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ABSTRACT

Motivated by equilibrium models of labor markets, we develop a formulation of
causal strategic classification in which strategic agents can directly manipulate
their outcomes. As an application, we compare employers that anticipate the
strategic response of a labor force with employers that do not. We show through a
combination of theory and experiment that employers with performatively optimal
hiring policies improve employer reward, labor force skill level, and in some cases
labor force equity. On the other hand, we demonstrate that performative employers
harm labor force utility and fail to prevent discrimination in other cases.

1 INTRODUCTION

In many applications of predictive modeling, the model itself may affect the distribution of samples
on which it has to make predictions; this problem is known as strategic classification (Hardt et al.,
2015; Brückner et al., 2012) or performative prediction (Perdomo et al., 2020). For example, traffic
predictions affect route decisions, which ultimately impact traffic. Such situations can arise in a
variety of applications; a common theme is that the samples correspond to strategic agents with an
incentive to “game the system” and elicit a desired outcome from the model.

In the standard strategic classification setup, the agents are allowed to modify their features, but they
do not modify the outcome that the predictive model targets. An example of this is spam classification:
spammers craft their messages (e.g. avoiding certain tokens) to sneak them past spam filters. There is
a line of work on causal strategic classification that seeks to generalize this setup by allowing the
agents to change both their features and outcomes, usually by incorporating a causal model between
the two (Miller et al., 2020; Kleinberg and Raghavan, 2020; Haghtalab et al., 2023; Horowitz and
Rosenfeld, 2023).

In this paper, motivated by equilibrium models of labor markets (see Fang and Moro (2011a) for
a survey), we study a strategic classification setup in which the agents are able to manipulate
their attributes via a reverse causal mechanism. This complements prior work on causal strategic
classification, in which the agents manipulate their attributes via causal mechanisms. As an example
of reverse causal strategic classification, we consider the employer’s problem in labor market models.
In particular, we study the consequences (in terms of employer and labor force welfare) of hiring
policies that anticipate reverse causal strategic responses (we will refer to such anticipatory policies
as strategic and later performative or optimal).

1. In the simple Coate and Loury (1993) labor market model, we show theoretically that such
strategic policies lead to higher employer rewards (compared to non-strategic hiring policies).
Thus, rational employers should be performative. Further, such hiring policies improve labor force
skill level and equity, so performative employers also benefit the labor force.

2. Unfortunately, we also observe that in some aspects, the desirable properties of (reverse causal)
strategic hiring policies are brittle. To study their robustness, we developed a more sophisticated
general equilibrium labor market model. We show empirically that while our theory generalizes,
strategic hiring policies will harm workers by reducing their aggregate welfare and can still lead
to disparities amongst labor force participants.
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1.1 RELATED WORK

The study of learning on data distributions that are dependent on the learned model (known as
performative prediction) was formalized in (Perdomo et al., 2020). The works Mendler-Dünner
et al. (2020); Drusvyatskiy and Xiao (2020); Wood et al. (2021) extend the problem to a stochastic
setting. Perhaps the most prevalent example of performative prediction is strategic classification
(Hardt et al., 2015). A work in the strategic classification literature close in spirit to ours is Liu et al.
(2022), in which the authors model agents as competing in contests. Our work is also close to the
works that inject an element of causality into strategic classification Alon et al. (2020); Kleinberg
and Raghavan (2020); Haghtalab et al. (2023); Miller et al. (2020); Shavit et al. (2020); Harris et al.
(2022); Horowitz and Rosenfeld (2023); Mendler-Dünner et al. (2022). Crucially, each of these works
assumes that strategic agents manipulate features x, which in turn has a causal effect on outcomes y;
we are interested in the reverse: when strategic agents manipulate y, which in turn has a causal effect
on features x.

Our work is inspired by the economic models of statistical discrimination in labor markets (Arrow,
1971; Phelps, 1972; Coate and Loury, 1993; Moro and Norman, 2003; 2004). See Fang and Moro
(2011a) for a survey of this work. The works Liu et al. (2020), Kannan et al. (2019) give a contempo-
rary study of Coate and Loury (1993) type models in the context of algorithmic decision-making and
affirmative action, respectively.

We provide an extended discussion of related works in the appendix.

1.2 PRELIMINARIES

Performative prediction, introduced in Perdomo et al. (2020), seeks to study distribution shifts that
are dependent on model deployment. To be more specific, if the learner picks model parameter θ,
then the next samples are drawn from D(θ). Thus, a performative learner seeks to minimize

PR(θ) ≜ EZ∼D(θ)[ℓ(Z; θ)].

This problem can be non-convex; most works assume the learner utilizes a strategy of repeatedly
retraining a model. Under this strategy, at round t+ 1 of training, the learner deploys

θt+1 = argminθ′EZ∼D(θt)[ℓ(Z; θ′)].

The authors of Perdomo et al. (2020) show that this strategy (known as repeated risk minimization)
will converge to stable points, which are defined by:

θstab ∈ argminθ′EZ∼D(θstab)[ℓ(Z; θ′)].

The second performative solution concept is a performatively optimal point, which satisfies

θopt ∈ argminθ′EZ∼D(θ′)[ℓ(Z; θ′)].

It is worth emphasizing that optimal points are generally not stable, and stable points are generally
not optimal; in particular, stable points are not minima of the performative loss, and optimal points
need not be the best response to their own induced distribution.

The canonical example of performative prediction is strategic classification.

Example 1.1 (Hardt et al. (2015)). Although it predates performative prediction, strategic classifica-
tion Hardt et al. (2015) can be viewed as an instance of performative prediction in which users game
their features. More concretely, there are users with features x ∈ X , discrete outcomes y ∈ Y ≃ [K],
and a corresponding base distribution P over Z = X × Y . The goal of learning is to deploy a
model f : X → Y using training data drawn from P . The catch is the following: post-training and
pre-testing of f users will game their features (at some cost c : X × X → R+ ) via the update rule:

x→ xf ≜ argmaxx′∈X fθ(x
′)− c(x, x′).

The goal is to deploy a classifier that is accurate post-distribution shift. The ideal classifier minimizes
EP ℓ(f(xf ), y).
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2 REVERSE CAUSAL STRATEGIC LEARNING

In the standard strategic classification setting, agents update their features x, but they do not update
their labels y. This is common when the agents wish to “game” the model; the standard example is
spam classification: spam creators change their emails to try and avoid spam filters (for example, by
avoiding certain tokens), but their emails will remain spam.

Recently, Horowitz and Rosenfeld (2023) considered a more general problem setting by permitting
agents to modify their labels (in addition to their features) through a causal/structural model. Here,
the agents still change their features, but changes to the features can propagate through the causal
model and (indirectly) lead to changes in their labels. In the following, we consider a reverse causal
setting in which the agents change their labels and the changes propagate through a structural model
to their features. Here are two motivating examples for the reverse causal strategic learning setting:
one from labor economics and one from game models of content platforms.
Example 2.1 (Coate and Loury (1993)). Consider an employer that wishes to hire skilled workers.
The worker skill level is represented as Y ∈ {0, 1} with Y ∼ Ber(π). The employer implements a
(noisy) skill level assessment, with the outcome represented as X ∈ [0, 1]. The employer receives
utility p+ from a “qualified” hire and suffers loss p− from an ”unqualified” hire, and seeks to train a
classifier f(x) : [0, 1]→ {0, 1} that optimizes their overall utility:

maxf∈F
[
p+πP(f(x) = 1 | y = 1)− p−(1− π)P(f(x) = 1 | y = 0)],

Thus far, this is a standard classification problem because the workers are non-strategic, i.e. they
are unaffected by the employer’s hiring policy. To introduce a strategic component, the workers are
allowed to become qualified (at a cost) in response to the employer’s policy. Let w > 0 be the wage
paid to hired workers and c be the (random and drawn from CDF G) cost to a worker of becoming
skilled. For an unskilled worker, the expected utility of becoming skilled is

uw(f, y) ≜

{∫
[0,1]

wf(x)dΦ(x | 1)− c if the worker becomes skilled,∫
[0,1]

wf(x)dΦ(x | 0) if the worker remains unskilled,

where Φ(x | y) is the conditional distribution of skill level assessments. So a strategic worker
becomes skilled if

w
∫
[0,1]

1{f(x)=1}dΦ(x|Y = 1)− w
∫
[0,1]

1{f(x)=1}dΦ(x|Y = 0)− c > 0.

Example 2.2 (Hron et al. (2023), Jagadeesan et al. (2023)). Consider a social media system. There
is a demand distribution u ∼ Pd;u ∈ Rd from which users arrive to the system sequentially, with
ut representing a vector of characteristics of the t′th user. There is also a population of n content
producers which each produce content {sti}ni=1; s

t
i ∈ Rd. Associated with a piece of content s is some

noisy measurement X ∈ Rd of the content generated via CDF Φ(· | s). For example, X could consist
of the sentiment of “comment” s receives from users, as well as the amount of likes and views s
generates. In general, we interpret E||X||22 as the “amount” of the content that a creator with signal
X produces. The learner wishes to train a recommendation system R(Σ, x, u) that recommends
content sti to the user ut with probability:

P (ut is assigned content sti) = R(Σ, xt
i, u

t) =
exp( 1τ (x

t
i)

TΣut)∑n
j=1 exp(

1
τ (x

t
j)

TΣut)

The learner wishes to maximize the true enjoyment a user receives from content, which is given by

r(Σ∗, ut, st) = (st)TΣ∗ut.

Content producers are not static, however, and will adapt content production. Since exposure to users
is directly connected to the learned recommendation system, a content creator with original content s
will tend towards producing content s′ that optimizes

Eu∼Pd;x∼Φ(·|s′)R(Σ, x, u)− Ex∼Φ(·|s′)||x||22

2.1 THE REVERSE CAUSAL STRATEGIC LEARNING PROBLEM

In reverse causal strategic learning, the samples (X,Y ) are agents, and the learner wishes to learn a
(possibly randomized) policy/rule f : X → Y to predict the agents’ responses Y from their features
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X . The agents are fully aware of the learners policy f and as such, we assume that the response of
the agents to f is to change their outcomes Y strategically:

Y → Y+(f, Y ) ≜ argmaxy′W (f, y′)− c(y′, Y ), (2.1)

where W is a welfare function that measures the agent’s welfare and c is a (possibly random) cost
function that encodes the cost (to the agent) of changing their outcome from Y to y′.
Example 2.3 (Example 2.1 cont). In the labor market example, the agents are the workers, and their
welfare is their expected wage

W (f, y′) =
∫
[0,1]

wf(x)dΦ(x | y′); y′ ∈ {0, 1},

while the cost is
c(y′, y) = cy′; c ∼ G, y′ ∈ {0, 1}.

Example 2.4 (Example 2.2 cont). In the content creation example, the agents are the content
producers. Their welfare function is

W (Σ, s′) = Eu∼Pd;x∼Φ(·|s′)R(Σ, x, u),

while the cost function is simply the effort Ex∼Φ(·|s′)||x||22 required to produce a certain “amount”
of content.

The key ingredient that makes this setting reverse causal is that strategic change in the outcome
propagates to cause a change in the generation of features X via:

X ∼ Φ(· | Y )→ X+(f, Y ) ∼ Φ(· | Y+(f, Y )),

where Φ(· | Y = y) is the conditional distribution of the features X given the outcome Y in the
base distribution of the agents. In other words, the agents are unable to directly change their features
in the reverse causal setting; they can only change their features by changing their outcomes. This
distinguishes the reverse causal strategic learning setting from the problem settings in other works
on performative prediction and strategic classification (Hardt et al., 2015; Horowitz and Rosenfeld,
2023).

Going back to the learner, their welfare depends on the post-response agents, so they must account
for the strategic response of the agents. A learner which does this is performative and minimizes the
post-strategic response loss:

minf∈FE
[
ℓ(f(X+(f, Y )), Y+(f, Y ))

]
. (2.2)

In the rest of the paper, we will return to the labor market, demonstrating that a learner with a
proactive strategy is often mutually beneficial for both the learner and strategic agents. A discussion
on the minimization of Objective 2.2 is reserved for appendix A in which we provide the a simple
algorithm for the learner to minimize the performative loss in a stochastic setting.

3 STRATEGIC HIRING IN THE COATE-LOURY MODEL

In this section, we focus on example 2.1 and study the impact of performatively optimal hiring
policies on employer and labor force welfare in the Coate-Loury model. Despite the strategic nature
of the labor force, prior studies of labor market dynamics generally assume employers are merely
reactive (instead of proactive) to the strategic responses of the labor force (Fang and Moro, 2011a).
We show that in a variety of market settings, performatively optimal hiring policies improve employer
welfare, labor force welfare, and labor market equity.

3.1 PERFORMATIVE PREDICTION IN THE COATE-LOURY MODEL

Recall the setup from example 2.1. We impose some standard assumptions on the problem:

1. P (X=x|y=1)
P (X=x|y=0) =

ϕ(x|y=1)
ϕ(x|y=0) is monotonically increasing in x,

2. ϕ(x | y) is continuously differentiable for y ∈ {0, 1},
3. G(0) = 0, G is continuously differentiable, and c ∼ G is almost surely bounded above by MG.
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The second two assumptions are technical, but the first is more substantive. It resembles the monotone
likelihood ratio assumption in statistical hypothesis testing that ensures consistency of hypothesis
tests. In this case, it ensures the optimal hiring policy is a threshold policy of the form 1{x ≥ θ} for
some θ, this is the operating assumption in the original Coate and Loury (1993) paper, and we will
proceed with it as well.

Armed with the assumption of a threshold hiring policy, we discuss performative prediction in the
Coate and Loury (1993) model. Recall the strategic response of the labor force participants in example
2.1. In aggregate, the proportion of skilled labor force participants becomes

π(θ) = G(w[P (x > θ | y = 1)− P (x > θ | y = 0)]).

Given this, the employer’s strategic hiring problem is really an instance of performative prediction
with the performative employer utility given by

Uperf(θ) ≜ p+P(X > θ | y = 1)π(θ)− p−P(X > θ | y = 0)(1− π(θ)).

As in other performative settings, the employer may opt to deploy an optimal or stable policy. An
employer that deploys an optimal policy anticipates and accounts for the labor force participants
responses to their decisions and thus deploys a policy that solves the performative problem

θopt ∈ argmaxθ Uperf(θ). (3.1)

An employer that deploys a stable policy is reactive rather than anticipatory towards labor force
strategic responses, i.e. they deploy a stable policy, which is any policy that maximizes employer
utility on its own induced distribution:

θstab ∈ argmaxθ p+π(θstab)P(X > θ | y = 1)− p−(1− π(θstab))P(X > θ | y = 0).

The concept of performative vs stable solutions in the context of a micro-economic model has a game
theoretic interpretation. A performative solution is the Stackleberg equilibrium to a 2-player game
between the firm and the labor force, with the firm as the leader and the labor force as the follower.
On the other hand, the stable solution is the Nash equilibrium between the firm and the labor force if
there is no leader-follower dynamic.

We will study both low-wage and high-wage markets. Low-wage markets possess the desirable
property that any employer that follows a “greedy” strategy, i.e. they sequentially deploy

θt+1 ← argmaxθp+P(X > θ | y = 1)π(θt)− p−P(X > θ | y = 0)(1− π(θt)), (3.2)

will eventually converge on a stable policy. This is because (3.2) is an instance of RRM, and low
worker wages (in addition to some regularity conditions) will ensure that the requirements for RRM
convergence provided in Perdomo et al. (2020) are satisfied (see Appendix D).

High-wage markets are independently interesting, as in such markets the benefits of optimal policies
for a firm will be substantial. On the other hand, in high-wage markets, the convergence of RRM may
not be universal. This is not necessary for any of our results (stable policies will always exist and any
greedy employer that does stabilize will do so on a stable policy). Additionally, our empirical results
also demonstrate that, in practice, convergence of reactive firms is not sensitive to market conditions.

Finally, we remark that each theorem will need additional assumptions on the structure of the labor
market (for example, worker wage and firm reward). The social situations that the Coate and Loury
(1993) model applies to are broad Fang and Moro (2011b); and thus the applicability of each theorem
will depend on the social environment at hand. For any specific social situation, a full justification of
these assumptions would require a study of the model on real labor market data (or the alternative
social situation). Such studies are relatively rare in the literature, but two examples are Arcidiacono
et al. (2011) (studies admissions into Duke), Altonji and Pierret (2001) (studies education data).

3.2 EFFECTS OF STRATEGIC HIRING ON EMPLOYER AND LABOR FORCE WELFARE

The main result of this subsection compares employer welfare (in terms of the employer’s expected
utility) and labor force welfare (in terms of the fraction of skilled labor force participants) resulting
from optimal and stable hiring policies. We impose two additional assumptions on the market.

1. there exists θ̃ ∈ [0, 1] such that P (X > θ̃ | y = 1)− P (X > θ̃ | y = 0) > δ1 > 0,
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2. ϕ(x|1)
ϕ(x|0) > δ2 > 0 for any x ∈ [0, 1].

Together, these ensure that some distinction between skilled and unskilled workers is possible, but no
policy can perfectly distinguish between the two. These assumptions ensure that stable and optimal
policies will be distinct.

We study markets in both the low-wage and high-wage regimes. In the large-wage regime, firms
receive substantial benefits from being optimal.

Theorem 3.1. If w > MG/δ1 and p+ > p−/(δ1δ2) then the following holds for all stable parameters
θstab and all optimal parameters θopt:

1. π(θopt) > π(θstab).

2. Uperf(θstab) ≤ Uperf(θopt)/(1 + δ1).

On the other hand, in the low-wage regime, the firm’s benefits from an optimal strategy may be small.

Theorem 3.2. If w > 0, p+ > max(1, π(θ̃)

(1−π(θ̃))
p−) and δ1δ2 > p−, then the following holds for all

stable parameters θstab and all optimal parameters θopt:

1. π(θopt) > π(θstab).

2. Uperf(θstab) ≤ Uperf(θopt).

To see the intuition behind Theorems 3.1 and 3.2, consider an extreme case where p− = 0. Here,
since for any π > 0, the best reactive employer response is θ = 0, any stable policy will satisfy
π(θstab) = 0 (and thus Uperf(θstab) = 0), while clearly an optimal employer can do better than this and
will in general deploy a model that results in π(θopt) > 0. Theorems 3.1 and 3.2 are a generalization
of these simple dynamics.

The alignment between the social welfare of the workers and the reward to the learner is in contrast
with other areas of strategic learning. For example, Milli et al. (2018) show that there is a direct
trade-off between the social burden on strategic agents and learner accuracy in strategic classification.

3.3 EFFECTS OF STRATEGIC HIRING ON LABOR FORCE EQUITY

Besides labor force skill level, another pressing issue in labor markets is equity. In fact, the Coate-
Loury model was developed to show how inequities may arise in labor markets despite the lack
of explicit discrimination in the market. First, we recall the original two-group version of the
Coate-Loury model.

Employers now seek to hire workers from a large population of labor force participants consisting of
two identifiable groups denoted as Maj or Min, with λ denoting the fraction of workers with a Maj
group membership. Crucially, employer profits, worker costs, wages, and worker signals are agnostic
with respect to group membership. Denoting the proportion of qualified workers in a group as πMaj

and πMin the (non-performative) employer utility is:

U(θMaj, θMin) = λU(θMaj) + (1− λ)U(θMin),

The population level response of labor force participants to deployed policies is largely similar in the
group case:

πMaj(θMaj, θMin) = G(w[P (x > θMaj | y = 1)− P (x > θMaj | y = 0)]),

πMin(θMaj, θMin) = G(w[P (x > θMin | y = 1)− P (x > θMin | y = 0)]).
(3.3)

Note that under these assumptions, both the employer’s non-performative hiring problem and the
performative one are seperable; i.e. the employer can simply solve two hiring problems for each
group separately. As such, we define a stable pair θ⃗stab = (θMaj

stab, θ
Min
stab ) as a pair of policies that are

each stable and optimal pairs θ⃗opt = (θMaj
opt , θ

Min
opt ) as a pair of policies that are each (performatively)

optimal.
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In Coate and Loury (1993) a policy pair θ⃗ is discriminatory if πMaj(θ⃗) ̸= πMin(θ⃗), this will also be
our metric for discrimination in strategic hiring. It is worth emphasizing that our definition of a
discriminatory stable pair is exactly the definition of a discriminatory market equilibrium in Coate
and Loury (1993).

We will see that, in a certain sense, an employer with a performatively optimal strategy enforces
fairness amongst the groups, while a reactive employer provides no such guarantees. Some technical
assumptions are needed on the conditions of the market; as the employer’s hiring problem is separable
with respect to group, we state these assumptions in the context of a single group market, with the
implication that the requirements hold when the market is constrained to either group.

We will study markets with the following assumptions:

1. There exists θ̃ such that P (x > θ̃|y = 1)− P (x > θ̃|y = 0) > 1− ϵ

2. p+ = p−

The second assumption is primarily to simplify the problem. On the other hand, the first assumption
is crucial. It implies that the firm find a hiring policy that provides excellent separation between
qualified and unqualified workers (generally ϵ can be thought of as small). Under such an assumption,
a performative firm will have both ability and motive to steer the market towards equitable equilibrium.

Theorem 3.3. Assume θ∗−1(θ) is c−Lipschitz on [0, θ̃], where θ∗(π) is the best employer response if
P (y = 1) = π and that w > MG/(1− ϵ) Then the following hold simultaneously:

1. There exists a stable pair θ⃗stab such that |πMaj(θ⃗stab)− πMin(θ⃗stab)| > 1− c.

2. |πMaj(θ⃗opt)− πMin(θ⃗opt)| < ϵ for all optimal pairs θ⃗opt.

The first assumption requires sufficient smoothness on the inverse of the firm’s best response; in
general, it is easy to construct markets where both c and ϵ are small. Such an example is presented
in Appendix B, and some sufficient market conditions for these conditions to hold are provided in
Appendix C.

We also study the problem in low-wage markets, a strong concavity assumption on the firms non-
performative utility U(θ) is needed. This is generally not too difficult to meet, and a discussion is
supplied in Appendix D.
Theorem 3.4. Assume that the non-performative firm utility U(θ) is γ− strongly concave for all π.
Also, assume g(·), and ϕ(·()) are bounded above by K1, and they are differentiable and g′(·), ϕ′(·)
are bounded above by K2. If G−1( ϕ(θ̃|0)

(1−ϵ)(ϕ(θ̃|1)+ϕ(θ̃|0)) ) < w < γ/(2K1K2) then the following hold
simultaneously:

1. There exists a stable pair θ⃗stab such that |πMaj(θ⃗stab)− πMin(θ⃗stab)| > 0.

2. |πMaj(θ⃗opt)− πMin(θ⃗opt)| = 0 for all optimal pairs θ⃗opt.

For this to truly be a “low-wage market” we need G−1( ϕ(θ̃|0)
(1−ϵ)(ϕ(θ̃|1)+ϕ(θ̃|0)) ) ≈ 0, we will see an

example of markets that satisfy this and the other assumptions in the appendix.

The intuition behind optimal policies enforcing fairness in Theorems 3.3 and 3.4 is relatively simple;
a performative employer that can distinguish skill level well posseses both direct incentive and ability
to ensure that both majority and minority group worker qualification levels will be high, and as such
the discriminatory gap will be small. On the other hand, a reactive employer has no direct incentive
to increase the fraction of skilled workers; i.e. they are too myopic to maximize the fraction of skilled
workers. Thus, there is no invisible hand steering the market to more equitable equilibria.

4 EXPERIMENTS ON MARKETS WITH CONTINUOUS SKILL LEVELS

In this section, we study the sensitivity of the promising labor force skill and equity results in the
preceding section to the underlying Coate-Loury model. A key limitation of the two-group Coate-
Loury model is that the labor markets for the two groups operate independently of each other. Here
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we study the problem using a more sophisticated general equilibrium model (introduced in Appendix
B) which allows for such cross-group effects. In our formulation of a labor market, we empirically
observe the following economic takeaways:

1. As in the Coate-Loury model, the employer is always incentivized to be performative. Also, a
performative employer benefits labor force participants because it increases labor force skill levels.

2. Unfortunately, a performative employer harms workers by reducing their aggregate welfare.
Additionally, the fairness benefits of a performative employer are brittle with respect to the
assumptions of the underlying market.

Due to space limitations, we only briefly describe our modifications to the Coate-Loury model here
and defer a detailed description of the market to Appendix B. The first is that worker skill level
Y has Lebesgue density p(y), implying that qualification is not binary, but rather a continuum of
possible productivity levels. The second modification is to the reverse causal updates of the workers;
while they remain strategic and update their outcomes according to the reverse causal mechanism 2.1,
the wage structure and cost are different. The cost is now a fixed function: c(·, ·) : Y × Y → R+.
The wage and utility structure will be more complex, again we refer to Appendix B for a detailed
description of changes.

4.1 EXPERIMENTS WITH LINEAR UTILITY AND FLAT WAGES

In the Coate and Loury (1993) model, it is assumed that production functions are linear and that
the wage structure is flat. In our context, this is the case where w(x, f) = w and u(y,Hf (y)) =
Hπ(y)(ay − 1). Finally, the cost is specified to be quadratic: c(y′, y) = c

2 (y
′ − y)2.

To study worker welfare and employer utility, we assume p(y) is known, so the employer’s policy
optimization is non-stochastic. Figure 1 diagrams the worker side. In general, an optimal policy
results in a larger portion of qualified workers, while a stable policy leads to greater aggregate worker
welfare. The right-hand side of Figure 2 plots the firm side; unsurprisingly, the employer prefers an
optimal policy; additionally, the left-hand side of Figure 2 demonstrates algorithm 1 (appendix A) in
a labor market.

(a) Left: w = 1, c = 8 // Right: w = 1, a = 2 (b) Left: w = 1, c = 8 // Right: w = 1, a = 2

Figure 1: Worker Welfare and Proportion of Qualified Workers for Optimal and Stable Policies

Figure 2: Left: RSGD and Alg 1 (a = 2, w = 1, c = 5) // Right: employer Utility Under Policies
(Left: w = 1, c = 5 // Right: w = 1, a = 2)
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4.2 EXPERIMENTS WITH NON-LINEAR UTILITY AND NON-FLAT WAGES

Next, we present experiments on markets that include identifiable groups and move beyond the
assumptions of linear utility and flat wages. In the subsequent experiments, wages are non-linear and
are determined by a Nash equilibrium among competing employers (inspired by (Moro and Norman,
2004)). Additionally, we assume u(y,Hf (y)) = y(Hf (y))

α, the important difference being that
u(·, ·) is non-linear in hiring probability, which removes the separability property present in the
Coate-Loury model. Finally, we no longer assume that cost is agnostic with respect to group; cost is
now specified by c(y′, y, i) = ci

2 (y
′ − y)2; i ∈ {Maj,Min}.

Figure 3 diagrams the welfare of each group under different policies and parameters; in the top row,
group costs and proportions are adjusted (costs are adjusted so total cost remains constant), while in
the bottom row, the utility parameter α is adjusted.

(a) Left: α = 2 // Right: α = 0.5 (b) Left: α = 2 // Right: α = 0.5

(c) Left: cMin − cMaj = 5 // Right: cMin − cMaj = 20 (d) Left: cMin − cMaj = 5 // Right: cMin − cMaj = 20

Figure 3: Worker Welfare and Proportion of Qualified Workers for Optimal and Stable Policies

A similar pattern as before emerges in Figure 3. Workers tend to be more qualified under performative
policies (though this is broken in Figure 3 when the utility function is concave in the proportion of
qualified workers), but they tend to have a higher average welfare under stable policies. Clearly,
optimal policies no longer enforce fairness, as there is no appreciable difference in discrimination
between the two.

5 CONCLUSION

We have introduced a problem setting that extends strategic classification by allowing agents to
directly manipulate y, and in turn, cause a shift in x; additionally, we provided an algorithm for risk
minimization in this setting. As an application of this new framework, we studied the effects of
stable and optimal strategies on strategic agent welfare and equity in labor market models. We have
demonstrated that a strategic/performative employer can help or harm strategic workers depending on
the measurement of agent welfare used. In general, a proactive learner assists the strategic workers in
becoming more skilled but harms the strategic agents by reducing their overall aggregate welfare.
Additionally, in some but not all cases, a performative learner can assist in preventing discriminatory
equilibrium in labor markets. Finally, we have seen that an employer will always benefit from
deploying a performative/strategic hiring policy.
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A STOCHASTIC OPTIMIZATION FOR REVERSE-CAUSAL STRATEGIC LEARNING

In this section, we develop a stochastic optimization algorithm to minimize the performative risk
(2.2). Previously, the work Izzo et al. (2021) gave an algorithm for performative optimization under
the assumption that the performative map is of the form D(θ) = p(z; f(θ)), with only f unknown.
Our work is in a distinct environment, where the learner has an apriori model for the map D but the
base distribution is unknown. This is similar to the assumptions in Levanon and Rosenfeld (2021),
which tackles the optimization for non-causal strategic classification.

A.1 LEARNING SET UP

In practice, learning in reverse causal strategic environments is done sequentially (this is similar to
the assumed in other performative prediction works). At each round of learning the learner publishes
a decision θ and all data received in that round are drawn via D(θ). Succinctly, in a stochastic (or
finite data) setting the order of learning at time is as follows:

1. The firm deploys decision θt

2. Firm receives data (and corresponding loss/reward) drawn from D(θt). The firm may use this to
either deploy a reactive decision or in some algorithm that converges towards an optimal policy
(for example in the methodology illustrated below).

Our methodology will be applicable in this stochastic setting, the two strongest assumptions we need
are as follows:

1. As in previous works on optimization for strategic classification (Levanon and Rosenfeld (2021)),
the learner is fully cognisant of the reverse causal strategic map Y+(y, θ).

2. The learner has knowledge of the feature generating mechanism ϕ(x|y). The justification here is
that in many reverse causal strategic settings ϕ(x|y) is based on some standards that the learner
sets (eg a hiring firm giving an interview) and thus the learner should have knowledge of this
mechanism

Performative learning in a scenario where Y+(y, θ) is unknown is an open and interesting problem.
If ϕ(x | y) is unknown, it can be estimated from data pairs (x, y).

A.2 METHODOLOGY

We let ϕ(x|y) denote the conditional density of x given y. We also assume that we deploy some
parametric model fθ(x), and write Y+(fθ, y) ≜ Gθ(y). In this notation, the cost function in the
anti-causal objective can be rewritten as (recall Z = X × Y)

L(θ) =
∫
Z ℓ(fθ(x), Gθ(y))ϕ(x|Gθ(y))p(y)dz.

We derive the gradient in the following lemma.
Lemma A.1. The gradient of L(θ) is ∇L(θ) = ∇1L(θ) +∇2L(θ) +∇3L(θ), where

∇1L(θ) =
∫
Z ∂θ[fθ(x)]∂1[ℓ(fθ(x), Gθ(yi))]ϕ(x|Gθ(yi))dz

∇2L(θ) =
∫
Z ∂θGθ(yi)∂2[ℓ(fθ(x), Gθ(yi))]ϕ(x|Gθ(yi))dz

∇3L(θ) =
∫
Z ∂θGθ(yi)ℓ(fθ(x), Gθ(yi))∂2[ϕ(x|Gθ(yi))]dz,

(A.1)

and ∂θGθ(y) is the solution to the following:∫
X ∂θ[fθ(x)]ϕ(x|Gθ(y))dx+ (

∫
X fθ(x)∂

2
2 [ϕ(x|Gθ(y))]dx− ∂2

1c(Gθ(y), y))∂θGθ(y) = 0. (A.2)

We propose that the learner utilize Monte-Carlo techniques to numerically approximate the integrals
of A.2 and A.1. One applicable option is to use a REINFORCE approximation (see Izzo et al. (2021)
or Williams (1992)). This technique allows us to re-write the integrals of A.1, A.2,∫

X fθ(x)∂
2
2 [ϕ(x|Gθ(y))]dx =

∫
X fθ(x)∂

2
2 [log(ϕ(x)|Gθ(y))]ϕ(x|Gθ(y))dx

= Ex∼ϕ(x|Gθ(y))[fθ(x)∂
2
2 [log(ϕ(x)|Gθ(y))]],
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∫
X ℓ(fθ(x), Gθ(yi))∂2[ϕ(x|Gθ(yi))]dx =

∫
X ℓ(fθ(x), Gθ(yi))∂2[log(ϕ(x|Gθ(yi)))]ϕ(x|Gθ(yi))dx

= Ex∼ϕ(x|Gθ(yi))ℓ(fθ(x), Gθ(yi))∂2[log(ϕ(x|Gθ(yi)))].

Since the learner knows ϕ, these expressions can be computed via drawing samples from ϕ(x|Gθ(y)).
The other integrals in A.2 and A.1 are readily computable via this method in their vanilla forms. We
summarize the proposed algorithm for the performative prediction problem in Algorithm 1.

Algorithm 1 Reverse Causal Strategic SGD

Input: u, η, n, θ0
while not converged do

Draw {yi}ni=1 ∼ p and observe Gθ(yi)

Draw {xi
j}n

′

j=1 from ϕ(x|Gθ(yi))

Compute ∇̂L(θ)(yi, {xi
j}n

′

j=1) with REINFORCE
θt ← θt−1 − η

∑
i ∇̂L(θ)(yi, {xi

j}n
′

j=1)
end while

Figure 5 gives an example of this algorithm utilized in the hiring of strategic workers.

A.3 PROOF OF LEMMA A.1

The only tricky term to evaluate is ∂θGθ(y). To deal with problem we utilize the implicit function
theorem. We have

∂θGθ(y) = ∂θ argmaxy′

∫
X
fθ(x)ϕ(x|y′)dx− c(y′, y).

Via the implicit function theorem ∂θGθ(y) must solve

∂θ[∂y(

∫
X
fθ(x)ϕ(x|y′)dx− c(y′, y)) = 0].

Which implies that ∂θGθ(y) is given by:∫
X
∂θ[fθ(x)]ϕ(x|Gθ(y))dx+(

∫
X
fθ(x)∂

2
2 [ϕ(x|Gθ(y))]dx− ∂2

1c(Gθ(y), y))∂θGθ(y) = 0. (A.3)

B MARKET FORMULATION AND EXPERIMENTS

B.1 MARKET DETAILS

This market is conceptually similar to that of Coate and Loury (1993), with the twist being that worker
skill y is now continuous, with y ∈ Y ⊂ R generated from p(y). The employer still makes hires based
on noisy skill assessment X generated from Φ(x|y) and group membership g ∼ Ber[λ]. Employer
production is specified by a utility function u which depends on the skill level of a worker and the
probability that worker is hired; u : R× [0, 1]→ R. Letting Hf (y) = λHMaj

f (y) + (1− λ)HMin
f (y)

with Hi
f (y) ≜

∫
X fi(x)dΦ(x|y), the employer’s (non performative) policy maximization objective

is given by
maxf∈F E[u(y,Hf (y))].

A hired worker is given wage w(x, f), dependent on the observed skill level and policy choice
and they can improve skills at a cost c(·, ·)→ R+; thus workers strategically choose outcomes by
selecting

Y+(y, f) = argmaxy′

∫
X
w(x, fi)fi(x)dΦ(x|y′)− c(y′, y).

Using the same notation as in section 2, the employer’s post strategic response problem is given by

maxf∈F E[u(Y+(y, f), Hf (Y+(y, f)))].
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In comparing worker well-being under stable and optimal policies, we first must quantify the well-
being of the workers. As before, one metric we use is the proportion of qualified workers, which in
this case is the probability a worker drawn from a distribution induced by a policy is skilled enough
to provide positive employer utility.

We also introduce a second metric, the cost adjusted worker welfare. Towards this, we define the
welfare of a worker with a given natural skill y and group membership i as their net benefit in the
market post policy deployment and strategic update. Specifically, this is given by

Wi(f, y) =
∫
X w(x, fi)fi(x)dΦ(x|Y+(y, fi))− c(Y+(y, fi), y).

We will define the aggregate worker welfare as the expectation of Wi(f, y) with respect to p(y).

To study the techniques discussed in appendix A, we must focus on the case when the optimal policy
f is in a parametric policy class, i.e. F = f(x, θ); θ ∈ R. In the appendix, we provide sufficient
conditions for this to hold.
Proposition B.1. Assume the ratio ϕ(x|y1)/ϕ(x|y0) is increasing in x for all y1 > y0, and the utility
u(y) is increasing in y. Then the optimal policy choice for the employer is some threshold policy
f(x) = 1x>θ.

Proof. We denote the marginal density of the signal x as ν(x) and subscript any distribution that
depends on the policy with f ; also WLOG assume Y = [0, 1]. We can write the employers (non-
performative) utility as the following:

U(f) =

∫
f(x)ν(x)

∫
u(y)p(y|x)dydx

Thus the optimal policy is of the form:

f(x) = 1{
∫

u(y)p(y|x)dy > 0}

Thus the lemma statement is equivalent to
∫
u(y)py|x)dy being monotone in x. Using integration by

parts we re-write this as the following:∫
u(y)p(y|x)dy = u(y)P (Y ≤ y|X = x)|10 −

∫
u′(y)P (Y ≤ y|X = x)dy

= u(1) ∗ 1− u(0) ∗ 0−
∫

u′(y)Pf (Y ≤ y|X = x)dy

Since u′(y) > 0 by assumption; we need to show that P (Y ≤ y|X = x) is decreasing in x for all y.
We have the following:

P (Y ≤ y|X = x) =

∫ y

0

P(Y = y|X = x)dy =

∫ y

0
ϕ(x|y)p(y)dy∫ 1

0
ϕ(x|y)p(y)dy

= 1/(1 +

∫ y

0
ϕ(x|y)p(y)dy∫ 1

y
ϕ(x|y)p(y)dy

)

By assumption y0 < y1 the ratio ϕ(x|y0)/ϕ(x|y1) is decreasing in x. Thus for all y and any
distribution p the ratio

∫ y

0
ϕ(x|y)p(y)dy/

∫ 1

y
ϕ(x|y)p(y)dy is monotonically decreasing in x.

B.2 NON-LINEAR UTILITY AND WAGES

In several alternative labor market models (Arrow, 1971; Moro and Norman, 2004), wage structures
are not flat; instead they are determined by competition between competing employers. Additionally,
the authors of Moro and Norman (2004) find that moving beyond linear utility functions introduces
inter-group interaction to the labor market, which is a key to revealing sources of discrimination.

Throughout this section we will assume that u(y,Hπ(y)) = γ(Hπ(y))u(y) for strictly increasing
functions γ : [0, 1]→ [0, 1]; u : R→ R; and additionally that Π(x; θ) = 1x>θ.
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Limitations of Linear Utility:

We briefly discuss the limitations of the model if the production function is linear, i.e. γ(·) is the
identity function. In such a case, via the linearity of expectation, one can write the vanilla employer
utility objective as

maxπλEH0
π(y)u(y) + (1− λ)EH1

π(y)u(y).

Thus, in this case, the employer can simply pick an optimal policy πi for each group separately.
Performative stable policies with which π1(x) ̸= π0(x) may exist; but one group does not benefit
from discrimination of another group. This lack of interaction is why we go beyond the linear utility
case.

Determination of Wage Structure:

We adhere to the principle (which is shown rigorously in Moro and Norman (2004)) that at a Nash
equilibrium among two or more competing employers, the net profits of each employer should be
zero. Equivalently: E[γ(Hf (y))u(y)] − E[w(x; f)] = 0. Thus, the wage offered to a worker with
signal x and group membership i should be the expected utility of such a worker conditioned on these
traits. We can write this for an individual in group i as

E[γ(hfi(y))u(y)|X = x] = E[γ(fi(x))u(y)|X = x] = γ(fi(x))
∫
R u(y)ϕ(x|y)dp(y)∫

R ϕ(x|y)dp(y) .

As such, for this section we will assume the wages proffered by the employer are

wi(f, x) = γ(fi(x))
∫
R u(y)ϕ(x|y)dp(y)∫

R ϕ(x|y)dp(y) . (B.1)

Example B.2. As an example of this assumed wage structure, consider a market specified by
u(y) = y, p(y) = N (0, σ2

y), f(x|y) = N (y, σ2
x). In this market, a employer (with hiring threshold

θ) offers wage

w(x, θ) = x
(1+σ2

x/σ
2
y)
1[x ≥ θ].

Wages scale linearly with perceived skill of a worker; additionally, they increase as the profitability-
noise ratio increases (a decrease in σ2

x/σ
2
y).

Proof. The wage structure is given by:

1x≥θ

∫
R
ye−(x−y)2/2σ2

xe−y2/2σ2
ydy∫

R
e−(x−y)2/2σ2

xe−y2/2σ2
ydy

= 1x≥θ

∫
R
ye(−1/2σ2

x−1/2σ2
y)(y−x/σ2

x(1/σ
2
x+1/σ2

y))
2

dy∫
R
e(−1/2σ2

x−1/2σ2
y)(y−x/σ2

x(1/σ
2
x+1/σ2

y))
2
dy

We can multiply the top and bottom row by the needed normalization constants, then the top row is the
expectation of a normal random variable with mean x/(1 + σ2

x/σ
2
y)) and the bottom row integrates

to one.

For Figure 3 we stick with this example of a market; additionally assuming that the cost is again
quadratic c(y′, y) = c

2 (y
′ − y)2, and that γ(Hf (y)) = (Hf (y))

α.

B.3 ADDITIONAL EXPERIMENTS

In figure 4 we present an example of a market that demonstrates the phenomena discussed in Theorems
3.3 and 3.4. The left hand side plots two curves: the dotted one represents proportion of qualified
workers resulting from a hiring policy, while the solid one is employers best response as a function of
the proportion of qualified workers; intersections of these correspond to stable policies. There are
two stable policies with an appreciable gap in worker qualification; simultaneously the performative
utility has a unique maximum and thus all pairs of optimal policies are fair.
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Figure 4: A market with fair optimal pairs and discriminatory stable pairs

Here is another demonstration of Algorithm 1 in the context of labor markets.

Figure 5: Algorithm 1 and RSGD with a = 4, w = 1, c = 4

B.4 EXPERIMENTAL DETAILS

Section 4.2

1. Figure 2 (left): Experiment is run on a market parameterized by yi ∼ Unif[0, 1], ϕ(x|y) =
(y + 1)xy10<x<1, u(y) = ay − 1, c(y, y′) = c

2 (y
′ − y)2 (a = 2, w = 1, c = 5). A total

population of 1000 y were drawn and at each round 100 are sampled, learning was run for 20
rounds. 10 separate trials were run, with darker lines showing the mean and the shade indicating a
90 percent confidence interval. Step size (0.1/(t+ 1)) is used for both RSGD and Algorithm 1
iterations, with an initial seed of 0.1 for each.

2. Figure 1 and figure 2 (right): The same market configuration is used (specific parameters are
indicated in captions). Optimal policies were located using sci-py (Virtanen et al. (2020)) mini-
mization packages. To locate stable points RRM was run until iterations were within a distance of
0.001 of one another.

3. Figure 4: For simplicity, a simpler market parametrization is used with u(y) = 1{y≥0.5}−1{y≤0.5},
ϕ(x|y) = 2x1{y>0.5} + 1 ∗ 1{y<0.5}, p(y) ∼ U [0, 0.5], c(y, y′) = c(y − y′)+

Appendix B

1. Figure 4: u(y) = 15y, p(y) = N (0, 1), ϕ(x|y) = N (y, 1), c(y′, y) = c
2 (y

′ − y)2. For the top
row group costs are set as cMin = 25/(1− λ); cMaj = 20/(λ). In the bottom row group costs are
set at cMin = 25, cMaj = 20 or cMin = 40, cMaj = 20, while λ = 0.8. Optimal and stable policies
are located in a similar manner, with RRM being terminated after iterations are within 0.00001 of
one another for stable polices.

2. Figure 5: Experiment is run on a market parameterized by yi ∼ Unif[0, 1], ϕ(x|y) = (y +
1)xy10<x<1, u(y) = ay − 1, c(y, y′) = c

2 (y
′ − y)2 (a = 4, w = 1, c = 4). A total population

of 1000 y were drawn and at each round 100 are sampled, learning was run for 20 rounds. 10

18



Published as a conference paper at ICLR 2024

separate trials were run, with darker lines showing the mean and the shade indicating a 90 percent
confidence interval. Step size (0.1/(t+ 1)) is used for both RSGD and Algorithm 1 iterations,
with an initial seed of 0.1 for each.

C SECTION 3 PROOFS

C.1 PROOF OF THEOREM 3.1

Proof. For notational convenience we refer to the performative employer utility as U . We also denote
TPR(θ) = P (X > θ|y = 1) and FPR(θ) = P (X > θ|y = 0) as the true postive rate (resp. false
positive rate) of the deployed classifier. The (decoupled) performative learners utility is the following:

U(θ1, θ2) ≜ p+G(w[TPR(θ2)−FPR(θ2)])TPR(θ1)−p−(1−G(w[TPR(θ2)−FPR(θ2)]))FPR(θ1)

Consider differentiating this wrt the first argument:

∂1U(θ1, θ2) = ∂θ1 [p+π(θ2)

∫ 1

θ1

dΦ(x | 1)− p−(1− π(θ2))

∫ 1

θ1

dΦ(x|0)]

FTC
= −p+π(θ2)ϕ(θ1 | 1) + p−(1− π(θ2))ϕ(θ1 | 0)

By the definition of stability (stable points are optimal on their induced distribution, and end points
will not be optimal) any stable point θs must satisfy ∂1U(θ1, θ2) |θ1=θ2=θs= 0. Thus we must have:

−p+π(θs)ϕ(θs|y = 1) + p−(1− π(θs))ϕ(θs|y = 0) = 0

Or equivalently:
p−(1− π(θs))

p+π(θs)
=

ϕ(θs|1)
ϕ(θs|0)

From here we apply the assumption that ϕ(x|1)/ϕ(x|0) > δ2:

p−(1− π(θs))

p+π(θs)
> δ2 =⇒ p−(1− π(θs)) > δ2p+π(θs)

=⇒ p−δ2p+π(θs) + p−π(θs) =⇒ p−
p+δ2 + p−

> π(θs).

So any stable point θs satisfies π(θs) <
p−

p+δ2+p−
. The intuition from here is straightforward, if p+ is

large then π(θs) must be small but the optimal labor force skill level for a learner should not be small.
To formalize this, consider plugging in the upper bound for π(θs) to the learners objective. Any θ
which satisfies the bound will have:

U(θ) ≤ p+p−
p+δ2 + p−

TPR(θ) ≤ p−
δ2

On the other hand consider U(θ̃) (with θ̃ defined as in assumption 1.) Assume that w is large enough
so that wδ1 > Mg , then we have the following:

U(θ̃) = p+ ∗ 1 ∗ TPR(θ̃)− p− ∗ 0 ∗ FPR(θ̃) > p+ ∗ (δ1 + FPR(θ̃))

Now clearly if p+ > p−/(δ1δ2) it holds that p+(δ1 + FPR(θ̃)) > p−/δ2. In this case, since U(θ̃) >
U(θ) for all θ such that π(θ) < p−/(p+δ2 + p−) it can not hold that π(θopt) < p−/(p+δ2 + p−);
this completes the proof of the first part. To prove the second part note that U(θopt) ≥ U(θ̃) ≥ p+δ1.
Thus:

U(θstab) ≤
p−U(θopt)

δ1(p+δ2 + p−)

Since by assumption p+δ1δ2 > p− we have U(θstab) < p−U(θopt)/(p− + p−δ1) which completes
the proof.
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C.2 PROOF OF THEOREM 3.2

Proof. An identical argument as before will show that any stable point θs satisfies π(θs) <
p−

p+δ2+p−

which in turn implies that for all stable points U(θs) < p−/δ2. Now consider U(θ̃). We have the
following:

U(θ̃) = p+π(θ̃)TPR(θ̃)− p−(1− π(θ̃))FPR(θ̃)

By the assumptions of the theorem, we have that p+π(θ̃) > p−(1 − π(θ̃)), and thus U(θ̃) > δ1.
Since δ1 > p−/δ2, for all θs, U(θ̃) > U(θs), and in particular no optimal point θopt can have
π(θopt) <

p−
p+δ2+p−

.

The statement that Uperf(θstab) ≤ Uperf(θopt) follows directly from the definition of optimal points.

C.3 PROOF OF THEOREM 3.3

Proof. We first prove the statement on stable points. Let θ∗(π) denote the optimal policy for the
vanilla utility if the proportion of qualified workers is π. Note that θ∗(π) is a monotonically decreasing
function of π. The existence of the stable set θ⃗stab(θ

Maj
stab, θ

Min
stab ) such that πMaj(θ⃗stab) ̸= πMin(θ⃗stab) is

equivalent to the existence of multiple intersections of the following functions from Θ = [0, 1] to
[0, 1]:

f1(θ) = θ∗−1(θ),

f2(θ) = G(w(P (x > θ|y = 1))− P (x > θ|y = 0))

Let Z(θ) = f1(θ)− f2(θ). Note that Z(0) = 1− 0 > 0 and that Z(1) = 0− 0 = 0. Additionally,
consider Z(θ̃). By the assumptions on w, f2(θ̃) = 1, and since f1(θ) is strictly decreasing in θ

f1(θ̃) < 1 so Z(θ̃) < 0. By the assumptions Z is continuous and thus by IVT Z has at least one
additional zero on [0, 1]. WLOG let θMin

stab = 1 so that π(θMin
stab ) = 0, and let θMaj

stab be the other stable
point whose existence we have just proved. Note that θMaj

stab < θ̃ so by the c-Lipschitz property of
f1(θ) we have the following:

|f1(θMaj
stab)− f1(0)| = |f1(θMaj

stab)− 1| ≤ cθMaj
stab ≤ cθ̃.

Since f1(θ
Maj
stab) = π(θMaj

stab) we have π(θMaj
stab) > 1− cθ̃ > 1− c which completes part 1 of the proof.

We now complete the second part of the proof. Plugging in θ̃ to the performative utility and using the
assumptions on G, ϵ, w we have

U(θ̃) > p+ ∗ 1 ∗ (1− ϵ)− p− ∗ 0 ∗ ϵ = p+(1− ϵ)

Since any optimal point θopt satisfies U(θopt) ≥ U(θ̃) we know that for all optimal points:

p+π(θopt)P (x > θopt|y = 1)− p−(1− π(θopt))P (x > θopt|y = 0) > p+(1− ϵ)

=⇒ π(θopt)[P (x > θopt | y = 1) + P (x > θopt | y = 0)]− P (x > θopt | y = 0) > p+(1− ϵ)

=⇒ π(θopt) >
1− ϵ

P (x > θopt | y = 1) + P (x > θopt | y = 0)
+

P (x > θopt | y = 0)

P (x > θopt | y = 1) + P (x > θopt | y = 0)

Since 0 ≤ P (x > θopt | y = 1) ≤ 1 and 0 ≤ P (x > θopt | y = 0), a simple calculation will show

1− ϵ

P (x > θopt | y = 1) + P (x > θopt | y = 0)
+

P (x > θopt | y = 0)

P (x > θopt | y = 1) + P (x > θopt | y = 0)
> 1− ϵ.

This in turn implies π(θopt) > 1− ϵ for any optimal point. Thus all optimal pairs θ⃗opt = (θMaj
opt , θ

Min
opt )

must satisfy |πMaj(θ⃗opt)− πMin(θ⃗opt)| < ϵ
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Remark C.1. It is generally possible to construct markets in which both ϵ and c are small. In fact,
the derivative of θ∗−1(θ) is given by

[θ∗−1(θ)]′ =
θ∗−1(θ)ϕ′(θ|1) + (1− θ∗−1(θ))ϕ′(θ|0)

ϕ(θ|1) + ϕ(θ|0)
.

Thus, for example any market for which ϕ′(x | 1) ≈ 0 for x < θ̃ and ϕ(x|0) = 1 can satisfy both.
See Figure 4 in appendix B for an example.

C.4 PROOF OF THEOREM 3.4

Proof. We first prove the statement on stable points. Let θ∗(π) denote the optimal policy for the
vanilla utility if the proportion of qualified workers is π. The existence of the stable set θ⃗stab(θ

Maj
stab, θ

Min
stab )

such that πMaj(θ⃗stab) ̸= πMin(θ⃗stab) is equivalent to the existence of multiple intersections of the
following functions from Θ = [0, 1] to [0, 1]:

f1(θ) = θ∗−1(θ),

f2(θ) = G(w(P (x > θ|y = 1))− P (x > θ|y = 0))

Let Z(θ) = f1(θ)− f2(θ). Note that Z(1) = 0− 0 = 0. Additionally, consider Z(θ̃). By the strong
convexity assumptions, we can directly calculate that:

θ∗−1(θ̃) =
ϕ(θ̃|0)

ϕ(θ̃|1) + ϕ(θ̃|0)

Thus, by assumption, f1(θ̃) > f2(θ̃) and since these functions are continuous, there must be an
additional θ′ such that f1(θ′) = f2(θ

′), thus the pair (θ′, 0) will be discriminatory.

Next we prove the statement on optimal policies. We will show that if the vanilla utility U(θ, π) is
γ− strongly concave and that w is small enough, the performative utility will be concave and thus
θMaj

opt = θMin
opt since the optimal policy will be unique.

Consider the decoupled performative utility:

Uperf(θ1, θ2) = π(θ2)TPR(θ1) + (1− π(θ2))FPR(θ2)

The second derivative of Uperf(θ) is given by the following:

U ′′
perf(θ) =

∂2

∂θ21
Uperf(θ1, θ2) +

∂2

∂θ22
Uperf(θ1, θ2)

We wish to show that U ′′
perf(θ) < −γ′ form some γ′ > 0. Note that by assumption we have the

following:
∂2

∂θ21
Uperf(θ1, θ2) < −γ.

Letting ∆(θ) = TPR(θ)− FPR(θ)

∂2

∂θ22
Uperf(θ1, θ2) = w(wg′(w∆(θ))(ϕ(θ | 1)− ϕ(θ | 0)) + g(w(∆(θ)))(ϕ′(θ | 1)− ϕ′(θ | 0)))

Because of the boundedness assumptions g() and ϕ() we have that

| ∂
2

∂θ22
Uperf(θ1, θ2)| < 2wK1K2

Thus if w < γ/2K1K2, the performative firm utility will be strongly concave and thus optimal points
will be unique and non-discriminatory.

Remark C.2. Consider the family of markets with ϕ(x | 0) = −ax+ a
2+1 and ϕ(x | 1) = (n+1)xn

for some a small and n large. Note that if p+ = p− are large enough, this market is strongly concave.
Additionally, it is easy to see that there will be a θ̃ that provides good seperation and additionally that
ϕ(θ̃ | 0) ≈ 1 while ϕ(θ̃ | 1) ≈ 0, and thus the lower bound on w in this market can be small as well.

21



Published as a conference paper at ICLR 2024

D DISCUSSION ON CONVERGENCE OF RRM (THE MYOPIC FIRMS PROCESS)

For the purpose of this discussion assume that X ∈ [0, 1]. From Perdomo et al. (2020), a myopic
firm is sure eventually stabilize if the following conditions are met on the market:

1. π(θ) must be ϵ− Lipschitz continuous, for some ϵ not large. Note that:

|π′(θ)| ≤ w supc∈Cg(c) supx∈[0,1]|ϕ(x | 1)− ϕ(x | 0)|

In general, as long as g() and ϕ(|y) are bounded functions, then this condition will hold for
ϵ = w ∗K. Additionally, if wages are low, ϵ will be small.

2. The firms non-performative utility U(θ) and the agents aggregate response π(θ) must be suf-
ficiently smooth. This will follow as long as the functions G(), ϕ(·|y) are smooth, which is a
technical condition and does not impact the dynamics of the market.

3. The firms vanilla utility U(θ) = p+πTPR(θ)− p−(1−π)FPR(θ) should be γ− strongly concave
for all π. Note that:

U ′′(θ) = p+πϕ
′(θ|1)− p−(1− π)ϕ′(θ|0)

For example, if ϕ′(θ|1) > γ/p+ and if ϕ′(θ|0) < −γ/p− then γ− strong concavity will be
guaranteed.

The most crucial ingredient for convergence is the ϵ− sensitivity of π(θ). In general, if the function

τ(θ) = θ∗(π) ◦ π(θ)

θ∗(π) = argmaxθ∈[0,1]U(θ, π)

has a derivative with upper bound less then one then convergence of RRM will be ensured. This will
occur, for example, if the market is regular enough so that θ∗(π) has a bounded derivative and w is
small.

E EXTENDED RELATED WORKS

Performative Prediction: Performative prediction, introduced in Perdomo et al. (2020), seeks to
study distribution shifts that are dependent on model deployment. In particular, the reverse causal
distribution map considered in this paper leads to a form of subpopulation shift Maity et al. (2021;
2022b). This line of research has been extended to the stochastic optimization setting in the works
(Mendler-Dünner et al., 2020; Drusvyatskiy and Xiao, 2020; Wood et al., 2021; Maity et al., 2022a).
Stateful performative prediction, introduced in Brown et al. (2022), allows the map D to depend on
both θ and the current data distribution. The authors of Izzo et al. (2021) and Izzo et al. (2022) propose
methods for minimizing the performative risk under a parametric assumption (D(θ) = p(z; f(θ))).
The work Miller et al. (2021) establishes the necessary conditions for the performative risk to be
convex. The authors of Jagadeesan et al. (2022) introduce a zero’th order algorithm for minimizing
regret in a performative setting. Our algorithm for anti-causal strategic learning is similar in spirit to
the work of Izzo et al. (2021). The main difference is that in our case the performative map is known
apriori, which simplifies the procedure and allows for use beyond the parametric setting.

Strategic Classification: Although it predates performative prediction, strategic classification Hardt
et al. (2015) can be viewed as an instance of performative prediction in which users game their
features. The authors of Levanon and Rosenfeld (2021; 2022) give efficient algorithms for learning in
general strategic settings. The work Chen et al. (2020) introduces methods for minimizing Stackelberg
regret in online strategic classification. The authors of Yu et al. (2022) establish algorithms for a
strategic offline reinforcement learning problem. One line of work seeks to study the case where users
and the learner do not share all information; the authors of Jagadeesan et al. (2021) assume users
view a noisy version of the model; the work Dong et al. (2018) assumes the learner is blind to the
strategic agents utility function; the works Ghalme et al. (2021); Bechavod et al. (2022); Barsotti et al.
(2022) study the case where the strategic agents must also learn the deployed classifier. The authors
of Zrnic et al. (2021) study an extension of strategic classification where the roles are reversed; the
agents make strategic decisions before the learner deploys a model. In order to introduce interaction
among the strategic agents, the authors of Liu et al. (2022) study a problem where agents compete in
contests.
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A line of work similar in vein to our work and strategic classification is causal recourse Karimi
et al. (2021), König et al. (2023) which seeks to provide actionable intervents for strategic agents to
improve their features.

Our work is most aligned with recent efforts to inject causality into strategic classification. Much of
the focus has been on improvement (incentivizing agents to improve features in a way that causes
responses to improve), beginning with the works Alon et al. (2020); Kleinberg and Raghavan (2020);
Haghtalab et al. (2023). The authors of Miller et al. (2020) show that learning good models for
improvement is equivalent to solving causal inference problems. A follow-up line of work considers
this problem in specific scenarios; with Shavit et al. (2020) focused on regression, and Harris et al.
(2022) on instrumental variables. The work Mendler-Dünner et al. (2022) reframes performative
predictions as causal interventions. A closely related work is Horowitz and Rosenfeld (2023), which
gives a method for minimizing the causal strategic empirical risk.

Economic models of labor markets: Studies of statistical theories of discrimination began with the
two lines of work (Arrow, 1971; Phelps, 1972). In Phelps (1972), discrimination in labor markets
is due to two groups of workers being exogenous, while Arrow (1971) shows that even if groups
are endogenous, discrimination can occur in equilibrium. These ideas were developed by Coate and
Loury into a labor market model in (Coate and Loury, 1993). More recently, the authors of Moro
and Norman (2004) and Moro and Norman (2003) extended this model by including interactions
among groups of workers and a wage structure set by inter-employer competition. The line of work
Fryar et al. (2008); Fryar and Loury (2005; 2013); Craig and Fryer (2017) studies the impacts of
different afemployerative action policies (i.e. color blinded vs color sighted) in a variety of market
settings including those similar in spirit to (Coate and Loury, 1993). The more contemporary works
Liu et al. (2020); Somerstep et al. (2023) utilize the Coate and Loury model to study discrimination
in algorithmic decision making. For a survey on statistical discrimination in labor market, see (Fang
and Moro, 2011a).
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