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Abstract
Recent works have investigated the role of graph bottlenecks in preventing long-
range information propagation in message-passing graph neural networks, causing
the so-called ‘over-squashing’ phenomenon. As a remedy, graph rewiring mech-
anisms have been proposed as preprocessing steps. Graph Echo State Networks
(GESNs) are a reservoir computing model for graphs, where node embeddings are
recursively computed by an untrained message-passing function. In this paper, we
show that GESNs can achieve a significantly better accuracy on six heterophilic
node classification tasks without altering the graph connectivity, thus suggesting a
different route for addressing the over-squashing problem.

1 Challenges in Node Classification
Relations between entities, such as paper citations or links between web pages, can be best represented
by graphs. Since the introduction of pioneering models such as Neural Network for Graphs [1] and
Graph Neural Network [2], a plethora of neural models have been proposed to solve graph-, edge-,
and node-level tasks [3–5], most of them sharing an architecture structured in layers that perform
local aggregations of node features, e.g. graph convolution networks (GCNs) [6–8]. However, as the
development of deep learning on graphs progressed, several challenges preventing the computation of
effective node representations have emerged. Li et al. [9] first presented over-smoothing as an issue by
analysing the accuracy decay as the number of layers increases in deep graph convolutional networks
on semi-supervised node classification tasks. Oono and Suzuki [10] showed that repeated applications
of a GCN layer cause the node representations to asymptotically converge to a low-frequency subspace
of the graph spectrum. Furthermore, by acting as a low-pass filter, GCNs representation are biased
in favour of tasks whose graphs present an high degree of homophily, that is nodes in the same
neighbourhood share the same class [11]. In general, the inability to extract meaningful features
in deeper layers for tasks that require discovering long-range relationships between nodes is called
under-reaching. Alon and Yahav [12] maintain that one of its causes is over-squashing: the problem
of encoding an exponentially growing receptive field [1] in a fixed-size node embedding dimension.
Topping et al. [13] have provided theoretical insights into this issue by identifying over-squashing
with the exponential decrease in sensitivity of node representations to the input features on distant
nodes as the number of layers increases. For example, a GCN model [8] computes the representation
h
(`)
v ∈ RH of node v in layer ` as the aggregation of previous-layer features in neighbouring nodes
v′ ∈ N (v), i. e.

h
(`)
v = relu

(∑
v′∈N (v) Âv,v′W(`)h

(`−1)
v′

)
, (1)

with Â as the normalized graph adjacency matrix and input node features xv ∈ RX in layer ` = 1.
The sensitivity of h(`)

v to the input xv′ , assuming that there exists a `-path between nodes v and v′, is
upper bounded by ∥∥∥∂h(`)

v

∂xv′

∥∥∥ ≤ ∏̀
l=1

‖W(l)‖︸ ︷︷ ︸
layers’ Lipschitz constants

(Â`)v,v′ . (2)
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Topping et al. [13] have further investigated the connection of over-squashing — as measured by
the Jacobian of node representations in (2) — with the graph topology via the term (Â`)v,v′ , and
have identified in negative local graph curvature the cause of ‘bottlenecks’ in message propagation.
In order to remove these bottlenecks, they have proposed rewiring the input graph, i.e. altering the
original set of edges as a preprocessing step, via Stochastic Discrete Ricci Flow (SDRF). This method
works by iteratively adding an edge to support the most negatively-curved edge while removing the
most positively-curved one according to the balanced Forman curvature [13], until convergence
or a maximum number of iterations is reached. This rewiring approach can be contrasted to e.g.
Graph Diffusion Convolution (DIGL) [14], which aims to address the problem of noisy edges in the
input graph by altering the connectivity according to a generalized graph diffusion process, such as
personalized PageRank (PPR). Since DIGL has a smoothing effect on the graph adjacency — by
promoting connectivity between nodes that are a short diffusion distance —, it may be more suitable
for tasks that present a high degree of homophily [13], i.e. graphs with an high ratio of intra-class
edges [11].

In our opinion, equation (2) instead suggests a different method of addressing the exponentially
vanishing sensitivity in deeper layers, by acting on the layers’ Lipschitz constants ‖W(l)‖. In the
next section, we present a model for computing node embeddings in which Lipschitz constants
can be explicitly chosen as part of the hyper-parameter selection. This will enable an experimental
comparison between the two approaches in section 3.

2 Reservoir Computing for Graphs
Reservoir computing [15–17] is a paradigm for the efficient design of recurrent neural networks
(RNNs). Input data is encoded by a randomly initialized reservoir, while only the readout layer for
downstream task predictions requires training. Reservoir computing models, in particular Echo State
Networks (ESNs) [18], have been studied in order to obtain insights into the architectural bias of
RNNs [19, 20].

Graph Echo State Networks (GESNs) have been introduced by Gallicchio and Micheli [21], extending
the reservoir computing paradigm to graph-structured data. GESNs have already demonstrated their
effectiveness in graph-level classification tasks [22], and more recently in node-level classification
tasks [23], in particular when the underlying graphs present low homophily. Node embeddings are
recursively computed by the non-linear dynamical system

h
(k)
v = tanh

(
Win xv +

∑
v′∈N (v) Ŵh

(k−1)
v′

)
, h

(0)
v = 0, (3)

where Win ∈ RH×X and Ŵ ∈ RH×H are the input-to-reservoir and the recurrent weights, respec-
tively, for a reservoir with H units (input bias is omitted). Equation (3) is iterated over k until the
system state converges to fixed point h(∞)

v , which is used as the embedding. For node classification
tasks, a linear readout is applied to node embeddings yv = Wout h

(∞)
v + bout, where the weights

Wout ∈ RC×H ,bout ∈ RC are trained by ridge regression on one-hot encodings of target classes
yv. The existence of a fixed point is guaranteed by the Graph Embedding Stability (GES) property
[22], which also guarantees independence from the system’s initial state h

(0)
v . A sufficient condition

for the GES property is requiring that the transition function defined in (3) to be contractive, i.e.
to have Lipschitz constant ‖Ŵ‖ ‖A‖ < 1. In standard reservoir computing practice, however,
the recurrent weights are initialized according to a necessary condition [24] for the GES property,
which is ρ(Ŵ) < 1/α, where ρ(·) denotes the spectral radius of a matrix, i.e. its largest absolute
eigenvalue, and α = ρ(A) is the graph spectral radius. This condition provides the best estimate of
the system bifurcation point, i.e. the threshold beyond which (3) becomes asymptotically unstable
[24]. Reservoir weights are randomly initialized from a uniform distribution in [−1, 1], and then
rescaled to the desired input scaling and reservoir spectral radius, without requiring any training.

Let us now consider a GESN where the number of iterations of (3) is fixed to a constant K. In this
case, the K iterations of the state transition function (3) can be interpreted as equivalent to ` = K
graph convolution layers with weights shared among layers and input skip connections. In such a
network, we are able to control how large the layers’ Lipschitz constant is by increasing ρ(Ŵ), since
the spectral radius is a lower bound for the spectral norm [25], i.e. ‖Ŵ‖ ≥ ρ(Ŵ). This should allow
us to contrast the exponentially vanishing sensitivity in (2) caused by topological bottlenecks in the
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Table 1: Average test accuracy with 95% confidence intervals (best results in bold). Except for
GESN, the other results are reported from [13].

Cornell Texas Wisconsin Chameleon Squirrel Actor

None 52.69±0.21 61.19±0.49 54.60±0.86 41.80±0.41 39.83±0.14 28.70±0.09

Undirected 53.20±0.53 63.38±0.87 51.37±1.15 42.63±0.30 40.77±0.16 28.10±0.11

+FA 58.29±0.49 64.82±0.29 55.48±0.62 42.33±0.17 40.74±0.13 28.68±0.16

DIGL (PPR) 58.26±0.50 62.03±0.43 49.53±0.27 42.02±0.13 34.38±0.11 30.79±0.10

DIGL + Undir. 59.54±0.64 63.54±0.38 52.23±0.54 42.68±0.12 33.36±0.21 29.71±0.11

SDRF 54.60±0.39 64.46±0.38 55.51±0.27 43.75±0.31 40.97±0.14 29.70±0.13

SDRF + Undir. 57.54±0.34 70.35±0.60 61.55±0.86 44.46±0.17 41.47±0.21 29.85±0.07

GESN 69.75±1.11 73.96±1.45 77.76±1.68 50.19±0.65 42.70±0.29 35.07±0.24
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Figure 1: The effects of an adequately large reservoir radius ρ (and thus of a large enough layer’s
Lipschitz constant, since ‖Ŵ‖ ≥ ρ [25]) on test accuracy for different input scaling factors on two
of the six tasks.

factor (Â`)v,v′ with the contributions from the factor ‖Ŵ‖K , which is increasing with the number
of iterations (unfolded recursive layers) if ‖Ŵ‖ > 1. Indeed, a preliminary work by Tortorella
and Micheli [23] has empirically suggested that in tasks where the graph structure is relevant in the
prediction, better node embeddings are computed well beyond the stability threshold.

3 Experiments and Discussion
In this section, we compare the accuracy of GESNs on six low-homophily node classification tasks
against different rewiring mechanisms applied in conjunction with fully-trained GCNs. As Topping
et al. [13] pointed out, avoiding over-squashing in order to capture long-range dependencies is often
more relevant in low-homophily settings, since most nodes sharing the same labels are not neighbours.
In our experiments we follow the same setting and training/validation/test splits of [13, 14], with tasks
limited to the largest connected component of the original graphs, and report the average accuracy
with 95% confidence intervals on 1000 test bootstraps. As in [23], the hyper-parameters selected on
the validation split for GESN are: the reservoir radius ρ(Ŵ), which controls how large the Lipschitz
constant of (3) should be, in the range [0.1/α, 35/α] (the range ρ > 1/α is obtained by grid search);
the input scaling factor of Win in the range [ 1

320 , 1]; the number of units H in the range [24, 212];
and the readout regularization for the ridge regression. The number of iterations is fixed at K = 100.

In Table 1 we compare the accuracy of GESN against the fully-adjacent (+FA) rewiring method
by Alon and Yahav [12], the diffusion-based rewiring method DIGL (with PPR) by Gasteiger et al.
[14], and the curvature-based graph rewiring method by Topping et al. [13] (for details on these
models and their hyper-parameters, we refer to [13], where experimental results are taken from). We
observe that GESNs beat the other models by a significant margin on all the six tasks. Indeed, DIGL
and SDRF offer improvements over the baseline GCN of a few accuracy points on average, usually
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Figure 2: Node embeddings for the Cora graph at different iterations k (ρ = 6/α, 4096 units).
Colours in the t-SNE plots represent different node classes, qualitatively showing how well separable
are the node representations.

requiring also that the graph to be made undirected. In contrast, GESN improves up to 16% over
the best rewiring methods, and by 4-6 points on average. Notice also that rewiring algorithms, in
particular SDRF, can be extremely costly and need careful tuning in model selection, in contrast to
the efficiency of the reservoir computing approach, which ditches both the preprocessing of input
graphs and the training of the node embedding function. Indeed, just the preprocessing step of SDRF
can require computations ranging from the order of minutes to hours, while a complete model can be
obtained with GESN in a few seconds’ time on the same GPU.

Figure 1 shows the impact of reservoir radius ρ and input scaling on test accuracy for Chameleon
and Texas. An adequately large reservoir radius ρ > 1/α, which in turn gives a large enough
Lipschitz constant, is crucial in providing a significant gain in accuracy. Notice also that setting a
proper input scaling is relevant, since it cannot be automatically adjusted by training as in GCNs via
gradient descent. As a further insight, in Figure 2 we present the t-SNE plots of node embeddings
of the Cora graph computed at different iterations of (3) with reservoir radius set at ρ = 6/α. In
GESNs, the iterations of the recursive transition function can be interpreted as equivalent to layers in
deep message-passing graph networks where weights are shared among layers, in analogy with the
unrolling in RNNs for sequences. We observe that instead of the collapse of node representations
that has been shown in Li et al. [9] and subsequent works on the over-smoothing issue, node
embeddings become more and more separable as the number of iterations increases. This observation,
in conjunction with the accuracy results of Table 1 and of [23], suggests that the contractivity of the
message-passing function, i.e. whether its Lipschitz constant is smaller or larger than 1, is the critical
factor in addressing the degradation of accuracy in deep graph neural networks. Indeed, tuning the
layer contractivity was implicitly done by Chen et al. [26] via a regularization term that favours larger
pairwise distances of node representations as a mean to address the over-smoothing problem.

4 Conclusion
Motivated by the analysis of over-squashing via sensitivity to input features advanced by Topping
et al. [13], we have proposed a different route to address this issue affecting the capability of deep
graph neural networks to learn effective node representations. Instead of altering the input graph
connectivity — as rewiring methods such as SDRF and DIGL propose —, we have shown that a model
able to select the suitable Lipschitz constant for its graph convolution can achieve a significantly better
accuracy on six node classification tasks with low homophily, even computing the node embeddings
in a completely unsupervised and untrained fashion. Future work will involve investigating how the
change in Lipschitz constant affects the organization of the node embedding space, and assessing the
merit of transferring those results in fully-trained graph convolution models via a regularization term
or via constraints on layers’ weights.
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A Comparison with node classification models
For the sake of completeness, in Table 2 we report accuracy of GESN and other node classification
models on nine graphs with different degrees of homophily, following the experimental setting of
Zhu et al. [11]. Notice that in this setting the whole graph of the task is retained, thus the results
cannot be compared with those of Table 1, where graphs are restricted to the largest connected
component following the setting of [13, 14]. The results show that GESN is effective on tasks with
high homophily as well as on tasks with low homophily, thanks to the ability to tune the Lipschitz
constant of (3).

Table 2: Node classification accuracy on low and high homophily graphs following the experimental
setting of Zhu et al. [11]. Average accuracy and standard deviation for GESN is reported from [23],
while other models are reported from [11]. Results within one standard deviation of the best accuracy
are highlighted.

Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora

GraphSAGE 82.4±6.1 81.2±5.6 34.2±1.0 41.6±0.7 58.7±1.7 75.9±5.0 76.0±1.3 88.5±0.5 86.9±1.0

GAT 58.4±4.5 55.3±8.7 26.3±1.7 30.6±2.1 54.7±1.9 58.9±3.3 75.5±1.7 84.7±0.4 82.7±1.8

GCN 59.5±5.3 59.8±7.0 30.3±0.8 36.9±1.3 59.8±2.6 57.0±4.7 76.7±1.6 87.4±0.7 87.3±1.3

GCN+JK 66.5±6.6 74.3±6.4 34.2±0.9 40.5±1.6 63.4±2.0 64.6±8.7 74.5±1.8 88.4±0.5 85.8±0.9

GCN+Cheby 77.3±4.1 79.4±4.5 34.1±1.1 43.9±1.6 55.2±2.8 74.3±7.5 75.8±1.5 88.7±0.6 86.8±1.0

MixHop 77.8±7.7 75.9±4.9 32.2±2.3 43.8±1.5 60.5±2.5 73.5±6.3 76.3±1.3 85.3±0.6 87.6±0.9

H2GCN 84.9±6.8 86.7±4.7 35.9±1.0 36.4±1.9 57.1±1.6 82.2±4.8 77.1±1.6 89.4±0.3 86.9±1.4

MLP 81.9±4.8 85.3±3.6 35.8±1.0 29.7±1.8 46.4±2.5 81.1±6.4 72.4±2.2 86.7±0.4 74.8±2.2

GESN 84.3±4.4 83.3±3.8 34.5±0.8 71.2±1.5 76.2±1.2 81.1±6.0 74.5±2.1 89.2±0.3 86.0±1.0

Table 3: Statistics for the tasks in Table 2.

Task Homophily Nodes Edges Radius α Features Classes

Texas 0.11 183 295 2.56 1,703 5
Wisconsin 0.21 251 466 2.88 1,703 5
Actor 0.22 7,600 26,752 9.99 932 5
Squirrel 0.22 5,201 198,493 138.60 2,089 5
Chameleon 0.23 2,277 31,421 61.90 2,089 5
Cornell 0.30 183 280 2.68 1,703 5
Citeseer 0.74 3,327 9,104 13.74 3,703 6
Pubmed 0.80 19,717 88,648 23.24 500 3
Cora 0.81 2,708 10,556 14.39 1,433 7

B Role of reservoir radius
In Figure 3, we show the impact of reservoir radius ρ and input scaling factor on average test accuracy
for the tasks in Appendix A, reaffirming the analysis of Tortorella and Micheli [23]. Chameleon and
Squirrel (two tasks with low homophily) require an extremely large reservoir radius, while essentially
ignoring the input features due to the extremely small input scaling factor. This suggests that having
a large Lipschitz constant is beneficial for the extraction of relevant topological features from the
graph. The other four low homophily tasks (Actor, Cornell, Texas, Wisconsin) seem to exploit more
the information of node input labels instead of graph connectivity, by requiring reservoir radii within
the stability threshold. Finally, the three high homophily tasks (Cora, Citeseer, Pubmed) achieve the
best accuracy with a combination of moderately high spectral radius and input scaling relatively close
to 1. Overall, what we have observed shows that GESN can be flexible enough to accommodate the
two opposite task requirements thanks to the explicit tuning of both input scaling and reservoir radius
in the model selection phase.
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Figure 3: Impact of input scaling and reservoir radius on test accuracy (4096 units).
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