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Abstract

Deep neural networks (DNNs) are notorious for making more mistakes for the
classes that have substantially fewer samples than the others during training. Such
class imbalance is ubiquitous in clinical applications and very crucial to handle
because the classes with fewer samples most often correspond to critical cases (e.g.,
cancer) where misclassifications can have severe consequences. Not to miss such
cases, binary classifiers need to be operated at high True Positive Rates (TPRs) by
setting a higher threshold, but this comes at the cost of very high False Positive
Rates (FPRs) for problems with class imbalance. Existing methods for learning
under class imbalance most often do not take this into account. We argue that
prediction accuracy should be improved by emphasizing the reduction of FPRs
at high TPRs for problems where misclassification of the positive, i.e. critical,
class samples are associated with higher cost. To this end, we pose the training
of a DNN for binary classification as a constrained optimization problem and
introduce a novel constraint that can be used with existing loss functions to enforce
maximal area under the ROC curve (AUC) through prioritizing FPR reduction
at high TPR. We solve the resulting constrained optimization problem using an
Augmented Lagrangian method (ALM). Going beyond binary, we also propose
two possible extensions of the proposed constraint for multi-class classification
problems. We present experimental results for image-based binary and multi-class
classification applications using an in-house medical imaging dataset, CIFAR10,
and CIFAR100. Our results demonstrate that the proposed method improves the
baselines in majority of the cases by attaining higher accuracy on critical classes
while reducing the misclassification rate for the non-critical class samples.1

1 Introduction

Deep Neural Networks (DNNs) perform extremely well in many classification tasks when sufficiently
large and representative datasets are available for training. However, in many real world applications,
it is not uncommon to encounter highly-skewed class distributions, i.e., majority of the data belong to
only a few classes while some classes are represented with scarce instances. Training DNNs on such
imbalanced datasets leads to models that are biased toward majority classes with poor prediction
accuracy for samples of minority class. While this is problematic for all such applications, it poses an
even greater issue for “critical” applications where misclassifying samples belonging to the minority
class can have severe consequences. One domain where such applications are common and machine
learning is having an important impact is medical imaging.

In medical imaging, applications with data imbalance are ubiquitous [14] and costs of making some
types of mistakes are more severe than others. For instance, in a diagnosis application, discarding a

1Code is available at: https://github.com/salusanga/alm-dnn.
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cancer case as healthy (False Negative) is more costly than classifying a healthy subject as having
cancer (False Positive). While the latter creates burden for the subject as well as health-care system
through additional tests that may be invasive and expensive, the former, i.e. failure to identify a
cancerous case, would delay the diagnosis and jeopardise the treatment success. In such applications,
binary classifiers are operated at high True Positive Rates (TPRs) even when this means having higher
False Positive Rates (FPRs). To make matters more complicated, there are usually significantly fewer
samples to represent critical classes, where mistakes are more severe. For instance, in [6] authors
found out that in prostate cancer screening only 30% of even the most suspicious cases identified with
initial testing actually have cancer. Such class imbalance increases the FPR even higher in “critical”
applications, because the models tend to misclassify minority classes more often. Useful algorithms
need to achieve low FPR at high TPR operating points, even under class imbalance.

While various methods for learning with imbalanced datasets exist, to the best of our knowledge,
these methods do not take into account the fact that “critical” applications need to be operated at high
accuracy for the critical classes. We believe that for such applications ensuring low misclassification
rate for the non-critical samples and high accuracy for the critical classes should be the main goal,
to make binary classifiers useful in practice. This motivates us to design new strategies for training
DNNs for classification.

Contribution: In this paper, we pose the training of a DNN for binary classification under class
imbalance as a constrained optimization problem and propose a novel constraint that can be used
with existing loss functions. We define the constraint using Mann-Whitney statistics [16] in order
to maximize the AUC, but in an asymmetric way to favor reduction of false positives at high
true positive (or low false negative) rates. Then, we transfer the constrained problem to its dual
unconstrained optimization problem using an Augmented Lagrangian method (ALM) [2]. We
optimize the resulting loss function using stochastic gradient descent. Unlike the existing methods
that directly optimize AUC, we incorporate AUC optimization in a principled way into a constrained
optimization framework. We finally present two possible extensions of the proposed constraint for
multi-class classification problems.

We present an extensive evaluation of the proposed method for image-based binary and multi-class
classification problems on three datasets: an in-house medical dataset for prostate cancer, CIFAR10,
and CIFAR100 [11]. In all datasets, we perform experiments by simulating different class imbalance
ratios. In our experiments, we apply the proposed constraint to 9 different baseline loss functions,
most of which were proposed to handle class imbalance. We compare the results with the baselines
without any constraint. The results demonstrate that the proposed method improves the baselines in
majority of the cases.

2 Related work

Various methods have already been proposed to learn better models with class-imbalanced datasets.
We group the existing methods into three categories: cost sensitive training-based methods, sampling-
based and classifier-based methods. Here, we focus on the first one and present related work for the
other groups in the supplementary material for space reasons.

Cost sensitive training-based methods: This family of methods aims at handling class imbalance
by designing an appropriate loss function to be used during training. In particular, they design loss
functions to give more emphasis to the samples belonging to minority class, or the class with higher
associated risk, than the majority ones during training [22]. [25] proposes a loss function, which we
refer to as Weighted BCE (W-BCE), where samples from minority class are multiplied by a constant to
introduce more cost to misclassification of those samples. [10] proposes a function that aims to learn
more discriminative latent representations by enforcing DNNs to maintain inter-cluster and inter-class
margins, where clusters are formed using k-means clustering. They demonstrate that the tighter
constraint inherently reduces class imbalance. In a more recent work, [5] proposes a loss function
called class-balanced binary cross-entropy (CB-BCE) to weight BCE inversely proportionally to
the class frequencies to amplify the loss for samples from the minority class. In a similar vein, [13]
modifies BCE and propose symmetric focal loss (S-FL) by multiplying it with the inverse of the
prediction probability to introduce more cost to the samples that DNNs are not very confident. [15]
introduces symmetric margin loss (S-ML) by introducing a margin to the BCE loss. [12] investigates
different loss functions such as S-FL and S-ML, and propose their asymmetric versions, A-FL and
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A-ML, by introducing a margin for samples from the minority class to handle class imbalance. In a
different line of work, [23] proposes a method called mean squared false error by performing simple
yet effective modification to the mean squared error (MSE) loss. Unlike MSE, which computes an
average error from all samples without considering their classes, this loss computes a mean error for
each class and averages them. [3] proposes a label-distribution-aware margin (LDAM) loss motivated
by minimizing a margin-based generalization bound, optionally coupled with a training schedule that
defers re-weighting until after the initial stage. [19] introduces balanced meta-softmax for long-tailed
recognition, which accommodates the label distribution shift between training and testing, as well
as a meta sampler that learns to re-sample training set by meta-learning. [21] proposes a loss that
ignores the gradient from samples of large classes for the rare ones, making the training more fair.

A particular group within the cost sensitive training-based methods focuses on optimizing AUC and
our method falls into this group. AUC optimization is an ideal choice for class imbalance since
AUC is not sensitive to class distributions [4]. [18] proposes a support vector machine (SVM) based
loss function that maximizes AUC and demonstrates its effectiveness for the class imbalance. [26]
approaches the class imbalance problem from online learning perspective and proposes an AUC
optimization-based loss function. [7] proposes a one-pass method for AUC optimization that does
not require storing data unlike the previous online methods. Another online AUC optimization
method proposed by [24] formulates AUC optimization as a convex-concave saddle point problem.
Despite their usefulness, all aforementioned AUC optimization-based methods were applied to linear
predictive models, as this allows to simplify the Mann-Whitney statistics [16] for the definition of
AUC, and their performance on DNNs is unknown. [20] applies online AUC optimization on a small
dataset for breast cancer detection where they also mention that extension to larger datasets may
not be feasible. In a very recent work called mini-batch AUC (MBAUC) [8], authors extend AUC
optimization to non-linear models with DNNs by optimizing AUC with mini-batches and demonstrate
its effectiveness on various datasets.

The proposed constrained optimization method differs from the existing works in that it enforces
maximal AUC as a constraint in a way that favors reducing FPR at high TPR and can be used with
existing loss functions.

3 Background - Augmented Lagrangian method (ALM)

A generic optimization problem for an objective function F (θ) subject to the constraints C(θ) =
{c1(θ), ..., cm(θ)} can be expressed as [2, 17]:

arg min
θ∈Θ

F (θ); subject to C(θ) (1)

Augmented Lagrangian method (ALM) [1], also known as methods of multipliers, converts the
constrained optimization problem in Eq. (1) to an unconstrained optimization problem. ALM is
proposed to overcome the limitations of two earlier methods called quadratic penalty method and
method of Lagrangian multipliers which suffer from training instability and non-convergence due
to the difficulty of convexifying loss functions2. In ALM, the penalty concept is merged with the
primal-dual philosophy of classic Lagrangian function. In such methods, the penalty term is added
not to the objective function F (θ) but rather to its Lagrangian function, thus forming the Augmented
Lagrangian Function:

Lµ(θ, λ) = F (θ) + µ

m∑
i=1

∥∥ci(θ)∥∥2
+

m∑
i=1

λici(θ) (2)

In practice, this method consists in iteratively solving a sequence of problems as:

max
λk

min
θ
Lµk(θ, λk), θ ∈ Θ (3)

Where {λk} is a bounded sequence in Rm, updated as λk+1
i = λki + µci(θ). {µk} is a positive

penalty parameter sequence, with 0 < µk ≤ µk+1, µk → ∞, which may be either pre-selected or
generated during the computation according to a defined scheme. In ALM, increasing µk indefinitely

2Please consult supplementary material for more details of quadratic penalty method and method of La-
grangian multipliers.
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is not necessary as in the quadratic penalty method. Thus, it does not suffer from training instabilities
due to the constraint prevailing F (θ). Furthermore, it does not require convexity assumption as in the
method of Lagrange multipliers to ensure convergence [1].

4 Proposed methods

4.1 Proposed constraint for binary classification

Let F (θ) be a generic loss function that is used to train classification DNNs, fθ(.), for binary
problems. Let us also define p , {xp1, · · · , x

p
|p|} and n , {xn1 , · · · , xn|n|} as the sets of samples of

the positive (critical) and negative classes, respectively. Note that we choose p as the minority class
in our description, i.e., |p| < |n|, and assume that this is a critical class associated with higher risk of
making a mistake. We define our constrained optimization problem as follows:

arg min
θ

F (θ)

subject to
|n|∑
k=1

max

(
0,−

(
fθ(x

p
j )− fθ(x

n
k )
)

+ δ

)
= 0, j ∈ {1, ..., |p|},

(4)

where fθ(x) indicates output probability of the DNN on input x. Note that the constraint states that
the output of the DNN for each sample of critical class should be larger than the outputs of all of the
negative samples by a margin δ. Satisfying the constraint would directly ensure maximal AUC [16].

We define the equivalent unconstrained version of Eq. (4) by writing it in the form given in Eq. (2)

Lµ(θ, λ) = F (θ) +
µ
∑|p|
j=1 q

2
j

2 · |p| · |n|
+

∑|p|
j=1 λj · qj
|p| · |n|

(5)

where, qj =
∑|n|
k=1 max(0,−(fθ(x

p
j )− fθ(xnk )) + δ), µ is the penalty coefficient corresponding to

the quadratic penalty term, λj is the estimate of Lagrange multiplier corresponding to each positive
training sample j, and δ is the margin that we determine using a validation dataset.

The crucial aspect of the formulation is the asymmetry between positive and negative classes. A
constraint is defined for each sample from the positive class, thus each positive sample gets a separate
Lagrange multiplier. This form prioritizes the reduction of FPR at high TPR values as illustrated next.

We use Algorithm 1 to estimate the parameters of a DNN, θ, using the proposed loss function in
Eq. 5. The parameters θ are updated with every batch using gradient descent with learning rate
α. Concurrently, µ is increased using a multiplicative coefficient ρ only when a chosen metric
on validation is not improved, by a margin to avoid training instabilities. The validation metric
(ValMETRIC) is: 1) Validation AUC for the binary setup; 2) Validation Accuracy for the multi-class
version. We update λj in each iteration for each positive sample xpj .

Algorithm 1 ALM for Training DNNs

Input: θ(0), µ(0), λ(0)
j , ρ;

for t = 1, . . . , T do
for each mini-batch of xB with size B do

yB = f(XB);
Calculate q(t)

j ; . ∀j ∈ [1, B] and yj = y+

θ(t+1) ← θ(t) − α · ∇θLµ(θ(t), λ);
λ

(t+1)
j ← λ

(t)
j + µ(t) · q(t)

j ; . ∀j ∈ [1, B] and yj = y+

end for
if V alMETRIC(t) < V alMETRIC(t−1) then

µ(t+1) ← µ(t) · ρ;
else

µ(t+1) ← µ(t);
end if

end for
Return θ(t+1)
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4.2 Toy example describing our design choice
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Figure 1: Toy example that illustrates different
optimizations, which yield the same improvement
in AUC. The one that adds the green box to the
AUC however, leads to lower FPRs at the highest
TPRs. The ALM given in Eq. (5) prefers adding
the green box to improve the AUC rather than the
red one.

Recall that our goal with the constraint and the
final augmented loss function is to maximize
AUC through minimizing FPR for high TPR.
The design of the constraint is crucial to achieve
this goal. In Fig. 1, we demonstrate this on a toy
example. At the top we show 10 data samples
and order them with respect to a classifier’s out-
put for the samples, i.e., samples on the right are
assumed to yield higher output than those on the
left. The gray area in the figure below shows the
AUC for the toy data samples. Consider two dif-
ferent optimizations to increase the AUC. One
adds the red box and the other adds the green
box to the gray area. Both optimizations lead to
exactly the same AUC improvement, however,
only adding the green box reduces FPRs at the
highest TPRs.

In the proposed method, we design the con-
straint to achieve lower FPR at high TPR, such
that the optimization can reduce cost more by
adding the green box instead of the red box. To
see this, let us assume that the distances between
all the successive markers in the figure are the
same, and we denote this by ∆. Note that the

distances between markers indicate the differences between the outputs of the classifiers for the
samples corresponding to the markers. Let us also further assume that all the Lagrange multipliers
have the same value. In this case, one can verify that if the optimization swaps the locations of the
left most positive sample (red circle marker) and the negative sample to its immediate right (blue
triangle marker), the cost due to the constraint in Eq. (5) decreases by 39µ∆2

50 + 3λ∆
25 . Swapping the

locations of the right most negative sample and the positive sample to its left decreases the cost due
to the constraint by 19µ∆2

50 + 3λ∆
25

3. So, from the cost perspective, the optimization should prefer
the former swap over the latter, which corresponds to adding the green box to the AUC instead of
red box. Therefore, the augmented Lagrangian cost would be decreased further when FPR at the
highest TPR is reduced rather than increasing the TPR at the lowest FPR. Instead of defining the
constraint for each positive sample in Eq. (5), if we were to define it for each negative sample in
the exactly opposite way, i.e.,

∑|p|
j=1 max(0,−(fθ(x

p
j )− fθ(xnk )) + δ) = 0, k ∈ {1, . . . , |n|}, then

the situation would be reversed. The optimization would prefer adding the red box over the green
box to decrease the cost further. If we were to define a constraint for each positive-negative pair, i.e.,
fθ(x

p
j ) > fθ(x

n
k ),∀j and k, then adding the red or the green box to improve the AUC would yield

exactly the same decrease in the cost.

4.3 Extensions to multi-class classification

The proposed constraint can also be extended to multi-class classification with slight modifications.
Let us assume that we have a multi-class classification problem with C classes. In this case, there
can be multiple critical and non-critical classes depending on the application. Let us define the
corresponding family of sets, i.e., sets of sets, as P = {p1, · · · , p|P |} and N = {n1, · · · , n|N |}
where the sets pi and ni are as defined in the previous section. Also, note that |P ∪ N | = C and
P ∩N = ∅.
A main difference between binary and multi-class classification is the dimension of the output. While
fθ(x) was a single value for binary classification, in multi-class problem it is a vector with one value
for each class. Using the notation for the positive and negative classes, we write the output of the

3Derivations for this toy example and theoretical insights for our design choice are provided in the supple-
mentary material for convenience.
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network as fθ(x) = {fp
1

θ , · · · , fp
|P |

θ , fn
1

θ , · · · , fn|N|

θ }. Based on this, we define our first constraint
for multi-class classification as

qcj =

|N |∑
i=1

|ni|∑
k=1

max

(
0,−

(
fp

c

θ (xp
c

j )− fp
c

θ (xn
i

k )
)

+ δ

)
, c ∈ {1, · · · , |P |}, j ∈ {1, ..., pc} (6)

where fp
c

θ (x) indicates the output probability of DNN for the critical class pc. Note that the constraint
in Eq. (6) enforces that output probabilities of the DNN for critical classes should be larger for critical
samples than for samples of other classes. We refer to ALM with the first constraint as ALMm,1.

An alternative definition of constraint is also possible. The first constraint enforces that probabilities
of the critical classes should be larger for samples of each critical class. We can go a step further
and add penalty to enforce that probabilities of the non-critical classes should be smaller for critical
samples than the non-critical samples belonging to the corresponding class. We denote ALM with
the second constraint as ALMm,2.

qcj =

|N |∑
i=1

|ni|∑
k=1

max

(
0,−

(
fp

c

θ (xp
c

j )− fp
c

θ (xn
i

k )
)

+ δ

)
+ max

(
0,
(
fn

i

θ (xp
c

j )− fn
i

θ (xn
i

k )
)

+ δ

)
, c ∈ {1, · · · , |P |}, j ∈ {1, ..., pc}

(7)

In this formulation, the penalty does not view all non-critical classes as one, but also contributes
to improving classification accuracy in those classes as well, by increasing the gap between the
corresponding non-critical probability of critical and non-critical samples.

5 Experiments

In this section, we present our experimental evaluations on image-based classification tasks. We
perform experiments on three datasets: an in-house MRI medical dataset for prostate cancer and two
publicly available computer vision datasets, CIFAR10 and CIFAR100 [11].

In our evaluation, we experiment with different existing loss functions, most of which have been de-
signed to handle class imbalance: classic binary and multi-class cross-entropy (BCE, CE), symmetric
margin loss (S-ML) [15], symmetric focal loss (S-FL) [13], asymmetric margin loss (A-ML) and
focal loss (A-FL) [12], cost-weighted BCE (WBCE) [25], class-balanced BCE (CB-BCE) and CE
(CB-CE) [5], label-distribution-aware margin loss (LDAM) [3]. We first train DNNs for classification
using only the loss functions and then using our method, which adds the proposed constraint to the
loss function and solves Eq. (5), and we compare the classification performances. In addition, we also
compare the proposed method with directly optimizing AUC using the mini-batch AUC (MBAUC)
method proposed in [8] for the binary case.

The proposed method is implemented in PyTorch and we run all experiments on a Nvidia GeForce
GTX Titan X GPU with 12GB memory.

5.1 Datasets

Prostate MRI dataset consists of 2 distinct cohorts: 1) a group of 300 multiparametric prostate MRI
studies used for training and 2) another group of 100 multiparametric prostate MRI studies used for
testing the trained DNNs. There is no overlap between the groups. Consent from the each subject
is obtained to use the data for research purposes. Two board-certified radiologists with 10 and 7
years of experience in dedicated prostate imaging independently reviewed all examinations of the
training set and test set and scored whether Dynamic Contrast Enhanced (DCE) sequences would be
beneficial for cancer diagnosis. After completion of readings, a consensus was reached by the two
readers by reviewing all examinations with discrepant decisions. The goal of the binary classification
here is to identify subjects who do not require additional DCE imaging for accurate diagnosis, so
they can be spared from unnecessary injection and cost and duration of the scanning can be reduced.
In our experiments, we randomly split 20% of the training cohort as validation set by keeping the
class imbalance consistent across the datasets. In both training and testing cohorts, positive samples
represent 13% of all the patients which leads to an inherent 1:8 class ratio.
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CIFAR10 and CIFAR100 datasets For CIFAR10, in the binary experiments we randomly select
2 classes among 10 to pose a binary classification problem. Additional experiments with different
random selections are in the supplementary material. We use all the available training samples of the
selected majority class, while we randomly pick a varying number of training samples for the minority
class to obtain different class ratios, up to 1:200. We select 100 samples per class as validation set to
determine hyper-parameters. For testing, we use all the available test samples, which consist of 1000
images for each class. For CIFAR100 in the binary setup we select one super-class as majority one,
and a sub-class of another super-category as minority one. For training we use all the available 2250
samples of the selected larger class, and we randomly pick a varying number of training samples for
the minority class to obtain different class ratios, up to 1:200. We use 50 samples for each original
sub-class as validation set to perform the parameter search. For testing, we use all the available test
samples, which consist of 100 images for each sub-class. For the multi-class experiments, long-tailed
versions of CIFAR10 and CIFAR100 are built accordingly to [5, 3] and we consider the smallest class
as the only critical class4. To be consistent with recent works [5, 3, 19], we use balanced validation
and test sets in all the experiments on CIFAR datasets.

5.2 Training details

Network architectures: For the prostate MRI dataset, we use a 3D CNN that consist of cascaded
3D convolution, 3D max-pooling, intermediate ReLu activation functions and Sigmoid in the final
output. For the binary CIFAR10 and CIFAR100 datasets, we use ResNet-10, while ResNet-32 [9]
is adopted for the multi-class experiments, consistently with [3, 5]. Further training details can be
found in the supplementary material.

Ensembling for higher reliability: Model reliability is very crucial when training DNNs. Dealing
with small datasets may lead to dataset-dependent results even with the random splits, which could
completely hinder objective evaluation. To weaken this phenomenon, we adopt the following
ensembling strategy on MRI and for consistency we apply it on the binary CIFAR10 and CIFAR100
as well. Given a dataset and a class ratio, we create 10 random stratified splits of the dataset and
train 10 models independently. The larger portions are used for training and the smaller portions
for choosing hyper-parameters. During inference, all the models are applied on test samples and
predictions are averaged in the logit space before the sigmoid function to yield the final prediction.
We apply the ensembling to all the binary models we experiment with. This practice attenuates data
dependency and we observed that the final AUC is improved when compared to the average of AUCs
of different models, as presented in Table 3 for MRI sequences and in supplementary material for
CIFAR10 and CIFAR100.

Hyper-parameters selection: Selection of the best hyper-parameters is crucial both to ensure proper
and fair evaluation of the methods and to understand the true performance of any model. To achieve
this, we perform grid-search to determine the hyper-parameters that yield the highest AUC for the
binary experiments. For the multi-class tests we select the model that achieved the best overall
accuracy on the validation set, in order to be consistent with the related works. The test sets in all
experiments are not used for hyper-parameter selection. To reduce computational load, we select
the common hyper-parameters such as the optimizer, learning rate, and the activation functions
in the DNNs based on their performance with BCE loss function for the binary experiments, and
consistently with [3] for the multi-class ones. Then, we keep them fixed in all experiments on the
same dataset.

Besides the common hyper-parameters, the majority of the existing methods have hyper-parameters
that crucially affect their performance. Namely, these hyper-parameters are margin m for S-ML and
A-ML, exponent γ for S-FL and A-FL, weight of the cost c for WBCE and β for CB-BCE. We select
best values for these hyper-parameters from the respective candidate sets that we create based on the
information provided in the original papers for each of them.

In the proposed method, there are 4 parameters to be set: µ(0), λ(0), ρ, and δ. Thus, hyperparameters’
search is an important aspect of the proposed method. µ(0), λ(0), and ρ are stemming from ALM
and we follow the guideline from [2] when setting them. We initialize all the Lagrangian multipliers
λ

(0)
i to 0. We choose µ(0) from the set {10−7, 10−6, 10−5, 10−4, 10−3}, as it is suggested to choose

a small value in the beginning and increase it iteratively using the equation µ(k+1) = ρ · µ(k). We

4Experiments with multiple critical classes are presented in supplementary materials.
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choose ρ from the set {2, 3} as ρ > 1 is suggested. Moreover, we do not increase ρ beyond 4 to avoid
potential dominance of the constraint on F (θ), since ρ is used to increase µ. Once we find the best
combination of µ and ρ based on the chosen metrics on the validation set, we fix them and we search
for δ as final step. Please see supplementary materials for further details on the hyper-parameters
selection.

Once the hyper-parameters for each model are selected, the training is performed and models are
applied to the test set to yield the final results, which are described next.

Table 1: Results on binary CIFAR10 for class ratio 1:100 and 1:200.

Dataset Binary CIFAR10, imb. 100 Binary CIFAR10, imb. 200

Training
method

FPR @
98%
TPR

FPR @
95%
TPR

FPR @
92%
TPR

Test
AUC

FPR @
98%
TPR

FPR @
95%
TPR

FPR @
92%
TPR

Test
AUC

BCE 56.0 45.0 29.0 91.2 75.0 55.0 40.0 87.3
S-ML 59.0 40.0 26.0 91.7 75.0 54.0 35.0 87.4
S-FL 59.0 40.0 27.0 91.7 78.0 59.0 43.0 85.7
A-ML 54.0 36.0 23.0 92.4 74.0 56.0 39.0 87.4
A-FL 50.0 38.0 24.0 92.3 76.0 59.0 40.0 86.2
CB-BCE 89.0 72.0 59.0 78.0 87.0 74.0 61.0 78.0
W-BCE 69.0 52.0 37.0 87.4 88.0 75.0 62.0 78.3
LDAM 65.0 48.0 34.0 89.0 78.0 63.0 45.0 86.4
MBAUC 86.0 71.0 56.0 74.0 89.0 83.0 69.0 67.9

ALM + BCE 52.0 34.0 21.0 93.1 70.0 54.0 39.0 86.7
ALM + S-ML 50.0 37.0 24.0 92.5 72.0 52.0 39.0 87.9
ALM + S-FL 55.0 39.0 25.0 91.5 74.0 55.0 41.0 86.9
ALM + A-ML 45.0 35.0 23.0 92.8 75.0 74.0 35.0 87.6
ALM + A-FL 49.0 37.0 23.0 92.7 78.0 57.0 37.0 87.0
ALM + CB-BCE 67.0 51.0 36.0 88.1 85.0 69.0 53.0 80.0
ALM + W-BCE 66.0 48.0 31.0 89.3 83.0 69.0 54.0 81.0
ALM + LDAM 60.0 42.0 31.0 91.0 73.0 61.0 43.0 85.6

5.3 Results

We present binary classification results on CIFAR10, CIFAR100, and the in-house medical imaging
datasets in Tables 1, 2 and 3, respectively. In the tables, we compare each baseline with the
corresponding ALM+baseline and present the best result among the two by bold. Also, the underlined
results indicate the best results among all. We evaluate the performance of the baselines and the
proposed method (ALM) using FPR at maximal levels of TPR (or minimal levels of false negative
rate (FNR)) and AUC on the test sets. In the binary experiments, ALM is overall able to consistently
improve the performance of almost all the loss functions, with regard to both AUC and FPRs at
maximal TPR levels. Even in those cases when AUC is improved to a moderate extent there is still
an improvement in FPRs, in accordance with our goal. Moreover, it is noticeable that the higher the
TPR, the higher the benefit of applying ALM, which is in accordance with our target applications. In
fact, considering that such classifiers in “critical” applications would be operated at high TPR (or low
FNR), reduction in FPR in these settings is the effect we desired from the proposed approach. Lastly,
we also observe in the tables that directly optimizing AUC via MBAUC does not provide the same
improvements as using the proposed ALM approach. We present additional binary classification
experiments in the supplementary material.

Additionally, we present the quantitative results of multi-class experiments in Table 4. A bold result
for a baseline means that it is able to outperform both constrained optimisation methods ALMm,1

and ALMm,2, otherwise the better constrained strategies are highlighted. As for the binary case,
underlined results indicate the best method for each metric. Comparison with the other baselines
are presented in the supplementary materials. In these experiments, we evaluate the performance by
computing the accuracy on the non-critical classes, at various levels of TPR for the critical-class. For
this purpose, the first step is to find a threshold on the logit of the critical class such that the desired
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Table 2: Results on binary CIFAR100 for class ratio 1:100 and 1:200.

Dataset Binary CIFAR100, imb. 100 Binary CIFAR100, imb. 200

Training
method

FPR @
98%
TPR

FPR @
95%
TPR

FPR @
90%
TPR

Test
AUC

FPR @
98%
TPR

FPR @
95%
TPR

FPR @
90%
TPR

Test
AUC

BCE 93.0 63.0 47.0 81.8 94.0 77.0 61.0 79.1
S-ML 89.0 65.0 43.0 82.7 95.0 75.0 64.0 79.7
S-FL 89.0 62.0 44.0 82.6 90.0 78.0 50.0 80.1
A-ML 91.0 63.0 44.0 81.8 95.0 75.0 66.0 79.8
A-FL 88.0 63.0 45.0 82.8 91.0 78.0 50.0 80.0
CB-BCE 93.0 75.0 52.0 78.8 93.0 78.0 51.0 78.7
W-BCE 88.0 59.0 41.0 79.7 95.0 63.0 51.0 79.7
LDAM 84.0 70.0 42.0 82.8 80.0 67.0 45.0 82.1
MBAUC 81.0 62.0 41.0 82.3 88.0 63.0 48.0 80.3

ALM + BCE 91.0 49.0 39.0 82.7 87.0 66.0 57.0 80.9
ALM + S-ML 88.0 69.0 41.0 81.7 87.0 73.0 55.0 80.7
ALM + S-FL 88.0 60.0 42.0 81.7 85.0 76.0 50.0 80.8
ALM + A-ML 89.0 55.0 37.0 82.7 92.0 63.0 45.0 81.0
ALM + A-FL 86.0 62.0 40.0 83.2 88.0 76.0 46.0 80.7
ALM + CB-BCE 89.0 59.0 36.0 83.8 85.0 66.0 44.0 81.0
ALM + W-BCE 87.0 53.0 39.0 83.2 79.0 62.0 44.0 81.3
ALM + LDAM 80.0 59.0 40.0 83.2 84.0 61.0 46.0 81.5

TPR is obtained for the important class. All the test samples whose logit of critical class exceeds the
selected threshold are assigned to the important class. The remaining samples that are not assigned
to the critical class are then classified based on the highest probability over the non-critical logits.
In addition to this metric, we present overall classification accuracy on all classes. The quantitative
results demonstrate that both of the multi-class strategies, ALMm,1 and ALMm,2 improve on the
baseline, reducing the error on non-critical classes, at high levels of accuracy on the important class.
Moreover, ALMm,2 is able to further improve the overall accuracy by a larger margin in almost all
the experiments thanks to the additional term in the constraint.

Table 3: Results on in-house MRI dataset.

Method FPR @0 FN FPR @1 FN Avg AUC AUC ens.

BCE 80.0 80.0 65.4±9.0 70.9
S-ML 81.0 77.0 67.3±7.0 71.5
S-FL 77.0 38.0 71.7±10.0 80.3
A-ML 77.0 73.0 68.0±9.0 74.2
A-FL 66.0 38.0 67.7±8.0 80.1
CB-BCE 100.0 34.0 72.0±5.0 77.7
W-BCE 56.0 42.0 68.8±6.0 80.5
LDAM 100.0 75.0 62.0±9.0 66.4
MBAUC 61.2 33.0 71.2±11.0 82.4

ALM + BCE 54.0 38.0 76.8±9.0 85.4
ALM + S-ML 81.0 33.0 72.5±9.0 80.3
ALM + S-FL 53.0 26.0 72.5±10.0 84.2
ALM + A-ML 72.0 53.0 67.2±5.0 76.4
ALM + A-FL 62.0 46.0 74.7±7.0 81.5
ALM + CB-BCE 86.0 34.0 73.0±9.0 79.5
ALM + W-BCE 59.0 40.0 72.4±6.0 81.4
ALM + LDAM 59.0 53.0 66.5±8.5 77.0
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Table 4: Results on long-tailed CIFAR10 for class imbalance 1:100 and 1:200. The Table shows the
error on all the non-important classes, after setting a threshold on the logit of the important class to
obtain 80, 90% TPR.

Dataset Long-tailed CIFAR10, imb. 100 Long-tailed CIFAR10, imb. 200

Training
method

Error @
80%
TPR

Error @
90%
TPR

Overall
Accuracy

Error @
80%
TPR

Error @
90%
TPR

Overall
Accuracy

CE 29.80 34.67 70.35 37.81 42.37 64.03
FL 32.21 36.47 69.20 38.50 42.21 62.90
CB-BCE 31.04 33.44 72.90 35.11 39.13 65.77
LDAM 26.57 29.86 71.80 34.41 45.72 65.87

ALMm,1 + CE 28.89 33.93 70.90 36.14 39.90 65.13
ALMm,1 + FL 29.59 34.94 69.74 36.87 41.87 64.23
ALMm,1 + CB-CE 27.89 30.27 72.10 33.09 35.44 65.34
ALMm,1+ LDAM 25.73 28.52 72.86 31.94 37.41 65.65

ALMm,2 + CE 29.53 34.09 71.30 35.10 39.19 64.35
ALMm,2 + FL 30.50 35.63 69.47 36.27 40.43 64.43
ALMm,2 + CB-CE 27.84 31.97 72.09 33.72 36.86 66.04
ALMm,2 + LDAM 24.76 28.91 73.32 31.02 36.09 67.41

6 Conclusion

In this paper, we pose the training of a DNN for binary classification under class imbalance as a
constrained optimization problem and propose a novel constraint that can be used with existing loss
functions. The proposed constraint is designed to maximize the AUC, but in an asymmetric way to
favor the reduction of FPR at high TPR (or low FNR). Then, we transfer the constrained problem
to its dual unconstrained optimization problem using an Augmented Lagrangian method (ALM)
[2] which we optimize using stochastic gradient descent. Additionally, we present two possible
extensions of the proposed constraint for multi-class classification problems.

We perform an extensive evaluation of the proposed constraints for binary and multi-class image
classification problems on both computer vision and medical imaging datasets. We compare the per-
formance of the proposed constraints with different baselines by simulating different class imbalance
ratio. The quantitative results demonstrate that the proposed constraints improve the performance of
the baselines in the majority of the cases in both binary and multi-class classification experiments.
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