
[Re] A neurally plausible model learns successor
representations in partially observable environments.

NeurIPS Reproducibility Challenge 2019

Pranav Mahajan∗
Department of Electronics and Communications

BITS Pilani, Goa Campus.
f20170277@goa.bits-pilani.ac.in

1 Introduction

Successor representations (SR) have been proposed as a middle-ground between model-based and
model-free reinforcement learning strategies. Model-based learning allows for goal directed be-
haviours and are flexible to the changes in environment or reward functions whereas model-free
learning allows for rapid actions. It’s been suggested that the brain makes use of both of these
approaches and features from neural responses are consistent with the SR framework. SRs allow
for fast value computation as well fast adaptation to reward or goal location changes. The original
paper shows how SRs can be computed in continuous, noisy and partially observable environments.
The approach they present utilises Distributed distributional codes (DDC) which are a candidate for
neural representation of uncertainty. The framework for learning distributional successor features
which is presented by the original paper is consistent and relates well with hippocampal literature.
For example, it has been argued that hippocampus holds the internal model of the environment, this
framework addresses the neurally plausible ways in which such a model can be acquired. For more
information kindly we refer to the original paper[1].

In our work, we reproduce the baseline results from the original paper partially and address possible
reasons to as to why we couldn’t reproduce some results. Being a theoretically intensive paper, we
also emphasize on resources that were helful in familiarizing with background in DDC and SRs.
Since the code wasn’t open sourced or publicly available at the start of the NeurIPS reproducibility
challenge and eventually authors open sourced a repository with core functions used in their work,
we also address possible hurdles in exact reproduction of the results in the original paper from scratch
i.e. attempting to reproduce the results by just reading the paper and supplementary materials.

2 Background

2.1 Partially observable Markov decision processes (POMDP)

In case of POMDPs, the transitions between states is probabilistic, we can control transitions using
actions but the states are not completely observable (in comparison to MDP). Thus in a POMDP
setting the agent needs to compute posterior beliefs µ as the agent doesn’t have access to the states s.
In a sense, it needs to infer this from the observations. Many a times, these beliefs µt are updated
recursively as they depend on belief at a previous timestep µt−1 and observation at the current
timestep ot.

∗The code is available at https://github.com/PranavMahajan25/NeurIPS-repros

Preprint. Under review.

https://github.com/PranavMahajan25/NeurIPS-repro

2.2 DDC wake-sleep

In a Distributed distributional code (DDC), a population of neurons represent distributions in their
firing rates implicitly, as a set of expectations µ = Ep(s) = [ψ(s)] where µ is vector of firing rates,
p(s) is the distribution and ψ(s) is a vector of encoding functions specific to each neuron. For
all practical purposes, we believe it’s fine to refer to DDC as distributions represented by set of
expectations. The authors use an wake-sleep algorithm similar to that used to train a Helmholtz
machine. The wake-sleep algorithm will be discussed in detail in section 3. We noticed quite less
papers linking the ideas of DDC, wake-sleep and learning the internal model in our brain, we found
this tutorial on Helmholtz machine [2] very helpful along with the previous work by the authors on
DDC Helmholtz machine. In the original paper, DDC is used by the authors in the process of filtering
the posterior when recognition model makes an estimate q(st|ot) of all previous posterior distributions
p(st|ot). Thus the beliefs from the observations can be written as µt(Ot) = Eq(st|Ot)[ψ(st)] where
Ot : (o1, o2, ...ot).

2.3 Successor representations from features

SR can also referred to as Successor feature representation or SF interchangeably. Authors describe a
method to train these distributional SFs and use them in value computation an decision making. In
a classical sense, SR for a state si is defined as the expected discounted sum of future occupancies
for each state sj , given the current state si. Thus the SR matrix M(s, s′) is a matrix associating
each state to every other state. In case of continuous environments, we need to deal with curse of
dimensionality, we express states in terms of set of K features ψi(s)|Ki=1, thus SF for a state only
needs to predict the discounted probability that a feature ψj will be observed in the future and not the
complete state representation. Authors follow linear function approximation throughout their study
and with same set of features. Thus most expressions are analogous to the discrete states form. The
SF matrix M and the value function can be written as follows,

Mπ(st, i) = E[

∞∑
k=0

γkψi(st+k)|st, π] ≈
∑
j

Uijψj(st) (1)

V π(st, i) = wTrewM
π(st) (2)

Uij can be found by temporal difference learning. It’s important to note that the TD error is the
prediction error of state features and not rewards.

2.4 Neural substrates of successor representation

Just to emphasize on how the work by authors is neurally plausible and connects with what we
know from neuroscience is that authors in [3] have shown that feature-specific prediction errors are
detected in fronto-striatal network and thus dopamine can also hypothesized to play a role in the
state prediction error. It’s also hypothesized that hippocampus might be where the SR matrix may be
present [4, 5] and thus directs towards thinking of hippocampus as a predictive map. Thus this study
addresses the learning in the wide spectrum between model-based and model-free methods.

3 Learning Process

In this section, we’ll go over the wake-sleep algorithm in much more detail and include minor details
which are ablated from the original paper but are necessary for reproduction of the results. Wake-sleep
algorithms are unsupervised learning algorithms often used as probability density estimators, the goal
of the wake phase is to learn the generative model whereas the goal of the sleep phase is to learn the
recognition model.

The role of the wake phase is in two parts, first being finding p(st+1|st) which can be boiled down
to learning the transition matrix T . Second being, inferring posterior beliefs µ from all previous
observations Ot : (o1, o2, ...ot). This is an estimate of the posterior distribution and is done by
running the filter that whose weights are being learnt in the sleep phase.

2

The role of the sleep phase is to learn a recursive function fW for updating beliefs µ. This can also
called as learning the filtering weights. Having explained the role of wake and sleep phase, we’ll
head into the algorithmic implementation details.

Algorithm 1: Wake-sleep model in DDC state-space model
Result: Learnt weights T and W
Learn αs weights to decode s from ψ(s)
Initialise T and W (random)
while not converged do

Sleep phase:
Generate sleep samples: {ssleept , osleept }t=0...N ∼ p(Sn, On)

Encode as a set of features: ψ(ssleept), ψ(osleept)

Update filter weights W : ∆W ∝
∑
t(ψ(ssleept)− fW (µt−1(Osleept−1 , osleept))∇W fW

Wake phase:
On ← collect wake observations
Encode as set of features: ψ(ot)
Run the filter to infer posterior: µ(Ot) = fW (µt−1(Ot−1, ot))
Update T : ∆T ∝ (µt+1(Ot+1)− Tµt(Ot))µt(Ot)T
Update observational model parameters

end

DDC takes distributional features as input which need to be extracted from latent or observed states
rolled out from random walk. After referring to the supplementary materials and the open sourced
code, it was clear that for latent and observed states, K = 100 Gaussian radial basis function features
with their centres arranged on a 10x10 grid are used. The features are truncated along the internal
walls.

A minor hurdle was generating samples in sleep phase. For implementation purposes can be
interpreted and broken down into smaller steps as follows,

p(ssleept+1 |s
sleep
t) = αsTψ(ssleept) + σs ∗ η/||η|| (3)

where αs are the regression weights to decode state st from distributional features ψ(st). This is an
ablation from the paper which is crucial for reproduction of the results. An alternative modification
to do linear readout from DDC can be as follows and the weights will be learnt accordingly,

p(ssleept+1 |s
sleep
t) = αsT (ψ(ssleept) + σs ∗ η/||η||) (4)

The corresponding sleep observation as,

p(osleept |ssleept) = ssleept + ε (5)

where ε, η, σs same as in section 4.1.

It’s important to note that we need to have a decoding strategy s ≈ αsψ(s) before generating sleep
samples. We train a ridge regression on 30,000 sample observation trajectories to get αs prior to
training the wake-sleep algorithm. These are a few minor clarifications regarding ablations from
the paper. While verifying the approximations in the wake-phase T update from the supplementary
materials, it’s important note that we are approximating KL divergence by Euclidean distance, keeping
in mind KL is not a symmetric function and we are approximating it with a symmetric euclidean
distance.

Since we are assuming approximately linear relationship throughout, the weights of the filter are
trained using a ridge regression with a suitable τ = 1e− 4. Once the wake-sleep algorithm is trained
for 50 epochs we can draw inference reproduce results from the Fig. 1 of the original paper. We
can learn distributional SFs in the sleep or the wake phase or else compute them from the dynamics
after the wake-sleep algorithm has converged. SF matrix can be learnt in a variety of ways and we
compare those in the next section.

In case of value computation, reward vector wrew and the SF matrix Mπ under a policy needs to
be independently calculated and we can then compute values V π by equation (2). We couldn’t
re-implement value computation under noisy environments due to time constraint.

3

Figure 1: Observed trajectories and
true latents.

Figure 2: Posterior mean inferred
trajectories.

4 Implementation and results

4.1 Environment implementation

A continuous [0,1] x [0,1] environment is implemented with vertical or horizontal internal walls
in between. Random walk policy is implemented for the generative model. The agent bounces off
(reflects) a wall if the random walk roll out crosses a wall. Random walk can be implemented as
sampling the steps in X and Y direction from a Gaussian distribution as per the following, where
η ∼ N (0, σ = 1) and σs = 0.06

p(st+1|st) = [st + σs ∗ η/||η||]WALLS (6)

Alternatively, random angle walk can also be implemented where the angle for each step is sampled
from [0, 2π] and a step of constant magnitude σs is taken in that direction. The observations
are generated by adding a Gaussian noise (σo).This is necessary as in a POMDP, agent receives
observations that depend on current latent state via an observation process. Thus the paper formally
writes it as follows, where ε ∼ N (0, σo = 0.1).

p(ot|st) = st + ε (7)

The RBF features with centres arranged on a grid have width σψ = 0.3

We felt a lack of widely used environments like OpenAI Gym for a scenario similar to the one
presented in the paper. Development of such new environments will certainly help lower the barrier
for this field. Training can be done on a single CPU setup and in less than half and hour.

We were able to re-implement the wake-sleep algorithm and reproduce the results from Fig. 1 of the
original paper. We re-implemented the functions for learning distributional successor features but we
weren’t able to reproduce the results of the value computation under random walk policy and discuss
possible reasons for the same.

4.2 Learning and inferencing the state-space model parametrised by DDC

We train a state-space model corresponding to a random walk policy in the latent space with noisy
observations using the DDC algorithm. We learn the decoding from ψ(s) to s prior to wake-sleep
training as explained in section 3. Prior inferring trajectories, we trained a decoding from µ features
to true latent trajectories. The decoding scheme will directly affect reproduction of the results but is
ablated from the paper. We request the reviewers to verify this approach as using the same s which
were used to decode ψ(s), now if used to decode from µ didn’t give right results.

It was slightly unclear as to how to replicate the visualisation in Fig. 1(b) from the original paper.
The supplementary material briefly describes it as approximating mean dynamics as a linear readout
from DDC: Est+1|st ≈ αTψ(st) where s ≈ αψ(s).

We implement and reproduce the results from Fig. 1 (c) of the original paper and are shown in Figure.
1 and Figure. 2

4

Figure 3: Sleep phase sampled tra-
jectories

Figure 4: SF matrix visualization.

Figure 5: Reward function Figure 6: Value function from true
latent

4.3 Learning Distributional SF

As shown in the original paper, we can compute successor features in closed form in the latent space
and can be formally written as follows,

Est|Ot
[M(st)] = (I − γT)−1Est|Ot

[ψ(st)] = (I − γT)−1µt(Ot) (8)

The learnt 100x100 SF matrix can be visualised as shown in Figure. 4 but it doesn’t help much.

4.4 Value functions using SFs under a random policy

SF matrix was learnt in sleep phase We defined the reward function as r = 2− (2x)2 − (2y)2 and
then sampled 100 latents from sleep phase. We then get the reward vector wrew = (r(ψ(ssleep)−1)T .
We use this to generate observed reward weights from sleep observations. We plot evaluate value
function using equation (2) at the same grid used for 100 RBF features and interpolate to get the
Figure 6. We request the reviewers to verify this approach as the process to get those plots were
ablated from the paper.

5 Conclusion

In this work we have presented a reproducibility analysis of the NeurIPS 2019 paper "A neurally
plausible model learns successor representations in partially observable environments" by Eszter
Vertes and Maneesh Sahani. We first attempted by relating to discrete completely observable
environments, but communication with authors made sure that DDC SFs are not meant to propose
an improvement in that scenario but address an interesting problem of learning in noisy continuous
partially observable environments. By making reasonable assumptions we could only partially

5

reproduce the results but couldn’t reproduce value computation, we believe due to mistake on our side
in the method calculation of reward vectors. Also we believe the authors can explain the decoding
scheme to avoid confusion and if possible release a well documented code so that it’ll be easier to
build upon their work. We couldn’t implement value computation under noisy environment due to
time constraints.

Acknowledgments

We would like to thank the author Eszter Vertes for her helpful clarifications and thank CodeOcean
for compute.

References
[1] Eszter Vertes and Maneesh Sahani. A neurally plausible model learns successor representations

in partially observable environments. arXiv preprint arXiv:1906.09480, 2019.

[2] Kevin G Kirby. A tutorial on helmholtz machines. Department of Computer Science, Northern
Kentucky University, 2006.

[3] Mariann Oemisch, Stephanie Westendorff, Marzyeh Azimi, Seyed Alireza Hassani, Salva Ardid,
Paul Tiesinga, and Thilo Womelsdorf. Feature-specific prediction errors and surprise across
macaque fronto-striatal circuits. Nature communications, 10(1):176, 2019.

[4] Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus as a
predictive map. Nature neuroscience, 20(11):1643, 2017.

[5] Ida Momennejad, Evan M Russek, Jin H Cheong, Matthew M Botvinick, Nathaniel Douglass
Daw, and Samuel J Gershman. The successor representation in human reinforcement learning.
Nature Human Behaviour, 1(9):680, 2017.

6

	Introduction
	Background
	Partially observable Markov decision processes (POMDP)
	DDC wake-sleep
	Successor representations from features
	Neural substrates of successor representation

	Learning Process
	Implementation and results
	Environment implementation
	Learning and inferencing the state-space model parametrised by DDC
	Learning Distributional SF
	Value functions using SFs under a random policy

	Conclusion

