over-descriptive or decorative language (e.g., ‘‘intricate stonework’’, ‘‘high ceiling’’).
- Keep the instruction fluent, intuitive, and helpful, like someone casually guiding a friend through

a space.
- Keep it concise and comparable in length to a temporal-based instruction.

<Visual Reasoning Process>
Analyze each frame in the visual sequence. Focus on:
- Movement across spaces
- Transitions (e.g., turns, room entries)
- Orientation shifts
- Key visible cues needed to navigate the path

<Instruction Output>
Once you’ve analyzed the path:
- Write a fluent, natural-sounding instruction describing the full trajectory.
- Do **not** include reasoning steps.
- Output **only** the final instruction.

<Example Chain-of-Thought>
- 1st Frame:

- The agent is inside a narrow wooden hallway-like space.
- The doorway directly ahead leads to a brighter area.

- 2nd Frame:
- The agent is almost at the threshold of the doorway.
- You can see the hallway plant and the open area outside.

- 3rd Frame:
- The agent is now fully outside the room, looking into a wide open space.
- There’s a visible bedroom to the left, and the plant in the yellow pot is to the right,

indicating the agent has made a hard left turn.

- 4th Frame:
- The agent is now facing a doorway to a bedroom on the left side.
- The bed is partially visible inside.

- 5th Frame:
- The agent has entered the room and is facing a window.
- The position suggests the agent took one step inside and then stopped.

---

<Trajectory Images>
‘‘{path_images}’’

Listing 1: Prompt used for Temporal Order Planning Skill-specific Data Synthsis
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You are an expert in Vision-and-Language Navigation (VLN) and Language.

<Task>
- Generate a **single** natural-language instruction that guides an agent through the scene.

<Input>
- A visual sequence (an ordered list of images)
- A specific navigation skill to emphasize

<Requirements>
- The instruction should describe what the agent does across the image sequence (e.g., move, climb,

pause).
- Ground the instruction in **visible cues**, such as layout, objects, stairs, doorways, lighting, or

orientation.
- Emphasize the given **target skill** (e.g., "Direction Adjustment", "Vertical Movement", etc.),

while naturally incorporating other relevant details as needed.
- The output must be a **single sentence**, written in fluent, natural language (no lists, quotes, or

symbols).
- Instruction length should be **20-30 words** (aim for ~25).
- Do **not** include explanations, reasoning steps, or metadata output only the instruction itself.

<Available Skills>
{Direction Adjustment, Vertical Movement, Stop and Pause, Landmark Detection, Area and Region

Identification}

<Skill Definitions>
- **Direction Adjustment**: Involves turning or changing heading. Look for instructions like ‘‘turn

left’’, ‘‘go back’’, or ‘‘face the hallway’’. Used when the agent needs to rotate or reorient
without necessarily changing position.

- **Vertical Movement**: Involves moving across floors or elevation changes. Triggered by terms like ‘‘
go upstairs’’, ‘‘down the stairs’’, or ‘‘take the elevator’’. Watch for floor changes in visuals
or references to vertical navigation.

- **Stop and Pause**: Involves coming to a full stop at a defined point. Use lighter-weight verbs such
as pause, wait, and stand, when the stop happens in the middle of sequence (e.g., ‘‘pause by the
red sofa’’). Use stronger, more terminal verbs like stop and come to a stop for the final action
or true endpoint (e.g., ‘‘stop at the glass doors’’). This distinction helps the agent decide

whether to hold briefly or end its navigation.

- **Landmark Detection**: Requires identifying and responding to specific objects or features in the
environment. Triggered by mentions of visible items like ‘‘lamp’’, ‘‘chair’’, ‘‘red sofa’’, ‘‘
painting’’. Used when object recognition is necessary to proceed or confirm position.

- **Area and Region Identification**: Involves recognizing or transitioning between distinct spaces or
rooms. Triggered by mentions like ‘‘enter the kitchen’’, ‘‘in the bedroom’’, ‘‘exit hallway’’.

Requires understanding of semantic regions based on context or appearance.

<Output Format>
Return only the instruction sentence. Do not include tags, labels, or formatting.

---

<Trajectory Images>
‘‘{path_images}’’

<Focused Skill>
‘‘{skill_name}’’

Listing 2: Prompt used for Atomic Skill-specific Data Synthsis
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You are an expert at converting natural language navigation instructions into detailed, logically
ordered sub-instructions for agents.

<Task>
- Break down instructions into a sequence of minimal, goal-directed steps.
- Make all implicit temporal or spatial relationships explicit.
- Preserve execution order by reconstructing intermediate actions that are implied, not directly

stated.

<Logic Rules>
- (A) --> [after / then / once / as soon as] --> (B): Do A fully, then B.
- (B) --> [before] --> (A): Move toward A, then perform B at a point prior.
- (A) --> [until] --> (B): Continue A until B is reached.
- Avoid ‘‘then’’, ‘‘before’’, ‘‘until’’, ‘‘once’’ etc. in the output.

<Formatting Rules>
- Single sentence, steps separated by periods.
- Each step must be minimal, concrete, and goal-focused.

<Examples>
**Example 1:**
Instruction: ‘‘Turn around and walk down the stairs. Stop once you get down them.’’
Output:
Turn around. Walk down the stairs. Stop at the bottom of the stairs.

**Example 2:**
Instruction: ‘‘Walk toward the dining room but turn left before entering it and go into the open area

.’’
Output:
Walk toward the dining room. Stop at the entrance. Turn left. Enter the open area.

**Example 3:**
Instruction: ‘‘After you leave the laundry room, make a left in the hallway, and go to the bedroom

straight ahead. When you are in the doorway of the room go to the doorway of the closet on the
left and wait.’’

Output:
Exit the laundry room. Turn left in the hallway. Walk to the bedroom straight ahead. Enter the doorway

of the bedroom. Go to the doorway of the closet on the left. Wait there.

**Example 4:**
Instruction: ‘‘Start moving forward down the corridor. You will pass offices on your left and right.

Keep going down the hallway until you get to an exit sign on your right and what looks like some
lockers in front of you. There will also be a brown door with an exit sign above it in front of
you.’’

Output:
Start moving forward down the corridor. Pass the offices on your left and right. Continue walking down

the hallway. Reach the exit sign on your right and the lockers in front of you. Stop in front of
the brown door with the exit sign above it.

---

<Original Instruction>:
‘‘{instruction}’’

Listing 3: Prompt used for Temporal Reordering
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You are a visual reasoning assistant for indoor navigation.
<Task>:
Your task is to analyze a list of previously observed images and a natural language instruction.
Determine which parts of the instruction have already been completed, and return the next step to be

executed.
<Response Rules>
Your response must:
- Return the next action using *exact phrasing* from the reordered instruction (no paraphrasing).
- Match the sub-instruction to the visual context from previous images.
- If the goal (e.g., pool table) has clearly been reached, return the final sub-instruction.
- If *all* sub-instructions have been completed based on the visual path, do not return anything

further. Stop reasoning.
- If the final destination has been reached and the last step is a positional or waiting action (e.g.,

‘‘wait there’’, ‘‘step to the left’’), return that as the next step.
- You must reason about whether the agent is already at the destination.
- If the current image shows the goal destination (e.g., inside the room with the pool table, or

inside the open doorway), and the instruction contains a final step like ‘‘wait’’ or ‘‘adjust
your position’’, that is the next sub-instruction.

---
Use the following reasoning strategy to determine what to do next:
<Step-by-Step Reasoning Instructions>:
1. Decompose the instruction into sub-instructions.
- Break the full instruction into smaller steps. Each sentence or clause typically represents one step.

- Example:
- Original: ‘‘At the bottom of the stairs, go through the nearest archway to your left. Head

straight until you enter the room with a pool table. Step slightly to the left to get out of
the way.’’

- Decomposed:
- ‘‘At the bottom of the stairs, go through the nearest archway to your left.’’
- ‘‘Head straight until you enter the room with a pool table.’’
- ‘‘Step slightly to the left to get out of the way.’’

2. Use the previous sub-instruction list to identify completed steps.
- Do not reissue any previously executed sub-instructions.
- Compare upcoming steps against what may have been visually completed, even if not explicitly

executed one-by-one.
3. Analyze the sequence of previous viewpoint images.
- Use visual context to infer if *multiple* sub-instructions have been completed in a single

transition.
- If image progression clearly shows the agent has already bypassed an intermediate area or reached a

later goal, mark those steps as implicitly complete.
4. Evaluate remaining sub-instructions for completion.
- If the current image shows the agent at or beyond the target of a sub-instruction, that step can be

considered completed.
- If the current image shows the agent inside the goal location and only a final positional

instruction remains (e.g., ‘‘Step slightly to the left’’), return that final instruction.
5. Select the next uncompleted sub-instruction that is visually and contextually justified.
- Use exact wording from the original instruction.
- Do not return instructions that the agent already visually fulfilled, even if they were skipped.
6. Output the result in the following JSON format:
{
"Sub-instruction to be executed": "<exact next instruction clause>",
"Reasoning": "<why this is the next step based on image sequence>"
}
CHECKPOINT:
If multiple sub-instructions were completed based on a single or continuous image segment, skip them

and jump to the next logical, visually unfulfilled step.
---

Now, using the instruction and the visual history, identify the next step.
IMPORTANT: Your response must be a valid JSON object without any surrounding text, code blocks, or

explanations.
Do not include markdown formatting like ‘‘‘json or ‘‘‘.

<Original Whole Instruction>:
‘‘{instruction}’’
<Previous Sub-Instructions>:
‘‘{previous_sub_instructions}’’
<Previous Viewpoint Images>:

Listing 4: Prompt used for Subgoal Localizer in Action Router
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You are a visual reasoning assistant for indoor navigation.

<Available Skills>:
[‘‘Direction Adjustment’’, ‘‘Vertical Movement’’, ‘‘Stop and Pause’’, ‘‘Landmark Detection’’, ‘‘Area

and Region Identification’’]

<Skills Explanation>:
- Direction Adjustment:
Involves turning or changing heading. Look for instructions like ‘‘turn left’’, ‘‘go back’’, or ‘‘face

the hallway’’. Used when the agent needs to rotate or reorient without necessarily changing
position.

- Vertical Movement:
Involves moving across floors or elevation changes. Triggered by terms like ‘‘go upstairs’’, ‘‘down

the stairs’’, or ‘‘take the elevator’’. Watch for floor changes in visuals or references to
vertical navigation.

- Stop and Pause:
Involves stopping at a specific location. Triggered by instructions like ‘‘stop’’, ‘‘wait’’, or ‘‘

stand in front of’’. Used when the endpoint or a mid-action pause is important.
- Landmark Detection:
Requires identifying and responding to specific objects or features in the environment. Triggered by

mentions of visible items like ‘‘lamp’’, ‘‘chair’’, ‘‘red sofa’’, ‘‘painting’’. Used when object
recognition is necessary to proceed or confirm position.

- Area and Region Identification:
Involves recognizing or transitioning between distinct spaces or rooms. Triggered by mentions like ‘‘

enter the kitchen’’, ‘‘in the bedroom’’, ‘‘exit hallway’’. Requires understanding of semantic
regions based on context or appearance.

<Task>:
1. Read and understand the sub-instruction to be executed.
2. Use the reasoning explanation to infer what skills are likely required to carry out that sub-

instruction.
3. Choose the top 1 skill that is most relevant to the sub-instruction.

<Input>:
You will be given:
- The original full navigation instruction.
- The sub-instruction that should be executed next, based on reasoning.
- A reasoning explanation derived from the visual history and instruction.

Output exactly **one skill name** from the above list.
Do not provide explanations or additional text.

<Output Format>:
*****SKILL_NAME*****

<Example>
Original Whole Instruction: ‘‘At the bottom of the stairs, go through the nearest archway to your left.

Head straight until you enter the room with a pool table. Step slightly to the left to get out
of the way.’’

Sub-instruction to be executed for next step: ‘‘Head straight until you enter the room with a pool
table.’’

Reasoning based on previous viewpoints path and original instruction: The agent appears to be just
outside the archway. The next step is likely to involve entering the archway and preparing to
head straight.

Expected Output:
*****Landmark Detection*****

---

<Reordered Whole Instruction>:
‘‘{full_instruction}’’

Sub-instruction to be executed for next step:
‘‘{sub_instruction}’’

<Reasoning based on previous viewpoints path and original instruction>:
‘‘{reasoning}’’

Listing 5: Prompt used for Skill Router in Action Router
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made
in the abstract and introduction accu-
rately reflect the paper’s contributions
and scope?
Answer: [Yes]
Justification: See the last part in Sec-
tion 1.
Guidelines:

• The answer NA means that the ab-
stract and introduction do not in-
clude the claims made in the paper.

• The abstract and/or introduction
should clearly state the claims
made, including the contributions
made in the paper and important as-
sumptions and limitations. A No or
NA answer to this question will not
be perceived well by the reviewers.

• The claims made should match the-
oretical and experimental results,
and reflect how much the results
can be expected to generalize to
other settings.

• It is fine to include aspirational
goals as motivation as long as it
is clear that these goals are not at-
tained by the paper.

2. Limitations
Question: Does the paper discuss the
limitations of the work performed by the
authors?
Answer: [Yes]
Justification: Section G
Guidelines:

• The answer NA means that the pa-
per has no limitation while the an-
swer No means that the paper has
limitations, but those are not dis-
cussed in the paper.

• The authors are encouraged to cre-
ate a separate "Limitations" section
in their paper.

• The paper should point out any
strong assumptions and how ro-
bust the results are to violations
of these assumptions (e.g., inde-
pendence assumptions, noiseless
settings, model well-specification,
asymptotic approximations only
holding locally). The authors
should reflect on how these assump-
tions might be violated in practice
and what the implications would
be.

• The authors should reflect on the
scope of the claims made, e.g., if
the approach was only tested on
a few datasets or with a few runs.
In general, empirical results often
depend on implicit assumptions,
which should be articulated.

• The authors should reflect on the
factors that influence the perfor-
mance of the approach. For ex-
ample, a facial recognition algo-
rithm may perform poorly when
image resolution is low or images
are taken in low lighting. Or a
speech-to-text system might not be
used reliably to provide closed cap-
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tions for online lectures because it
fails to handle technical jargon.

• The authors should discuss the
computational efficiency of the pro-
posed algorithms and how they
scale with dataset size.

• If applicable, the authors should
discuss possible limitations of their
approach to address problems of
privacy and fairness.

• While the authors might fear that
complete honesty about limitations
might be used by reviewers as
grounds for rejection, a worse out-
come might be that reviewers dis-
cover limitations that aren’t ac-
knowledged in the paper. The au-
thors should use their best judg-
ment and recognize that individ-
ual actions in favor of transparency
play an important role in devel-
oping norms that preserve the in-
tegrity of the community. Review-
ers will be specifically instructed
to not penalize honesty concerning
limitations.

3. Theory assumptions and proofs
Question: For each theoretical result,
does the paper provide the full set of as-
sumptions and a complete (and correct)
proof?
Answer: [NA]
Justification: The paper does not present
formal theorems or proofs. Its contri-
butions are methodological and empiri-
cal. While the methodology is carefully
described and justified with ablations
and qualitative examples, there are no
explicit theoretical results requiring as-
sumptions or formal proofs.
Guidelines:

• The answer NA means that the pa-
per does not include theoretical re-
sults.

• All the theorems, formulas, and
proofs in the paper should be num-
bered and cross-referenced.

• All assumptions should be clearly
stated or referenced in the state-
ment of any theorems.

• The proofs can either appear in the
main paper or the supplemental ma-
terial, but if they appear in the sup-
plemental material, the authors are
encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof pro-
vided in the core of the paper
should be complemented by formal

proofs provided in appendix or sup-
plemental material.

• Theorems and Lemmas that the
proof relies upon should be prop-
erly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose
all the information needed to reproduce
the main experimental results of the pa-
per to the extent that it affects the main
claims and/or conclusions of the paper
(regardless of whether the code and data
are provided or not)?
Answer: [Yes]
Justification: Section 5, A and B
Guidelines:

• The answer NA means that the pa-
per does not include experiments.

• If the paper includes experiments,
a No answer to this question will
not be perceived well by the review-
ers: Making the paper reproducible
is important, regardless of whether
the code and data are provided or
not.

• If the contribution is a dataset
and/or model, the authors should
describe the steps taken to make
their results reproducible or verifi-
able.

• Depending on the contribution, re-
producibility can be accomplished
in various ways. For example, if
the contribution is a novel archi-
tecture, describing the architecture
fully might suffice, or if the con-
tribution is a specific model and
empirical evaluation, it may be nec-
essary to either make it possible
for others to replicate the model
with the same dataset, or provide
access to the model. In general.
releasing code and data is often
one good way to accomplish this,
but reproducibility can also be pro-
vided via detailed instructions for
how to replicate the results, access
to a hosted model (e.g., in the case
of a large language model), releas-
ing of a model checkpoint, or other
means that are appropriate to the
research performed.

• While NeurIPS does not require re-
leasing code, the conference does
require all submissions to provide
some reasonable avenue for repro-
ducibility, which may depend on
the nature of the contribution. For
example
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(a) If the contribution is primar-
ily a new algorithm, the paper
should make it clear how to re-
produce that algorithm.

(b) If the contribution is primarily
a new model architecture, the
paper should describe the archi-
tecture clearly and fully.

(c) If the contribution is a new
model (e.g., a large language
model), then there should either
be a way to access this model
for reproducing the results or
a way to reproduce the model
(e.g., with an open-source
dataset or instructions for how
to construct the dataset).

(d) We recognize that reproducibil-
ity may be tricky in some cases,
in which case authors are wel-
come to describe the particu-
lar way they provide for repro-
ducibility. In the case of closed-
source models, it may be that
access to the model is limited
in some way (e.g., to registered
users), but it should be possible
for other researchers to have
some path to reproducing or
verifying the results.

5. Open access to data and code
Question: Does the paper provide open
access to the data and code, with suf-
ficient instructions to faithfully repro-
duce the main experimental results, as
described in supplemental material?
Answer: [Yes]
Justification: The data and code are in-
cluded in supplemental material.
Guidelines:

• The answer NA means that paper
does not include experiments re-
quiring code.

• Please see the NeurIPS
code and data submis-
sion guidelines (https:
//nips.cc/public/guides/
CodeSubmissionPolicy) for
more details.

• While we encourage the release of
code and data, we understand that
this might not be possible, so “No”
is an acceptable answer. Papers
cannot be rejected simply for not
including code, unless this is cen-
tral to the contribution (e.g., for a
new open-source benchmark).

• The instructions should con-
tain the exact command and

environment needed to run to
reproduce the results. See the
NeurIPS code and data sub-
mission guidelines (https:
//nips.cc/public/guides/
CodeSubmissionPolicy) for
more details.

• The authors should provide instruc-
tions on data access and prepara-
tion, including how to access the
raw data, preprocessed data, inter-
mediate data, and generated data,
etc.

• The authors should provide scripts
to reproduce all experimental re-
sults for the new proposed method
and baselines. If only a subset of
experiments are reproducible, they
should state which ones are omitted
from the script and why.

• At submission time, to preserve
anonymity, the authors should re-
lease anonymized versions (if ap-
plicable).

• Providing as much information as
possible in supplemental material
(appended to the paper) is recom-
mended, but including URLs to
data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the
training and test details (e.g., data splits,
hyperparameters, how they were chosen,
type of optimizer, etc.) necessary to un-
derstand the results?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the pa-
per does not include experiments.

• The experimental setting should be
presented in the core of the paper
to a level of detail that is necessary
to appreciate the results and make
sense of them.

• The full details can be provided ei-
ther with the code, in appendix, or
as supplemental material.

7. Experiment statistical significance
Question: Does the paper report er-
ror bars suitably and correctly defined
or other appropriate information about
the statistical significance of the experi-
ments?
Answer: [No]
Justification: Instead, it supports its
main claims through extensive ablation
studies and qualitative examples, which
demonstrate the contribution of individ-
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ual components and the robustness of
SkillNav across benchmarks. While
these analyses provide useful insights
into performance variability, they do not
substitute for error bars or formal statis-
tical measures. Including such statistical
reporting would have strengthened the
empirical rigor and reproducibility of
the results.
Guidelines:

• The answer NA means that the pa-
per does not include experiments.

• The authors should answer "Yes"
if the results are accompanied by
error bars, confidence intervals, or
statistical significance tests, at least
for the experiments that support the
main claims of the paper.

• The factors of variability that the
error bars are capturing should
be clearly stated (for example,
train/test split, initialization, ran-
dom drawing of some parameter, or
overall run with given experimental
conditions).

• The method for calculating the
error bars should be explained
(closed form formula, call to a li-
brary function, bootstrap, etc.)

• The assumptions made should be
given (e.g., Normally distributed
errors).

• It should be clear whether the error
bar is the standard deviation or the
standard error of the mean.

• It is OK to report 1-sigma error
bars, but one should state it. The
authors should preferably report a
2-sigma error bar than state that
they have a 96% CI, if the hypoth-
esis of Normality of errors is not
verified.

• For asymmetric distributions, the
authors should be careful not to
show in tables or figures symmetric
error bars that would yield results
that are out of range (e.g. negative
error rates).

• If error bars are reported in tables
or plots, The authors should ex-
plain in the text how they were
calculated and reference the corre-
sponding figures or tables in the
text.

8. Experiments compute resources
Question: For each experiment, does the
paper provide sufficient information on
the computer resources (type of compute

workers, memory, time of execution)
needed to reproduce the experiments?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the pa-
per does not include experiments.

• The paper should indicate the type
of compute workers CPU or GPU,
internal cluster, or cloud provider,
including relevant memory and
storage.

• The paper should provide the
amount of compute required for
each of the individual experimental
runs as well as estimate the total
compute.

• The paper should disclose whether
the full research project required
more compute than the experi-
ments reported in the paper (e.g.,
preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted
in the paper conform, in every respect,
with the NeurIPS Code of Ethics
https://neurips.cc/public/
EthicsGuidelines?
Answer: [Yes]
Justification: It does not involve sen-
sitive human subjects, private data, or
practices that raise ethical concerns. The
work appears to conform fully to the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the
authors have not reviewed the
NeurIPS Code of Ethics.

• If the authors answer No, they
should explain the special circum-
stances that require a deviation
from the Code of Ethics.

• The authors should make sure to
preserve anonymity (e.g., if there is
a special consideration due to laws
or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both
potential positive societal impacts and
negative societal impacts of the work
performed?
Answer: [No]
Justification: The paper does not ex-
plicitly include a Broader Impacts sec-
tion. However, the contributions could
have positive societal impact by en-
abling safer, more generalizable, and
interpretable vision-and-language nav-

25

https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines


igation systems, which in turn may ben-
efit assistive robotics and accessibility
applications.
Guidelines:

• The answer NA means that there
is no societal impact of the work
performed.

• If the authors answer NA or No,
they should explain why their work
has no societal impact or why the
paper does not address societal im-
pact.

• Examples of negative societal im-
pacts include potential malicious
or unintended uses (e.g., disinfor-
mation, generating fake profiles,
surveillance), fairness considera-
tions (e.g., deployment of technolo-
gies that could make decisions that
unfairly impact specific groups),
privacy considerations, and secu-
rity considerations.

• The conference expects that many
papers will be foundational re-
search and not tied to particular ap-
plications, let alone deployments.
However, if there is a direct path to
any negative applications, the au-
thors should point it out. For ex-
ample, it is legitimate to point out
that an improvement in the qual-
ity of generative models could be
used to generate deepfakes for dis-
information. On the other hand, it
is not needed to point out that a
generic algorithm for optimizing
neural networks could enable peo-
ple to train models that generate
Deepfakes faster.

• The authors should consider pos-
sible harms that could arise when
the technology is being used as in-
tended and functioning correctly,
harms that could arise when the
technology is being used as in-
tended but gives incorrect results,
and harms following from (inten-
tional or unintentional) misuse of
the technology.

• If there are negative societal im-
pacts, the authors could also dis-
cuss possible mitigation strategies
(e.g., gated release of models, pro-
viding defenses in addition to at-
tacks, mechanisms for monitoring
misuse, mechanisms to monitor
how a system learns from feedback
over time, improving the efficiency
and accessibility of ML).

11. Safeguards
Question: Does the paper describe safe-
guards that have been put in place for
responsible release of data or models
that have a high risk for misuse (e.g.,
pretrained language models, image gen-
erators, or scraped datasets)?
Answer: [NA]
Justification: The paper introduces Skill-
Nav and skill-specific synthetic datasets,
but these do not carry the same high-risk
misuse potential as large pretrained lan-
guage models, generative image models,
or scraped internet-scale datasets. The
datasets are task-focused, controlled,
and primarily intended for navigation
research. Since the work poses no sig-
nificant risks of malicious dual-use, safe-
guards are not discussed and are not re-
quired in this case.
Guidelines:

• The answer NA means that the pa-
per poses no such risks.

• Released models that have a high
risk for misuse or dual-use should
be released with necessary safe-
guards to allow for controlled use
of the model, for example by re-
quiring that users adhere to usage
guidelines or restrictions to access
the model or implementing safety
filters.

• Datasets that have been scraped
from the Internet could pose safety
risks. The authors should describe
how they avoided releasing unsafe
images.

• We recognize that providing effec-
tive safeguards is challenging, and
many papers do not require this,
but we encourage authors to take
this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original
owners of assets (e.g., code, data, mod-
els), used in the paper, properly cred-
ited and are the license and terms of
use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: These assets are properly
cited in the text and referenced in the
bibliography, ensuring that the origi-
nal creators receive credit. While the
paper does not spell out individual li-
cense names, the datasets used are pub-
lic benchmarks distributed under permis-
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sive terms of use, and no evidence of
license violations is present.
Guidelines:

• The answer NA means that the pa-
per does not use existing assets.

• The authors should cite the origi-
nal paper that produced the code
package or dataset.

• The authors should state which ver-
sion of the asset is used and, if pos-
sible, include a URL.

• The name of the license (e.g., CC-
BY 4.0) should be included for
each asset.

• For scraped data from a particu-
lar source (e.g., website), the copy-
right and terms of service of that
source should be provided.

• If assets are released, the li-
cense, copyright information, and
terms of use in the package
should be provided. For popular
datasets, paperswithcode.com/
datasets has curated licenses for
some datasets. Their licensing
guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-
packaged, both the original license
and the license of the derived asset
(if it has changed) should be pro-
vided.

• If this information is not available
online, the authors are encouraged
to reach out to the asset’s creators.

13. New assets
Question: Are new assets introduced in
the paper well documented and is the
documentation provided alongside the
assets?
Answer: [Yes]
Justification: The paper introduces
SkillNav and accompanying synthetic
datasets designed for skill-specific VLN
training. These new assets are described
in detail within Section A and Section B,
including how they are generated, the
types of skills covered, and how they are
used for training and evaluation.
Guidelines:

• The answer NA means that the pa-
per does not release new assets.

• Researchers should communicate
the details of the dataset/code/-
model as part of their submissions
via structured templates. This in-
cludes details about training, li-
cense, limitations, etc.

• The paper should discuss whether
and how consent was obtained
from people whose asset is used.

• At submission time, remember to
anonymize your assets (if appli-
cable). You can either create an
anonymized URL or include an
anonymized zip file.

14. Crowdsourcing and research with hu-
man subjects
Question: For crowdsourcing experi-
ments and research with human subjects,
does the paper include the full text of
instructions given to participants and
screenshots, if applicable, as well as de-
tails about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve
crowdsourcing or experiments with hu-
man subjects. All datasets used are
synthetic or standard publicly available
VLN datasets.
Guidelines:

• The answer NA means that the pa-
per does not involve crowdsourcing
nor research with human subjects.

• Including this information in the
supplemental material is fine, but if
the main contribution of the paper
involves human subjects, then as
much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of
Ethics, workers involved in data
collection, curation, or other labor
should be paid at least the mini-
mum wage in the country of the
data collector.

15. Institutional review board (IRB) ap-
provals or equivalent for research
with human subjects
Question: Does the paper describe po-
tential risks incurred by study partici-
pants, whether such risks were disclosed
to the subjects, and whether Institutional
Review Board (IRB) approvals (or an
equivalent approval/review based on the
requirements of your country or institu-
tion) were obtained?
Answer: [NA]
Justification: The paper does not involve
crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the pa-
per does not involve crowdsourcing
nor research with human subjects.

• Depending on the country in which
research is conducted, IRB ap-
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proval (or equivalent) may be re-
quired for any human subjects re-
search. If you obtained IRB ap-
proval, you should clearly state this
in the paper.

• We recognize that the procedures
for this may vary significantly be-
tween institutions and locations,
and we expect authors to adhere
to the NeurIPS Code of Ethics and
the guidelines for their institution.

• For initial submissions, do not in-
clude any information that would
break anonymity (if applicable),
such as the institution conducting
the review.

16. Declaration of LLM usage
Question: Does the paper describe the
usage of LLMs if it is an important, orig-
inal, or non-standard component of the
core methods in this research? Note
that if the LLM is used only for writ-
ing, editing, or formatting purposes and
does not impact the core methodology,
scientific rigorousness, or originality of
the research, declaration is not required.
Answer: [Yes]
Justification: The LLMs are used as cen-
tral components, which can be seen in
Section 4.3.1 and Section 4.3.2.
Guidelines:

• The answer NA means that the
core method development in this
research does not involve LLMs
as any important, original, or non-
standard components.

• Please refer to our LLM pol-
icy (https://neurips.cc/
Conferences/2025/LLM) for
what should or should not be
described.
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