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ABSTRACT

It is by now a well known fact in the graph learning community that the pres-
ence of bottlenecks severely limits the ability of graph neural networks to prop-
agate information over long distances. What so far has not been appreciated is
that, counter-intuitively, also the presence of strongly connected sub-graphs may
severely restrict information flow in common architectures. Motivated by this
observation, we introduce the concept of multi-scale consistency. At the node level
this concept refers to the retention of a connected propagation graph even if connec-
tivity varies over a given graph. At the graph-level, a multi-scale consistent graph
neural network assigns similar feature vectors to distinct graphs describing the
same object at different resolutions. As we show, both properties are not satisfied
by poular graph neural network architectures. To remedy these shortcomings, we
introduce ResolvNet, a flexible graph neural network based on the mathematical
concept of resolvents. We rigorously establish its multi-scale consistency theoreti-
cally and verify it in extensive experiments on both synthetic and real-world data:
Here networks based on this ResolvNet architecture prove expressive, stable and
transferable.

1 INTRODUCTION

Learning on graphs has developed into a rich and complex field, providing spectacular results on
problems as varied as protein design (Pablo Gainza, 2023), traffic forecasting (Li et al., 2018b),
particle physics (Shlomi et al., 2021), recommender systems (Gao et al., 2023) and traditional tasks
such as node- and graph classification (Wu et al., 2021; Xiao et al., 2022) and recently also in the
self-supervised setting (Hou et al., 2022; 2023). Despite their successes, graph neural networks
(GNNs) are still plagued by fundamental issues: Perhaps best known is the phenomenon of over-
smoothing, capturing the fact that node-features generated by common GNN architectures become
less informative as network depth increases (Li et al., 2018a; Oono & Suzuki, 2020). From the
perspective of information flow however deeper networks would be preferable, as a K layer message
passing network (Gilmer et al., 2017), may only facilitate information exchange between nodes that
are at most K-edges apart – a phenomenon commonly referred to as under-reaching (Alon & Yahav,
2021; Topping et al., 2021).

However, even if information is reachable within K edges, the structure of the graph might not be
conducive to communicating it between distant nodes: If bottlenecks are present in the graph at
hand, information from an exponentially growing receptive field needs to be squashed into fixed-size
vectors to pass through the bottleneck. This oversquashing-phenomenon (Alon & Yahav, 2021;
Topping et al., 2021) prevents common architectures from propagating messages between distant
nodes without information loss in the presence of bottlenecks.

What has so far not been appreciated within the graph learning community is that – somewhat counter-
intuitively – also the presence of strongly connected subgraphs severly restricts the information
flow within popular graph neural network architectures; as we establish in this work. Motivated by
this observation, we consider the setting of multi-scale graphs and introduce, define and study the
corresponding problem of multi-scale consistency for graph neural networks:

Multi-scale graphs are graphs whose edges are distributed on (at least) two scales: One large scale
indicating strong connections within certain (connected) clusters, and one regular scale indicating a
weaker, regular connectivity outside these subgraphs. The lack of multi-scale consistency of common
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architectures then arises as two sides of the same coin: At the node level, prominent GNNs are unable
to consistently integrate multiple connectivity scales into their propagation schemes: They essentially
only propagate information along edges corresponding to the largest scale. At the graph level, current
methods are not stable to variations in resolution scale: Two graphs describing the same underlying
object at different resolutions are assigned vastly different feature vectors.

Contributions: We introduce the concept of multi-scale consistency for GNNs and study its two
defining characteristics at the node- and graph levels. We establish that common GNN architectures
suffer from a lack of multi-scale consistency and – to remedy this shortcoming – propose the
ResolvNet architecture. This method is able to consistently integrate multiple connectivity scales
occurring within graphs. At the node level, this manifests as ResolvNet – in contrast to common
architectures – not being limited to propagating information via a severely disconnected effective
propagation scheme, when multiple scales are present within a given graph. At the graph-level, this
leads to ResolvNet provably and numerically verifiably assigning similar feature vectors to graphs
describing the same underlying object at varying resolution scales; a property which – to the best of
our knowledge – no other graph neural network has demonstrated.

2 MULTI-SCALE GRAPHS AND MULTI-SCALE CONSISTENCY

2.1 MULTI-SCALE GRAPHS

We are interested in graphs with edges distributed on (at least) two scales: A large scale indicating
strong connections within certain clusters, and a regular scale indicating a weaker, regular connectivity
outside these subgraphs. Before giving a precise definition, we consider two instructive examples:

Example I. Large Weights: A two-scale geometry as outlined above, might e.g. arise within
weighted graphs discretizing underlying continuous spaces: Here, edge weights are typically deter-
mined by the inverse discretization length (wij „ 1{dij), which might vary over the graph (Post,
2012; Post & Simmer, 2021). Strongly connected sub-graphs would then correspond to clusters of
nodes that are spatially closely co-located. Alternatively, such different scales can occur in social
networks; e.g. if edge-weights are set to number of exchanged messages. Nodes representing (groups
of) close friends would then typically be connected by stronger edges than nodes encoding mere
acquaintances, which would typically have exchanged fewer messages.

Given such a weighted graph, we partitions its weighted adjacency matrix W “Wreg. `Whigh into a
disjoint sum over a part Wreg. containing only regular edge-weights and part Whigh containing only
large edge-weights. This decomposition induces two graph structures on the common node set G: We
set Greg. :“ pG,Wreg.q and Ghigh :“ pG,Whighq (c.f. also Fig. 1).

(a) (b) (c) (d)

Figure 1: (a) Graph G with Ereg. (blue) & Ehigh (red); (b) Greg.; (c) Ghigh; (d) Gexcl.-reg.

In preparation for our discussion in Section 2.2, we also define the graph Gexcl.-reg. whose edges
consists of those elements pi, jq P G ˆ G that do not have a neighbouring edge in Ghigh; i.e. those
edges pi, jq P E Ĺ G ˆ G so that for any k P G we have pWhighqik, pWhighqkj “ 0 (c.f. Fig. 1 (d)).

Example 2. Many Connections: Beyond weighted edges, disparate connectivities may also arise
in unweightd graphs with binary adjacency matrices: In a social network where edge weights encode
a binary friendship status for example, there might still exist closely knit communities within which
every user is friends with every other, while connections between such friend-groups may be sparser.

Here we may again split the adjacency matrix W “ Wreg. `Whigh into a disjoint sum over a part
Wreg. encoding regular connectivity outside of tight friend groups and a summand Whigh encoding
closely knit communities into dense matrix blocks. Fig. 2 depicts the corresponding graph structures.
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(a) (b) (c) (d)

Figure 2: (a) Graph G; (b) Greg.; (c) Ghigh; (d) Gexcl.-reg.

Exact Definition: To unify both examples above into a common framework, we make use of tools
from spectral graph theory; namely the spectral properties of the Graph Laplacian:

Given a graph G on N nodes, with weighted adjacency matrix W , diagonal degree matrix D
and node weights tµiuNi“1 collected into the (diagonal) node-weight matrix M “ diag ptµiuq, the
(un-normalized) graph Laplacian ∆ associated to the graph G is defined as

∆ “M´1pD ´W q.

It is a well known fact in spectral graph theory, that much information about the connectivity of the
graph G is encoded into the first (i.e. smallest) non-zero eigenvalue λ1p∆q of this graph Laplacian ∆
(Brouwer & Haemers, 2012; Chung, 1997). For an unweighted graph G on N nodes, this eigenvalue
λ1p∆q is for example maximised if every node is connected to all other nodes (i.e. G is an N -clique);
in which case we have λ1p∆q “ N . For weighted graphs, it is clear that scaling all weights by a
(large) constant c exactly also scales this eigenvalue as λ1p∆q ÞÑ c ¨ λ1p∆q. Thus the eigenvalue
λ1p∆q is indeed a good proxy for measuring the strength of communities within a given graph G.

In order to formalize the concept of multi-scale graphs containing strongly connected subgraphs, we
thus make the following definition:

Definition 2.1. A Graph is called multi-scale if its weight-matrix W admits a disjoint decomposition

W “Wreg. `Whigh with λ1p∆highq ą λmaxp∆reg.q.

Note that this decomposition ofW also implies ∆ “ ∆reg.`∆high for the respective Laplacians. Note
also that the graph-structure determined by Ghigh need not be completely connected for λ1p∆highq to
be large (c.f. Fig.s 1 and 2 (c)): If there are multiple disconnected communities, λ1p∆highq is given as
the minimal non-zero eigenvalue of ∆high restricted to these individual components of Ghigh. The
largest eigenvalue λmaxp∆reg.q of ∆reg. can be interpreted as measuring the "maximal connectivity"
within the graph structureGreg.: By means of Gershgorin’s circle theorem (Bárány & Solymosi, 2017),
we may bound it as λmaxp∆reg.q ď 2 ¨ dreg.,max, with dreg.,max the maximal node-degree occuring in
the graph Greg.. Hence λmaxp∆reg.q is small, if the connectivity within Greg. is sparse.

2.2 MULTI-SCALE CONSISTENCY

We are now especially interested in the setting where the scales occuring in a given graph G are well
separated (i.e. λ1p∆highq " λmaxp∆reg.q). Below, we describe how graph neural networks should
ideally consistently incorporate such differing scales and detail how current architectures fail to do
so. As the influence of multiple scales within graphs manifests differently depending on whether
node-level- or graph-level tasks are considered, we will discuss these settings separately.

2.2.1 NODE LEVEL CONSISTENCY: RETENTION OF CONNECTED PROPAGATION GRAPHS

The fundamental purpose of graph neural networks is that of generating node embeddings not only
dependent on local node-features, but also those of surrounding nodes. Even in the presence of
multiple scales in a graph G, it is thus very much desirable that information is propagated between
all nodes connected via the edges of G – and not, say, only along the dominant scale (i.e. via Ghigh).

This is however not the case for popular graph neural network architectures: Consider for example
the graph convolutional network GCN (Kipf & Welling, 2017): Here, feature matrices X are updated

via the update rule X ÞÑ Â ¨X , with the off-diagonal elements of Â given as Âij “Wij{

b

d̂i ¨ d̂j .

Hence the relative importance Âij of a message between a node i of large (renormalised) degree
d̂i " 1 and a node j that is less strongly connected (e.g. d̂j “ Op1q) is severely discounted.
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In the presence of multiple scales as in Section 2.1, this thus leads to messages essentially only
being propagated over a disconnected effective propagation graph that is determined by the ef-
fective behaviour of Â in the presence of multiple scales. As we show in Appendix A using
the decompositions W “ Wreg. `Whigh, the matrix
Â can in this setting effectively be approximated as:

Â «
´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. W̃excl.-reg.D

´ 1
2

reg.

¯

Thus information is essentially only propagated
within the connected components of Ghigh and via
edges in Gexcl.-reg. (detached from edges in Ghigh).

(a) (b)

Figure 3: Effective propagation graphs for
original graphs in Fig. 2 (a) and Fig. 1 (a)

Appendix A further details that this reduction to propagating information only along a disconnected
effective graph in the presence of multiple scales generically persists for popular methods (such as
e.g. attention based methods (Velickovic et al., 2018) or spectral methods (Defferrard et al., 2016)).

Propagating only over severely disconnected effective graphs as in Fig. 3 is clearly detrimental:

(a) (b)

Figure 4: Individual nodes (a) replaced by 6-cliques (b)
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Figure 5: Classification Accuracy

As is evident from GCN’s performance in Fig.5, duplicating individual nodes of a popular graph
dataset into fully connected k-cliques as in Fig. 4 leads to a significant decrease in node-classification
accuracy, as propagation between cliques becomes increasingly difficult with growing clique-size k.
Details are provided in the Experimental-Section 5. In principle however, duplicating nodes does not
increase the complexity of the classification task at hand: Nodes and corresponding labels are only
duplicated in the train-, val.- and test-sets. What is changing however, is the geometry underlying the
problem; turning from a one-scale- into a two-scale setting with increasingly separated scales.

In Section 3 below, we introduce ResolvNet, which is able to consistently integrate multiple scales
within a given graph into its propagation scheme. As a result (c.f. Fig. 5) its classification accuracy is
not affected by an increasing clique-size k (i.e. an increasing imbalance in the underlying geometry).

2.2.2 GRAPH LEVEL CONSISTENCY: TRANSFERABILITY BETWEEN DIFFERENT RESOLUTIONS

At the graph level, we desire that graph-level feature vectors ΨpGq generated by a network Ψ for
graphs G are stable to changes in resolution scales: More precisely, if two graphs G and G describe
the same underlying object, space or phenomenon at different resolution scales, the generated feature
vectors should be close, as they encode the same object in the latent space. Ideally, we would
have a Lipschitz continuity relation that allows to bound the difference in generated feature vectors
}ΦpGq ´ ΦpGq} in terms of a judiciously chosen distance dpG,Gq between the graphs as

}ΨpGq ´ΨpGq} À dpG,Gq. (1)

Note that a relation such as (1) also allows to make statements about different graphs G, rG describing
an underlying object at the same resolution scale: If both such graphs are close to the same coarse
grained description G, the triangle inequality yields }ΨpGq ´Ψp rGq} À pdpG,Gq ` dp rG,Gqq ! 1.

To make precise what we mean by the coarse grained description G, we revisit the example of
graphs discretising an underlying continuous space, with edge weights corresponding to inverse
discretization length (wij „ 1{dij). Coarse-graining – or equivalently lowering the resolution scale –
then corresponds to merging multiple spatially co-located nodes in the original graph G into single
aggregate nodes in G. As distance scales inversely with edge-weight, this means that we are precisely
collapsing the strongly connected clusters within Ghigh into single nodes. Mathematically, we then
make this definition of the (lower resolution) coarse-grained graph G exact as follows:
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Definition 2.2. Denote by G the set of connected
components in Ghigh. We give this set a graph
structure G as follows: Let R and P be ele-
ments of G (i.e. connected components in Ghigh).
We define the real number WRP as WRP “
ř

rPR

ř

pPP Wrp, with r and p nodes in the orig-
inal graph G. We define the set of edges E on G
as E “ tpR,P q P G ˆ G : WRP ą 0u and assign
WRP as weight to such edges. Node weights of
nodes in G are defined similarly by aggregating
weights of all nodes r contained in the connected
component R of Ghigh as µ

R
“
ř

rPR µr.

(a) (b)

(c) (d)

Figure 6: Original G (a,c) and coarsified G (b,d)

This definition is of course also applicable to Example 2 of Section 2.1. Collapsing corresponding
strongly connected component in a social network might then e.g. be interpreted as moving from
interactions between individual users to considering interactions between (tightly-knit) communities.

While there have been theoretical investigations into this issue of transferability of graph neural
networks between distinct graphs describing the same system (Levie et al., 2019; Ruiz et al., 2020;
Maskey et al., 2021; Koke, 2023), the construction of an actual network with such properties –
especially outside the asymptotic realm of very large graphs – has – to the best of our knowledge – so
far not been successful. In Theorem 4.2 and Section 5 below, we show however that the ResolvNet
architecture introduced in Section 3 below indeed provably and numerically verifiably satisfies (1),
and is thus robust to variations in fine-print articulations of graphs describing the same object.

3 RESOLVNET

We now design a network – termed ResolvNet – that can consistently incorporate multiple scales
within a given graph into its propagation scheme. At the node level, we clearly want to avoid
disconnected effective propagation schemes as discussed in Section 2.2.1 in settings with well-
separated connectivity scales. At the graph level – following the discussion of Section 2.2.2 – we
want to ensure that graphsG containing strongly connected clusters and graphsGwhere these clusters
are collapsed into single nodes are assigned similar feature vectors.

We can ensure both properties at the same time, if we manage to design a network whose propagation
scheme when deployed on a multi-scale graph G is effectively described by propagating over a coarse
grained version G if the connectivity within the strongly connected clusters Ghigh of G is very large:

• At the node level, this avoids effectively propagating over disconnected limit graphs as in
Section 2.2.1. Instead, information within strongly connected clusters is approximately
homogenized and message passing is then performed on a (much better connected) coarse-
grained version G of the original graph G (c.f. Fig. 6).

• At the graph level, this means that the stronger the connectivity within the strongly connected
clusters is, the more the employed propagation on G is like that on its coarse grained version
G. As we will see below, this can then be used to ensure the continuity property (1).

3.1 THE RESOVENT OPERATOR

As we have seen in Section 2.2.1 (and as is further discussed in Appendix A), standard message pass-
ing schemes are unable to generate networks having our desired multi-scale consistency properties.

A convenient multi-scale description of graphs is instead provided by the graph Laplacian ∆ (c.f.
Section 2.1), as this operator encodes information about coarse geometry of a graph G into small
eigenvalues, while fine-print articulations of graphs correspond to large eigenvalues. (Brouwer &
Haemers, 2012; Chung, 1997). We are thus motivated to make use of this operator in our propagation
scheme for ResolvNet.

In the setting of Example I of Section 2.1, letting the weights withinGhigh go to infinity (i.e. increasing
the connectivity within the strongly connected clusters) however implies }∆} Ñ 8 for the norm of
the Laplacian on G. Hence we can not implement propagation simply as X ÞÑ ∆ ¨X: This would
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not reproduce the corresponding propagation scheme on G as we increase the connectivity within
Ghigh: The Laplacian on G does not converge to the Laplacian on G in the usual sense (it instead
diverges }∆} Ñ 8).

In order to capture convergence between operators with such (potentially) diverging norms, math-
ematicians have developed other – more refined – concepts: Instead of distances between original
operators, one considers distances between resolvents of such operators (Teschl, 2014) :

Definition 3.1. The resolvent of an operator ∆ is defined as Rzp∆q :“ p∆´ z ¨ Idq
´1, with Id the

identity mapping. Such resolvents are defined whenever z is not an eigenvalue of ∆.

For Laplacians, taking z ă 0 hence ensures Rzp∆q is defined. Using this concept, we now rigorously
establish convergence (in the resolvent sense) of the Laplacian ∆ on G to the (coarse grained)
Laplacian ∆ on G as the connectivity within Ghigh is increased. To rigorously do so, we need to be
able to translate signals between the original graph G and its coarse-grained version G:
Definition 3.2. Let x be a scalar graph signal. Denote by 1R the vector that has 1 as entries on
nodes r belonging to the connected (in Ghigh) component R and has entry zero for all nodes not in
R. We define the down-projection operator JÓ component-wise via evaluating at node R in G as
pJÓxqR “ x1R, xy{µR. This is then extended to feature matrices tXu via linearity. The interpolation
operator JÒ is defined as JÒu “

ř

R uR ¨ 1R; where uR is a scalar value (the component entry of u
at R P G) and the sum is taken over all connected components of Ghigh.

With these preparations, we can rigorously establish that the resolvent of ∆ approaches that of ∆:
Theorem 3.3. We have Rzp∆q Ñ JÒRzp∆qJ

Ó as connectivity within Ghigh increases. Explicitly:
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› “ O
ˆ

λmaxp∆reg.q

λ1p∆highq

˙

The fairly involved proof of Theorem 3.3 is contained in Appendix B and builds on previous work:
We extend preliminary results in Koke (2023) by establishing omni-directional transferability (c.f.
Theorem 4.1 below) and go beyond the toy-example of expanding a single node into a fixed and
connected sub-graph with pre-defined edge-weights.

The basic idea behind ResolvNet is then to (essentially) implement message passing as X ÞÑ

Rzp∆q¨X . Building on Theorem 3.3, Section 4 below then makes precise how this rigorously enforces
multiscale-consistency as introuced in Section 2.2 in the corresponding ResolvNet architecture.

3.2 THE RESOLVNET ARCHITECTURE

Building on Section 3.1, we now design filters for which feature propagation essentially proceeds
along the coarsified graph of Definition 2.2 as opposed to the disconnected effective graphs of Section
2.2.1, if multiple – well separated – edge-weight scales are present.

To this end, we note that Theorem 3.3 states for λ1p∆highq " λmaxp∆reg.q (i.e. well separated scales),
that applying Rzp∆q to a signal x is essentially the same as first projecting x to G via JÓ, then
applying Rzp∆q there and finally lifting back to G with JÒ. Theorem B.4 In Appendix B establishes
that this behaviour also persists for powers of resolvents; i.e. we also have Rkz p∆q « JÒRkz p∆qJ

Ó.

Resolvent filters: This motivates us to choose our learnable filters as polynomials in resolvents

fz,θp∆q :“
K
ÿ

k“a

θi
“

p∆´ zIdq´1
‰k

(2)

with learnable parameters tθkuKk“a. Thus our method can be interpreted as a spectral method
(Defferrard et al., 2016), with learned functions fz,θpλq “

řK
k“a θkpλ´ zq

´k applied to the operator
∆ determining our convolutional filters. The parameter a, which determines the starting index of the
sum in (2), may either be set to a “ 0 (Type-0) or a “ 1 (Type-I). As we show in Theorem 4.1 below,
this choice will determine transferability properties of our models based on such filters.

Irrespectively, both Type-0 and Type-I filters are able to learn a wide array of functions, as the
following theorem (proved in Appendix C) shows:
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Theorem 3.4. Fix ε ą 0 and z ă 0. For arbitrary functions g, h : r0,8s Ñ R with limλÑ8 gpλq “
const. and limλÑ8 hpλq “ 0, there are filters f0

z,θ, f
I
z,θ of Type-0 and Type-I respectively such that

}f0
z,θ ´ g}8, }f

I
z,θ ´ h}8 ă ε.

The ResolvNet Layer: Collecting resolvent filters into a convolutional architecture, the layer
wise update rule is then given as follows: Given a feature matrix X` P RNˆF` in layer `, with
column vectors tX`

ju
F`
j“1, the feature vector X``1

i in layer ` ` 1 is then calculated as X``1
i “

ReLu
´

řF`

j“1 fz,θ``1
ij
p∆q ¨X`

j ` b
``1
i

¯

with a learnable bias vector b``1
i . Collecting biases into a

matrix B``1 P RNˆF``1 , we can efficiently implement this using matrix-multiplications as

X``1 “ ReLu

˜

K
ÿ

k“a

p∆´ ωIdq´k ¨X` ¨W ``1
k `B``1

¸

with weight matrices tW ``1
k u in RF`ˆF``1 . Biases are implemented as bi “ βi ¨ 1G, with 1G the

vector of all ones on G and βi P R learnable. This is done to ensure that the effective propagation on
G (if well seperated scales are present in G) is not disturbed by non-transferable bias terms on the
level of entire networks. This can be traced back to the fact that JÓ1G “ 1G and JÒ1G “ 1G. A
precise discussion of this matter is contained in Appendix D.

Graph level feature aggregation: As we will also consider the prediction of graph-level properties
in our experimental Section 5 below, we need to sensibly aggregate node-level features into graph-
level features on node-weighted graphs: As opposed to standard aggregation schemes (c.f. e.g. Xu
et al. (2019)), we define an aggregation scheme Ψ that takes into account node weights and maps a
feature matrix X P RNˆF to a graph-level feature vector ΨpXq P RF via ΨpXqj “

řN
i“1 |Xij | ¨µi.

4 MULTI-SCALE CONSISTENCY AND STABILITY GUARANTEES

Node Level: We now establish rigorously that instead of propagating along disconnected effective
graphs (c.f. Fig. 3), ResolvNet instead propagates node features along the coarse-grained graphs of
Fig. 6 if multiple separated scales are present:
Theorem 4.1. Let Φ and Φ be the maps associated to ResolvNets with the same learned weight
matrices and biases but deployed on graphs G and G as defined in Section 3. We have

}ΦpJÒXq ´ JÒΦpXq}2 ď pC1pW q ¨ }X}2 ` C2pW ,Bqq ¨
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

›

if the network is based on Type-0 resolvent filters (c.f. Section 3). Additionally, we have
}ΦpXq ´ JÒΦpJÓXq}2 ď pC1pW q ¨ }X}2 ` C2pW ,Bqq ¨

›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

›

if only Type-I filters are used in the network. Here C1pW q and C2pW ,Bq are constants that depend
polynomially on singular values of learned weight matrices W and biases B.

The proof – as well as additional results – may be found in Appendix E. Note that Theorem 3.3
implies that both equations tends to zero for increasing scale separation λ1p∆highq " λmaxp∆reg.q.

The difference between utilizing Type-0 and Type-I resolvent filters, already alluded to in the
preceding Section 3, now can be understood as follows: Networks based on Type-0 filters effec-
tively propagate signals lifted from the coarse grained graph G to the original graph G along G if
λ1p∆highq " λmaxp∆reg.q. In contrast – in the same setting – networks based on Type-I resolvent
filters effectively first project any input signal on G to G, propagate there and then lift back to G.

Graph Level: Beyond a single graph, we also establish graph-level multi-scale consistency: As
discussed in Section 2.2.2, if two graphs describe the same underlying object (at different resolution
scales) corresponding feature vectors should be similar. This is captured by our next result:

Theorem 4.2. Denote by Ψ the aggregation method introduced in Section 3. With µpGq “
řN
i“1 µi

the total weight of the graph G, we have in the setting of Theorem 4.1 with Type-I filters, that

}Ψ pΦpXqq ´Ψ
`

ΦpJÓXq
˘

}2 ď
a

µpGq pC1pW q}X}2 ` C2pW ,Bqq
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› .

This result thus indeed establishes the desired continuity relation (1), with the distance metric dpG,Gq
provided by the similarity

›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› of the resolvents of the two graphs.
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5 EXPERIMENTS

Node Classification: To establish that the proposed ResolvNet architecture not only performs
well in multi-scale settings, we conduct node classification experiments on multiple un-weighted
real world datasets, ranging in edge-homophily h from h “ 0.11 (very heterophilic), to h “ 0.81
(very homophilic). Baselines constitute an ample set of established and recent methods: Spectral
approaches, are represented by ChebNet (Defferrard et al., 2016), GCN (Kipf & Welling, 2017),
BernNet (He et al., 2021), ARMA (Bianchi et al., 2019), ChebNetII (He et al., 2022) and MagNet
(Zhang et al., 2021). Spatial methods are given by GAT (Velickovic et al., 2018), SAGE (Hamilton
et al., 2017) and GIN (Xu et al., 2019). We also consider PPNP (Gasteiger et al., 2019b), GCNII
(Chen et al., 2020) and NSD (Bodnar et al., 2022). Details on datasets, experimental setup and
hyperparameters are provided in Appendix F.
Table 1: Average Accuracies [%] with uncertainties encoding the 95 % confidence Level. Top three
models are coloured-coded as First, Second, Third.

MS. Acad. Cora Pubmed Citeseer Cornell Actor Squirrel Texas
h 0.81 0.81 0.80 0.74 0.30 0.22 0.22 0.11

SAGE 91.75˘0.09 80.68˘0.30 74.42˘0.42 72.68˘0.32 86.01˘0.72 28.88˘0.32 25.99˘0.28 88.92˘0.73

GIN 72.93˘1.94 74.12˘1.21 74.59˘0.45 68.11˘0.69 65.58˘1.23 23.69˘0.28 24.91˘0.58 72.64˘1.19

GAT 89.49˘0.15 80.12˘0.33 77.12˘0.41 73.20˘0.37 74.39˘0.93 24.55˘0.28 27.22˘0.31 75.31˘1.09

NSD 90.78˘0.13 70.34˘0.47 69.74˘0.50 64.39˘0.50 87.78˘0.65 27.62˘0.39 24.96˘0.27 91.64˘0.62

PPNP 91.22˘0.13 83.77˘0.27 78.42˘0.31 73.25˘0.37 71.93˘0.84 25.93˘0.35 23.69˘0.43 70.73˘1.27

ChebNet 91.62˘0.10 78.70˘0.37 73.63˘0.43 72.10˘0.43 85.99˘0.10 29.51˘0.31 25.68˘0.28 91.01˘0.59

GCN 90.81˘0.10 81.49˘0.36 76.60˘0.44 71.34˘0.45 73.35˘0.88 24.60˘0.28 30.40˘0.40 76.16˘1.12

MagNet 87.23˘0.16 76.50˘0.42 68.23˘0.44 70.92˘0.49 87.15˘0.66 30.50˘0.32 23.54˘0.32 90.84˘0.54

ARMA 88.97˘0.18 81.24˘0.24 76.28˘0.35 70.64˘0.45 83.68˘0.80 24.40˘0.45 22.72˘0.42 87.41˘0.73

BernNet 91.37˘0.14 83.26˘0.24 77.24˘0.37 73.11˘0.34 87.14˘0.57 28.90˘0.45 22.86˘0.32 89.81 ˘0.68

ChebNetII 92.45˘0.14 80.56˘0.34 77.79˘0.41 72.72˘0.45 85.24˘0.92 22.83˘0.28 22.83˘0.28 86.14 ˘0.84

GCNII 88.37˘0.16 84.41˘0.26 78.45˘0.31 73.12˘0.35 66.32˘1.35 28.82˘0.80 27.24˘0.26 85.77 ˘0.76

ResolvNet 92.73˘0.08 84.16˘0.26 79.29˘0.36 75.03˘0.29 84.92˘1.43 29.06˘0.32 26.51˘0.23 87.73˘0.89

As is evident from Table 1, ResolvNet performs better than all baselines on all but one homophilc
dataset; on which the gap to the best performing model is negligible. This performance can be traced
back to the inductive bias ResolvNet is equipped with by design: It might be summarized as "Nodes
that are strongly connected should be assigned similar feature vectors" (c.f. Theorem 4.1) . This
inductive bias – necessary to achieve a consistent incorporation of multiple scales – is of course
counterproductive in the presence of heterophily; here nodes that are connected by edges generically
have differing labels and should thus be assigned different feature vectors. However the ResolvNet
architecture also performs well on most heterophilic graphs: It e.g. out-performs NSD – a recent
state of the art method spefically developed for heterophily – on two such graphs.
Node Classification for increasingly separated scales: To test ResolvNet’s ability to consistently
incorporate multiple scales in the unweighted setting against a representative baseline, we duplicated
individual nodes on the Citeseer dataset (Sen et al., 2008) k-times to form (fully connected) k-cliques;
keeping the train-val-test partition constant. GCN and ResolvNet were then trained on the same
(k-fold expanded) train-set and asked to classify nodes on the (k-fold expanded) test-partition. As
discussed in Section 1 (c.f. Fig.5) GCN’s performance decreased significantly, while ResolvNet’s
accuracy stayed essentially constant; showcasing its ability to consistently incorporate multiple scales.
Regression on real-world multi-scale graphs: In order to showcase the properties of our newly
developed method on real world data admitting a two-scale behaviour, we evaluate on the task of
molecular property prediction. While ResolvNet is not designed for this setting, this task still allows
to fairly compare its expressivity and stability properties against other non-specialized graph neural
networks (Hu et al., 2020). Our dataset (QM7; Rupp et al. (2012)) contains descriptions of 7165
organic molecules; each containing both hydrogen and heavy atoms. A molecule is represented by its
Coulomb matrix, whose off-diagonal elements Cij “ ZiZj{|~xi ´ ~xj | correspond to the Coulomb
repulsion between atoms i and j. We treat C as a weighted adjacency matrix. Prediction target
is the molecular atomization energy, which – crucially – depends on long range interaction within
molecules (Zhang et al., 2022). However, with edge-weights Cij scaling as inverse distance, long
range propagation of information is scale-suppressed in the graph determined by C, when compared
to the much larger weights between closer atoms. We choose Type-I filters in ResolvNet, set node
weights as atomic charge (µi “ Zi) and use one-hot encodings of atomic charges Zi as node features.
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As is evident from Table 2, our method produces significantly lower
mean-absolute-errors (MAEs) than baselines of Table 1 deployable on
weighted graphs. We attribute this to the fact that our model allows
for long range information propagation within each molecule, as
propagation along corresponding edges is suppressed for baselines but
not for our model (c.f. Section 2.2.1). Appendix contains additional
experiments on QM9 (Ramakrishnan et al., 2014); finding similar
performance for (long-range dependent) energy targets.

Table 2: QM7-MAE

QM7 (Ó) MAE rkcal{mols

BernNet 113.57˘62.90

GCN 61.32˘1.62

ChebNet 59.57˘1.58

ARMA 59.39˘1.79

ResolvNet 16.52˘0.67

Stability to varying the resolution-scale: To numerically verify the Stability-Theorem 4.2 –
which guarantees similar graph-level feature vectors for graphs describing the same underlying object
at different resolution scales – we conduct additional experiments: We modify (all) molecular graphs
of QM7 by deflecting hydrogen atoms (H) out of their equilibrium positions towards the respective
nearest heavy atom. This introduces a two-scale setting precisely as discussed in section 2: Edge
weights between heavy atoms remain the same, while Coulomb repulsions between H-atoms and
respective nearest heavy atom increasingly diverge. Given an original molecular graph G with node
weights µi “ Zi, the corresponding coarse-grained graph G corresponds to a description where
heavy atoms and surrounding H-atoms are aggregated into single super-nodes. Node-features of
aggregated nodes are now no longer one-hot encoded charges, but normalized bag-of-word vectors
whose individual entries encode how much of the total charge of a given super-node is contributed by
individual atom-types. Appendix F provides additional details and examples.

In this setting, we now compare features generated for coarsified graphs tGu, with feature
generated for graphs tGu where hydrogen atoms have
been deflected but have not yet completely arrived at the
positions of nearest heavy atoms. Feature vectors are
generated with the previously trained networks of Table
2. A corresponding plot is presented in Figure 7. Fea-
tures generated by ResolvNet converge as the larger scale
increases (i.e. the distance between hydrogen and heavy
atoms decreases). This result numerically verifies the
scale-invariance Theorem 4.2. As reference, we also plot
the norm differences corresponding to baselines, which
do not decay. We might thus conclude that these models
– as opposed to ResolvNet – are scale- and resolution sen-
sitive when generating graph level features. For BernNet
we observe a divergence behaviour, which we attribute
to numerical instabilities.

Figure 7: Feature-vector-difference for
collapsed (F ) and deformed (F ) graphs.

As a final experiment, we treat the coarse-grained molecular graphs tGu as a model for data ob-
tained from a resolution-limited observation process, that is unable to resolve positions of hydrogen
and only provides information about how many H-atoms are bound to
a given heavy atom. Given models trained on higher resolution data,
atomization energies for such observed molecules are now to be pre-
dicted. Table 3 contains corresponding results. While the performance
of baselines decreases significantly if the resolution scale is varied
during inference, the prediction accuracy of ResolvNet remains high;
even slightly increasing. While ResolvNet out-performed baselines by
a factor of three on same-resolution-scale data (c.f.Table 2), its lead
increases to a factor of 10 and higher in the multi-scale setting.

Table 3: QM7coarse-MAE

QM7 (Ó) MAE rkcal{mols

BernNet 580.67˘99.27

GCN 124.53˘34.58

ChebNet 645.14˘34.59

ARMA 248.96˘15.56

ResolvNet 16.23˘2.74

Additional Experiments: We present additional conceptional results in Appendices G and H.

6 CONCLUSION

This work introduced the concept of multi-scale consistency: At the node level this refers to the
retention of a propagation scheme not solely determined by the largest given connectivity scale. At the
graph-level it mandates that distinct graphs describing the same object at different resolutions should
be assigned similar feature vectors. Common GNN architectures were shown to not be multi-scale
consistent, while the newly introduced ResolvNet architecture was theoretically and experimentally
established to have this property. Deployed on real world data, ResolvNet proved expressive and
stable; out-performing baselines significantly on many tasks in- and outside the multi-scale setting.
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A EFFECTIVE PROPAGATION SCHEMES

For definiteness, we here discuss limit-propagation schemes in the setting where edge-weights are
large. The discussion for high-connectivity in the Sense of Example II of Section 2.1 proceeds in
complete analogy.

In this section, we then take up again the setting of Section 2. We reformulate this setting here in
a slightly modified language, that is more adapted to discussing effective propagation schemes of
standard architectures:

We partition edges on a weighted graph G, into two disjoint sets E “ Ereg. 9YEhigh, where the set of
edges with large weights is given by:

Ehigh :“ tpi, jq P E : wij ě Shighu

and the set with small weights is given by:

Ereg. :“ tpi, jq P E : wij ď Sreg.u

for weight scales Shigh ą Sreg. ą 0. Without loss of generality, assume Sreg. to be as low as possible
(i.e. Sreg. “ maxpi,jqPEreg. wij) and Shigh to be as high as possible (i.e. Slarge “ minpi,jqPEhigh ) and no
weights in between the scales.

(a) (b) (c) (d)

Figure 8: (a) Graph G with Ereg. (blue) & Ehigh (red); (b) Greg.; (c) Ghigh; (d) Greg., exclusive

This decomposition induces two graph structures corresponding to the disjoint edge sets on the node
set G: We set Greg. :“ pG, Ereg.q and Ghigh :“ pG, Ehighq c.f. Fig. 8).
We also introduce the set of edges Ereg., exclusive :“ tpi, jq P Ereg.| @k P G : pi, kq R Ehigh & pk, jq R
Ehighu connecting nodes that do not have an incident edge in Ehigh. A corresponding example-graph
Greg., exclusive is depicted in Fig. 8 (d).

We are now interested in the behaviour of graph convolution schemes if the scales are well
separated:

Shigh " Sreg.

A.1 SPECTRAL CONVOLUTIONAL FILTERS

We first discuss resulting limit-propagation schemes for spectral convolutional networks. Such
networks implement convolutional filters as a mapping

x ÞÝÑ gθpT qx

for a node feature x, a learnable function gθ and a graph shift operator T .

A.1.1 NEED FOR NORMALIZATION

The graph shift operator T facilitating the graph convolutions needs to be normalized for established
spectral graph convolutional architectures:

For Bianchi et al. (2019), this e.g. arises as a necessity for convergence of the proposed implementa-
tion scheme for the rational filters introduced there (c.f. eq. (10) in Bianchi et al. (2019)).
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The work Defferrard et al. (2016) needs its graph shift operator to be normalized, as it approximates
generic filters via a Chebyshev expansion. As argued in Defferrard et al. (2016), such Chebyshev
polynomials form an orthogonal basis for the space L2pr´1, 1s, dx{

?
1´ x2q. Hence, the spectrum

of the operator T to which the (approximated and learned) function gθ is applied needs to be contained
in the interval r´1, 1s.

In Kipf & Welling (2017), it has been noted that for the architecture proposed there, choosing T to
have eigenvalues in the range r0, 2s (as opposed to the normalized ranges r0, 1s or r´1, 1s) has the
potential to lead to vanishing- or exploding gradients as well as numerical instabilities. To alleviate
this, Kipf & Welling (2017) introduces a "renormalization trick" (c.f. Section 2.2. of Kipf & Welling
(2017) to produce a normalized graph shift operator on which the network is then based.

We can understand the relationship between normalization of graph shift operator T and the stability
of corresponding convolutional filters explicitly: Assume that we have

}T } " 1.

This might e.g. happen when basing networks on the un-normalized graph Laplacian ∆ or the
weight-matrix W if edge weights are potentially large (such as in the setting Shigh " Sreg. that we are
considering).

By the spectral mapping theorem (see e.g. Teschl (2014)), we have
σ pgθpT qq “ tgθpλq : λ P σpT qu , (3)

with σpT q denoting the spectrum (i.e. the set of eigenvalues) of T . For the largest (in absolute value)
eigenvalue λmax of T , we have

|λmax| “ }T }. (4)
Since learned functions are either implemented directly as a polynomial (as e.g. in Defferrard et al.
(2016); He et al. (2021)) or approximated as a Neumann type power iteration (as e.g. in Bianchi et al.
(2019); Gasteiger et al. (2019a)) which can be thought of as a polynomial, we have

lim
λÑ˘8

|gθpλq| “ 8.

Thus in view of (3) and (4) we have for }T } sufficiently large, that
}gθpT q} “ |gθp˘}T }q|

with the sign ˘ determined by λmax ż 0. Since non-constant polynomials behave at least linearly
for large inputs, there is a constant C ą 0 such that

C ¨ }T } ď }gθpT q}

for all sufficiently large }T }. We thus have the estimate
}x} ¨ C ¨ }T } ď }gθpT qx}

for at least one input signal x (more precisely all x in the eigen-space corresponding to the largest (in
absolute value) eigenvalue λmax). Thus if T is not normalized (i.e. }T } is not sufficiently bounded),
the norm of (hidden) features might increase drastically when moving from one (hidden) layer to the
next. This behaviour persists for all input signals x have components in eigenspaces corresponding to
large (in absolute value) eigenvalues of T .

A.1.2 SPECTRAL NORMALIZATIONS

As discussed in the previous Section A.1.1, instabilities aris-
ing from non-normalized graph shift operators can be traced
back to the problem of such operators having large eigenval-
ues. It was thus – among other considerations – suggested in
Defferrard et al. (2016) to base convolutional filters on the
spectrally normalized graph shift operator

T “
1

λmaxp∆q
∆, Figure 9: Limit graph corresponding

to Fig 8 for spectral normalization

with ∆ the un-normalized graph Laplacian. In the setting Shigh " Sreg. we are considering, this leads to
an effective feature propagation alongGhigh (c.f. also Fig. 9) only, as Theorem A.1 below establishes:
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Theorem A.1. With
T “

1

λmaxp∆q
∆,

and the scale decomposition as introduced in Section 2, we have that
›

›

›

›

T ´
1

λmaxp∆highq
∆high

›

›

›

›

“ O
ˆ

Sreg.

Shigh

˙

(5)

for Shigh " Sreg..

Proof. For convenience in notation, let us write

Thigh “
1

λmaxp∆highq
∆high

and similarly

Treg. “
1

λmaxp∆reg.q
∆reg..

In section 2, we already noted that
∆ “ ∆high `∆reg.,

which we may rewrite as

∆ “ λmaxp∆highq ¨

ˆ

Thigh `
λmaxp∆reg.q

λmaxp∆highq
¨ Treg.

˙

. (6)

Let us consider the equivalent expression

1

λmaxp∆highq
¨∆ “ Thigh `

λmaxp∆reg.q

λmaxp∆highq
¨ Treg.. (7)

We next note that

λmax

ˆ

1

λmaxp∆highq
¨∆

˙

“
λmaxp∆q

λmaxp∆highq
. (8)

and
λmax pThighq “ 1

since the operation of taking eigenvalues of operators is multiplicative in the sense of

λmaxp|a| ¨ T q “ |a| ¨ λmaxpT q

for non-negative |a| ě 0.

Since the right-hand-side of (7) constitutes an analytic perturbation of Thigh, we may apply analytic
perturbation theory (c.f. e.g. Kato (1976) for an extensive discussion) to this problem. With this
(together with }Thigh} “ 1) we find

λmax

ˆ

1

λmaxp∆highq
¨∆

˙

“ 1`O
ˆ

λmaxp∆reg.q

λmaxp∆highq

˙

. (9)

Using (8) and the fact that
λmaxp∆reg.q

λmaxp∆highq
9
Sreg.

Shigh
, (10)

we thus have
λmax p∆q

λmaxp∆highq
“ 1`O

ˆ

Sreg.

Shigh

˙

.

Since for small ε, we also have
1

1` ε
“ 1`Opεq,

the relation (10) also implies

λmaxp∆highq

λmax p∆q
“ 1`O

ˆ

Sreg.

Shigh

˙

.
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Multiplying (6) with 1{λmaxp∆q yields

T “
λmaxp∆highq

λmaxp∆q
¨

ˆ

Thigh `
λmaxp∆reg.q

λmaxp∆highq
¨ Treg.

˙

. (11)

Since }Thigh}, }Treg.} “ 1 and
λmaxp∆reg.q

λmaxp∆highq
9
Sreg.

Shigh
ă 1

for sufficiently large Shigh, relation (11) implies
›

›

›

›

T ´
1

λmaxp∆highq
∆high

›

›

›

›

“ O
ˆ

Sreg.

Shigh

˙

as desired.

Note that we might in principle also make use of Lemma A.2 below, to provide quantitative bounds:
Lemma A.2 states that

|λkpAq ´ λkpBq| ď }A´B}

for self-adjoint operators A and B and their respective kth eigenvalues ordered by magnitude. On a
graph withN nodes, we clearly have λmax “ λN for eigenvalues of (rescaled) graph Laplacians, since
all such eigenvalues are non-negative. This implies for the difference |1´ λmaxp∆q{λmaxp∆highq|

arising in (9) that explicitly
ˇ

ˇ

ˇ

ˇ

1´
λmaxp∆q

λmaxp∆highq

ˇ

ˇ

ˇ

ˇ

ď
λmaxp∆reg.q

λmaxp∆highq
.

This in turn can then be used to provide a quantitative bound in (5). Since we are only interested in
the qualitative behaviour for Shigh " Sreg., we shall however not pursue this further.

It remains to state and establish Lemma A.2 referenced at the end of the proof of Theorem A.1:

Lemma A.2. Let A and B be two hermitian nˆ n dimensional matrices. Denote by tλkpMqunk“1
the eigenvalues of a hermitian matrix in increasing order.
With this we have:

|λkpAq ´ λkpBq| ď ||A´B||.

Proof. After the redefinition B ÞÑ p´Bq, what we need to prove is

|λipA`Bq ´ λipAq| ď ||B||

for Hermitian A,B. Since we have

λipAq ´ λipA`Bq “ λippA`Bq ` p´Bqq ´ λipA`Bq

and || ´B|| “ ||B|| it follows that it suffices to prove

λipA`Bq ´ λipAq ď ||B||

for arbitrary hermitian A,B.

We note that the Courant-Fischer min´max theorem tells us that if A is an nˆ n Hermitian matrix,
we have

λipMq “ sup
dimpV q“i

inf
vPV,||v||“1

v˚Mv.
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With this we find

λipA`Bq ´ λipAq “ sup
dimpV q“i

inf
vPV,||v||“1

v˚pA`Bqv ´ sup
dimpV q“i

inf
vPV,||v||“1

v˚Av

ď sup
dimpV q“i

inf
vPV,||v||“1

v˚Av ` sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

´ sup
dimpV q“i

inf
vPV,||v||“1

v˚Av

“ sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

“ sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

ď max
1ďkďn

t|λkpBq|u

“ ||B||.

A.1.3 SYMMETRIC NORMALIZATIONS

Most common spectral graph convolutional networks (such
as e.g. He et al. (2021); Bianchi et al. (2019); Defferrard
et al. (2016)) base the learnable filters that they propose on
the symmetrically normalized graph Laplacian

L “ Id´D´
1
2WD´

1
2 .

In the setting Shigh " Sreg. we are considering, this leads
to an effective feature propagation along edges in Ehigh and
Elow, exclusive (c.f. also Fig. 10) only, as Theorem A.3 below
establishes:

Figure 10: Limit graph correspond-
ing to Fig 8 for symmetric normal-
ization

Theorem A.3. With
T “ Id´D´

1
2WD´

1
2 ,

and the scale decomposition as introduced in Section 2, we have that

›

›

›
T ´

´

Id´D
´ 1

2

highWhighD
´ 1

2

high ´D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg.

Shigh

¸

(12)

for Shigh " Sreg..

Proof. We first note that instead of (12), we may equivalently establish

›

›

›
D´

1
2WD´

1
2 ´

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg.

Shigh

¸

.

In Section 2, we already noted that

W “Whigh `Wreg..

With this, we may write

D´
1
2WD´

1
2 “ D´

1
2WhighD

´ 1
2 `D´

1
2Wreg.D

´ 1
2 . (13)

Let us first examine the term D´
1
2WhighD

´ 1
2 . We note for the corresponding matrix entries that

´

D´
1
2WhighD

´ 1
2

¯

ij
“

1
?
di
¨ pWhighqij ¨

1
a

dj

Let us use the notation

dhigh
i “

N
ÿ

j“1

pWhighqij , dreg.
i “

N
ÿ

j“1

pWreg.qij and dlow,exclusive
i “

N
ÿ

j“1

pWlow,exclusiveqij .
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We then find
1
?
di
“

1
b

dhigh
i

¨
1

c

1`
dreg.
i

dhigh
i

Using the Taylor expansion
1

?
1` ε

“ 1´
1

2
ε`Opε2q,

we thus have
´

D´
1
2WhighD

´ 1
2

¯

ij
“

1
b

dhigh
i

¨ pWhighqij ¨
1

b

dhigh
j

`O

˜

dreg.
i

dhigh
i

¸

.

Since we have
dreg.
i

dhigh
i

9
Sreg.

Shigh
,

this yields

D´
1
2WhighD

´ 1
2 “ D

´ 1
2

highWhighD
´ 1

2

high `O
ˆ

Sreg.

Shigh

˙

.

Thus let us turn towards the second summand on the right-hand-side of (13). We have
´

D´
1
2Wreg.D

´ 1
2

¯

ij
“

1
?
di
¨ pWreg.qij .

1
a

dj
.

Suppose that either i or j is not in Glow, exclusive. Without loss of generality (since the matrix under
consideration is symmetric), assume i R Glow, exclusive, but pWreg.qij ‰ 0. We may again write

1
a

dj
“

1
b

dhigh
j

¨
1

c

1`
dreg.
i

dhigh
i

.

Since
1

c

1`
dreg.
i

dhigh
i

ď 1,

we have
ˇ

ˇ

ˇ

ˇ

´

D´
1
2Wreg.D

´ 1
2

¯

ij

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
?
di
¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

“ O

˜
d

Sreg.

Shigh

¸

.

If instead we have i, j P Glow, exclusive, then clearly
´

D´
1
2Wreg.D

´ 1
2

¯

ij
“

´

D
´ 1

2
reg. Wlow,exclusiveD

´ 1
2

reg.

¯

ij
.

Thus in total we have established

D´
1
2WD´

1
2 “

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯

`O
ˆ

Sreg.

Shigh

˙

which was to be established.

Apart from networks that make use of the symmetrically normalized graph Laplacian L , some
methods, such as most notably Kipf & Welling (2017), instead base their filters on the operator

T “ D̃´
1
2 W̃ D̃´

1
2 ,

with
W̃ “ pW ` Idq

and
D̃ “ D ` Id.

In analogy to Theorem A.3, we here establish the limit propagation scheme determined by such
operators:
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Theorem A.4. With
T “ D̃´

1
2 W̃ D̃´

1
2 ,

where W̃ “ pW ` Idq and D̃ “ D` Id as well as the scale decompositionof Section 2, we have that

›

›

›
T ´

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. W̃low, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg. ` 1

Shigh

¸

for Shigh " Sreg.. Here W̃low, exclusive is given as

W̃low, exclusive :“Wlow, exclusive ` diag
`

1Glow, exclusive

˘

and 1Glow, exclusive denotes the vector whose entries are one for nodes in Glow, exclusive and zero for all
other nodes.

The difference to the result of Theorem A.3 is thus that applicability of the limit propagation scheme
of Fig. 10 for the GCN Kipf & Welling (2017) is not only contingent upon Shigh " Sreg. but also
Shigh " 1.

Proof. To establish this – as in the proof of Theorem A.3 – we first decompose T :

D̃´
1
2 W̃ D̃´

1
2 “ D̃´

1
2WhighD̃

´ 1
2 ` D̃´

1
2Wreg.D̃

´ 1
2 ` D̃´

1
2 IdD̃´

1
2 (14)

“ D̃´
1
2WhighD̃

´ 1
2 ` D̃´

1
2Wreg.D̃

´ 1
2 ` D̃´1

For the first term, we note
´

D̃´
1
2WhighD̃

´ 1
2

¯

ij
“

1
?
di ` 1

¨ pWhighqij ¨
1

a

dj ` 1
.

We then find
1

?
di ` 1

“
1

b

dhigh
i

¨
1

c

1`
dreg.
i `1

dhigh
i

.

Analogously to the proof of Theorem A.3, this yields

´

D̃´
1
2WhighD̃

´ 1
2

¯

ij
“

1
b

dhigh
i

¨ pWhighqij ¨
1

b

dhigh
j

`O

˜

1` dreg.
i

dhigh
i

¸

.

This implies

D̃´
1
2WhighD̃

´ 1
2 “ D

´ 1
2

highWhighD
´ 1

2

high `O
ˆ

Sreg. ` 1

Shigh

˙

.

Next we turn to the second summand in (14):

´

D̃´
1
2Wreg.D̃

´ 1
2

¯

ij
“

1
?
di ` 1

¨ pWreg.qij .
1

a

dj ` 1
.

Suppose that either i or j is not in Glow, exclusive. Without loss of generality (since the matrix under
consideration is symmetric), assume i R Glow, exclusive, but pWreg.qij ‰ 0. We may again write

1
a

dj ` 1
“

1
b

dhigh
j

¨
1

c

1`
dreg.
i `1

dhigh
i

.

Since
1

c

1`
dreg.
i `1

dhigh
i

ď 1,
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we have
ˇ

ˇ

ˇ

ˇ

´

D´
1
2Wreg.D

´ 1
2

¯

ij

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
?

1` di
¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1
a

dreg.
i

¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

“ O

˜
d

Sreg.

Shigh

¸

.

If instead we have i, j P Glow, exclusive, then clearly
´

D̃´
1
2Wreg.D̃

´ 1
2

¯

ij
“

´

D̃
´ 1

2
reg. Wlow,exclusiveD̃

´ 1
2

reg.

¯

ij
.

Finally we note for the third term on the right-hand-side of (14) that

1

di
ď

1

dhigh
i

“ O
ˆ

1

Shigh

˙

if i R Glow, exclusive.

In total we thus have found

D̃´
1
2 W̃ D̃´

1
2 “

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. W̃low, exclusiveD

´ 1
2

reg.

¯

`O

˜
d

Sreg. ` 1

Shigh

¸

;

which was to be proved.

A.2 SPATIAL CONVOLUTIONAL FILTERS

Apart from spectral methods, there of course also exist methods that purely operate in the spatial
domain of the graph. Such methods most often fall into the paradigm of message passing neural
networks (MPNNs) Gilmer et al. (2017); Fey & Lenssen (2019): With X`

i P R
F denoting the

features of node i in layer ` and wij denoting edge features, a message passing neural network may
be described by the update rule (c.f. Gilmer et al. (2017))

X``1
i “ γ

¨

˝X`
i ,

ž

jPN piq

φ
`

X`
i , X

`
j , wij

˘

˛

‚. (15)

Here N piq denotes the neighbourhood of node i,
š

denotes a differentiable and permutation invariant
function (typically "sum", "mean" or "max") while γ and φ denote differentiable functions such as
multi-layer-perceptrons (MLPs) which might not be the same in each layer. Fey & Lenssen (2019).

Before we discuss corresponding limit-propagation schemes, we first establish that MPNNs are not
able to reproduce the limit propagation scheme of Section 3 and are thus not stable to scale transitions
and topological perturbations as discussed in Theorem 4.2 and Section 2.2.2.

A.2.1 SCALE-SENSITIVITY OF MESSAGE PASSING NEURAL NETWORKS

As we established in Theorem 4.1 and Theorem 4.2 (c.f. also the corresponding proofs in Appendix D
and Appendix E respectively), the stability to scale-variations (such as coarse-graining) of ResolvNets
arises from the reliance on resolvents and the limit propagation scheme that they establish if separated
weight-scales are present (c.f. Appendix B below).

Here we establish that message passing networks (as defined in (15) above) are unable to emulate this
limit propagation scheme. Hence such architectures are also not stable to scale-changing topological
perturbations such as coarse-graining procedures.

21



Under review as a conference paper at ICLR 2024

To this end, we consider a simple, fully connected graph G
on three nodes labeled 1, 2 and 3 (c.f. Fig. 11). We assume
all node-weights to be equal to one (µi “ 1 for i “ 1, 2, 3)
and edge weights

w13, w23 ď Sreg.

as well as
w12 “ Shigh.

We now assume Shigh " Sreg..

1 2

3

Figure 11: Three node GraphGwith
on large weight w12 " 1.

Given states tX`
1, X

`
2, X

`
3u in layer `, the limit propagation scheme introduced in Section 3 would

require the updated feature vector of node 3 to be given by

X``1
3,desired :“ γ

ˆ

X`
3, φ

ˆ

X`
3,
X`

1 `X
`
2

2
, pw31 ` w32q

˙˙

However, the actual updated feature at node 3 is given as (c.f. (15)):

X``1
3,actual :“ γ

´

X`
3, φ

`

X`
3, X

`
1, w31

˘

ž

φ
`

X`
3, X

`
2, w32

˘

¯

(16)

Since there is no dependence on Shigh in equation (16) – which defines X``1
3,actual – the desired

propagation scheme can not arise, unless it is paradoxically already present at all scales Shigh. If it is
present at all scales, there is however only propagation along edges in G, even if Shigh « Sreg., which
would imply that the message passing network would not respect the graph structure of G. Hence
X``1

3,actual Û X``1
3,desired does not converge as Shigh increases.

A.2.2 LIMIT PROPAGATION SCHEMES

The number of possible choices of message functions φ, aggregation functions
š

and update functions
γ is clearly endless. Here we shall exemplarily discuss limit propagation schemes for two popular
architectures: We first discuss the most general case where the message function φ is given as a
learnable perceptron. Subsequently we assume that node features are updated with an attention-type
mechanism.

Generic message functions: We first consider the possibility that the message function φ in (16)
is implemented via an MLP using ReLU-activations: Assuming (for simplicity in notation) a one-
hidden-layer MLP mapping features X`

i P R
F` to features X``1

i P RF``1 we have

φpX`
i , X

`
j , wijq “ ReLU

`

W `
1 ¨X

`
i `W

`
2 ¨X

`
2 `W

`
3 ¨ wij `B

`
˘

with bias term B``1 P RF``1 and weight matrices W ``1
1 ,W ``1

2 P RF``1ˆF` and W `
3 P R

F``1 .

We will assume that the weight-vecor W ``1
3 has no-nonzero entries. This is not a severe limitation

experimentally and in fact generically justified: The complementary event of at-least one entry of W3

being assigned precisely zero during training has probability weight zero (assuming an absolutely
continuous probability distribtuion according to which weights are learned).

Let us now assume that the edge pijq belongs to Ehigh and the corresponding weight wij is large
(wij " 1). The behaviour of entries φpX`

i , X
`
j , wijqa of the message φpX`

i , X
`
j , wijq P R

F``1 is
then determined by the sign of the corresponding entry

`

W `
3

˘

a
of the weight vector W `

3 P R
F``1 :

If we have
`

W `
3

˘

a
ă 0, then φpX`

i , X
`
j , wijqa approaches zero for larger edge-weights wij :

lim
wijÑ8

φpX`
i , X

`
j , wijqa “ 0 (17)

If we have
`

W `
3

˘

a
ą 0, then φpX`

i , X
`
j , wijqa increasingly diverges for larger edge-weights wij :

lim
wijÑ8

φpX`
i , X

`
j , wijqa “ 8 (18)

For either choice of aggregation function
š

in (15) among "max", "sum" or "mean" the behaviour
in (18) leads to unstable networks if the update function γ is also given as an MLP with ReLU
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activations. Apart from instabilities, we also make the following observation: If Shigh " Sreg., then by
(18) and continuity of φ we can conclude that components φpX`

i , X
`
j , wijqa of messages propagated

along Ehigh for which
`

W `
3

˘

a
ą 0 dominate over messages propagated along edges in Ereg.. By (17),

the former clearly also dominate over components φpX`
i , X

`
j , wijqa of messages propagated along

Ehigh for which
`

W `
3

˘

a
ă 0. This behaviour is irrespective of whether "max", "sum" or "mean"

aggregations are employed. Hence the limit propagation scheme essentially only takes into account
message channels φpX`

i , X
`
j , wijqa for which pijq P Ehigh and

`

W `
3

˘

a
ą 0.

Similar considerations apply, if non-linearities are chosen as leaky ReLU. If instead of ReLU
activations a sigmoid-nonlinearity σ like tanh is employed, messages propagated along Elarge become
increasingly uninformative, since they are progressively more independent of featuresX`

i and weights
wij . Indeed, for sigmoid activations, the limits (17) and (18) are given as follows:

If we have
`

W `
3

˘

a
ă 0, then we have for larger edge-weights wij that

lim
wijÑ8

φpX`
i , X

`
j , wijqa “ lim

yÑ´8
σpyq.

If we have
`

W `
3

˘

a
ą 0, then

lim
wijÑ8

φpX`
i , X

`
j , wijqa “ lim

yÑ8
σpyq.

In both cases, the messages φpX`
i , X

`
j , wijq propagated along Elarge become increasingly constant as

the scale Shigh increases.

Attention based messages: Apart from general learnable message functions as above, we here
also discuss an approach where edge weights are re-learned in an attention based manner. For this
we modify the method Velickovic et al. (2018) to include edge weights. The resulting propagation
scheme – with a single attention head for simplicity and a non-linearity ρ – is given as

X``1
i “ ρ

¨

˝

ÿ

jPN piq

αijpWX``1
j q

˛

‚.

Here we have W P RF``1ˆF` and

αij “
exp

`

LeakyRelu
`

~aJ
“

WX`
i }WX`

j } wij
‰˘˘

ř

kPN piq
exp

`

LeakyRelu
`

~aJ
“

WX`
i }WX`

k } wik
‰˘˘ , (19)

with } denoting concatenation. The weight vector ~a P R2F``1`1 is assumed to have a non zero entry
in its last component. Otherwise, this attention mechanism would correspond to the one proposed in
Velickovic et al. (2018), which does not take into account edge weights. Let us denote this entry of ~a
()determining attention on the weight wij) by aw.

If aw ă 0, we have for pi, jq P Ehigh that

exp
`

LeakyRelu
`

~aJ
“

WX`
i }WX`

j } wij
‰˘˘

ÝÑ 0

as the weight wij increases. Thus propagation along edges in Ehigh is essentially suppressed in this
case.

If aw ą 0, we have for pi, jq P Ehigh that

exp
`

LeakyRelu
`

~aJ
“

WX`
i }WX`

j } wij
‰˘˘

ÝÑ 8

as the weight wij increases. Thus for edges pi, jq P Ereg. (i.e. those that are not in Ehigh), we have

αij Ñ 0,

since the denominator in (19) diverges. Hence in this case, propagation along Ereg. is essentially
suppressed and features are effectively only propagated along Ehigh.
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B PROOF OF THEOREM 3.3

In this section, we prove Theorem 3.3. For convenience, we first restate the result – together with the
definitions leading up to it – again:
Definition B.1. Denote by G the set of connected components in Ghigh. We give this set a graph
structure as follows: Let R and P be elements of G (i.e. connected components in Ghigh). We define
the real number

WRP “
ÿ

rPR

ÿ

pPP

Wrp,

with r and p nodes in the original graph G. We define the set of edges E on G as

E “ tpR,P q P G ˆ G : WRP ą 0u

and assign WRP as weight to such edges. Node weights of limit nodes are defined similarly as
aggregated weights of all nodes r (in G) contained in the component R as

µ
R
“

ÿ

rPR

µr.

In order to translate signals between the original graph G and the limit description G, we need
translation operators mapping signals from one graph to the other:
Definition B.2. Denote by 1R the vector that has 1 as entries on nodes r belonging to the connected
(in Ghign) component R and has entry zero for all nodes not in R. We define the down-projection
operator JÓ component-wise via evaluating at node R in G as

pJÓxqR “ x1R, xy{µR.

The upsampling operator JÒ is defined as

JÒu “
ÿ

R

uR ¨ 1R; (20)

where uR is a scalar value (the component entry of u atR P G) and the sum is taken over all connected
components in Ghigh.

The result we then have to prove is the following:
Theorem B.3. We have

›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› “ O
ˆ

}∆reg.}

λ1p∆highq

˙

holds; with λ1p∆highq denoting the first non-zero eigenvalue of ∆high.

Note that this then indeed proves Theorem 3.3, since we have

λmaxp∆reg.q “ }∆reg.}.

Proof. We will split the proof of this result into multiple steps. For z ă 0 Let us denote by

Rzp∆q “ p∆´ zIdq´1,

Rzp∆highq “ p∆high ´ zIdq
´1

Rzp∆reg.q “ p∆reg. ´ zIdq
´1

the resolvents correspodning to ∆, ∆high and ∆reg. respectively.
Our first goal is establishing that we may write

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
¨Rzp∆highq

This will follow as a consequence of what is called the second resolvent formula Teschl (2014):

"Given self-adjoint operators A,B, we may write

RzpA`Bq ´RzpAq “ ´RzpAqBRzpA`Bq.”
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In our case, this translates to

Rzp∆q ´Rzp∆highq “ ´Rzp∆highq∆reg.Rzp∆q

or equivalently
rId`Rzp∆highq∆reg.sRzp∆q “ Rzp∆highq.

Multiplying with rId`Rzp∆highq∆reg.s
´1 from the left then yields

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
¨Rzp∆highq

as desired.
Hence we need to establish that rId`Rzp∆highq∆reg.s is invertible for z ă 0.

To establish a contradiction, assume it is not invertible. Then there is a signal x such that

rId`Rzp∆highq∆reg.sx “ 0.

Multiplying with p∆high ´ zIdq from the left yields

p∆high `∆reg. ´ zIdqx “ 0

which is precisely to say that
p∆´ zIdqx “ 0

But since ∆ is a graph Laplacian, it only has non-negative eigenvalues. Hence we have reached our
contradiction and established

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
Rzp∆highq.

Our next step is to establish that

Rzp∆highq Ñ
P high

0

´z
,

where P high
0 is the spectral projection onto the eigenspace corresponding to the lowest lying eigenvalue

λ0p∆highq “ 0 of ∆high. Indeed, by the spectral theorem for finite dimensional operators (c.f. e.g.
Teschl (2014)), we may write

Rzp∆highq ” p∆high ´ zIdq
´1 “

ÿ

λPσp∆highq

1

λ´ z
¨ P high

λ .

Here σp∆highq denotes the spectrum (i.e. the collection of eigenvalues) of ∆high and the
tP high

λ uλPσp∆highq are the corresponding (orthogonal) eigenprojections onto the eigenspaces of the
respective eigenvalues. Thus we find

›

›

›

›

›

Rzp∆highq ´
P high

0

´z

›

›

›

›

›

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ăλPσp∆highq

1

λ´ z
¨ P high

λ

›

›

›

›

›

›

;

where the sum on the right hand side now excludes the eigenvalue λ “ 0.

Using orthonormality of the spectral projections, the fact that z ă 0 and monotonicity of 1{p¨ ` |z|q
we find

›

›

›

›

›

Rzp∆highq ´
P high

0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
.

Here λ1p∆highq is the firt non-zero eigenvalue of p∆highq.
Non-zero eigenvalues scale linearly with the weight scale since we have

λpS ¨∆q “ S ¨ λp∆q

for any graph Laplacian (in fact any matrix) ∆ with eigenvalue λ. Thus we have
›

›

›

›

›

Rzp∆highq ´
P high

0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
ď

1

λ1p∆highq
ÝÑ 0
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as λ1p∆highq Ñ 8.

Our next task is to use this result in order to bound the difference

I :“

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1
P high

0

´z
´ rId`Rzp∆highq∆reg.s

´1
Rzp∆highq

›

›

›

›

›

›

.

To this end we first note that the relation

rA`B ´ zIds´1 “ rId`RzpAqBs
´1RzpAq

provided to us by the second resolvent formula, implies

rId`RzpAqBs
´1 “ Id´BrA`B ´ zIds´1.

Thus we have
›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›
ď 1` }∆reg.} ¨ }Rzp∆q}

ď 1`
}∆reg.}

|z|
.

With this, we have

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

¨
P high

0

´z
´Rzp∆q

›

›

›

›

›

›

“

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

¨
P high

0

´z
´ rId`Rzp∆highq∆reg.s

´1
¨Rzp∆highq

›

›

›

›

›

›

ď

›

›

›

›

›

P high
0

´z

›

›

›

›

›

¨

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

›

›

›

›

›

P high
0

´z
´Rzp∆highq

›

›

›

›

›

¨

›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›

ď
1

|z|

›

›

›

›

›

›

«

Id`
P high

0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

ˆ

1`
}∆reg.}

|z|

˙

¨
1

λ1p∆highq
.

Hence it remains to bound the left hand summand. For this we use the following fact (c.f. Horn &
Johnson (2012), Section 5.8. "Condition numbers: inverses and linear systems"):

Given square matrices A,B,C with C “ B ´A and }A´1C} ă 1, we have

}A´1 ´B´1} ď
}A´1} ¨ }A´1C}

1´ }A´1C}
.

In our case, this yields (together with }P high
0 } “ 1) that

›

›

›

›

”

Id` P high
0 {p´zq ¨∆reg.

ı´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

ď
p1` }∆reg.}{|z|q

2
¨ }∆reg.} ¨ }

P high
0

´z ´Rzp∆highq}

1´ p1` }∆reg.}{|z|q ¨ }∆reg.} ¨ }
P high

0

´z ´Rzp∆highq}

For Shigh sufficiently large, we have

} ´ P high
0 {z ´Rzp∆highq} ď

1

2 p1` }∆reg.}{|z|q

so that we may estimate
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›

›

›

›

›

›

«

Id`∆reg.
P high

0

´z

ff´1

´ rId`∆reg.Rzp∆highqs
´1

›

›

›

›

›

›

ď2 ¨ p1` }∆reg.}q ¨ }
P high

0

´z
´Rzp∆highq}

“2
1` }∆reg.}{|z|

λ1p∆highq

Thus we have now established
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

«

Id`
P high

0

´z
∆reg.

ff´1

¨
P high

0

´z
´Rzp∆q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
ˆ

}∆reg.}

λ1p∆highq

˙

.

Hence we are done with the proof, as soon as we can establish
”

´zId` P high
0 ∆reg.

ı´1

P high
0 “ JÒRzp∆qJ

Ó,

with JÒ,∆, JÓ as defined above. To this end, we first note that

JÒ ¨ JÓ “ P high
0 (21)

and
JÓ ¨ JÒ “ IdG. (22)

Indeed,the relation (21) follows from the fact that the eigenspace corresponding to the eignvalue
zero is spanned by the vectors t1RuR, with tRu the connected components of Ghigh. Equation (22)
follows from the fact that

x1R,1Ry “ µ
R
.

With this we have
”

Id` P high
0 ∆reg.

ı´1

P high
0 “

“

Id` JÒJÓ∆reg.
‰´1

JÒJÓ.

To proceed, set
x :“ F Óx

and
X “

”

P high
0 ∆reg. ´ zId

ı´1

P high
0 x.

Then
”

P high
0 ∆reg. ´ zId

ı

X “ P high
0 x

and hence X P RanpP high
0 q. Thus we have

JÒJÓp∆reg. ´ zIdqJ
ÒJÓX “ JÒJÓx.

Multiplying with JÓ from the left yields

JÓp∆reg. ´ zIdqJ
ÒJÓX “ JÓx.

Thus we have
pJÓ∆reg.J

Ò ´ zIdqJÒJÓX “ JÓx.

This – in turn – implies
JÒJÓX “

“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

Using
P high

0 X “ X ,

we then have
X “ JÒ

“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

We have thus concluded the proof if we can prove that JÓ∆reg.J
Ò is the Laplacian corresponding to

the graph G defined in Definition B.1. But this is a straightforward calculation.
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As a corollary, we find
Corollary B.4. We have

Rzp∆q
k Ñ JÒRkp∆qJÓ

Proof. This follows directly from the fact that

JÓJÒ “ IdG.

C PROOF OF THEOREM 3.4

Here we prove Theorem 3.4, which we restate for convenience:
Theorem C.1. Fix ε ą 0 and z ă 0. For arbitrary functions g, h : r0,8s Ñ R with limλÑ8 gpλq “
const. and limλÑ8 hpλq “ 0, there are filters f0

z,θ, f
I
z,θ of Type-0 and Type-I respectively such that

}f0
z,θ ´ g}8, }f

I
z,θ ´ h}8 ă ε.

Proof. The Stone-Weierstrass theorem (see e.g. Teschl (2014)) states that any sub-algebra of continu-
ous functions that are constant at infinity is already dense (in the topoloogy of uniform convergence)
if this sub-algebra separates points.

Thus – using the Stone-Weierstrass Theorem – all we have to prove to establish the claim is that for
every pair of points x, y ě 0 there is a function fθ with

fθpxq ‰ fθpyq.

But this is clear since (for z ă 0) the function
1

¨ ´ z
: r0,8q ÝÑ R

(which generates the algebra of functions we consider) is already everywhere defined and injective.

D STABILITY THEORY

Here we provide stability results to input- and edge-weight- perturbations for our architecture. For
convenience, we restate our layer-wise update rule here again:

Given a feature matrix X` P RNˆF` in layer `, with column vectors tX`
ju
F`
j“1, the feature vector

X``1
i in layer ``1 is calculated asX``1

i “ ReLU
´

řF``1

j“1 fz,θ``1
ij
p∆q ¨X`

j ` b
``1
i

¯

with a learnable

bias vector b``1
i . Collecting biases into a matrix B``1 P RF``1ˆN , we efficiently implement this

using matrix-multiplications as

X``1 “ ReLU

˜

K
ÿ

k“a

pT ´ ωIdq´k ¨X` ¨W ``1
k `B``1

¸

with weight matrices tW ``1
k u in RF`ˆF``1 . Biases are implemented as bi “ βi ¨ 1G, with 1G the

vector of all ones on G and βi P R learnable.

Our first result main-body of the paper then concerns stability to perturbations of input signals:
Theorem D.1. Let ΦL be the map associated to an L-layer deep ResolvNet. Denote the collection of
weight matrices in layer ` by W ` :“ tWku

K`

K“a. We have

}ΦLpXq ´ ΦLpY q}2 ď }X ´ Y }2 ¨
L
ź

`“1

}W `}z, (23)

with

}W `}z :“
K
ÿ

k“a

1

|z|k
}W `

k}

aggregating singular values of weight matrices.
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Proof. Let us denote (hidden) feature matrices in layer ` by X` (resp. Y `).

We note the following:

}XL ´ Y L} “

›

›

›

›

›

ReLU

˜

K
ÿ

k“a

Rkz p∆qX
L´1WL

k `B
L

¸

´ ReLU

˜

K
ÿ

k“a

Rkz p∆qY
L´1WL

k `B
L

¸
›

›

›

›

›

ď

›

›

›

›

›

˜

K
ÿ

k“a

Rkz p∆qX
L´1WL

k `B
L

¸

´

˜

K
ÿ

k“a

Rkz p∆qY
L´1WL

k `B
L

¸
›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“a

Rkz p∆qX
L´1Wk ´

K
ÿ

k“a

Rkz p∆qY
L´1WL

k

›

›

›

›

›

ď

K
ÿ

k“a

›

›Rkz p∆q
ˇ

ˇ ¨
›

›XL´1 ´ Y L´1
›

› ¨
›

›WL
k

›

›

“

K
ÿ

k“a

1

|z|k
¨
›

›XL´1 ´ Y L´1
›

› ¨
›

›WL
k

›

›

ď }W L}z ¨
›

›XL´1 ´ Y L´1
›

› .

Iterating through the layers yields the desired inequality (23).

In preparation for our next result – Theorem D.5 below – we note the following:

Lemma D.2. Let ΦL be the map associated to an L-layer deep ResolvNet. With weights and biases
denoted as above, we have

}ΦLpXq} ď }B
L} `

L
ÿ

m“0

˜

m
ź

j“0

}W L´1´j}z

¸

}BL´1´j} `

˜

L
ź

`“1

}W `}z

¸

¨ }X}2 (24)

Proof. We have

}X}L ď

›

›

›

›

›

ReLU

˜

K
ÿ

k“a

Rkz p∆qX
L´1Wk `B

L

¸
›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“a

Rkz p∆qX
L´1WL

k `B
L

›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“a

Rkz p∆qX
L´1WL

k

›

›

›

›

›

`
›

›BL
›

›

ď

K
ÿ

k“a

}Rkz p∆q} ¨ }X
L´1} ¨ }WL

k } `
›

›BL
›

›

ď

˜

K
ÿ

k“a

}WL
k }

|z|k

¸

¨ }XL´1} ` }BL}.

Iterating this through all layers, we obtain (24).

Before we can establish Theorem D.5 below, we need two additional (related) preliminary results:

Lemma D.3. Let us use the notation rRz :“ pr∆´ zIdq´1 and Rz :“ p∆´ zIdq´1 for resulvents
corresponding to two different Laplacians ∆ and r∆. We have

}Rz ´ rRz} ď
1

|z|3
}∆´ r∆}
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Proof. Let T and rT be (finite dimensional) operators. Choose z so that it is neither an eigenvalue of
T nor rT .

To showcase the principles underlying the proof, let us use the notation

RzpT q ”
1

T ´ z
.

We note the following

1

rT ´ z
p rT ´ T q

1

T ´ z

“
1

rT ´ z
rT

1

T ´ z
´

1

rT ´ z
T

1

T ´ z

“

„

1

rT ´ z
p rT ´ zq `

z

rT ´ z



1

T ´ z
´

1

rT ´ z

„

1

T ´ z
pT ´ zq `

z

T ´ z



“z

ˆ

1

T ´ z
´

1

rT ´ z

˙

.

Rearranging and using

}Rzp∆q} “ }Rzprp∆qq} “
1

|z|

together with the sub-multiplicativity of the operator-norm } ¨ } yields the claim.

We also note the following estimate on differences of powers of resolvents:

Lemma D.4. Let rRz :“ pr∆´ zIdq´1 and Rz :“ p∆´ zIdq´1. For any natural number k, we have

} rRkz ´R
k
z} ď

k

|z|k´1
} rRz ´Rz}

Proof. We note that for arbitrary matrices T, rT , we have

rT k ´ T k “ rT k´1p rT ´ T q ` p rT k´1 ´ T k´1qT

“ rT k´1p rT ´ T q ` rT k´2p rT ´ T qT ` p rT k´2 ´ T k´2qT 2.

Iterating this and using

}Rzp∆q} “ }Rzpr∆q} “
1

|z|

for z ă 0 then yields the claim.

Having established the preceding lemmata, we can now establish stability to perturbations of the edge
weights:

Theorem D.5. Let ΦL and rΦL be the maps associated to ResolvNets with the same network archi-
tecture, but based on Laplacians ∆ and r∆ respectively. We have

}ΦLpXq ´ rΦLpXq}2 ď pC1pW q ¨ }X}2 ` C2pW ,Bqq ¨ }∆´ r∆}. (25)

Here, the stability constants C1pW q and C2pW ,Bq are polynomials in (the largest) singular values
of weight matrices and weight matrices as well as bias matrices, respectively.

Proof. Denote by X` and rX` the (hidden) feature matrices generated in layer ` for networks based
on Laplacians ∆ and r∆ respectively: I.e. we have

X` “ ReLU

˜

K
ÿ

k“a

Rkz p∆qX
`´1Wk `B

`

¸
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and

rX` “ ReLU

˜

K
ÿ

k“a

Rkz p
r∆q rX`´1Wk `B

`

¸

.

Using the fact that ReLUp¨q is Lipschitz continuous with Lipschitz constant D “ 1, we have

}XL ´ rXL}

“

›

›

›

›

›

ReLU

˜

K
ÿ

k“a

Rkz p∆qX
L´1WL

k `B
L

¸

´ ReLU

˜

K
ÿ

k“a

Rkz p
r∆q rXL´1WL

k `B
L

¸
›

›

›

›

›

ď

›

›

›

›

›

˜

K
ÿ

k“a

Rkz p∆qX
L´1WL

k `B
L

¸

´

˜

K
ÿ

k“a

Rkz p
r∆q rXL´1WL

k `B
L

¸
›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“a

Rkz p∆qX
L´1WL

k ´

K
ÿ

k“a

Rkz p
r∆q rXL´1WL

k

›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“a

pRkz p∆q ´R
k
z p
r∆qqXL´1WL

k

›

›

›

›

›

`

K
ÿ

k“a

}Rzpr∆q} ¨ } rX
L´1 ´XL´1} ¨ }WL

k }

ď

›

›

›

›

›

K
ÿ

k“a

pRkz p∆q ´R
k
z p
r∆qqXL´1WL

k

›

›

›

›

›

` }W L}z ¨ } rX
L´1 ´XL´1}

ď

K
ÿ

k“a

›

›

›
Rkz p∆q ´R

k
z p
r∆q

›

›

›
¨
›

›XL´1
›

› ¨
›

›WL
k

›

›` }W L}z ¨ } rX
L´1 ´XL´1}

Applying Lemma D.4 yields

}XL ´ rXL}

ď

˜

K
ÿ

k“a

k

|z|k´1

›

›WL
k

›

›

¸

¨
›

›XL´1
›

› ¨

›

›

›
Rzp∆q ´Rzpr∆q

›

›

›
` }W L}z ¨ } rX

L´1 ´XL´1}.

Using Lemma D.3, we then have

}XL ´ rXL}

ď

˜

K
ÿ

k“a

k

|z|k`2

›

›WL
k

›

›

¸

¨
›

›XL´1
›

› ¨

›

›

›
∆´ r∆

›

›

›
` }W L}z ¨ } rX

L´1 ´XL´1}.

Lemma D.2 then yields

}XL ´ rXL}

ď

˜

K
ÿ

k“a

k

|z|k`2

›

›WL
k

›

›

¸

¨

¨

«

}BL} `
L
ÿ

m“0

˜

m
ź

j“0

}W L´1´k}z

¸

}BL´1´k} `

˜

L
ź

`“1

}W `}z

¸

¨ }X}2

ff

¨ }r∆´∆}

`}W L}z ¨ } rX
L´1 ´XL´1}.

Iterating this through the layers and collecting summands yields the desired relation (25).
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E STABILITY UNDER SCALE VARIATIONS

Here we provide details on the scale-invariance results discussed in Section 4.

In preparation, we will first need to prove a lemma relating powers of resolvents on the original graph
G and its limit-description G:
Lemma E.1. Let Rz :“ p∆´ zIdq´1 and Rz :“ p∆´ zIdq´1. For any natural number k, we have

}JÒRkzJ
Ó ´Rkz} ď

k

|z|k´1
}JÒRzJ

Ó ´Rz}

The proof proceeds in analogy to that of Lemma D.4:

Proof. We note that for arbitrary matrices T, rT , we have

rT k ´ T k “ rT k´1p rT ´ T q ` p rT k´1 ´ T k´1qT

“ rT k´1p rT ´ T q ` rT k´2p rT ´ T qT ` p rT k´2 ´ T k´2qT 2.

Iterating this, using

}Rzp∆q} “ }J
ÒRzp∆qJ

Ó} “
1

|z|

for z ă 0 together with }JÒ}, }JÓ} ď 1 and

JÒRkzJ
Ó “

`

JÒRzJ
Ó
˘k

(which holds since JÓJÒ “ IdG) then yields the claim.

Note that the equation

}JÒRzp∆qJ
Ó} “

1

|z|

holds, because we may write

}JÒRzp∆qJ
Ó} “ } lim

λ1p∆highqÑ8
Rzp∆q} “ lim

λ1p∆highqÑ8
}Rzp∆q} “ lim

λ1p∆highqÑ8

1

|z|
“

1

|z|
.

Hence let us now prove Stability-Theorem 4.1, which we restate here for convenience:
Theorem E.2. Let ΦL and ΦL be the maps associated to ResolvNets with the same learned weight
matrices and biases but deployed on graphs G and G as defined in Section 2.2.2 . We have

}ΦLpJ
ÒXq ´ JÒΦLpXq}2 ď pC1pW q ¨ }X}2 ` C2pW ,Bqq ¨

›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› (26)

if the network is based on Type-0 resolvent filters (c.f. Section 3). Additionally, we have

}ΦLpXq ´ J
ÒΦLpJ

ÓXq}2 ď pC1pW q ¨ }X}2 ` C2pW ,Bqq ¨
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› (27)

if only Type-I filters are used in the network. Here C1pW q and C2pW ,Bq are constants that depend
polynomially on singular values of learned weight matrices W and biases B.

Proof. Let us first prove (27). To this end, let us define

X :“ JÓX.

Let us further use the notation Rz :“ p∆´ zIdq´1 and Rz :“ p∆´ zIdq´1.

Denote by X` and rX` the (hidden) feature matrices generated in layer ` for networks based on
resolvents Rz and Rz respectively: I.e. we have

X` “ ReLU

˜

K
ÿ

k“a

RkzX
`´1Wk `B

`

¸
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and

rX` “ ReLU

˜

K
ÿ

k“a

Rkz
rX`´1Wk `B

`

¸

.

Here, since bias terms are proportional to constant vectors on the graphs, as detailed in Section 3, we
have

JÓB “ B

and
JÒB “ B (28)

for bias matrices B and B in networks deployed on G and G respectively.

We then have

}ΦLpXq ´ J
ÒΦLpJ

ÓXq}

“}XL ´ JÒ rXL}

“

›

›

›

›

›

ReLU

˜

K
ÿ

k“a

RkzX
L´1WL

k `B
L

¸

´ JÒReLU

˜

K
ÿ

k“a

Rkz
rXL´1WL

k `B
L

¸
›

›

›

›

›

“

›

›

›

›

›

ReLU

˜

K
ÿ

k“a

RkzX
L´1WL

k `B
L

¸

´ ReLU

˜

K
ÿ

k“a

JÒRkz
rXL´1WL

k `B
L

¸
›

›

›

›

›

.

Here we used the fact that since ReLUp¨q maps positive entries to positive entries and acts pointwise,
it commutes with JÒ. We also made use of (28).
Using the fact that ReLUp¨q is Lipschitz-continuous with Lipschitz constant D “ 1, we can establish

}ΦLpXq ´ J
ÒΦLpJ

ÓXq} ď

›

›

›

›

›

K
ÿ

k“a

RkzX
L´1WL

k ´

K
ÿ

k“a

JÒRkz
rXL´1WL

k

›

›

›

›

›

.

Using the fact that JÓJÒ “ IdG, we have

}ΦLpXq ´ J
ÒΦLpJ

ÓXq} ď

›

›

›

›

›

K
ÿ

k“1

RkzX
L´1WL

k ´

K
ÿ

k“1

pJÒRkzJ
ÓqJÒ rXL´1WL

k

›

›

›

›

›

.

From this, we find (using }JÒ}, }JÓ} ď 1 ), that

}XL ´ JÒ rXL}

ď

›

›

›

›

›

K
ÿ

k“0

RkzX
L´1WL

k ´

K
ÿ

k“1

pJÒRkzJ
ÓqJÒ rXL´1WL

k

›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“1

pRkz ´ pJ
ÒRkzJ

ÓqqXL´1WL
k

›

›

›

›

›

`

K
ÿ

k“1

}JÒRzJ
Ó} ¨ }JÒ rXL´1 ´XL´1} ¨ }WL

k }

ď

›

›

›

›

›

K
ÿ

k“1

pRkz ´ pJ
ÒRkzJ

ÓqqXL´1WL
k

›

›

›

›

›

` }W L}z ¨ }J
Ò
rXL´1 ´XL´1}

ď

K
ÿ

k“1

›

›

›
Rkz ´ pJ

ÒRkzJ
Óq

›

›

›
¨
›

›XL´1
›

› ¨
›

›WL
k

›

›` }W L}z ¨ }J
Ò
rXL´1 ´XL´1}

Applying Lemma E.1 yields

}XL ´ JÒ rXL}

ď

˜

K
ÿ

k“1

k

|z|k´1

›

›WL
k

›

›

¸

¨
›

›Rz ´ pJ
ÒRzJ

Óq
›

› ¨
›

›XL´1
›

›` }W L}z ¨ }J
Ò
rXL´1 ´XL´1}.
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Lemma then D.2 in Appendix D established that we have

}XL} ď }BL} `
L
ÿ

m“0

˜

m
ź

j“0

}W L´1´k}z

¸

}BL´1´k} `

˜

L
ź

`“1

}W `}z

¸

¨ }X}. (29)

Hence the summand on the left-hand-side can be bounded in terms of a polynomial in singular values
of bias- and weight matrices, as well as }X} and most importantly the factor }Rz ´ pJÒRzJ

Óq}

which tends to zero.
For the summand on the right-hand-side, we can iterate the above procedure (aggregating terms like
(29) multiplied by }Rz ´ pJÒRzJ

Óq}) until reaching the last layer L “ 1. There we observe

}X1 ´ JÒ rX1}

“

›

›

›

›

›

ReLU

˜

K
ÿ

k“1

RkzXW
1
k `B

1

¸

´ JÒReLU

˜

K
ÿ

k“1

RkzJ
ÓXW 1

k `B
1

¸
›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“1

RkzXW
1
k ´

K
ÿ

k“1

JÒRkzJ
ÓXW 1

k

›

›

›

›

›

ď

›

›

›

›

›

K
ÿ

k“1

pRkz ´ J
ÒRkzJ

ÓqXW 1
k

›

›

›

›

›

ď

˜

K
ÿ

k“1

k

|z|k´1

›

›W 1
k

›

›

¸

¨
›

›Rz ´ pJ
ÒRzJ

Óq
›

› ¨ }X}

The last step is only possible because we let the sums over powers of resolvents start at a “ 1 as
opposed to a “ 0. In the latter case, there would have remained a term }X ´ JÒJÓX}, which would
not decay as λ1p∆highq Ñ 8.
Aggregating terms, we build up the polynomial stability constants of (27) layer by layer, and
complete the proof.

The proof of (26) proceeds in complete analogy upon defining

X :“ JÒX.

Note that starting with X on G, implies that we have

JÒJÓX ” JÒJÓpJÒXq “ JÒX ” X.

This avoids any complications arising from employing Type-0 filters in this setting.

Next we transfer the previous result to the graph level setting:

Theorem E.3. Denote by Ψ the aggregation method introduced in Section 3. With µpGq “
řN
i“1 µi

the total weight of the graph G, we have in the setting of Theorem 4.1 with Type-I filters, that

}Ψ pΦLpXqq´Ψ
`

ΦLpJ
ÓXq

˘

}2 ď
a

µpGq¨pC1pW q ¨ }X}2 ` C2pW ,Bqq¨
›

›Rzp∆q ´ J
ÒRzp∆qJ

Ó
›

› .

Proof. Let us first recall that our aggregation scheme Ψ mapped a feature matrix X P RNˆF to a
graph-level feature vector ΨpXq P RF defined component-wise as

ΨpXqj “
N
ÿ

i“1

|Xij | ¨ µi.

In light of Theorem E.2, we are done with the proof, once we have established that

}Ψ pΦLpXqq ´Ψ
`

ΦLpJ
ÓXq

˘

}2 ď
a

µpGq ¨ }ΦLpXq ´ J
ÒΦLpJ

ÓXq}2.

To this end, we first note that
ΨpJÒXq “ ΨpXq.
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Indeed, this follows from the fact that given a connected component R in Ghigh, the map JÒ assigns
the same feature vector to each node r P R Ď G (c.f. (20)), together with the fact that

µ
R
“

ÿ

rPR

µr.

Thus we have

}Ψ pΦLpXqq ´Ψ
`

ΦLpJ
ÓXq

˘

}2 “ }Ψ pΦLpXqq ´Ψ
`

JÒΦLpJ
ÓXq

˘

}2.

Next let us simplify notation and write

A “ ΦLpXq

and
B “ JÒΦLpJ

ÓXq

with A,B P RNˆF . We note:

}Ψ pΦLpXqq ´Ψ
`

JÒΦLpJ
ÓXq

˘

}22 “

F
ÿ

j“1

˜

N
ÿ

i“1

p|Aij | ´ |Bij |q ¨ µi

¸2

.

By means of the Cauchy-Schwarz inequality together with the inverse triangle-inequality, we have

F
ÿ

j“1

˜

N
ÿ

i“1

p|Aij | ´ |Bij |q ¨ µi

¸2

ď

F
ÿ

j“1

«˜

N
ÿ

i“1

|Aij ´Bij |
2 ¨ µi

¸

¨

˜

N
ÿ

i“1

µi

¸ff

“

F
ÿ

j“1

˜

N
ÿ

i“1

|Aij ´Bij |
2 ¨ µi

¸

¨ µpGq.

Since we have

}ΦLpXq ´ J
ÒΦLpJ

ÓXq}22 “
F
ÿ

j“1

˜

N
ÿ

i“1

|Aij ´Bij |
2 ¨ µi

¸

,

the claim is established.

F ADDITIONAL DETAILS ON EXPERIMENTS:

All experiments were performed on a single NVIDIA Quadro RTX 8000 graphics card.

F.1 NODE CLASSIFICATION

Datasets: We test our approach for the task of node-classification on eight different standard
datasets across the entire homophily-spectrum. Among these, CITESEER Sen et al. (2008), CORA-
ML McCallum et al. (2000) and PUBMED Namata et al. (2012) are citation graphs. Here each node
represents a paper and edges correspond to citations. We also test on the MICROSOFT ACADEMIC
graph Shchur et al. (2018) where an edge that is present corresponds to co-authorship. Bag-of-word
representations act as node features. The WEBKB datasets CORNELL and TEXAS are datasets
modeling links between websites at computer science departments of various universitiesPei et al.
(2020). Node features are bag-of-words representation of the respective web pages. We also consider
the actor co-occurence dataset ACTOR Tang et al. (2009) as well as the Wikipedia based dataset
SQUIRREL Rozemberczki et al. (2021).

Experimental setup We closely follow the experimental setup of Gasteiger et al. (2019b) on which
our codebase builds: All models are trained for a fixed maximum (and unreachably high) number of
n “ 10000 epochs. Early stopping is performed when the validation performance has not improved
for 100 epochs. Test-results for the parameter set achieving the highest validation-accuracy are
then reported. Ties are broken by selecting the lowest loss (c.f. Velickovic et al. (2018); Gasteiger
et al. (2019a)). Confidence intervals are calculated over multiple splits and random seeds at the 95%
confidence level via bootstrapping.
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Additional details on training and models: We train all models on a fixed learning rate of

lr “ 0.1.

Global dropout probability p of all models is optimized individually over

p P t0.3, 0.35, 0.4, 0.45, 0.5u.

We use `2 weight decay and optimize the weight decay parameter λ for all models over

λ P t0.0001, 0.0005u.

Where applicable (i.e. not for Gasteiger et al. (2019a); He et al. (2021)) we choose a two-layer deep
convolutional architecture with the dimensions of hidden features optimized over

K` P t32, 64, 128u. (30)

In addition to the hyperparemeters specified above, some baselines have additional hyperparameters,
which we detail here: BernNet uses an additional in-layer dropout rate of dp_rate “ 0.5 and for its
filters a polynomial order of K “ 10 as suggested in He et al. (2021). As suggested in Gasteiger
et al. (2019a), the hyperparameter α of PPNP is set to α “ 0.2 on the MS_ACADEMIC dataset and
to α “ 0.1 on other datasets. Hyperparameters depth T and number of stacks K of the ARMA
convolutional layer Bianchi et al. (2019) are set to T “ 1 and K “ 2. ChebNet also uses K “ 2 to
avoid the known over-fitting issue Kipf & Welling (2017) for higher polynomial orders. For MagNet
we use K “ 1 as suggested in Zhang et al. (2021) and choose the parameter q as given in Table 1 of
Zhang et al. (2021) for the respective datasets. The graph attention network Velickovic et al. (2018)
uses 8 attention heads, as suggested in Velickovic et al. (2018).

For our ResolvNet model, we choose a depth of L “ 1 with hidden feature dimension optimized over
the values in (30) as for baselines. We empirically observed in the setting of unweighted graphs, that
rescaling the Laplacian as

∆nf :“
1

cnf
∆

with a normalizing factor cnf before calculating the resolvent

Rzp∆nf q :“ p∆nf ´ z ¨ Idq
´1 (31)

on which we base our ResolvNet architectures improved performance.

For our ResolvNet architecture, we express this normalizing factor in terms of the largest singular
value }∆} of the (non-normalized) graph Laplacian. It is then selected among

cnf {}∆} P t0.001, 0.01, 0.1, 2u.

The value z in (31) is selected among

p´zq P t0.14, 0.15, 0.2, 0.25u.

We base our ResolvNet architecture on Type-0 filters and choose the maximum resolvent-exponent
K as K “ 1.

F.2 GRAPH REGRESSION

Datasets: The first dataset we consider is the QM7 dataset, introduced in Blum & Reymond (2009);
Rupp et al. (2012). This dataset contains descriptions of 7165 organic molecules, each with up to
seven heavy atoms, with all non-hydrogen atoms being considered heavy. A molecule is represented
by its Coulomb matrix CClmb, whose off-diagonal elements

CClmb
ij “

ZiZj
|Ri ´Rj |

correspond to the Coulomb-repulsion between atoms i and j. We discard diagonal entries of Coulomb
matrices; which would encode a polynomial fit of atomic energies to nuclear charge Rupp et al.
(2012).
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For each atom in any given molecular graph, the individual Cartesian coordinates Ri and the atomic
charge Zi are also accessible individually. To each molecule an atomization energy - calculated via
density functional theory - is associated. The objective is to predict this quantity. The performance
metric is mean absolute error. Numerically, atomization energies are negative numbers in the range
´600 to ´2200. The associated unit is rkcal/mols.

The second dataset we consider is the QM9 dataset Ramakrishnan et al. (2014), which consists of
roughly 130 000 molecules in equilibrium. Beyond atomization energy, there are in total 19 targets
available on QM9. We provide a complete list of targets together with abbreviations in Table 4
below:

Table 4: Targets of QM9

Symbol Property Unit

U0 Internal energy at 0K eV
U Internal energy at 298.15K eV
H Enthalpy at 298.15K eV
G Free energy at 298.15K eV
UATOM

0 Atomization energy at 0K eV
UATOM Atomization energy at 298.15K eV
HATOM Atomization enthalpy at 298.15K eV
GATOM Atomization free energy at 298.15K eV
cv Heat capacity at 298.15K cal

mol¨K
µ Dipole moment D
α Isotropic polarizability α3

0
εHOMO Highest occupied molecular orbital energy eV
εLUMO Lowest unoccupied molecular orbital energy eV
∆ε Gap between εHOMO and εLUMO eV
xR2y Electronic spatial extent α2

0
ZPVE Zero point vibrational energy eV
A Rotational constant GHz
B Rotational constant GHz
C Rotational constant GHz

Molecules in QM9 are not directly encoded via their Coulomb-matrices, as in QM7. However, posi-
tions and charges of individual molecules are available, from which the Coulomb matrix description
is calculated for each molecule.

Experimental Setup: On both datasets, we randomly select 1500 molecules for testing and train
on the remaining graphs. On QM7 we run experiments for 23 different random random seeds and
report mean and standard deviation. Due to computational limitations we run experiments for 3
different random seeds on the larger QM9 dataset, and report mean and standard deviation.

Additional details on training and models: All considered convolutional layers are incorporated
into a two layer deep and fully connected graph convolutional architecture. In each hidden layer, we
set the width (i.e. the hidden feature dimension) to

F1 “ F2 “ 64.

For BernNet, we set the polynomial order to K “ 3 to combat appearing numerical instabilities.
ARMA is set to K “ 2 and T “ 1. ChebNet uses K “ 2. For all baselines, the standard mean-
aggregation scheme is employed after the graph-convolutional layers to generate graph level features.
Finally, predictions are generated via an MLP.

For our model, we choose a two-layer deep instantiation of our ResolvNet architecture introduced in
Section 3. We choose Type-I filters and set z “ ´1. Laplacians are not rescaled and resolvents are
thus given as

R´1p∆q “ p∆` Idq´1.

37



Under review as a conference paper at ICLR 2024

As aggregation, we employ the graph level feature aggregation scheme introduced at the end of
Section 3 with node weights set to atomic charges of individual atoms. Predictions are then generated
via a final MLP with the same specifications as the one used for baselines.

All models are trained independently on each respective target.

Results: Beyond the results already showcased in the main body of the paper, we here provide
results for ResolvNet as well as baselines on all targets of Table 4. These results are collected in
Table 5, Table 6 and Table 7 below.

As is evident from the tables, the ResolvNet architecture produces mean-absolute-errors comparable
to those of baselines on 1{4 of targets, while it performs significantly better on 3{4 of targets.

The difference in performance is especially significant on the (extensive) energy targets of Table 5. In
this Table, baselines are out-performed by factors varying between 4 and 15.

Table 6 contains three additional targets where MAEs produced by ResolvNet are lower by factors
varying between roughly two and four, when compared to baselines.

Table 7 finally contains MAEs corresponding to predictions of rotational constants. Here our model
yields a comparable error on one target and provides better results than baselines on two out of three
targets.

Table 5: Energy prediction MAEs reV s. Our Model is marked R.N. for ResolvNet.

Property U0 U H G UATOM
0 UATOM HATOM GATOM

BernNet 370.42˘38.91 382.64˘36.52 398.32˘46.00 362.69˘24.84 3.112˘0.285 3.096˘0.249 3.046˘0.277 2.919 ˘0.375

GCN 381.41˘0.42 376.41˘7.10 368.01˘16.77 380.65˘6.67 2.766˘0.081 2.828˘0.091 2.803˘0.077 2.575˘0.084

ChebNet 345.74˘12.30 346.39˘19.11 398.32˘22.48 350.22˘12.32 2.665˘0.040 2.672˘0.056 2.745˘0.104 2.477˘0.036

ARMA 327.62˘19.83 316.09˘18.06 322.74˘16.32 320.72˘11.98 2.588˘0.117 2.570˘0.088 2.600˘0.096 2.326˘0.101

R.N. 21.72˘5.79 19.14˘7.19 31.18˘8.622 53.50˘4.58 0.605˘0.015 0.588˘0.024 0.593˘0.025 0.607˘0.041

Table 6: Various target prediction MAEs. Our Model is marked R.N. for ResolvNet.

Property cv
“

cal
mol¨K

‰

µ rDs α rα3
0s εHOMO reV s εLUMO reV s ∆ε reV s xR2

y rα2
0s ZPVE reV s

BernNet 2.610˘0.986 0.948˘0.042 3.519˘0.288 0.376˘0.028 0.649˘0.092 0.841˘0.085 157.982 ˘34.804 0.237 ˘0.032

GCN 1.521˘0.038 0.936˘0.003 3.114˘0.112 0.301˘0.009 0.523˘0.018 0.566˘0.016 130.461˘5.445 0.185˘0.004

ChebNet 1.455˘0.053 0.881˘0.007 3.049˘0.092 0.234˘0.005 0.433˘0.018 0.515˘0.010 132.695˘2.218 0.180˘0.005

ARMA 1.327˘0.034 0.806˘0.031 2.676˘0.087 0.228˘0.010 0.333˘0.009 0.380˘0.007 93.760˘4.122 0.152˘0.006

R.N. 0.747˘0.015 0.776˘0.018 1.308˘0.034 0.313˘0.002 0.423˘0.011 0.531˘0.016 97.614˘2.308 0.041˘0.008

Table 7: Rotational constants prediction MAEs. Our Model is marked R.N. for ResolvNet.

Property A rGHzs B rGHzs C rGHzs

BernNet 0.888˘0.034 0.342˘0.002 0.243˘0.002

GCN 0.848˘0.027 0.281˘0.004 0.183˘0.002

ChebNet 0.797˘0.034 0.262˘0.003 0.171˘0.003

ARMA 0.715˘0.017 0.259˘0.004 0.168˘0.004

R.N. 0.783˘0.802 0.249˘0.002 0.158˘0.001

F.3 SCALE INVARIANCE

Dataset: Again, we make use of the QM7 dataset Rupp et al. (2012) and its Coulomb matrix
description

CClmb
ij “

ZiZj
|Ri ´Rj |

(32)

of molecules.

Details on collapsing procedure: We modify (all) molecular graphs in QM7 by deflecting hydro-
gen atoms (H) out of their equilibrium positions towards the respective nearest heavy atom. This is
possible since the QM7 dataset also contains the Cartesian coordinates of individual atoms.
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This introduces a two-scale setting precisely as discussed in section 2: Edge weights between heavy
atoms remain the same, while Coulomb repulsions between H-atoms and respective nearest heavy
atom increasingly diverge; as is evident from (32).

Given an original molecular graph G with node weights µi “ Zi, the corresponding limit graph
G corresponds to a coarse grained description, where heavy atoms and surrounding H-atoms are
aggregated into single super-nodes in the sense of Section 2.2.2 .

Mathematically, G is obtained by removing all nodes corresponding to H-atoms fromG, while adding
the corresponding charges ZH “ 1 to the node-weights of the respective nearest heavy atom. Charges
in (32) are modified similarly to generate the weight matrix W .

On original molecular graphs, atomic charges are provided via one-hot encodings. For the graph of
methane – consisting of one carbon atom with charge ZC “ 6 and four hydrogen atoms of charges
ZH “ 1 – the corresponding node-feature-matrix is e.g. given as

X “

¨

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 1 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨
1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

˛

‹

‹

‹

‚

with the non-zero entry in the first row being in the 6th column, in order to encode the charge ZC “ 6
for carbon.

The feature vector of an aggregated node represents charges of the heavy atom and its neighbouring
H-atoms jointly.

As discussed in Definition 3.2, node feature matrices are translated as X “ JÓX . Applying JÓ
to one-hot encoded atomic charges yields (normalized) bag-of-word embeddings on G: Individual
entries of feature vectors encode how much of the total charge of the super-node is contributed by
individual atom-types. In the example of methane, the limit graph G consists of a single node with
node-weight

µ “ 6` 1` 1` 1` 1 “ 10.

The feature matrix

X “ JÓX

is a single row-vector given as

X “

ˆ

4

10
, 0, ¨ ¨ ¨ , 0,

6

10
, 0, ¨ ¨ ¨

˙

.

Results:

For convenience, we repeat here in Table 8 and Figure
12 the results corresponding to the use of resolution-
limited data in the form of coarse-grained molecular
graphs during inference, that were already presented in
the main body of the paper.

Table 8: MAE on QM7 via coarsified molecular graphs.

QM7 MAE rkcal{mols

BernNet 580.67˘99.27

GCN 124.53˘34.58

ChebNet 645.14˘34.59

ARMA 248.96˘15.56

ResolvNet 16.23˘2.74 Figure 12: Feature-vector-difference for
collapsed (F ) and deformed (F ) graphs.
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G COMPARISON OF RESOLVNET WITH OTHER POSSIBLE MULTI-SCALE
PROPAGATION SCHEMES

Here we numerically compare our ResolvNet architecture with additional, conceptionally adjacent
baselines beyond those already considered in Section 5.

G.1 COMPARISON WITH (GNN + POOLING)

Aside from incorporating multiple-scales via the use of resolvents as in ResolvNet, one might also
transition between different coarse-grained versions of an original graph using (learnable) pooling
operations. Here we compare ResolvNet against a generic message passing network (i.e. GCN) with
a generic learnable pooling operation (i.e. Self-Attention Graph Pooling (Lee et al., 2019)).

We consider two instantiations of the (GNN + Pooling) combination: In SAG, we first apply a
pooling Layer, and then run GCN on the coarsified graph. SAG-Multi instead precisely follows the
architecture described in Lee et al. (2019): It first generates graph representations first at the original
scale via GCN, then pools, runs GCN on the coarsened graph and generates a second (coarser) Graph
representation. This procedure is iterated again and all three representations are combined into a
single representation.

We then rerun all experiments on QM7
data described in Section 5 again also
for these two additional baselines: As
can be inferred from Table 9, either
way of combining GCN (as the proto-
typical message passing network) with
pooling does not lead to a performance
increase on the multi-scale data of the
QM7-dataset.

Table 9: QM7-MAE

QM7 MAE rkcal{mols

BernNet 113.57˘62.90

GCN 61.32˘1.62

ChebNet 59.57˘1.58

ARMA 59.39˘1.79

SAG 64.69 ˘ 3.24

SAG-Multi 61.36 ˘ 4.47

ResolvNet 16.52˘0.67

Table 10: QM7coarse-MAE

QM7 MAE rkcal{mols

BernNet 580.67˘99.27

GCN 124.53˘34.58

ChebNet 645.14˘34.59

ARMA 248.96˘15.56

SAG 550.42 ˘ 24.43

SAG-Multi 246.95 ˘ 68.49

ResolvNet 16.23˘2.74

What is more, it has a drastically negative effect when aiming to transfer models between graphs
describing the same object (in this case a molecule) at different resolution-scales; as can be observed
when comparing the MAE of GCN in Table 10 with either choice of SAG or SAG-Multi.

This effect is also observed when comparing the feature vectors SAG or SAG-Multi generate for a
multi-scale graph G and its collapsed version G, as the scale imbalance in G is increased:

Figure 13: Feature-vector-difference for collapsed (F ) and deformed (F ) graphs.

Rerunning the collapse experiment of Fig. 7, we observe from Fig. 13 that the difference between
features generated for G and G by SAG and SAG-Multi do not decay, as the larger scale is increased.
We might thus conclude as before that these models – as opposed to ResolvNet – are scale- and
resolution sensitive when generating graph level features.
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G.2 COMPARISONS WITH (GNN + MANUAL-SCALE-SEPARATION)

Apart from using learnable pooling operations to infer a collapsed version of an original graph, one
might also manually determine the two graph structures Greg. and Ghigh of Definition 2.1. One might
then run graph neural networks on each graph Greg. and Ghigh separately and subsequently combine
the two individual representations into a single one, to represent the original graph G.

To compare our ResolvNet architecture against this approach, we reran the experiment corresponding
to Table 2 with baselines now operating on two graph structures Greg. and Ghigh for each molecule
and results being subsequently combined into a single graph-level representation for each molecular
graph G.

Given a molecular graph G, we determine the two graph structures Greg., Ghigh as follows: Since
weights scale as inverse distance (wij „ 1{}~xi ´ ~xj}) weights between nodes that are far away from
each other are connected via weaker weights.

We thus determine a minimal distance dmin, and retain all edges of G that connect nodes that are
within distance dmin of each other (}~xi ´ ~xj} ď dmin) in order to generate Greg.. All other edges are
taken to provide the geometry for Greg..

In our experiment, we set dmin to be 1.5
times the minimal occurring bond length
in any molecule of QM7. Results are
collected in Table 12: For most base-
lines, this scale separation indeed im-
proves performance significantly. How-
ever, ResolvNet is still performing better
than the nearest competitor by roughly a
factor of two.

Table 11: G-MAE

QM7 MAE rkcal{mols

BernNet 113.57˘62.90

GCN 61.32˘1.62

ChebNet 59.57˘1.58

ARMA 59.39˘1.79

ResolvNet 16.52˘0.67

Table 12: Greg. `Ghigh-MAE

QM7 MAE rkcal{mols

BernNet 85.24˘9.60

GCN 64.16˘1.89

ChebNet 47.11˘1.89

ARMA 30.88˘2.82

ÐÝ ÐÝ ÐÝ ÐÝ ÐÝ

H ADDITIONAL EXPERIMENTS ON SYNTHETIC DATA

In order to showcase the multi-scale consistency of ResolvNet in a completely controlled environment,
we conduct additional experiments on graphs generated via stochastic block models:

Stochastic Block Models: Stochastic block models (Holland et al., 1983) are generative models for
random graphs that produce graphs containing strongly connected communities. In our experiments
in this section, we consider a stochastic block model whose distributions is characterized by four
parameters: The number of communities cnumber determine how many (strongly connected) communi-
ties are present in the graph that is to be generated. The community size csize determines the number
of nodes belonging to each (strongly connected) community. The probability pinner determines the
probability that two nodes within the same community are connected by an edge. The probability
pinter determines the probabilities that two nodes in different communities are connected by an edge.

Experimental Setup: Since stochastic block models do not generate node-features, we equip each
node with a randomly-generated unit-norm feature vector. Given such a graph G drawn from a
stochastic block model, we then compute a version G of this graph, where all communities are
collapsed to single nodes as described in Definition 2.2. In analogy to the experimental setup for
Table 3 and Figure 7 in Section 5, we then compare the feature vectors generated for G and G.

Experiment I: Varying the Connectivity within the Communities: As discussed in detail in
Sections 2.1 and 2.2.2, we desire that ResolvNet assigns similar feature vectors to graphs with
strongly connected communities and coarse-grained versions of this graph, where these communities
are collapsed to aggregate node. The higher the connectivity within these communities, the more
similar should the feature vector of the original graph G and its coarsified version G be, as Theorem
3.3 established.

In order to verify this experimentally, we fix the parameters cnumber, csize and pinter in our stochastic
block model. We then vary the probability pinner that two nodes within the same community are
connected by an edge from pinner “ 0 to pinner “ 1. This corresponds to varying the connectivity
within the communities from very sparse (or in fact no connectivity) to full connectivity (i.e. the
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community being a clique). In Figure 14 below, we then plot the difference of feature vectors
generated by ResolvNet and baselines for for G and G respectively. For each pinner P r0, 1s, results
are averaged over 100 graphs randomly drawn from the same stochastic block model.

(a) (b)

(c) (d)

Figure 14: Varying the parameter pinner P r0, 1s for fixed csize “ 60, pinter “ 2{c2size and cnumber “

8, 12, 16: (a) Example Graph for cnumber “ 8, (b) Results for cnumber “ 8, (c) Results for cnumber “ 12,
(d) Results for cnumber “ 16.

We have chosen pinter “ 2{c2size so that – on average – clusters are connected by two edges. The
choice of two edges (as opposed to 1, 3, 4, 5, ...) between clusters is not important; any arbitrary
choice of pinter will ensure a decay behavior for ResolvNet as in Figure 14. A corresponding ablation
study is provided below.

As can be inferred from Fig. 14, ResolvNet produces more and more similar feature-vectors for G
and its coarse-grained version, as the connectivity within the clusters is increased. This numerically
verifies Theorem 4.2. For baselines, the difference of generated feature vectors betweenG andG does
not decay. This implies that these methods are not able to consistently integrate multiple scales and
hence are not transferable between different graphs describe the same underlying object at different
resolution scales.
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Experiment II: Varying the Parameter pinter:
In order to determine the sensitivity of the results of Fig.
14 to the connectivity outside the communities that are
collapsed, we now fix the parameters pinner, cnumber and
csize and vary the parameters pinter from pinter “ 0 to
pinter “ 1. As was to be expected, the transferability er-
ror is smallest when the connectivity outside the strongly
connected communities is smallest (i.e. for pinter “ 0 in
Fig. 15). As pinter is increased, the transferability error
increases. It should however be noted that even if the con-
nectivity inside and outside of the respective communi-
ties is the same (i.e. pinter “ pinner “ 1; corresponding to
a fully connected graph G), it is still justified to collapse
the previously assigned communities. This suggests that
while the inequality of Theorem 3.3 is certainly valid
and capturing the trend of better transferability for lower
connectivity outside communities, it is – depending on
the situation – not necessarily tight.

Figure 15: Results for pinner “ 1,
cnumber “ 8, csize “ 60

Experiment III: Varying the number of Communities

Beyond simply varying the connectivity outside of com-
munities by varying pinter, we also investigate the influ-
ence of increasing the number of communities that are
considered. For this experiment, we once again keep the
average number of edges between communities fixed by
setting pinter “ 2{c2size.
As the number of communities is increased, the transfer-
ability errors increases too. From a heuristic perspective,
this is to be expected: As the number of communities is
increased, but the average number of edges between com-
munities is kepr constant, each community will acquire
more and more outgoing edges. Hence the connectiv-
ity outside of these communities is increased. In light
of Theorem 3.3 and Theorem 4.2, we thus also expect
increasing transferability errors.

Figure 16: Results for csize “ 60,
pinner “ 1 and pinter “ 2{c2size (c.f. also
Fig. 14 (b)).

I ANALYSIS OF COMPUTATIONAL OVERHEAD

Here we provide an analysis of the overhead of our ResolvNet method. As is evident from Tables 13,
14, 15 below, on most datasets our method is not the most memory intensive to train when compared
to representative (spatial and spectral) baselines. For training times (total and per-epoch), we note
that on most small to medium sized graphs, our model is not the slowest to train. On larger graphs it
does take longer to train. Regarding complexity, the node update for our model is essentially OpN2q

(dense-dense matrix multiplication), while message passing baselines scale linearly in the number of
edges.

Table 13: Maximal Memory Consumption [GB] while training a single model of depth 2
and width 32 for learning rate lr “ 0.1, dropout p “ 0.5, weight decay λ “ 10´4

and early stopping patience t “ 100. All measurements performed on the same GPU via
torch.cuda.max_memory_allocated().

MS_Acad. Cora Pubmed Citeseer Cornell Actor Squirrel Texas
ResolvNet 3.47 0.1266 2.9915 0.0996 0.0070 0.4936 0.2915 0.0175

GAT 1.49 0.1559 0.6486 0.1105 0.0228 0.3666 2.1107 0.0219
ChebNet 10.19 0.4741 0.4848 0.3389 0.0249 0.4830 6.3569 0.0241
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Table 14: Training Time [s] for training a single model of depth 2 and width 32 for learning rate
lr “ 0.1, dropout p “ 0.5, weight decay λ “ 10´4 and early stopping patience t “ 100. All
measurements performed on the same GPU.

MS_Acad. Cora Pubmed Citeseer Cornell Actor Squirrel Texas
ResolvNet 474.409 3.671 34.140 1.387 1.745 9.623 4.874 0.875

GAT 34.388 2.194 5.741 0.891 2.123 1.610 23.060 1.375
ChebNet 87.567 6.818 3.221 2.833 2.713 1.488 14.383 4.511

Table 15: Average Training Time per Epoch [ms] for training a single model of depth 2 and width
32 for learning rate lr “ 0.1, dropout p “ 0.5, weight decay λ “ 10´4 and early stopping patience
t “ 100. All measurements performed on the same GPU.

MS_Acad. Cora Pubmed Citeseer Cornell Actor Squirrel Texas
ResolvNet 1359.34 13.16 161.80 11.01 2.58 32.51 41.30 2.54

GAT 60.01 8.22 29.59 7.24 3.93 15.05 62.49 4.07
ChebNet 202.23 12.11 14.31 10.61 3.89 13.28 126.17 3.83

J SCALING RESOLVNET TO LARGE GRAPHS

ResolvNet on small- to medium-sized Graphs: As discussed in Section 3.2, the convolutional
filters learned by ResolvNet are given by

fz,θp∆q :“
K
ÿ

k“a

θi
“

p∆´ zIdq´1
‰k
.

During preprocessing, computational complexity is thus determined by the complexity of matrix
inversion (i.e. OpN3q, with N the number of nodes).

During training and inference, the complexity is determined by dense-dense matrix multiplication,
and is hence given as OpN2q.

ResolvNet on large Graphs: For large Graphs (i.e. N " 1), these operations generically are too
costly to be implemented. Here we detail how we may instead achieve a much more economical
OpE ¨ F ¨ Cqcomplexity; with E the number of edges, F the number of hidden dimensions and C
the size of the input-features:

Instead of actually performing the full inversion p∆ ´ zIdq´1, we make use of the Neumann-
approximation to the inversion of matrices of the form pA` Idq, which is given as

pA` Idq´1 “

8
ÿ

m“0

Am.

For us, this yields

p∆´ zIdq´1 “ ´
1

z
¨

ˆ

´
1

z
∆` Id

˙´1

« ´
1

z
¨

M
ÿ

m“0

ˆ

´
1

z
∆

˙m

.

Similar considerations were already used to approximate the full PPNP-propagation scheme of
(Gasteiger et al., 2019b), in order to scale it to large graphs.
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More generally, the relation

rp∆´zIdq´1sk “

8
ÿ

m“0

ˆ

p´1qmp´zq´k´m
ˆ

´k

m

˙˙

¨∆m «

M
ÿ

m“0

ˆ

p´1qmp´zq´k´m
ˆ

´k

m

˙˙

¨∆m;

(33)
as can be seen from computing a straightforward Taylor expansion (in x) of the function gpxq “
px´ zq´k and comparing coefficients with (33).

Here
`

´k
m

˘

is an extension of the regular binomial coefficient to negative numbers as
ˆ

´k

m

˙

“
Γp1´ kq

Γpm` 1qΓp´k ´ n` 1q
,

with Γ the standard Gamma function defined as

Γpzq “

ż 8

0

tz´1e´tdt

for any z with positive real-part.

On large graphs, we thus do not directly invert p∆ ´ zIdq, as this would be too costly. Instead
we approximate rp∆ ´ zIdq´1sk as in (33), which can be implemented as sparse-dense matrix
multiplication (and addition), and hence has a significantly lower complexity of OpE ¨ F ¨ Cq, with
E the number of edges, F the number of hidden dimensions and C the size of the input-features. In
applications, on would typically choose M « 10, as was e.g. done in (Gasteiger et al., 2019b).

Empirical Complexity Evaluation on large Graphs: In order to empirically investigate the com-
plexity of ResolvNet (implemented via (33) for K “ 1 and M “ 10) on large graphs, we trained
ResolvNet ChebNet (also with K “ 1) and GAT in a two-layer deep configuration with 64 hidden
units in each layer for 100 epochs on the OGBN-Arxiv dataset, which is comprised of 169, 343
Nodes as well as the OGBN-Products dataset, which contains more than 2M nodes (Hu et al., 2020).
In Table 16 below, we report complexity in terms of maximal memory consumption (as measured
via torch.cuda.max_memory_allocated()), training time per epoch and total number of
performed multiply-accumulate operations (MACs), as these can be much more reliably computed
than FLOPs.

Table 16: Empirical complexity on OGBN-Arxiv

trainable parameters max-memory-allocated [GB] Training-time per epoch [ms] MACS
ResolvNet 39848 0.68 634.71 4,595,291,648

GAT 351272 25.53 1089.96 3,468,144,640
ChebNet 15016 0.42 64.47 433,518,080

Table 17: Empirical complexity on OGBN-Product

trainable parameters max-memory-allocated [GB] Training-time per epoch [ms] MACS
ResolvNet 39848 19.23 37818.73 57,261,648,000

GAT 351272 OOM OOM OOM
ChebNet 15016 8.48 548.78 7,176,793,216

As can be inferred from Table 16, ResolvNet takes a lot less time to train on OGBN-Arxiv, when
compared to GAT. It also needs considerably less GPU memory and multiply-accumulate operations
compared to GAT. Compared to ChebNet (for which we have also set K “ 1), our method needs
to compute an order of magnitude more sparse-dense matrix multiplication operations (as we have
set M “ 10 and K “ 1 in eq. (33)). This is reflected in the number of performed MACs, which for
ResolvNet is roughly an order of magnitude larger than that for ChebNet.

On OGBN-Products, our method remains more complex than ChebNet, but in contrast to GAT
remains trainable (c.f. Table 17).

K ABLATION STUDIES:

As dicussed in Section 3.2, the layer-update of our method is given as

X``1 “ ReLu

˜

K
ÿ

k“a

p∆´ ωIdq´k ¨X` ¨W ``1
k `B``1

¸
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Here we provide ablation studies on the parameters ω and K:

Figure 17: Performance dependence on hyperparameters ω and K: Line-plots

To investigate the sensitivity of ResolvNet’s performance to the choice of hyperparameters ω and
K, we fix a one layer deep ResolvNet of width F “ 128 and perform node-classification on the
Citeseer dataset while varying the ω and K. As can be inferred from Fig. 17, increasing the order K
of the utilized resolvent polynomials (2) beyond K “ 1 does not aid classification accuracy. This is
reminiscent of the behaviour of ChebNet (Defferrard et al., 2016), for which a similar fact holds (He
et al., 2022).

Figure 18: Performance dependence on hyperparameters ω and K: Surface-plot

Furthermore, we see that for fixed K, the model-performance is not overly sensitice to the choice
of ω, as long as ω is far away enough from zero. As ω Ñ 0, the performance tends to worsen. As
ω Ñ 0, the matrix p∆´ωIdq converges to a singular matrix, so that the inversion operation becomes
less and less stable.
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