
An Error Analysis of Flow Matching for Deep Generative Modeling

Zhengyu Zhou 1 Weiwei Liu 1

Abstract
Continuous Normalizing Flows (CNFs) have
proven to be a highly efficient technique for gen-
erative modeling of complex data since the in-
troduction of Flow Matching (FM). The core of
FM is to learn the constructed velocity fields of
CNFs through deep least squares regression. De-
spite its empirical effectiveness, theoretical inves-
tigations of FM remain limited. In this paper,
we present the first end-to-end error analysis of
CNFs built upon FM. Our analysis shows that for
general target distributions with bounded support,
the generated distribution of FM is guaranteed to
converge to the target distribution in the sense of
the Wasserstein-2 distance. Furthermore, the con-
vergence rate is significantly improved under an
additional mild Lipschitz condition of the target
score function.

1. Introduction
Contemporary generative models have primarily been de-
signed around the construction of a map between two prob-
ability distributions that transform samples from the prior
distribution to the target distribution. The roots of transport-
based sampling and density estimation can be traced back to
maximum entropy methods for Gaussianizing data (Tabak
& Turner, 2013; Tabak & Vanden-Eijnden, 2010). Normal-
izing Flows (NFs) provide a neural network implementation
of these methods by imposing a structured transformation
to make the change of measure tractable in discrete, sequen-
tial steps (Dinh et al., 2017; Durkan et al., 2019; Huang
et al., 2018; Papamakarios et al., 2017; Rezende & Mo-
hamed, 2015). Continuous Normalizing Flows (CNFs) ex-
tend this idea to a continuous-time setting by viewing the
map T (x) = Xt(x) as the solution of an ordinary differ-

1School of Computer Science, National Engineering Research
Center for Multimedia Software, Institute of Artificial Intelligence
and Hubei Key Laboratory of Multimedia and Network Communi-
cation Engineering, Wuhan University, Wuhan, China. Correspon-
dence to: Weiwei Liu <liuweiwei863@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ential equation (ODE) (Chen et al., 2018; Grathwohl et al.,
2019). However, training neural ODEs at scale is intractable,
as it requires simulating the ODE. The introduction of Flow
Matching (FM) has made CNFs highly efficient for gener-
ative modeling of complex data (Karras et al., 2022; Liu
et al., 2023; Albergo & Vanden-Eijnden, 2023; Lipman et al.,
2023; Neklyudov et al., 2022; Tong et al., 2023; Chen & Lip-
man, 2023; Albergo et al., 2023; Shi et al., 2023; De Bortoli
et al., 2021).

The success of FM motivates a line of research investigating
the generation quality guarantees from the perspective of
sampling (Albergo & Vanden-Eijnden, 2023; Albergo et al.,
2023; Lu et al., 2022; Chen et al., 2023c). These works
assume the underlying velocity field is accurately estimated
up to a small error under L2-norm and provide generation
quality guarantees. However, two issues remain unsolved in
these works. The first is to provide guarantees for learning
the velocity field of the underlying ODE. The second is
to relax the strong assumptions on the underlying velocity
field, which may be hard to check. This paper takes a step
forward by providing an end-to-end analysis1 of the deep
generative modeling based on FM under mild assumptions.
Our main contributions are summarized as follows:

• We provide the first end-to-end analysis for the deep
generative models based on FM.

• We prove that the deep generative models built upon
FM are guaranteed to converge to the target distribution
under mild assumption. Furthermore, the convergence
rate gets significantly improved under an additional
Lipschitz condition of the target score function.

1.1. Assumptions

Assumption 1.1 (Bounded support). The target distribution
π1 is supported on [0, 1]d.

Assumption 1.2 (Lipschitz score). Let π1(dx) =

1End-to-end learning in generative modeling involves using
finite samples from the target distribution as input to learn the
underlying distribution, and then generating samples from the
learned distribution as output. The goal of end-to-end analysis is
to provide guarantees for the accuracy of the learned distribution
based on the finite input samples, enabling more reliable generative
modeling.

1

An Error Analysis of Flow Matching for Deep Generative Modeling

e−V (x)dx. Moreover, the potential V (x) is twice contin-
uously differentiable and satisfies −αI ⪯ ∇2V (x) ⪯ αI
with α > 1.
Lemma 1.3. Suppose that Assumption 1.1 holds. Then
v∗(x, t) is ξ-Lipschitz continuous w.r.t. x on Rd × [0, T],

where ξ ≤ max
{

1
1−T ,

Td
(1−T)3

}
. Further, if 1

2 < T < 1,

we have v∗ is d
(1−T)3 -Lipschitz continuous w.r.t. x.

Lemma 1.4. Suppose that Assumption 1.1 and Assump-
tion 1.2 hold. Then v∗(x, t) is ζ(α, d)-Lipschitz continuous

on Rd× [0, 1] w.r.t. x, where ζ(α, d) = d
2

(
α+

√
α+ 2

d

)2
scales polynomially with α and d.
Remark 1.5. Previous work simply assumes the score func-
tion or velocity field to be Lipschitz continuous w.r.t. x
for every t (Chen et al., 2023c;a). In this paper, we follow
Wibisono & Jog (2018a;b); Mikulincer & Shenfeld (2021;
2022); Chewi & Pooladian (2022); Gao et al. (2024) to pro-
vide the Lipschitz continuity of the velocity field from the
properties of the target distribution.

The proofs in this section are deferred to Appendix D.5.

1.2. Main Results

All proofs of this section is deferred to Appendix C.3.
Theorem 1.6 (Consistency). Suppose Assumption 1.1 holds.
Given n samples from target distribution π1 and the net-
works as in Theorem 4.4, with parameter ζ replaced
by d

(1−T)3 , we use the estimated velocity field in (11),
to generate samples and choose the maximal step size
maxk=0,1...,N−1 |tk+1 − tk| = O(n−

1
d+5) and early stop-

ping time T (n) = 1− (log n)−1/6, we have

W2(π̃T (n), π1) → 0, in probability,

where π̃T (n) denotes the generated distribution at time
T (n).

The consistency of FM is mainly based on a mild assump-
tion, i.e. boundedness, which justifies the use of CNFs based
on FM.
Theorem 1.7 (Improved convergence rate). Suppose As-
sumption 1.1 and Assumption 1.2 hold. Given n samples
from target distribution π1 and the networks as in The-
orem 4.4, with parameter ζ replaced by ζ(α, d) defined
in Lemma 1.4, we use the estimated velocity field in (11)
to generate samples and choose the maximal step size
maxk=0,1...,N−1 |tk+1−tk| = O(n−

4
3(d+5)) and early stop-

ping time T (n) = 1− n−
1

3(d+5) . Then, with probability of
at least 1− 1

n , we have

W2(π̃T (n), π1) = Õ
(
n−

1
3(d+5)

)
,

where π̃T (n) denotes the generated distribution at time
T (n).

This result highlights the effectiveness of CNFs based on
FM in learning the underlying smooth distribution.

1.3. Related Work

Continuous Normalizing Flows CNFs are proposed by
viewing the map T (x) = Xt(x) as the solution of an ODE.
It is not until the introduction of FM that CNFs have grown
to be an efficient method for the generative modeling of
complex data (Karras et al., 2022; Liu et al., 2023; Albergo
& Vanden-Eijnden, 2023; Lipman et al., 2023; Neklyudov
et al., 2022; Tong et al., 2023; Chen & Lipman, 2023; Al-
bergo et al., 2023; Shi et al., 2023; De Bortoli et al., 2021).
The key idea of FM is to learn the constructed velocity
fields of CNFs through deep least squares regression. In
(Liu et al., 2023), a linear interpolant is proposed with a
focus on straight paths. This is employed as a step towards
rectifying the transport paths (Liu, 2022) through a pro-
cedure which improves sampling efficiency. In (Lipman
et al., 2023), the interpolant picture is assembled from the
perspective of conditional probability paths connecting to a
Gaussian, where a noise convolution is used to improve the
learning, at the cost of biasing the method. The paper (Tong
et al., 2023) introduces a novel simulation-free objective
for learning continuous-time flows conditioned on a general
distribution. Further, the authors have shown that lifting
the static optimal transport problem to the dynamic setting
leads to more efficient training and inference of flow models
by lowering the variance of the objective and simplifying
flows. FM is extended to the Riemannian setting by Chen
& Lipman (2023). Another line of work points out that the
probability path of CNFs encompasses that of the Diffusion
Models (DMs) (Albergo et al., 2023; Lipman et al., 2023;
Albergo & Vanden-Eijnden, 2023). If made to match the
performance of their stochastic counterparts, ODE-based
methods exhibit a number of desirable characteristics that
are absent for SDEs, such as an exact, computationally
tractable formula for the likelihood and easy application of
well-developed adaptive integration schemes for sampling.
Further, one of the most successful techniques of acceler-
ating continuous time process-based sampling, distillation
(Liu et al., 2023; Song et al., 2023; Salimans & Ho, 2022;
Zheng et al., 2022; Luhman & Luhman, 2021), requires
deterministic samplers.

Lipschitz Score v.s. Lipschitz Velocity Field In analyz-
ing the convergence of DMs and ODE-based models, the
assumption of Lipschitz continuity for the score function or
the velocity field has been widely used in previous works
(Chen et al., 2023c; Lu et al., 2022; Albergo & Vanden-
Eijnden, 2023; Chen et al., 2023a). However, these works
simply assume the Lipschitzness. In contrast, our paper
takes a step forward and rigorously proves that the velocity
field is Lipschitz continuous under mild assumptions on
the target distribution. By doing so, we provide a stronger

2

An Error Analysis of Flow Matching for Deep Generative Modeling

theoretical foundation for the application of CNFs based on
FM, and help to bridge the gap between theory and practice.

Analysis of ODE-based Models Significant recent works
(Albergo et al., 2023; Chen et al., 2023c; Lu et al., 2022)
have put effort into controlling the KL divergence between
the generated distribution and the target distribution. These
studies have demonstrated that simply regressing the veloc-
ity field is insufficient to control the likelihood with ODE-
based models. Instead, more advanced learning schemes are
required to ensure that the Fisher divergence is kept under
control. The work (Albergo & Vanden-Eijnden, 2023) has
shown that the Wasserstein-2 distance between the gener-
ated distribution and the target distribution can be controlled
by the objective of regressing the velocity field, assuming
the estimated velocity field is Lipschitz continuous. In our
paper, we take a different approach, demonstrating that
the true velocity field can be well approximated by a Lip-
schitz neural network. We compare our work with con-
current analyses for ODE-based models in Table 1 where
U(t; δ1, δ2, δ3, C, q) in the third row is an increasing func-
tion for δ1, δ2 and δ3 (Lu et al., 2022), where δi is an
upper bound for the score matching objective of order i,
i = 1, 2, 3.

2. Preliminaries
Notations We denote [N] := {0, · · · , N − 1}. For matrix
A and B, we say A ⪯ B, if B −A is positive semi-definite.
We denote the identity matrix in Rd×d by Id. For a vector
x ∈ Rd, we define x⊗2 := xxT . We denote the ℓ2-norm of

a vector x by ∥x∥ :=
√∑d

i=1 x
2
i . We define the operator

norm of a matrix A as ∥A∥op := sup∥x∥≤1 ∥Ax∥. For a
twice continuously differentiable function f : Rd → R, let
∇f,∇2f , and ∆f denote its gradient, Hessian, and Lapla-
cian, respectively. For a probability density function π
and a measurable function f : Rd → R, we define the
L2(π)-norm of f as ∥f∥L2(π) :=

(∫
(f(x))2π(x)dx

)1/2
.

We define L∞(K)-norm as ∥f∥L∞(K) := supx∈K |f(x)|.
For a vector function v : Rd → Rd, we define its
L2(π)-norm as ∥v∥L2(π) := ∥∥v∥∥L2(π) and L∞(K)-
norm as ∥v∥L∞(K) := ∥∥v∥∥L∞(K). We use the asymp-
totic notation f(x) = O(g(x)) to denote the statement
that f(x) ≤ Cg(x) for some constant C > 0 and Õ(·)
to ignore the logarithm. Given two distributions µ and
ν, the Wasserstein-2 distance is defined as W2(µ, ν) :=
infπ∈Π(µ,ν) E(x,y)∼π[∥x − y∥2]1/2, where Π(µ, ν) is the
set of all couplings of µ and ν. A coupling is a joint distri-
bution on Rd×Rd whose marginals are µ and ν on first and
second factors, respectively.

Flow Matching Given independent empirical observations
of X0 ∼ π0 and X1 ∼ π1, we want to find an ordinary

differential equation (ODE) on time t ∈ [0, 1],

dZt = v(Zt, t)dt, (1)

which converts Z0 from π0 to Z1 following π1. A line of
research (Liu et al., 2023; Liu, 2022; Albergo & Vanden-
Eijnden, 2023; Lipman et al., 2023; Neklyudov et al., 2022;
Wu et al., 2022; Lee et al., 2023b; Tong et al., 2023; Chen &
Lipman, 2023; Albergo et al., 2023; Shi et al., 2023) points
out that, the vector field can be found by solving a least
square regression problem:

min
v

L0(v) :=

∫ 1

0

EX0,X1

[
∥(X1 −X0)− v(Xt, t)∥2

]
dt,

with Xt = tX1 + (1− t)X0,
(2)

whereX0 ∼ π0,X1 ∼ π1, andXt is the linear interpolation
between X0 and X1. The exact minimum of (2) is achieved
by

v∗(x, t) = E [X1 −X0|Xt = x] . (3)

Velocity Field Approximation In practice, the velocity field
v∗ is approximated by neural networks. To avoid instability,
we often clip the integral interval [0, 1] with T . Namely, we
consider the following loss function:

min
v

L(v) := 1

T

∫ T

0

EX0,X1

[
∥(X1−X0)−v(Xt, t)∥2

]
dt,

with Xt = tX1 + (1− t)X0,
(4)

Given a family of neural networks NN, we consider the
following approximation error,

inf
v∈NN

∫ T

0

∥v(·, t)−v∗(·, t)∥2L2(πt)
dt = inf

v∈NN
L(v)−L(v∗),

(5)
where πt is the probability distribution of Xt defined in (2).
The equivalence in (5) is deferred to Lemma 4.1. We also
consider the best approximator in the neural networks

ṽ ∈ argmin
v∈NN

L(v). (6)

We organize the remaining sections as follows: In Section 3,
we show that the true velocity field can be well approxi-
mated by a Lipschitz neural network. Section 4 establishes
that the optimal neural network can be efficiently estimated.
Finally, in Section 5, we analyze the error of distribution
recovery using the estimated velocity field.

3. Approximation
In practice, the true velocity field is approximated by neural
networks. To ensure effective learning, the network class
should be expressive enough to approximate the true veloc-
ity field.

3

An Error Analysis of Flow Matching for Deep Generative Modeling

Main Assumptions
End-to-end
Analysis Theoretical Results

(Albergo & Vanden-Eijnden, 2023) v̂ is K̂-Lipschitz in x uniformly
on (t,x) ∈ [0, 1]× Rd W 2

2 (ρ1, ρ̂1) ≤ e1+2K̂H(v̂)

(Chen et al., 2023c)

∇ ln q←t (x) is Lsc,t-Lipschitz
in x and satisfies
∥∇ ln

q←t
q←s

(x)∥ ≤
β|t− s|c(1 + ∥x∥+ ∥∇q←t (x)∥)

KL(p̃∥q) ≤ ϵ provided
ℓ ≥ C1 and ℓh ≤ C−12 ,

where C1 and C2 depends
polynomially on

parameters in assumptions

(Lu et al., 2022)
∥∇2

x log pODE(xt)∥2 ≤ C,
∇ log qt is C-Lipschitz,

uniformly for t

DF (qt∥pODE
t) ≤

U(t; δ1, δ2, δ3, C, q)

Ours Bounded support Consistency
Bounded support and
Lipschitzness of the

target score functions

W2(π̃T (n), π1) =

Õ
(
n−

1
3(d+5)

)
Table 1. Comparison of existing theoretical results on ODE-based models.

Neural Network Structure We configure the ReLU net-
work vθ in the following way.

NN(L,M, J,K, κ, γ1, γ2)

=
{
v(x, t) = (WLσ(·) + bL) ◦ (WL−1σ(·) + bL−1) ◦ · · · ◦

(W1σ(·) + b1)([x
T , t]T) : network width bounded by M,

sup
x,t

∥v(x, t)∥ ≤ K, max{∥bi∥∞, ∥Wi∥∞} ≤ κ

for i = 1, · · · , L,
L∑

i=1

(∥Wi∥0 + ∥bi∥0) ≤ J,

∥v(x1, t)− v(x2, t)∥ ≤ γ1∥x1 − x2∥ for any t ∈ [0, T],

∥v(x, t1)− v(x, t2)∥ ≤ γ2∥t1 − t2∥ for any x
}
,

where the network width refers to the maximum dimensions
of the weight matrices, σ is the ReLU activation, and ∥ · ∥∞
and ∥ · ∥0 denote the maximum magnitude of entries and
the number of nonzero entries, respectively. In the sequel,
we write the neural network class as NN for brevity.

Theorem 3.1. Suppose Assumption 1.1 holds. Given an
approximation error ε > 0, for any velocity field v∗ with
Lipschitz constant ζ w.r.t. x on [0, T], we choose the hypoth-

esis class NN with

L = O
(
d+ log

1

ε

)
,

M = O

(
d3/2(log(d/ε))

d+1
2

(1− T)4
ζdε−(d+1)

)
,

J = O

(
d3/2(log(d/ε))

d+1
2

(1− T)4
ζdε−(d+1)

(
log

1

ε
+ d

))
,

K = O

√
d log d

ε

1− T

 ,

κ = O

(
ζ
√

log(d/ε) ∨
√
d3 log(d/ε)

(1− T)4

)
, γ1 = 10dζ,

γ2 = O

(√
d3 log(d/ε)

(1− T)4

)
.

There exists an v̂θ ∈ NN, such that for any t ∈ [0, T], we
have

∥v̂θ(·, t)− v∗(·, t)∥L2(πt) ≤ (
√
d+ 1)ε,

where πt is the distribution of Xt = tX1 + (1− t)X0.

The proof of Theorem 3.1 can be found in Appendix A.1.

Universal Approximation under the L2-norm Many ex-
isting universal approximation theory of neural networks
focus on approximating target functions on a compact do-
main under the L∞-norm (Yarotsky, 2017; Schmidt-Hieber,
2020; Gühring et al., 2020). Instead, we provide an L2-
approximation error bound over the unbounded input do-
main, where we tackle the unboundedness through a trunca-
tion argument.

4

An Error Analysis of Flow Matching for Deep Generative Modeling

Lipschitz Neural Network Conventional universal approx-
imation theories of neural networks do not typically pro-
vide guarantees on the Lipschitz continuity of the network
(Cybenko, 1989; Barron, 1993; Yarotsky, 2017), which is
important for effective learning of the true velocity field. A
line of research (Jiao et al., 2023; Dahal et al., 2022; Huang
et al., 2022) studies Lipschitz neural networks motivated by
the Wasserstein Generative Adversarial Network (WGAN)
(Arjovsky et al., 2017). The paper (Jiao et al., 2023) studies
the approximation capacity of ReLU neural networks with
norm constraints on the weights. Meanwhile, (Huang et al.,
2022, Lemma 11) provides an explicit bound on the Lipscitz
constant required for approximating Hölder functions. In
(Dahal et al., 2022), statistical guarantees for WGAN are
provided under the Wasserstein 1-distance, assuming that
the data distribution is supported on a low-dimensional man-
ifold. These techniques are scalable to our analysis, and for
brevity, we adopt the proof of the work (Chen et al., 2023a).
The key difference between our paper and (Chen et al.,
2023a) is that they assume the on-support score function
is Lipschitz uniformly for t ∈ [t0, T], whereas our paper
derives the Lipschitzness of the true velocity field from the
assumption on the target distribution. In our construction,
the Lipschitz continuity constraints γ1 and γ2 do not un-
dermine the approximation power of the neural networks.
In practice, such Lipschitz regularity is often enforced dur-
ing training by adding regularization (Virmaux & Scaman,
2018; Pauli et al., 2021; Gouk et al., 2021). From a theo-
retical perspective, the Lipschitz property of the estimated
velocity field is crucial in bounding the distribution recov-
ery error, as we demonstrate in Section 5. Moreover, the
Lipschitz continuity of the estimated velocity field ensures
the existence and uniqueness of the solution of the ODE.

Time as an Additional Input Dimension In our approach,
we introduce time t as an extra input dimension to the neural
network, and the network size scales polynomially with the
Lipschitz constant τ of the true velocity field with respect to
t. In Section D, we derive an upper bound for τ on a clipped
time span [0, T], where T < 1.

Proof Sketch Theorem 3.1 is established by construction.
A noteworthy distinction from the existing universal approx-
imation theories is that the input domain of the velocity
field is unbounded. To establish the theorem, we lever-
age a truncation argument. Let R be a truncation radius.
On the hypercube [−R,R]d × [0, T], we construct vθ as a
piece-wise linear function to approximate v∗ in the sense of
L∞([−R,R]d × [0, T]). Outside the hypercube, we simply
set vθ = 0. The L2 approximation error can be decomposed

as

∥vθ(·, t)− v∗(·, t)∥L2(πt)

=

(∫
∥x∥≤R

∥vθ(x, t)− v∗(x, t)∥2πt(dx)

)1/2

︸ ︷︷ ︸
(I)

+

(∫
∥x∥>R

∥vθ(x, t)− v∗(x, t)∥2πt(dx)

)1/2

︸ ︷︷ ︸
(II)

.

The error term (I) is directly bounded by the approximation
error of vθ on the hypercube. It is worth noting that since
vθ is bounded and v∗(Xt, t) has a bounded second moment,
the term (II) can be controlled by utilizing the tail behavior
of πt.

4. Generalization
In this section, we consider the generalization error of es-
timating the velocity field. We begin with the following
connection between the loss function L(v) and the L2 ap-
proximation error ∥v(·, t)− v∗(·, t)∥L2(πt).

Lemma 4.1. The following holds for any v(x, t):

L(v)− L(v∗) = 1

T

∫ T

0

∥v(·, t)− v∗(·, t)∥2L2(πt)
dt.

Proof. By some calculus, we have

E
[
∥X1 −X0 − v(Xt, t)∥2

]
=E

[
∥X1 −X0 − v∗(Xt, t) + v∗(Xt, t)− v(Xt, t)∥2

]
=E

[
∥X1 −X0 − v∗(Xt, t)∥2

]
+ ∥v(·, t)− v∗(·, t)∥2L2(πt)

+ 2E [⟨X1 −X0 − v∗(Xt, t),v
∗(Xt, t)− v(Xt, t)⟩] .

(7)
By taking expectation conditioned on Xt, we have

E [⟨X1 −X0 − v∗(Xt, t),v
∗(Xt, t)− v(Xt, t)⟩]

=E [E[⟨X1 −X0 − v∗(Xt, t),v
∗(Xt, t)− v(Xt, t)⟩|Xt]]

=E [⟨E[X1 −X0|Xt]− v∗(Xt, t),v
∗(Xt, t)− v(Xt, t)⟩]

=E [⟨v∗(Xt, t)− v∗(Xt, t),v
∗(Xt, t)− v(Xt, t)⟩] = 0.

Substituting the above identity into (7) and integrating on
interval [0, T], we obtain

L(v) = L(v∗) + 1

T

∫ T

0

∥v(·, t)− v∗(·, t)∥2L2(πt)
dt,

which concludes the proof.

According to Lemma 4.1, minimizing (4) is equivalent to
minimizing the difference between the network and the true
velocity field in L2(πt)-norm.

5

An Error Analysis of Flow Matching for Deep Generative Modeling

Empirical Evaluation Let us define

ℓ(x,v) :=
1

T

∫ T

0

∫
∥x− x0 − v(tx+ (1− t)x0, t)∥2

π0(x0)dx0dt.
(8)

In this paper, we choose the standard Gaussian distribution
as the prior distribution, i.e., π0 = N (0, Id), where d is the
dimension of the data. Given n independent and identically
distributed (i.i.d.) samples {x1,i}ni=1 from π1, we have the
following empirical version of the least square loss:

L(v) := 1

n

n∑
i=1

ℓ(x1,i,v). (9)

Since our main interest lies in the sample complexity of sam-
pling from π1, we consider the situation where ℓ(x,v) can
be computed exactly. However, in the usual implementation,
the expectation in (8) is replaced by empirical evaluation.
Given m i.i.d. samples {(tj ,x0,j)}mj=1 from Unif[0, T] and
π0, which are cheap to generate, then (8) has the following
empirical evaluation:

ℓ̂(x,v) :=
1

m

m∑
j=1

∥x−x0,j −v(tjx+(1− tj)x0,j , tj)∥2.

(10)
Due to the efficacy of sampling t and x0, ℓ(x,v) can be effi-
ciently approximated by ℓ̂(x,v) via polynomial-size sample
from Unif[0, T] and π0, which will be explained exactly in
Section 4.1. Now, we consider the Empirical Risk Mini-
mization (ERM):

v̂ ∈ argmin
v∈V

{
L̂(v) := 1

n

n∑
i=1

ℓ̂(x1,i,v)

}
(11)

4.1. Error Decomposition

The error of the estimated vector field (11) can be decom-
posed as:

L(v̂)− L(v∗) =L(v̂)− inf
v∈NN

L(v)︸ ︷︷ ︸
Generalization error

+ inf
v∈NN

(L(v)− L(v∗))︸ ︷︷ ︸
Approximation error

(12)

Further, the generalization error has the following decompo-
sition:

L(v̂)− inf
v∈NN

L(v) =L(v̂)− L̂(v̂) + L̂(v̂)− L̂(ṽ)

+ L̂(ṽ)− L(ṽ)

≤ L(v̂)− L̂(v̂) + L̂(ṽ)− L(ṽ),
(13)

where the inequality follows from ERM, and ṽ is defined in
(6). Note that, for any v ∈ NN, we have

L(v)− L̂(v) =L(v)− L(v) + L(v)− L̂(v)

=
1

n

n∑
i=1

(L(v)− ℓ(x1,i,v))

+
1

n

n∑
i=1

(ℓ(x1,i,v)− ℓ̂(x1,i,v))

(14)

By defining H = {ℓ(·,v) : v ∈
NN(L,M, J,K, κ, γ1, γ2)}, we can apply conven-
tional statistical learning arguments to analyze the first term
within the function class H. Due to the unbounded nature
of the loss function |x − x0 − v(tx + (1 − t)x0, t)|2,
controlling the second term requires an additional truncation
argument. We will provide further details on our approach
at the end of this section.

The complexity of a function class can be measured using
the covering number.

Definition 4.2 (Covering number). Let ρ be a pseudo-metric
on M and S ⊆ M. For any δ > 0, a set A ⊆ M is called
a δ-covering of S if for any x ∈ S there exists y ∈ A such
that ρ(x, y) ≤ δ. The δ-covering number of S, denoted by
N (δ, S, ρ), is the minimum cardinality of any δ-covering of
S.

The function class H exhibits the following properties,
which are useful for analyzing the generalization error.

(i) Bounded sup-norm According to Theorem 3.1, the
estimated velocity field v̂(x, t) can be chosen to satisfy

the condition ∥v̂∥L∞(Rd×[0,T]) ≤ K = O
(√

log(d/ε)

1−T

)
.

Then Lemma B.1 shows that

sup
v∈NN

sup
x∈[0,1]d

ℓ(x,v) ≲ d+K2 ≲ d+
log(d/ε)

(1− T)2
.

(ii) Covering number evaluation The covering number of
the network class selected in Theorem 3.1 is evaluated as
follows:

logN (δ,NN, ∥ · ∥L∞([−D,D]d×[0,1]))

≲ JL log

(
LM(D ∨ 1)κ

δ

)
.

(15)

The above evaluation can be found in (Chen et al., 2022b,
Lemma 5.3). Based on the above result, we have the follow-
ing evaluation for the covering number of the loss function
class H:

6

An Error Analysis of Flow Matching for Deep Generative Modeling

Lemma 4.3. The covering number of H is evaluated by

logN (δ,H, ∥ · ∥L∞([0,1]d))

≲ JL log

(
(K + d1/2)LMκ

√
log((K2 + d)/δ)

δ

)
.

(16)

The proof of Lemma 4.3 is deferred to Appendix B.2. It
is worth noting that the evaluation is non-trivial because
the evaluation in (15) considers the L∞-norm on a bounded
subspace, while the region of integration in (8) is unbounded.
To overcome this challenge, we utilize a truncation argument
to provide the covering number evaluation for H.

Based on the above discussion, we can now derive the fol-
lowing generalization bound

Theorem 4.4. Suppose Assumption 1.1 holds. For any
velocity field v∗ with Lipschitz constant ζ w.r.t. x, given
n samples {x1,i}ni=1 from π1 and m samples from π0 and
Unif[0, T], we choose NN as in Theorem 3.1 with ε =

n−
1

d+5 . Then with probability of at least 1− 1
n , it holds

1

T

∫ T

0

∥v̂(·, t)− v∗(·, t)∥2L2(πt)
dt

= Õ
(

ζd/2

(1− T)4

(
n−

2
d+5 + n

d+1
2(d+5)m−

1
2

))
,

where we omit factors in d, log n, logm, log(1 − T). By
settingm to be of the order O(n), we obtain the convergence

rate of order Õ
(

ζd/2

(1−T)4n
− 2

d+5

)
.

The proof can be found in Appendix B.3. To the best of our
knowledge, Theorem 4.4 provides the first explicit sample
complexity bound for FM. Theorem 4.4 becomes vacuous
when T tends to 1 with fixed sample size n. This is a
consequence of the blowup of the velocity field v∗(x, t) as
t tends to 1. Although a smaller early stopping time leads
to better generalization error, stopping the sampling process
at an early time results in a bad distribution recovery. In
Section 5, we will show the tradeoff in the choice of stopping
time T .

Proof Sketch The generalization error is divided into two
terms. The first term’s randomness arises from drawing sam-
ples from the target distribution π1, while the second term’s
randomness comes from sampling from π0 and Unif[0, T].
We encounter two difficulties in deriving the generaliza-
tion error bound. The first difficulty lies in evaluating the
covering number of the loss function class H for the first
term. The second difficulty stems from the unboundedness
of the term ∥x−x0 −v(tx+(1− t)x0, t)∥2 in the second
term. To handle this, we leverage the concentration property
of the Gaussian prior distribution and employ a truncation
argument to provide an upper bound for the second term

with high probability. Specifically, the second term can be
decomposed as follows:

ℓ(x1,i,v)− ℓ̂(x1,i,v) = ℓ(x1,i,v)− ℓtrunc(x1,i,v)︸ ︷︷ ︸
Truncation error (I)

+ ℓtrunc(x1,i,v)− ℓ̂trunc(x1,i,v)︸ ︷︷ ︸
Statistical error

+ ℓ̂trunc(x1,i,v)− ℓ̂(x1,i,v)︸ ︷︷ ︸
Truncation error (II)

,

where ℓtrunc(x1,i,v) := Et,x0 [∥x1,i − x0 −
v(tx + (1 − t)x0, t)∥21{∥x0∥∞ ≤ R}] and
ℓ̂trunc(x1,i,v) := 1

m

∑m
j=1 ∥x1,i − x0,j − v(tjx1,i +

(1 − t)x0,j , tj)∥21{∥x0,j∥∞ ≤ R}. We can control
Truncation error (I) by utilizing the concentration of
Gaussian variables. On the other hand, Statistical error
can be controlled using a covering number argument.
Furthermore, Truncation error (II) is likely to be equal to
zero due to the concentration of Gaussian variables.

5. Sampling
This section establishes distribution recovery guarantees
using the estimated velocity field.

Estimated Sampling Dynamics Given the estimated veloc-
ity field v̂, we can generate samples from an approximation
of the continuous flow ODE starting from the prior distribu-
tion:

dX̂t(x) = v̂(X̂t(x), t)dt, X̂0(x) = x ∼ π0, 0 ≤ t ≤ T.
(17)

Proposition 5.1. Suppose Assumption 1.1 holds. For any
velocity field v∗ with Lipschitz constant ζ w.r.t. x, given
n samples {x1,i}ni=1 from π1 and m samples from π0 and
Unif[0, T], we choose NN as in Theorem 3.1 with ε =

n−
1

d+5 . Then with probability of at least 1− 1
n , it holds

W2(πT , π̂T) = Õ
(
eγ1

ζd/4

(1− T)2
n−

1
d+5

)
. (18)

Proof. Note that Xt(x) and X̂t(x) form a coupling of πt
and π̂t, by the definition of Wasserstein-2 distance, we have

W 2
2 (πt, π̂t) ≤

∫
Rd

∥Xt(x)− X̂t(x)∥2π0(x)dx, (19)

where Xt is the flow map solution of (53) with the exact v∗

defined in (3) and X̂t is the flow map solution of (54). Now,
we consider the evolution of

Rt :=

∫
Rd

∥Xt(x)− X̂t(x)∥2π0(x)dx.

7

An Error Analysis of Flow Matching for Deep Generative Modeling

Differentiating on both sides, we get

dRt

dt
=2

∫
Rd

⟨v∗(Xt(x), t)−v̂(X̂t(x), t), Xt(x)−X̂t(x)⟩

π0(x)dx

= 2

∫
Rd

⟨v∗(Xt(x), t)− v̂(Xt(x), t) + v̂(Xt(x), t)

−v̂(X̂t(x), t), Xt(x)− X̂t(x)⟩π0(x)dx.
(20)

Using the inequality 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2, we have

2⟨v∗(Xt(x), t)− v̂(Xt(x), t), Xt(x)− X̂t(x)⟩ ≤

∥v∗(Xt(x), t)− v̂(Xt(x), t)∥2 + ∥Xt(x)− X̂t(x)∥2.
(21)

Note that v̂ ∈ NN defined in Theorem 3.1 is γ1-Lipschitz
continuous w.r.t. x, the Cauchy-Schwartz inequality implies

2⟨v̂(Xt(x), t)− v̂(X̂t(x), t), Xt(x)− X̂t(x)⟩

≤ 2γ1∥Xt(x)− X̂t(x)∥2.
(22)

Combining (20), (21) and (22), we obtain

dRt

dt
≤(1 + 2γ1)Rt

+

∫
Rd

∥v∗(Xt(x), t)− v̂(Xt(x), t)∥2π0(x)dx.

Therefore, by Lemma C.6 and since R0 = 0, we deduce

RT ≤ e1+2γ1

∫ T

0

∫
Rd

∥v∗(Xt(x), t)−v̂(Xt(x), t)∥2

π0(x)dxdt

= e1+2γ1

∫ T

0

∥v∗(·, t)− v̂(·, t)∥2L2(πt)
dt.

By Theorem 4.4 and the fact that v̂ is γ1-Lipschitz continu-
ous w.r.t. x since we choose NN as in Theorem 4.4, we get
the desired result.

Time Discretization In practice, we need to use a discrete-
time approximation for the sampling dynamics (17). Let
0 = t0 < t1 < · · · < tN = T be the discretization points.
We consider the explicit Euler discretization scheme:

dX̃t(x) = v̂(X̃tk(x), tk)dt, t ∈ [tk, tk+1), (23)

for k = 0, 1, . . . , N − 1 and X̃0(x) = x ∼ π0. We denote
the distribution of X̃T (x) by π̃T .

To establish the distribution recovery guarantees, we need
the following discretization error bound:

Lemma 5.2. Let 0 = t0 < t1 < · · · < tN = T be
the discretization points. For any neural network v̂ in

NN(L,M, J,K, κ, γ1, γ2), we have:

W2(π̂T , π̃T) = O

eγ1(γ1K + γ2)

√√√√N−1∑
k=0

(tk+1 − tk)3

 ,

where π̂ is the distribution of the final output of the estimated
sampling dynamics (17).

The proof of Lemma 5.2 can be found in Appendix C.2.

Tradeoff on Stopping Time T To show the tradeoff, we
first present the following lemma:

Lemma 5.3. Suppose Assumption 1.1 holds, we have

W2(πT , π1) ≲ (1− T)
√
d.

The proof of Lemma 5.3 is deferred to Appendix C.2. Propo-
sition 5.1 demonstrates that as the stopping time T tends
to 1, the error of using the estimated velocity field in the
sampling dynamics increases. Conversely, according to
Lemma 5.3, the Wasserstein-2 distance between πT and
π1 decreases as T approaches 1. This reveals a tradeoff
in the stopping time T between the error in velocity field
estimation and the distribution recovery.

6. Conclusion
This paper presents a statistical learning theory perspective
on CNFs based on FM. We demonstrate that a Lipschitz
neural network can approximate the true velocity field under
L2(πt)-norm and provide a sample complexity analysis for
estimating the velocity field. Furthermore, we prove that
under mild assumptions, the generated distribution of CNFs
based on FM converges to the target data in Wasserstein-2
distance. Additionally, we show that the convergence rate
can be significantly improved by assuming an additional
mild Lipschitz condition on the target score function. To the
best of our knowledge, this is the first end-to-end analysis
of FM.

Acknowledgement
This work is supported by the Key R&D Program of Hubei
Province under Grant 2024BAB038, the National Key R&D
Program of China under Grant 2023YFC3604702, the Fun-
damental Research Funds for the Central Universities under
Grant 2042025kf0045.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

8

An Error Analysis of Flow Matching for Deep Generative Modeling

References
Albergo, M. S. and Vanden-Eijnden, E. Building normaliz-

ing flows with stochastic interpolants. In The Eleventh
International Conference on Learning Representations,
2023.

Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E.
Stochastic interpolants: A unifying framework for flows
and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International conference
on machine learning, pp. 214–223. PMLR, 2017.

Barron, A. R. Universal approximation bounds for super-
positions of a sigmoidal function. IEEE Transactions on
Information theory, 39(3):930–945, 1993.

Brascamp, H. J. and Lieb, E. H. On extensions of the
brunn-minkowski and prékopa-leindler theorems, includ-
ing inequalities for log concave functions, and with an
application to the diffusion equation. Journal of func-
tional analysis, 22(4):366–389, 1976.

Chen, H., Lee, H., and Lu, J. Improved analysis of score-
based generative modeling: User-friendly bounds un-
der minimal smoothness assumptions. arXiv preprint
arXiv:2211.01916, 2022a.

Chen, M., Jiang, H., Liao, W., and Zhao, T. Efficient ap-
proximation of deep relu networks for functions on low
dimensional manifolds. In NeurIPS, 2019.

Chen, M., Liao, W., Zha, H., and Zhao, T. Distribu-
tion approximation and statistical estimation guaran-
tees of generative adversarial networks. arXiv preprint
arXiv:2002.03938, 2020a.

Chen, M., Liao, W., Zha, H., and Zhao, T. Statistical guar-
antees of generative adversarial networks for distribution
estimation. arXiv preprint arXiv:2002.03938, 2020b.

Chen, M., Jiang, H., Liao, W., and Zhao, T. Nonparametric
regression on low-dimensional manifolds using deep relu
networks: Function approximation and statistical recov-
ery. Information and Inference: A Journal of the IMA,
2022b.

Chen, M., Huang, K., Zhao, T., and Wang, M. Score ap-
proximation, estimation and distribution recovery of dif-
fusion models on low-dimensional data. arXiv preprint
arXiv:2302.07194, 2023a.

Chen, R. T. and Lipman, Y. Riemannian flow matching on
general geometries. arXiv preprint arXiv:2302.03660,
2023.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., and Zhang,
A. R. Sampling is as easy as learning the score: the-
ory for diffusion models with minimal data assumptions.
In The Eleventh International Conference on Learning
Representations, 2023b.

Chen, S., Daras, G., and Dimakis, A. G. Restoration-
degradation beyond linear diffusions: A non-asymptotic
analysis for ddim-type samplers. arXiv preprint
arXiv:2303.03384, 2023c.

Chewi, S. and Pooladian, A.-A. An entropic generaliza-
tion of Caffarelli’s contraction theorem via covariance
inequalities. arXiv preprint arXiv:2203.04954, 2022.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Dahal, B., Havrilla, A., Chen, M., Zhao, T., and Liao, W.
On deep generative models for approximation and esti-
mation of distributions on manifolds. Advances in Neural
Information Processing Systems, 35:10615–10628, 2022.

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. Diffu-
sion schrödinger bridge with applications to score-based
generative modeling. Advances in Neural Information
Processing Systems, 2021.

Dembo, A., Cover, T. M., and Thomas, J. A. Information
theoretic inequalities. IEEE Transactions on Information
theory, 37(6):1501–1518, 1991.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using real NVP. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios,
G. Neural spline flows. Advances in neural information
processing systems, 32, 2019.

Gao, Y., Jiao, Y., Wang, Y., Wang, Y., Yang, C., and Zhang,
S. Deep generative learning via variational gradient flow.
In International Conference on Machine Learning, pp.
2093–2101. PMLR, 2019.

Gao, Y., Huang, J., and Jiao, Y. Gaussian interpolation flows.
Journal of Machine Learning Research, 2024.

Gong, X., Yuan, D., and Bao, W. Discriminative metric
learning for partial label learning. IEEE Transactions
on Neural Networks and Learning Systems, 34(8):4428–
4439, 2021a.

9

An Error Analysis of Flow Matching for Deep Generative Modeling

Gong, X., Yuan, D., and Bao, W. Understanding partial
multi-label learning via mutual information. Advances in
Neural Information Processing Systems, 34:4147–4156,
2021b.

Gong, X., Yuan, D., and Bao, W. Partial label learning via
label influence function. In International Conference on
Machine Learning, pp. 7665–7678. PMLR, 2022a.

Gong, X., Yuan, D., Bao, W., and Luo, F. A unifying
probabilistic framework for partially labeled data learn-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(7):8036–8048, 2022b.

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. J. Regu-
larisation of neural networks by enforcing lipschitz conti-
nuity. Machine Learning, 110:393–416, 2021.

Grathwohl, W., Chen, R. T., Bettencourt, J., and Duvenaud,
D. Scalable reversible generative models with free-form
continuous dynamics. In International Conference on
Learning Representations, 2019.

Gühring, I., Kutyniok, G., and Petersen, P. Error bounds for
approximations with deep relu neural networks in w s, p
norms. Analysis and Applications, 2020.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 2020.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A.
Neural autoregressive flows. In International Conference
on Machine Learning, pp. 2078–2087. PMLR, 2018.

Huang, J., Jiao, Y., Li, Z., Liu, S., Wang, Y., and Yang,
Y. An error analysis of generative adversarial networks
for learning distributions. Journal of Machine Learning
Research, 2022.

Jiao, Y., Wang, Y., and Yang, Y. Approximation bounds for
norm constrained neural networks with applications to re-
gression and gans. Applied and Computational Harmonic
Analysis, 2023.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K.
(eds.), Advances in Neural Information Processing Sys-
tems, 2022.

Lee, H., Lu, J., and Tan, Y. Convergence of score-based
generative modeling for general data distributions. In In-
ternational Conference on Algorithmic Learning Theory,
pp. 946–985. PMLR, 2023a.

Lee, S., Kim, B., and Ye, J. C. Minimizing trajectory cur-
vature of ode-based generative models. arXiv preprint
arXiv:2301.12003, 2023b.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Liu, Q. Rectified flow: A marginal preserving approach
to optimal transport. arXiv preprint arXiv:2209.14577,
2022.

Liu, W., Shen, X., Du, B., Tsang, I. W., Zhang, W., and Lin,
X. Hyperspectral imagery classification via stochastic
hhsvms. IEEE Transactions on Image Processing, 28(2):
577–588, 2018.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
In The Eleventh International Conference on Learning
Representations, 2023.

Lu, C., Zheng, K., Bao, F., Chen, J., Li, C., and Zhu, J.
Maximum likelihood training for score-based diffusion
odes by high order denoising score matching. In Inter-
national Conference on Machine Learning, pp. 14429–
14460. PMLR, 2022.

Luhman, E. and Luhman, T. Knowledge distillation in
iterative generative models for improved sampling speed.
arXiv preprint arXiv:2101.02388, 2021.

Mikulincer, D. and Shenfeld, Y. The Brownian transport
map. arXiv preprint arXiv:2111.11521, 2021.

Mikulincer, D. and Shenfeld, Y. On the Lipschitz proper-
ties of transportation along heat flows. arXiv preprint
arXiv:2201.01382, 2022.

Neklyudov, K., Severo, D., and Makhzani, A. Action match-
ing: A variational method for learning stochastic dy-
namics from samples. arXiv preprint arXiv:2210.06662,
2022.

Oko, K., Akiyama, S., and Suzuki, T. Diffusion models are
minimax optimal distribution estimators. arXiv preprint
arXiv:2303.01861, 2023.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. Advances in
neural information processing systems, 30, 2017.

Pauli, P., Koch, A., Berberich, J., Kohler, P., and Allgöwer,
F. Training robust neural networks using lipschitz bounds.
IEEE Control Systems Letters, 6:121–126, 2021.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International conference on ma-
chine learning, pp. 1530–1538. PMLR, 2015.

10

An Error Analysis of Flow Matching for Deep Generative Modeling

Salimans, T. and Ho, J. Progressive distillation for fast
sampling of diffusion models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022, 2022.

Saumard, A. and Wellner, J. A. Log-concavity and strong
log-concavity: a review. Statistics surveys, 2014.

Schmidt-Hieber, J. Nonparametric regression using deep
neural networks with ReLU activation function. The
Annals of Statistics, 48(4):1875 – 1897, 2020.

Shi, Y., De Bortoli, V., Campbell, A., and Doucet, A. Dif-
fusion Schrödinger bridge matching. arXiv preprint
arXiv:2303.16852, 2023.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in neural
information processing systems, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative mod-
eling through stochastic differential equations. In 9th
International Conference on Learning Representations,
2021.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. arXiv preprint arXiv:2303.01469, 2023.

Tabak, E. G. and Turner, C. V. A family of nonparametric
density estimation algorithms. Communications on Pure
and Applied Mathematics, 66(2):145–164, 2013.

Tabak, E. G. and Vanden-Eijnden, E. Density estimation
by dual ascent of the log-likelihood. Communications in
Mathematical Sciences, 8(1):217–233, 2010.

Tong, A., Malkin, N., Huguet, G., Zhang, Y., Rector-Brooks,
J., Fatras, K., Wolf, G., and Bengio, Y. Conditional flow
matching: Simulation-free dynamic optimal transport.
arXiv preprint arXiv:2302.00482, 2023.

Virmaux, A. and Scaman, K. Lipschitz regularity of deep
neural networks: analysis and efficient estimation. Ad-
vances in Neural Information Processing Systems, 31,
2018.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge university
press, 2019.

Wang, G., Jiao, Y., Xu, Q., Wang, Y., and Yang, C. Deep
generative learning via schrödinger bridge. In Inter-
national Conference on Machine Learning, pp. 10794–
10804. PMLR, 2021.

Wibisono, A. and Jog, V. Convexity of mutual information
along the heat flow. In 2018 IEEE International Sympo-
sium on Information Theory (ISIT), pp. 1615–1619. IEEE,
2018a.

Wibisono, A. and Jog, V. Convexity of mutual information
along the Ornstein-Uhlenbeck flow. In 2018 International
Symposium on Information Theory and Its Applications
(ISITA), pp. 55–59. IEEE, 2018b.

Wu, L., Wang, D., Gong, C., Liu, X., Xiong, Y., Ranjan,
R., Krishnamoorthi, R., Chandra, V., and Liu, Q. Fast
point cloud generation with straight flows. arXiv preprint
arXiv:2212.01747, 2022.

Yarotsky, D. Error bounds for approximations with deep
relu networks. Neural Networks, 2017.

Zheng, H., Nie, W., Vahdat, A., Azizzadenesheli, K., and
Anandkumar, A. Fast sampling of diffusion models
via operator learning. arXiv preprint arXiv:2211.13449,
2022.

Zhou, Z. and Liu, W. Sample complexity for distributionally
robust learning under chi-square divergence. Journal of
Machine Learning Research, 24(230):1–27, 2023.

Zhou, Z. and Liu, W. Sequential kernel goodness-of-fit test-
ing. In International Conference on Machine Learning,
pp. 62057–62075. PMLR, 2024.

11

An Error Analysis of Flow Matching for Deep Generative Modeling

A. Approximation Error
A.1. Proof of Theorem 3.1

Proof. The goal is to find a network v̂ in NN to approximate the true vector field v∗. A major difficulty in approximating
v∗(x, t) is that the input space Rd × [0, T] is unbounded. To address this difficulty, we partition Rd into a compact subset
K and its complement Kc. On K × [0, T], we construct v̂ to achieve an L∞ approximation. On the Kc, we simply set
v̂(x, t) = 0. Since we assume π1 is supported on a compact set, the L2(πt) approximation error of v̂(x, t) to v∗(x, t) can
still be controlled.

• Approximation on K × [0, T]. We choose K = {x|∥x∥∞ ≤ R} to be a d-dimensional hypercube with edge length
2R > 0, where R will be determined later. On K × [0, T], we approximate k-coordinate maps v∗k(x, t) separately, where
v∗ = [v∗1(x, t), · · · , v∗d(x, t)]T .

First, we rescale the input by x′ = 1
2R (x+ R1) and t′ = t/T , where 1 := [1, · · · , 1]T , so that the transformed space is

[0, 1]d × [0, 1]. Such a transformation can be exactly implemented by a single ReLU layer.

By Lemma 1.4, v∗(x, t) is ζ-Lipschitz in x. We define the rescaled function on the transformed input space as v(x′, t′) :=
v∗(2Rx′ −R1, T t′), so that v is 2ζR-Lipschitz in x′.

We also denote the Lipschitz constant of v(x′, t′) w.r.t. t′ as Tτ(R), when x′ ∈ [0, 1]d. We denote

τ(R) := sup
t∈[0,T]

sup
x∈[−R,R]d

∥∂tv∗(x, t)∥

An upper bound for τ(R) is computed in Lemma D.4 by τ(R) = O
(

d3/2(R+1)
(1−T)4

)
. Now the goal becomes approximating v

on [0, 1]d × [0, 1].

Second, we partition [0, 1]d into non-overlapping hypercubes with equal edge length e1. We also partition the time interval
[0, 1] into non-overlapping sub-intervals of length e2. e1 and e2 will be chosen depending on the desired approximation
error. We denote N1 = ⌈ 1

e1
⌉ and N2 = ⌈ 1

e2
⌉.

Let m = [m1, · · · ,md]
T ∈ [N1]

d be a multi-index. We define v as

vi(x
′, t′) :=

∑
m∈[N1]d,j∈[N2]

v∗i

(
2R

m

N1
−R1, T

j

N2

)
Ψm,j(x

′, t′),

where Ψm,j(x
′, t′) is a partition of unity function, that is

∑
m∈[N1]d,j∈[N2]

Ψm,j(x
′, t′) ≡ 1 on [0, 1]d × [0, 1]. We choose

Ψm,j as a product of coordinate-wise trapezoid functions:

Ψm,j(x
′, t′) := ψ

(
3N2

(
t′ − j

N2

)) d∏
i=1

ψ

(
3N1

(
x′i −

mi

N1

))
where ψ is a trapezoid function,

ψ(a) :=

1, |a| < 1

2− |a|, |a| ∈ [1, 2]

0, |a| > 2.

We claim that

1. vi is an approximation of vi;

2. vi can be implemented by a ReLU neural network v̂i with small error.

Both claims are verified in (Chen et al., 2020b, Lemma 10), where we only need to substitute the Lipschitz constant 2ζR
and τ(R) into the error analysis. We use the coordinate-wise analysis in the proof of (Chen et al., 2020b, Lemma 10) for
deriving the Lipschitz continuity w.r.t. x′ and t′. Similar proofs can be found in Huang et al. (2022). By concatenating v̂i’s
together, we construct v̂θ = [v̂1, . . . , v̂d]

T . Given ε, if we achieve

sup
x′,t′∈[0,1]d×[0,1]

∥v̂θ(x
′, t′)− v(x′, t′)∥∞ ≤ ε,

12

An Error Analysis of Flow Matching for Deep Generative Modeling

the neural network configuration is

L = O
(
log

1

ε
+ d

)
, M = O

(
τ(R)(ζR)dε−(d+1)

)
, J = O

(
τ(R)(ζR)dε−(d+1)

(
log

1

ε
+ d

))
,

K = O

(√
dR

1− T

)
, κ = max {1, ζR, τ(R)} .

Here we already take e1 = O
(

ε
ζR

)
and e2 = O

(
ε

τ(R)

)
. The output range K is computed by K =

√
dmaxi sup(x,t)∈[−R,R]d×[0,T] ∥v∗i (x, t)∥. Combining with the input transformation layer, i.e., x → x′ and t → t′

rescaling, we have constructed network is Lipschitz continuous in x′, i.e., for any x1,x2 ∈ K and t ∈ [0, T], it holds

∥v̂θ(x1, t)− v̂θ(x2, t)∥∞ ≤ 10dζ∥x1 − x2∥.

Moreover, the network is also Lipschitz in t, i.e., for any t1, t2 ∈ [1, T] and ∥x∥∞ ≤ R, it holds

∥v̂θ(x, t1)− v̂θ(x, t2)∥∞ ≤ 10τ(R)|t1 − t2|.

Due to the partition of unity function, Ψm,j vanishes outside K, we have v̂θ(x, t) = 0 for ∥x∥∞ > R. Therefore the above
Lipschitz continuity in x extends to Rd.

• Bounding L2 approximation error. The L2 approximation error of v̂θ can be decomposed into two terms,

∥v∗(x, t)− v̂θ(x, t)∥L2(πt) =∥(v∗(x, t)− v̂θ(x, t))1{∥x∥∞ ≤ R}∥L2(πt)

+ ∥(v∗(x, t)− v̂θ(x, t))1{∥x∥∞ > R}∥L2(πt).

The first term on the right-hand side of the last display is bounded by

∥(v∗(x, t)− v̂θ(x, t))1{∥x∥∞ ≤ R}∥L2(πt) ≤
√
d sup
(x,t)∈K×[0,T]

∥v∗(x, t)− v̂θ(x, t)∥∞ ≤
√
dε.

The second term admits an upper bound in Lemma A.1. Specifically, when choosing R = O
(√

log d
ε

)
, we have

∥(v∗(x, t)− v̂θ(x, t))1{∥x∥∞ > R}∥L2(πt) ≤ ε.

As a result, with the choice of R, we obtain

∥v∗(x, t)− v̂θ(x, t)∥L2(πt) ≤ (
√
d+ 1)ε.

Substituting R into the network configuration, we obtain

L = O
(
d+ log

1

ε

)
, M = O

(
d3/2(log(d/ε))

d+1
2

(1− T)4
ζdε−(d+1)

)
,

J = O

(
d3/2(log(d/ε))

d+1
2

(1− T)4
ζdε−(d+1)

(
log

1

ε
+ d

))
, K = O

√
d log d

ε

1− T

 ,

κ = O

(
ζ
√
log(d/ε) ∨

√
d3 log(d/ε)

(1− T)4

)
, γ1 = 10dζ, γ2 = O

(√
d3 log(d/ε)

(1− T)4

)
.

A.2. Truncation error

Lemma A.1. Under Assumption 1.1, given ε > 0, with R = O
(√

log d
ε

)
, it holds

∥(v∗(x, t)− v̂θ(x, t))1{∥x∥∞ > R}∥L2(πt) ≤ ε.

13

An Error Analysis of Flow Matching for Deep Generative Modeling

Proof. For any R > 0, using the identity v∗(x, t) = E[X1 −X0|Xt = x], we have∫
{∥x∥∞}>R

∥v∗(x, t)∥2πt(dx)

=

∫
{∥x∥∞}>R

∥E[X1 −X0|Xt = x]∥2πt(dx)

≤
∫
{∥x∥∞}>R

E[∥X1 −X0∥2|Xt = x]πt(dx)

=EXt

[
E[∥X1 −X0∥2|Xt]1{∥Xt∥∞ > R}

]
≤E[∥X1 −X0∥21{∥Xt∥∞ > R}]
≤E[∥X1 −X0∥4]1/2P(∥Xt∥∞ > R)1/2,

(24)

where the second equality follows from the total expectation formula, and the last inequality follows from Cauchy-Schwartz
inequality. Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we have the following upper bound for the fourth moment,

E[∥X1 −X0∥4] ≤ E[(2∥X1∥2 + 2∥X0∥2)2]
≤ E[4∥X1∥4 + 4∥X0∥4]

≤ 4d2 + 4E

(d∑
i=1

X2
0,i

)2

= 4d2 + 4E

 d∑
k=1

X4
0,k +

∑
i ̸=j

X2
0,iX

2
0,j

= 8d(d+ 1),

(25)

where X0,i denotes the i-coordinate of X0. It remains to control the tail probability of Xt. Using the union inequality, we
have

P (∥Xt∥∞ > R) = P

(
d⋃

i=1

{|Xt,i| > R}

)

≤
d∑

i=1

P (|Xt,i| > R) .

Thus, it suffices to control the tail probability of Xt,i for i = 1, . . . , d, where Xt,i is the i-coordinate of Xt. Since we
assume π1 is supported on [0, 1]d, we have

P (|Xt,i| > R) ≤ P (t|X1,i|+ (1− t)|X0,i| > R)

≤ P
(
|X0,i| >

R− 1

1− t

)
.

Since X0,i is a standard Gaussian variable and thus sub-Gaussian with parameter 1 (Wainwright, 2019, Example 2.1), we
have the following tail probability bound,

P
(
|X0,i| >

R− 1

1− t

)
≤ 2 exp

(
− (R− 1)2

2(1− t)2

)
(26)

Combining (24), (25) and (26), we have∫
{∥x∥∞}>R

∥v∗(x, t)∥2πt(dx) ≤ 4(d+ 1)3/2 exp

(
− (R− 1)2

4(1− t)2

)
.

14

An Error Analysis of Flow Matching for Deep Generative Modeling

Let the right-hand side in the above inequality be smaller than ε2, we have

R ≥ 2(1− t)

(
2 log 2 +

3

2
log(d+ 1) + 2 log

1

ε

)1/2

+ 1.

So we can set R = O(
√
log d

ε) to guarantee ∥(v∗(x, t)− v̂θ(x, t))1{∥x∥∞ > R}∥L2(πt) ≤ ε.

B. Generalization Error
B.1. Bounding loss function

Lemma B.1. For any neural network v in NN(L,M, J,K, κ, γ1, γ2), we have supx∈[0,1]d |ℓ(x,v)| ≲ d+K2.

Proof. Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we have

ℓ(x,v) =
1

T

∫ T

0

∫
∥x− x0 − v(tx+ (1− t)x0, t)∥2π0(dx0)dt

≲
1

T

∫ T

0

∫
∥x− x0∥2π0(dx0)dt+

1

T

∫ T

0

∫
∥v(tx+ (1− t)x0, t)∥2π0(dx0)dt

≲ d+ sup
x,t

∥v(x, t)∥2

≲ d+K2,

where the second inequality follows from the fact that π1 is supported on [0, 1]d and E[∥x0∥2] = d. This concludes the
proof.

B.2. Covering number evaluation

Lemma B.2 (Covering number of H). For a neural network v : Rd × R → Rd, we define ℓ : Rd → R as

ℓ(x,v) :=
1

T

∫ T

0

∫
∥x− x0 − v(tx+ (1− t)x0, t)∥2π0(x0)dx0dt.

For the hypotheses network class V = NN(L,M, J,K, κ, γ1, γ2), we define a function class H := {ℓ(·,v) : v ∈ NN}.

logN (δ,NN, ∥ · ∥L∞([−D,D]d×[0,1])) ≲ JL log

(
LM(D ∨ 1)κ

δ

)
, (27)

and based on this, the covering number of H is evaluated by

logN (δ,H, ∥ · ∥L∞([0,1]d)) ≲ JL log

(
(K + d1/2)LMκ

√
log((K2 + d)/δ)

δ

)
. (28)

Proof. The first bound (27) is directly obtain from (Chen et al., 2022b, Lemma 5.3), with a slight modification of the input
region. The evaluation of the covering number of H proceeds by showing that a δ-covering of NN induces a C(δ)-covering
of H, where C(δ) is a function of δ.

Assume that there are two neural networks v1 and v2 satisfying ∥v1 − v2∥L∞([−D,D]d×[0,1]) ≤ δ, we want to proof that
there is a function C(·), such that ∥ℓ(·,v1)− ℓ(·,v2)∥L∞([0,1]d) ≤ C(δ). D will be determined later based on δ. We rewrite
ℓ(x,v) as follows:

ℓ(x,v) =
1

T

∫ T

0

∫
∥x− x0∥2 − 2(x− x0)

Tv(tx+ (1− t)x0, t) + ∥v(tx+ (1− t)x0, t)∥2π0(dx0)dt.

15

An Error Analysis of Flow Matching for Deep Generative Modeling

Then we have the following upper bound:

|ℓ(x,v1)− ℓ(x,v2)| ≤
2

T

∫ T

0

∫
∥x− x0∥ · ∥v1 − v2∥π0(dx0)dt︸ ︷︷ ︸

(A)

+
1

T

∫ T

0

∫
∥v1 − v2∥ · ∥v1 + v2∥π0(dx0)dt︸ ︷︷ ︸

(B)

,

where the inequality follows from Cauchy-Schwartz inequality and the identity ∥x1 − x2∥2 = (x1 − x2)
T (x1 + x2). We

omit the input of v1 and v2 for brevity, when there is no ambiguity.

An upper bound for term (A). The Cauchy-Schwartz inequality implies

1

T

∫ T

0

∫
∥x− x0∥ · ∥v1 − v2∥π0(dx0)dt ≤

(
1

T

∫ T

0

∫
∥x− x0∥2π0(dx0)dt

)1/2

·

(
1

T

∫ T

0

∫
∥v1 − v2∥2π0(dx0)dt

)1/2

.

(29)

Note that x ∈ [0, 1]d and x0 is a stand Gaussian variable, we have
(

1
T

∫ T

0

∫
∥x− x0∥2π0(dx0)dt

)1/2
≲ d1/2. Using the

change of variable xt = tx+ (1− t)x0, we have

1

T

∫ T

0

∫
∥v1(tx+ (1− t)x0, t)− v2(tx+ (1− t)x0, t)∥2π0(dx0)dt

=
1

T

∫ T

0

∫
∥v1(xt, t)− v2(xt, t)∥2πt|1(dxt|X1 = x)dt,

where πt|1 is the distribution of xt conditioned on X1 = x. We partition Rd into two subsets, {xt ∈ Rd : ∥xt∥∞ ≤ D}
and its complement {xt ∈ Rd : ∥xt∥∞ > D},∫

∥v1(xt, t)− v2(xt, t)∥2πt|1(dxt|X1 = x) =

∫
{∥xt∥∞≤D}

∥v1(xt, t)− v2(xt, t)∥2πt|1(dxt|X1 = x)

+

∫
{∥xt∥∞>D}

∥v1(xt, t)− v2(xt, t)∥2πt|1(dxt|X1 = x)

≲δ2 +K2P(∥tx+ (1− t)X0∥∞ > D).

Using the tail bound for Gaussian variable in (26), we obtain∫
∥v1(xt, t)− v2(xt, t)∥2πt|1(dxt|X1 = x) ≲ δ2 +K2d exp

(
− (D − 1)2

2(1− t)2

)
(30)

Combining (29) and (30), we get

1

T

∫ T

0

∫
∥x− x0∥ · ∥v1 − v2∥π0(dx0)dt ≲d

1/2

(
δ2 +K2d exp

(
− (D − 1)2

2(1− t)2

))1/2

≲d1/2
(
δ +Kd1/2 exp

(
− (D − 1)2

4(1− t)2

))
≲d1/2δ +Kd exp

(
− (D − 1)2

4

)
,

(31)

where the second inequality follows from the inequality
√
a+ b ≤

√
a+

√
b, for a ≥ 0, b ≥ 0. The third inequality follows

from the fact that t ∈ [0, T].

16

An Error Analysis of Flow Matching for Deep Generative Modeling

An upper bound for term (B). Again, using Cauchy-Schwartz inequality, we have

1

T

∫ T

0

∫
∥v1 − v2∥ · ∥v1 + v2∥π0(dx0)dt ≤

(
1

T

∫ T

0

∫
∥v1 − v2∥2π0(dx0)dt

)1/2

·

(
1

T

∫ T

0

∫
∥v1 + v2∥2π0(dx0)dt

)1/2

≲ K

(
δ +Kd1/2 exp

(
− (D − 1)2

4

))
(32)

where the second inequality follows from the same argument in (30).

Combining (31) and (32), we obtain

sup
x∈[0,1]d

|ℓ(x,v1)− ℓ(x,v2)| ≲ (K + d1/2)

(
δ +Kd1/2 exp

(
− (D − 1)2

4

))
. (33)

Thus, a δ-covering of NN w.r.t. ∥ · ∥L∞([−D,D]d×[0,1]) induces a C(K + δ1/2)
(
δ +Kd1/2 exp(−(D − 1)2/4)

)
-

covering of H, where C is a universal constant. Let Kd1/2 exp(−(D − 1)2/4) be smaller than δ
2C(K+d1/2)

, we ob-

tain D ≥ 2

√
log 2CKd1/2(K+d1/2)

δ + 1 =: D(δ). Based on the above statements, a δ
2C(K+d1/2)

-covering of NN w.r.t.
∥ · ∥L∞([−D(δ),D(δ)]d×[0,T]) induces a δ-covering of H.

Therefore, we obtain

logN (δ,H, ∥ · ∥L∞([0,1]d)) ≤ logN
(

δ

2C(K + d1/2)
,NN, ∥ · ∥L∞([−D(δ),D(δ)]d×[0,T])

)
≲ JL log

(
2C(K + d1/2)LMD(δ)κ

δ

)
≲ JL log

(
(K + d1/2)LMκ

√
log((K2 + d)/δ)

δ

)
.

(34)

It concludes the proof.

B.3. Proof of Theorem 4.4

Proof of Theorem 4.4. The generalization error L(v̂)− infv∈NN L(v) can be decomposed into

L(v̂)− inf
v∈NN

L(v) = L(v̂)− L̂(v̂) + L̂(v̂)− L̂(ṽ) + L̂(ṽ)− L(ṽ)

≤ L(v̂)− L̂(v̂) + L̂(ṽ)− L(ṽ),

where ṽ ∈ argminv∈NNL(v) and the last inequality follows from ERM.

For any v, we have L(v)− L̂(v) = L(v)−L(v) + L(v)− L̂(v) = 1
n

∑n
i=1(L(v)− ℓ(x1,i,v)) +

1
n

∑n
i=1(ℓ(x1,i,v)−

ℓ̂(x1,i,v)), where the first term only involves sample from target distribution π1 and the second term involves sample from
Unif[0, T] and prior distribution π0. Both of the two terms can be bounded by using a covering number argument.

•Bounding 1
n

∑n
i=1(L(v) − ℓ(x1,i,v)). Let {ℓk}N1

k=1 be a τ -covering of H, where N1 = N (δ,H, ∥ · ∥L∞([0,1]d)). For
every ℓ ∈ H, there exists a k, such that ∥ℓ− ℓk∥L∞([0,1]d) ≤ τ . Thus, we have

1

n

n∑
i=1

(E[ℓ(x)]− ℓ(x1,i)) ≤
1

n

n∑
i=1

(E[ℓk(x)]− ℓk(x1,i)) + 2τ

≤ max
k=1,...,N1

1

n

n∑
i=1

(E[ℓk(x)]− ℓk(x1,i)) + 2τ.

(35)

17

An Error Analysis of Flow Matching for Deep Generative Modeling

Take supremum over H on both sides, we get

sup
ℓ∈H

1

n

n∑
i=1

(E[ℓ(x)]− ℓ(x1,i)) ≤ max
k=1,...,N1

1

n

n∑
i=1

(E[ℓk(x)]− ℓk(x1,i)) + 2τ.

Thus, we have

P
(
sup
ℓ∈H

1

n
(E[ℓ(x)]− ℓ(x1,i)) > ε+ 2τ

)
≤ P

(
max

k=1,...,N1

1

n

n∑
i=1

(E[ℓk(x)]− ℓk(x1,i)) > ε

)

≤
N1∑
k=1

P

(
1

n

n∑
i=1

(E[ℓk(x)]− ℓk(x1,i)) > ε

) (36)

Invoking Lemma B.3, we get

P
(
sup
ℓ∈H

1

n
(E[ℓ(x)]− ℓ(x1,i)) > ε+ 2τ

)
≤ N1 exp

(
− nε2

2B2

)
,

where B = O(d+K2) by Lemma B.1. Letting ε =
√

2B2 log(N/δ)
n , with probability of at least 1− δ,

1

n

n∑
i=1

(L(v)− ℓ(x1,i,v)) ≤ sup
ℓ∈H

1

n
(E[ℓ(x)]− ℓ(x1,i)) ≤

√
2B2 log(N1/δ)

n
+ 2τ.

•Bounding ℓ(x1,i,v) − ℓ̂(x1,i,v). We define r((x0, t),v, x) := ∥x − x0 − v(tx + (1 − t)x0, t)∥2 and its truncation
rtrunc((x0, t),v, x) := ∥x− x0 − v(tx+ (1− t)x0, t)∥21{∥x0∥∞ ≤ R}, where R will be determined later depending on
the tolerance. Thus, we have ℓ(x1,i,v) = Et,x0 [r((x0, t),v,x1,i)]. We also define ℓtrunc(x,v) := E[rtrunc((x0, t),v, x)]

and its empirical version ℓ̂trunc(x,v) = 1
m

∑m
j=1 r

trunc((x0,j , tj),v, x) given m i.i.d. sample {(x0,j , tj)}mj=1 from π0 and
Unif[0, T].

We have the following decomposition:

ℓ(x1,i,v)− ℓ̂(x1,i,v) = ℓ(x1,i,v)− ℓtrunc(x1,i,v)︸ ︷︷ ︸
Truncation error (I)

+ ℓtrunc(x1,i,v)− ℓ̂trunc(x1,i,v)︸ ︷︷ ︸
Statistical error

+ ℓ̂trunc(x1,i,v)− ℓ̂(x1,i,v)︸ ︷︷ ︸
Truncation error (II)

(37)

For Truncation error (I), we can use the concentration of Gaussian variables to control this term. For Statistical error, we can
use a covering number argument to control it. Due to the concentration of Gaussian variables, Truncation error (II) is equal
to zero with high probability.

We first control the first term. Using the Cauchy-Schwartz inequality and (a+ b)2 ≤ 2a2 + 2b2, we have the following:

Truncation error (I) = Et,x0
[∥x− x0 − v(tx+ (1− t)x0, t)∥21{∥x0∥∞ > R}]

≤ E[∥x− x0 − v(tx+ (1− t)x0, t)∥4]1/2 · P(∥x0∥∞ > R)1/2

≤ 2
(
E[∥x− x0∥4] + E[∥v(tx+ (1− t)x0, t)∥4]

)1/2 · P(∥x0∥∞ > R)1/2.

Note that E[∥x− x0∥4] ≤ 4∥x∥4 + 4E[∥x0∥4] ≤ 8d(d+ 1) and supx,t ∥v(x, t)∥ ≤ K for any v ∈ NN, we have

Truncation error (I) ≤ 2
(
8d(d+ 1) +K4

)1/2 · P(∥x0∥∞ > R)1/2. (38)

18

An Error Analysis of Flow Matching for Deep Generative Modeling

Denote the k-coordinate of x0 by x(k)0 , we have the following upper bound for the tail probability:

P(∥x0∥∞ > R) = P
(

max
k=1,...,d

|x(k)0 | > R

)
= P

(
d⋃

k=1

{|x(k)0 | > R}

)
(i)
≤

d∑
k=1

P
(
|x(k)0 | > R

)
≤ 2d exp

(
−R

2

2

)
,

(39)

where inequality (i) follows from union inequality. Combining (38) and (39), we obtain

Truncation error (I) ≤ 8(d2(d+ 1) + dK4)1/2 · exp
(
−R

2

4

)
. (40)

Next, we show that Truncation error (II) vanishes with high probability. Note that when ∥x0,j∥ ≤ R for j = 1, . . . ,m,
Truncation error vanishes. It implies

P(ℓ̂trunc(x1,i,v)− ℓ̂(x1,i,v) = 0) ≥ P

 m⋂
j=1

{∥x0,j∥ ≤ R}

= 1− P

 m⋃
j=1

{∥x0,j∥ > R}

≥ 1−md exp

(
−R

2

2

)
(41)

Finally, we control the Statistical error. Note that, for R > 1, we have tx + (1 − t)x0 ∈ [−R,R]d for all ∥x0∥∞ ≤ R,
since ∥x∥∞ ≤ 1 with probability 1. Given a τ

2
√
d(R+1)+2K

-covering {vi}N2
i=1 of NN, w.r.t. ∥ · ∥L∞([−R,R]d×[0,T]),

where N2 = N (τ
2
√
d(R+1)+2K

,NN, ∥ · ∥L∞([−R,R]d×[0,T])). For any v ∈ NN, there exists k = 1, . . . , N2, such that

∥v − vk∥L∞([−R,R]d×[0,T]) ≤ τ
2
√
d(R+1)+2K

. For any x0 ∈ [−R,R]d and t ∈ [0, T], we have the following bound for

|rtrunc((x0, t),vk, x)− rtrunc((x0, t),v, x)|:

|rtrunc((x0, t),vk, x)− rtrunc((x0, t),v, x)| ≤|⟨vk − v, 2x− 2x0 − vk − v⟩|
≤∥v − vk∥L∞([−R,R]d×[0,T])

· (2∥x∥+ 2∥x0∥+ ∥v1∥+ ∥v2∥)

≤(2
√
d(R+ 1) + 2K)

τ

2
√
d(R+ 1) + 2K

= τ.

For any v ∈ NN, we have

ℓtrunc(x1,i,v)− ℓ̂trunc(x1,i,v)

=Ex0,t[r
trunc((x0, t),v,x1,i)]−

1

m

m∑
j=1

rtrunc((x0,j , tj),v,x1,i)

≤Ex0,t[r
trunc((x0, t),vk,x1,i)]−

1

m

m∑
j=1

rtrunc((x0,j , tj),vk,x1,i) + 2τ

≤ max
k=1,...,N2

Ex0,t[r
trunc((x0, t),vk,x1,i)]−

1

m

m∑
j=1

rtrunc((x0,j , tj),vk,x1,i)

+ 2τ.

19

An Error Analysis of Flow Matching for Deep Generative Modeling

Taking supremum on both sides, we obtain

sup
v∈NN

{
ℓtrunc(x1,i,v)− ℓ̂trunc(x1,i,v)

}
≤2τ + max

k=1,...,N2

Ex0,t[r
trunc((x0, t),vk,x1,i)]−

1

m

m∑
j=1

rtrunc((x0,j , tj),vk,x1,i)

 .

Thus, we have

P
(

sup
v∈NN

{
ℓtrunc(x1,i,v)− ℓ̂trunc(x1,i,v)

}
> ε+ 2τ

)

≤P

 max
k=1,...,N2

Ex0,t[r
trunc((x0, t),vk,x1,i)]−

1

m

m∑
j=1

rtrunc((x0,j , tj),vk,x1,i)

 > ε

=P

 N2⋃
k=1

Ex0,t[r
trunc((x0, t),vk,x1,i)]−

1

m

m∑
j=1

rtrunc((x0,j , tj),vk,x1,i) > ε

(i)
≤

N2∑
k=1

P

Ex0,t[r
trunc((x0, t),vk,x1,i)]−

1

m

m∑
j=1

rtrunc((x0,j , tj),vk,x1,i) > ε

 ,

(42)

where inequality (i) follows from the union inequality. Note that 0 ≤ rtrunc((x0, t),vk,x1,i) ≤ 2d(R+1)2+2K2, applying
Lemma B.3, we obtain

P

Ex0,t[r
trunc((x0, t),vk,x1,i)]−

1

m

m∑
j=1

rtrunc((x0,j , tj),vk,x1,i)>ε

≤exp

(
− mε2

8(d(R+ 1)2 +K2)2

)
. (43)

Combining Equation (42) and Equation (43), we obtain

P
(

sup
v∈NN

{
ℓtrunc(x1,i,v)− ℓ̂trunc(x1,i,v)

}
> ε+ 2τ

)
≤ N2 exp

(
− mε2

8(d(R+ 1)2 +K2)2

)
. (44)

Let N2 exp
(
− nε2

8(d(R+1)2+K2)2

)
= δ/2, we have, with probability of at least 1− δ/2,

sup
v∈NN

{
ℓtrunc(x1,i,v)− ℓ̂trunc(x1,i,v)

}
≤ 2τ +

√
8(d(R+ 1)2 +K2)2 log(2N2/δ)

m
(45)

Let md exp
(
−R2

2

)
= δ

2 in (41), we have, with probability of at least 1− δ/2,

ℓ̂trunc(x1,i,v)− ℓ̂(x1,i,v) = 0. (46)

Combining (40), (45), and (46), we have, with probability of at least 1− δ,

sup
v∈NN

ℓ(x1,i,v)− ℓ̂(x1,i,v) ≤8

(
δ(d(d+ 1) +K4)

2m

)1/2

+ 2τ

+

√
8(d(

√
2 log(2md/δ) + 1)2 +K2)2 log(2N2/δ)

m

Combining the bounds for 1
n

∑n
i=1(L(v)− ℓ(x1,i,v)) and ℓ(x1,i,v)− ℓ̂(x1,i,v), we otbain, with probability of at least

1− 4δ,

L(v̂)− inf
v∈NN

L(v) = O

(
τ +

δ1/2(d+ 1) +K2

√
m

+
(d log(md/δ) +K2) ·

√
log(N2/δ)√

m

+
(d+K2)

√
log(N1/δ)√
n

)
.

20

An Error Analysis of Flow Matching for Deep Generative Modeling

• Balancing error terms. By choosing NN as in Theorem 3.1 with approximation error ε, we have infv∈NN L(v)−L(v∗) ≤
(
√
d+ 1)ε. Setting δ = 1

4n and τ = 1
n gives rise to

1

T

∫ T

0

∥v̂(·, t)− v∗(·, t)∥2L2(πt)
dt = Õ

(
1

(1− T)4

(
1

n
+

1√
mn

+
(1/ε)

d+1
2

√
m

+
(1/ε)

d+1
2

√
n

+ ε2

))
,

with probability of at least 1− 1
n , where we omit factors in d, log n, logm, log(1− T). By setting ε = n−

1
d+5 , it holds

1

T

∫ T

0

∥v̂(·, t)− v∗(·, t)∥2L2(πt)
dt = Õ

(
1

(1− T)4

(
n−

2
d+5 + n

d+1
2(d+5)m−

1
2

))
,

with probabiliy of at least 1− 1
n .

B.4. Auxiliary lemma

Lemma B.3. Let G be a bounded function class, i.e., there exists a constant B such that for any g ∈ G and any x in its
domain, 0 ≤ g(x) ≤ B. Let X1, . . . , Xn ∈ Rd be i.i.d. random variables. For any δ ∈ (0, 1) and g ∈ G, we have

P

(
1

n

n∑
i=1

(g(Xi)− E[g(X)]) > ε

)
≤ exp

(
− nε2

2B2

)
and (47)

P

(
1

n

n∑
i=1

(E[g(X)]− g(Xi)) > ε

)
≤ exp

(
− nε2

2B2

)
. (48)

Proof. We first compute the moment generating function of 1
n

∑n
i=1(E[g(X)]− g(Xi)),

E

[
exp

(
λ

n

n∑
i=1

(g(Xi)− E[g(X)])

)]
=

(
E
[
exp

(
λ

n
(g(X1)− E[g(X)])

)])n

, (49)

the identity follows from the fact that x1, . . . ,xn are i.i.d. random variables. Now, we try to upper bound
E
[
exp

(
λ
n (g(x)− E[g(x)])

)]
. Given an independent copy X ′1 of X1, we have

E
[
exp

(
λ

n
(g(X1)− E[g(X)])

)]
= E

[
exp

(
λ

n
(g(X1)− EX′1

[g(X ′1)])

)]
≤ EX1,X′1

[
exp

(
λ

n
(g(X1)− g(X ′1))

)] (50)

Letting σ be an independent Rademacher variable, note that the distribution of (X1−X ′1) is the same as that of σ(X1−X ′1),
so that we have

EX1,X′1

[
exp

(
λ

n
(g(X1)− g(X ′1))

)]
= EX1,X′1

[
Eσ

[
exp

(
λ

n
σ(g(X1)− g(X ′1))

)]]
(i)
≤ EX1,X′1

[
exp

(
λ2(g(X1)− g(X ′1))

2

2n2

)]
,

where (i) follows from Lemma B.4, applied conditionally with (X1, X
′
1) held fixed. Since |g(X1)− g(X ′1)| ≤ B, we are

guaranteed that

EX1,X′1

[
exp

(
λ2(g(X1)− g(X ′1))

2

2n2

)]
≤ exp

(
λ2B2

2n2

)
(51)

Combining (49) and (51), we obtain,

E

[
exp

(
λ

n

n∑
i=1

(g(Xi)− E[g(X)])

)]
≤ exp

(
λ2B2

2n

)
.

21

An Error Analysis of Flow Matching for Deep Generative Modeling

Using the Markov inequality, we have

P

(
1

n

n∑
i=1

(g(Xi)− E[g(X)]) > ε

)
≤ exp

(
λ2B2

2n
− λε

)
.

Let λ = nε
B2 , we get the first inequality. The second inequality can be proved in the exact same argument.

Lemma B.4. Given a Rademacher random variable σ takes the values {−1, 1} equiprobably. We have, for any λ ∈ R,
E[eλσ] ≤ eλ

2/2.

Proof. By taking expectations and using the power-series expansion for the exponential, we obtain

E[eλσ] =
1

2
[e−λ + eλ] =

1

2

[∞∑
k=0

(−λ)k

k!
+

∞∑
k=0

(λ)k

k!

]

=

∞∑
k=0

λ2k

(2k)!

≤ 1 +
∞∑
k=1

λ2k

2kk!

= eλ
2/2.

(52)

It concludes the proof.

C. Discretization Analysis
C.1. Estimation Error

Consider the target continuous flow:

dXt(x) = v∗(Xt(x), t)dt, X0(x) = x ∼ π0, 0 ≤ t ≤ T, (53)

and the estimated continuous flow

dX̂t(x) = v̂(X̂t(x), t)dt, X̂0(x) = x ∼ π0, 0 ≤ t ≤ T. (54)

Denote the distribution of Xt(x) and X̂t(x) by πt and π̂t, respectively. We have the following estimate of the Wasserstein-2
distance W2(πT , π̂T).

Proposition C.1. Suppose Assumption 1.1 holds. For any velocity field v∗ with Lipschitz constant ζ w.r.t. x, given n
samples {x1,i}ni=1 from π1 and m samples from π0 and Unif[0, T], we choose NN as in Theorem 3.1 with ε = n−

1
d+5 .

Then with probability of at least 1− 1
n , it holds

W2(πT , π̂T) = Õ
(
eγ1

ζd/4

(1− T)2
n−

1
d+5

)
. (55)

The proof can be found in Proposition 5.1.

C.2. Discretization Error

Now we consider the gap between estimated continuous flow and its discretization:

dX̂t(x) = v̂(X̂t(x), t)dt, X̂0(x) = x ∼ π0, 0 ≤ t ≤ T,

dX̃t(x) = v̂(X̃tk(x), tk)dt, tk ≤ t ≤ tk+1, k = 0, 1, . . . , N − 1, X̃0(x) = x ∼ π0.

Denote the distribution of X̂t(x) and X̃t(x) by π̂t and π̃t, respectively.

22

An Error Analysis of Flow Matching for Deep Generative Modeling

Lemma C.2. Let 0 = t0 < t1 < · · · < tN = T be the discretization points. For any neural network v̂ in
NN(L,M, J,K, κ, γ1, γ2), we have:

W2(π̂T , π̃T) = O

eγ1(γ1K + γ2)

√√√√N−1∑
k=0

(tk+1 − tk)3

 ,

where π̂ is the distribution of the final output of the estimated sampling dynamics (17).

Proof. By the same argument as in the proof of Proposition C.1, we have

W 2
2 (π̂t, π̃t) ≤

∫
Rd

∥X̂t(x)− X̃t(x)∥2π0(x)dx.

Now, we consider the evolution of

Lt :=

∫
Rd

∥X̂t(x)− X̃t(x)∥2π0(x)dx.

Since X̃t(x) is piece-wise linear, we consider the evolution of Lt on each split interval [tk, tk+1]. On interval [tk, tk+1], we
have

dLt

dt
=

∫
Rd

2⟨v̂t(X̂t(x))− v̂tk(X̃tk(x)), X̂t(x)− X̃t(x)⟩π0(x)dx (56)

=

∫
Rd

2⟨v̂t(X̂t(x))− v̂t(X̃t(x)), X̂t(x)− X̃t(x)⟩π0(x)dx (57)

+

∫
Rd

2⟨v̂t(X̃t(x))− v̂t(X̃tk(x)), X̂t(x)− X̃t(x)⟩π0(x)dx (58)

+

∫
Rd

2⟨v̂t(X̃tk(x))− v̂tk(X̃tk(x)), X̂t(x)− X̃t(x)⟩π0(x)dx (59)

For (57), by Cauchy-Schwartz inequality and the fact that v̂ is γ1-Lipschitz continuous w.r.t. x, we get∫
Rd

2⟨v̂t(X̂t(x))− v̂t(X̃t(x)), X̂t(x)− X̃t(x)⟩π0(x)dx ≤ 2γ1

∫
Rd

∥X̂t(x)− X̃t(x)∥2π0(x)dx. (60)

For (58), note that X̃t(x) = X̃tk(x) + (t− tk)v̂tk(X̃tk(x)), we use the inequality 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 and the fact that
v̂ is γ1-Lipschitz continuous w.r.t. x to get∫

Rd

2⟨v̂t(X̃t(x))− v̂t(X̃tk(x)), X̂t(x)− X̃t(x)⟩π0(x)dx

≤
∫
Rd

∥v̂t(X̃t(x))− v̂t(X̃tk(x))∥2π0(x)dx+

∫
Rd

∥X̂t(x)− X̃t(x)∥2π0(x)dx

≤γ21(t− tk)
2∥v̂∥2L∞ + Lt

≤γ21(t− tk)
2K2 + Lt,

(61)

where K is the parameter of the neural networks in Theorem 4.4. For (59), the fact that v̂ is γ2-Lipschitz continuous w.r.t. t
implies ∫

Rd

2⟨v̂t(X̃tk(x))− v̂tk(X̃tk(x)), X̂t(x)− X̃t(x)⟩π0(x)dx

≤
∫
Rd

∥X̂t(x)− X̃t(x)∥2π0(x)dx+ γ22(t− tk)
2.

(62)

Combining (60), (61) and (62), we obtain

dLt

dt
≤ (2γ1 + 2)Lt + (γ21K

2 + γ22)(t− tk)
2, on [tk, tk+1].

23

An Error Analysis of Flow Matching for Deep Generative Modeling

Again, by Lemma C.6, we obtain

e−(2γ1+2)tk+1Ltk+1
− e−(2γ1+2)tkLtk ≤ 1

3
(γ21K

2 + γ22)(tk+1 − tk)
3.

Summing over k and noting that tN = T , we get

LT ≤ 1

3
e2(γ1+1)T (γ21K

2 + γ22)

N−1∑
k=0

(tk+1 − tk)
3.

Thus, we have

W2(π̂T , π̃T) = O

eγ1(γ1K + γ2)

√√√√N−1∑
k=0

(tk+1 − tk)3

 .

Lemma C.3. Suppose Assumption 1.1 holds, we have

W2(πT , π1) ≲ (1− T)
√
d.

Proof. We consider the error from early stopping. Note that XT and X1 form a coupling of πT and π1, by the definition of
Wasserstein-2 distance, we obtain

W2(πT , π1) ≤ E[∥XT −X1∥2]1/2 ≤ (1− T)E[∥X1 −X0∥2]1/2.

Since we assume π1 is supported on [0, 1]d and E[∥X0∥2] = d, we have W2(πT , π1) ≲ (1− T)
√
d.

C.3. Proof of Main Results

Theorem C.4. Suppose Assumption 1.1 holds. Given n samples from target distribution π1 and the networks as in
Theorem 4.4, with parameter ζ replaced by d

(1−T)3 , we use the estimated velocity field in (11), to generate samples and

choose the maximal step size maxk=0,1...,N−1 |tk+1 − tk| = O(n−
1

d+5) and early stopping time T (n) = 1− (log n)−1/6,
we have

W2(π̃T (n), π1) → 0, in probability.

Proof. Lemma 1.3 shows that the velocity field v∗ is d
(1−T)3 -Lipschitz continuous w.r.t. x on Rd× [0, T], when 1

2 < T < 1.
Combining Proposition C.1, Lemma C.2 and Lemma C.3, we obtain

W2(π̃T , π1) = Õ

(1− T) + eγ1(γ1K + γ2)

√√√√N−1∑
k=0

(tk+1 − tk)3 + eγ1
ζd/4

(1− T)2
n−

1
d+5

 .

By the choice of neural networks, we have γ1 = O
(

10d2

(1−T)3

)
. Letting maxk=0,1...,N−1 |tk+1 − tk| = O(n−

1
d+5),

T (n) = 1− (log n)−1/6 and omitting polynomials of logarithm, we obtain,

W2(π̃T , π1) = Õ
(
(log n)−1/6 + e10d

2√lognn−
1

d+5

)
,

which tends to 0 as n goes to infinity.

Theorem C.5. Suppose Assumption 1.1 and Assumption 1.2 hold. Given n samples from target distribution π1 and the
networks as in Theorem 4.4, with parameter ζ replaced by ζ(α, d) defined in Lemma 1.4, we use the estimated velocity
field in (11) to generate samples and choose the maximal step size maxk=0,1...,N−1 |tk+1 − tk| = O(n−

4
3(d+5)) and early

stopping time T (n) = 1− n−
1

3(d+5) . Then, with probability of at least 1− 1
n , we have

W2(π̃T (n), π1) = Õ
(
n−

1
3(d+5)

)
,

where we omit logarithms.

24

An Error Analysis of Flow Matching for Deep Generative Modeling

Proof. Lemma 1.4 shows that the velocity field v∗ is ζ(α, d)-Lipschitz on Rd × [0, 1]. The Lipschitz constant only depends
on α and dimension d. Combining Proposition C.1, Lemma C.2 and Lemma C.3, we obtain

W2(π̃T (n), π1) = Õ

(1− T) + (K + γ2)

√√√√N−1∑
k=0

(tk+1 − tk)3 +
1

(1− T)2
n−

1
d+5

 .

By letting maxk=0,1...,N−1 |tk+1 − tk| = O(n−
4

3(d+5)) and T (n) = 1− n−
1

3(d+5) , we get the desired result.

C.4. Auxiliary lemma in Appendix C

Lemma C.6 (Grönwall’s inequality). Given a function f(t) defined on [a, b] (a < b), satisfying df(t)
dt ≤ αf(t) + g(t) on

[a, b] and α ≥ 0, we have

f(b) ≤ eα(b−a)f(a) +

∫ b

a

eα(b−t)g(t)dt.

Proof. By multiplying e−αt on both sides of df(t)
dt ≤ αf(t) + g(t) and some manipulation of algebra, we obtain

e−αt
df(t)

dt
− αe−αtf(t) ≤ e−αtg(t).

Integrating on interval [a, b] on both sides , we get

e−αbf(b)− e−αaf(a) ≤
∫ b

a

eα(b−t)g(t)dt.

This concludes the proof.

D. Properties of true velocity field
D.1. Computation of true velocity field

Lemma D.1. The true velocity field v∗ can be written as:

v∗(x, t) =
1− t

t
∇ log πt(x) +

1

t
x, (63)

where πt is the density of Xt, and Xt = (1− t)X0 + tX1.

Proof. By some manipulation of algebra, (3) implies:

v∗(x, t) = E [X1 −X0|Xt = x]

= E
[
X1 −

1

1− t
((1− t)X0 + tX1 − tX1)

∣∣Xt = x

]
=

1

1− t
E[X1|Xt = x]− 1

1− t
x

=
1

1− t

∫
x1πt|1(x|x1)π1(x1)

πt(x)
dx1 −

1

1− t
x

=
1

1− t

∫
1√

(2π)d(1− t)2d

x1 exp(−∥x−tx1∥2
2(1−t)2)π1(x1)

πt(x)
dx1 −

1

1− t
x

=
1− t

t

∫
1√

(2π)d(1− t)2d

(
tx1−x
(1−t)2 + x

(1−t)2

)
exp(−∥x−tx1∥2

2(1−t)2)π1(x1)

πt(x)
dx1 −

1

1− t
x

=
1− t

t

∫
1√

(2π)d(1− t)2d

∇x exp
(
−∥x−tx1∥2

2(1−t)2

)
π1(x1)

πt(x)
dx1 +

(
1

t(1− t)
− 1

1− t

)
x

=
1− t

t
∇x log πt(x) +

1

t
x,

25

An Error Analysis of Flow Matching for Deep Generative Modeling

where πt|1 is the density of Xt conditioned on X1. It concludes the proof.

D.2. Computation of partial derivative regarding t

Lemma D.2. ∂tv
∗(x, t) = − 1

(1−t)2x + 1
(1−t)2E[X1|Xt = x] + 1+t

(1−t)4Cov[X1|Xt = x]x −
t

(1−t)4
(
E[X1∥X1∥2|Xt = x]− E[X1|Xt = x]E[∥X1∥2|Xt = x]

)
, where Cov[X1|Xt = x] is the covariance ma-

trix of X1 conditioned on Xt = x.

Proof. To ease notation, we define ϕt(x) :=
∫
exp

(
−∥x−tx1∥2

2(1−t)2

)
π1(dx1), which is the unnormalized version of πt(x).

Note that ∇ log ϕt(x) = ∇ log πt(x), using the product rule of the derivatives, (63) implies:

∂tv
∗(x, t) = − 1

t2
∇ log πt(x) +

1− t

t
∂t∇ log πt(x)−

1

t2
x

= − 1

t(1− t)2
E[X1|Xt = x] +

1

t2(1− t)2
x+

1− t

t
∂t

(
∇ϕt(x)
ϕt(x)

)
− 1

t2
x

=
2− t

t(1− t)2
x− 1

t(1− t)2
E[X1|Xt = x] +

1− t

t

(
∂t∇ϕt(x)
ϕt(x)

− ∂tϕt(x)∇ϕt(x)
(ϕt(x))2

) (64)

Then we focus on the computation of the last term above. We first compute ∂t∇ϕt(x)
ϕt(x)

as follows:

∂t∇ϕt(x)
ϕt(x)

=
1

ϕt(x)
∂t

∫
tx1 − x

(1− t)2
exp

(
−∥x− tx1∥2

2(1− t)2

)
π1(dx1)

=
1

ϕt(x)

∫ (
(1− t)2x1 − 2(tx1 − x)(t− 1)

(1− t)4
exp

(
−∥x− tx1∥2

2(1− t)2

)
−

tx1 − x

(1− t)2
exp

(
−∥x− tx1∥2

2(1− t)2

)
(t∥x1∥2 − xT

1 x)(1− t)2 − (t− 1)∥x− tx1∥2

(1− t)4

)
π1(dx1)

=
1 + t

(1− t)3
E[X1|Xt = x]− 2

(1− t)3
x− t2

(1− t)5
E[X1∥X1∥2|Xt = x]+

t(1 + t)

(1− t)5
E[X1X

T
1 |Xt = x]x− t

(1− t)5
E[X1|Xt = x]∥x∥2+

t

(1− t)5
E[∥X1∥2|Xt = x]x− 1 + t

(1− t)5
E[XT

1 x|Xt = x]x+
∥x∥2x
(1− t)5

(65)

By some calculus, we have

∂tϕt(x)

ϕt(x)
=

1

ϕt(x)

∫
− (t∥x1∥2 − xT

1 x)(1− t)2 + ∥x− tx1∥2(1− t)

(1− t)4
exp

(
−∥x− tx1∥2

2(1− t)2

)
π1(dx1)

= − t

(1− t)3
E[∥X1∥2|Xt = x] +

1 + t

(1− t)3
E[XT

1 x|Xt = x]− ∥x∥2

(1− t)3

(66)

and
∇ϕt(x)
ϕt(x)

=
1

ϕt(x)

∫
tx1 − x

(1− t)2
exp

(
−∥x− tx1∥2

2(1− t)2

)
π1(dx1)

= − x

(1− t)2
+

t

(1− t)2
E[X1|Xt = x].

(67)

Combining (64), (65), (66) and (67), we obtain

∂tv
∗(x, t) = − 1

(1− t)2
x+

1

(1− t)2
E[X1|Xt = x] +

1 + t

(1− t)4
Cov[X1|Xt = x]x−

t

(1− t)4
(
E[X1∥X1∥2|Xt = x]− E[X1|Xt = x]E[∥X1∥2|Xt = x]

)
.

(68)

It concludes the proof.

26

An Error Analysis of Flow Matching for Deep Generative Modeling

D.3. An upper bound for velocity field

Lemma D.3. supt∈[0,T] supx∈[−R,R]d |v∗i (x, t)| ≤ 1+R
1−T .

Proof. For the i-coordinate, we have v∗i = 1
1−tE[X

(i)
1 |Xt = x]− 1

1−txi, where X(i)
1 denotes the i-coordinate of X1. Note

that π1 is supported on [−1, 1]d, then

sup
t∈[0,T]

sup
x∈[−R,R]d

|v∗i (x, t)| ≤
1 +R

1− T
.

D.4. An upper bound of partial derivative regarding t

Lemma D.4. supt∈[0,T] supx∈[−R,R]d |∂tv∗(x, t)| = O
(

d3/2(R+1)
(1−T)4

)
.

Proof. From Lemma D.2, we have

∥∂tv∗(x, t)∥ ≤ 1

(1− t)2
∥x∥+ 1

(1− t)2
∥E[X1|Xt = x]∥+ 1 + t

(1− t)4
∥Cov[X1|Xt = x]∥op∥x∥+

t

(1− t)4
(
∥E[X1∥X1∥2|Xt = x]∥+ ∥E[X1|Xt = x]∥∥E[∥X1∥2|Xt = x]∥

)
Note that π1 is assumed to be supported on [0, 1]d, we have ∥E[X1|Xt = x]∥ ≤ E[∥X1∥2|Xt = x]1/2 ≤ d1/2 and
∥E[X1∥X1∥2|Xt = x]∥ ≤ E[∥X1∥6|Xt = x]1/2 ≤ d3/2. To bound ∥Cov[X1|Xt = x]∥op, we have the following
inequality for any u ∈ Rd,

uTCov[X1|Xt = x]u = E[uTX1X
T
1 u|Xt = x]− E[uTX1|Xt = x]E[XT

1 u|Xt = x]

= E[(uTX1)
2|Xt = x]− E[uTX1|Xt = x]2

≤ 2d∥u∥2

Hence we have ∥Cov[X1|Xt = x]∥op ≤ 2d. Using these above inequalities, we have

sup
t∈[0,T]

sup
x∈[−R,R]d

∥∂tv∗(x, t)∥ ≤ R
√
d

(1− T)2
+

√
d

(1− T)2
+

1 + T

(1− T)4
2d3/2R+

2Td3/2

(1− T)4

Note that T < 1, the above inequality implies supt∈[0,T] supx∈[−R,R]d ∥∂tv∗(x, t)∥ = O
(

d3/2(R+1)
(1−T)4

)
.

D.5. Lipschitz continuity regarding spatial variable

Following Wibisono & Jog (2018a;b); Mikulincer & Shenfeld (2021; 2022); Chewi & Pooladian (2022); Gao et al. (2024),
we deduce the Lipschitz continuity of the velocity field from the properties of the target distribution. We start by presenting
the following lemma showing the connection between the Jacobian matrix of the velocity field and the conditional covariance
matrix.

Lemma D.5. We have the following identity:

∇v∗(x, t) =
t

(1− t)3
Cov[X1|Xt = x]− 1

1− t
Id.

Proof. By Lemma D.1, we have

∇v∗(x, t) =
1− t

t
∇2 log πt(x) +

1

t
Id.

27

An Error Analysis of Flow Matching for Deep Generative Modeling

Further, the Hessian ∇2 log πt(x) can be computed as

∇2 log πt(x) =∇

(∫
Rd

tx1−x
(1−t)2 exp(−∥x− tx1∥2/(1− t)2)π1(dx1)∫
Rd exp(−∥x− tx1∥2/(1− t)2)π1(dx1)

)

=− 1

(1− t)2
Id +

∫
Rd

(
tx1−x
(1−t)2

)⊗2
exp(−∥x− tx1∥2/(1− t)2)π1(dx1)∫

Rd exp(−∥x− tx1∥2/(1− t)2)π1(dx1)

−

(∫
Rd

tx1−x
(1−t)2 exp(−∥x− tx1∥2/(1− t)2)π1(dx1)∫
Rd exp(−∥x− tx1∥2/(1− t)2)π1(dx1)

)⊗2
=− 1

(1− t)2
Id +

t2

(1− t)4
Cov[X1|Xt = x].

Combing the above identities, we get the desired result.

Lemma D.6. Suppose that Assumption 1.1 holds. Then v∗(x, t) is ξ-Lipschitz continuous w.r.t. x on Rd × [0, T], where

ξ ≤ max
{

1
1−T ,

Td
(1−T)3

}
. Further, if 1

2 < T < 1, we have v∗ is d
(1−T)3 -Lipschitz continuous w.r.t. x.

Proof. Since we assume the target distribution π1 is supported on [0, 1]d, we have the following evaluation of the covariance
matrix

0 ⪯ Cov[X1|Xt = x] ⪯ dId.

Thus, we have

− 1

1− t
Id ⪯ ∇v∗(x, t) ⪯

(
td

(1− t)3
− 1

1− t

)
Id.

The above inequality implies the Lipschitz constant of v∗ w.r.t. x.

We further need the following two functional inequalities to control the conditional covariance under Assumption 1.2,
namely the Brascamp-Lieb inequality (BLI) and Cramér-Rao inequality (CRI).
Lemma D.7 (Brascamp-Leib inequality). Let µ(dx) = exp(−U(x))dx be a probability measure on a convex set Ω ⊆ Rd

whose potential U : Ω → R is twice continuously differentiable and strictly convex. Then

Covµ(X) ⪯ Eµ[(∇2U(X))−1],

with equality if X ∼ N (m,Σ) with Σ positive definite.

The complete proof of BLI can be found in (Brascamp & Lieb, 1976, Theorem 4.1) and (Saumard & Wellner, 2014).
Lemma D.8 (Cramér-Rao inequality). Let µ(dx) = exp(−U(x))dx be a probability measure on a convex set Ω ⊆ Rd

whose potential U : Ω → R is twice continuously differentiable. Then

Covµ(X) ⪰ (Eµ[∇2U])−1,

with equality if X ∼ N (m,Σ) with Σ positive definite.

The complete proof of CRI can be found in (Saumard & Wellner, 2014; Dembo et al., 1991).
Lemma D.9. Suppose that Assumption 1.1 and Assumption 1.2 hold. Then v∗(x, t) is ζ(α, d)-Lipschitz continuous on
Rd × [0, 1] w.r.t. x, where ζ(α, d) scales polynomially with α and d.

Proof. Note that
−∇2

x1
log π1|t(x1|x) = −∇2

x1
log π1(x1)−∇2

x1
log πt|1(x|x1),

where π1|t is the conditional density of X1 conditioned on Xt = x and πt|1 is the conditional density of Xt conditioned on

X1 = x1. Since Xt can be viewed as tX1 perturbed by a Gaussian noise, we have πt|1(x|x1) ∝ exp
(
−∥x−tx1∥2

(1−t)2

)
. Thus,

we obtain

−∇2
x1

log π1|t(x1|x) = −∇2
x1

log π1(x1) +
t2

(1− t)2
Id.

28

An Error Analysis of Flow Matching for Deep Generative Modeling

Assumption 1.2 implies (
−α+

t2

(1− t)2

)
Id ⪯ −∇2

x1
log π1|t(x1|x) ⪯

(
α+

t2

(1− t)2

)
Id.

By the Cramér-Rao inequality, we obtain

Cov[X1|Xt = x] ⪰
(
α+

t2

(1− t)2

)−1
Id. (69)

When t ∈
{
t ∈ (0, 1) : −α+ t2

(1−t)2 > 0
}

, by Brascamp-Lieb inequality, we obtain

Cov[X1|Xt = x] ⪯
(
−α+

t2

(1− t)2

)−1
Id. (70)

Combining (69) and Lemma D.5, we have

∇v∗(x, t) ⪰ t− α(1− t)

α(1− t)2 + t2
Id.

Combining (70) and Lemma D.5, for t ∈
{
t ∈ (0, 1) : −α+ t2

(1−t)2 > 0
}

, we have

∇v∗(x, t) ⪯ t+ α(1− t)

−α(1− t)2 + t2
Id. (71)

Recalling the result in Lemma D.6, we have

− 1

1− t
Id ⪯ ∇v∗(x, t) ⪯

(
td

(1− t)3
− 1

1− t

)
Id.

By some manipulation of algebra, it is obvious that − 1
1−t ≤

t−α(1−t)
α(1−t)2+t2 . Thus, we have

∇v∗(x, t) ⪰ t− α(1− t)

α(1− t)2 + t2
Id ⪰ −α

α/(1 + α)
Id = −(1 + α)Id,

where the second inequality follows from the fact that t− α(1− t) ≥ −α on t ∈ (0, 1) and α(1− t)2 + t2 ≥ α
1+α . Next,

we compare td
(1−t)3 − 1

1−t and 1
1−t ·

t
−α(1−t)2+t2 − 1

1−t . Let the two quantities be equal, we obtain

2

d
+ α =

t2

(1− t)2
.

The root of the above equality in (0, 1) is
√

α+ 2
d

1+
√

α+ 2
d

. By the monotonicity of x
1+x on (0, 1), we have

√
α+ 2

d

1+
√

α+ 2
d

>
√
α

1+
√
α

.

Based on this discussion, we obtain
∇v∗(x, t) ⪯ g(t)Id,

where

g(t) =

(
td

(1− t)3
− 1

1− t

)
, t ∈

0,

√
α+ 2

d

1 +
√
α+ 2

d

t+ α(1− t)

−α(1− t)2 + t2
, t ∈

√
α+ 2

d

1 +
√
α+ 2

d

, 1

 .

29

An Error Analysis of Flow Matching for Deep Generative Modeling

By taking the derivative of td
(1−t)3 − 1

1−t , we can see that td
(1−t)3 − 1

1−t is increasing on
(
0,

√
α+ 2

d

1+
√

α+ 2
d

)
. Using the same

argument, it can be shown that t+α(1−t)
−α(1−t)2+t2 is decreasing on

(√
α+ 2

d

1+
√

α+ 2
d

, 1

)
. Based on the above discussion, we obtain

∇v∗(x, t) ⪯ d

2

(
α+

√
α+

2

d

)2

Id.

30

