

PARTITION GENERATIVE MODELING: MASKED MODELING WITHOUT MASKS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Masked generative models (MGMs) are widely used to capture complex data and enable faster generation than autoregressive models (AR) through parallel decoding. However, MGMs typically operate on fixed-length inputs, which can be inefficient: early in sampling, most tokens are masked and carry little information, leading to wasted computation. In contrast, AR models process only tokens generated previously, making early iterations faster. In this work, we introduce the “Partition Generative Model” (PGM), a novel approach that combines the strengths of AR and MGMs. Rather than masking, PGM partitions tokens into two groups and employs **group-wise** attention to block information flow between them. Since there is no information flow between partitions, the model can process the previously-generated tokens only during sampling, while retaining the ability to generate tokens in parallel and in any order. On OpenWebText, PGMs offer at least $5\times$ improvements in sampling latency and throughput, while producing samples with superior generative perplexity, compared to Masked Diffusion Language Models. In the ImageNet dataset, PGMs achieve up to $7\times$ better throughput compared to MaskGIT with only a small change in FID. Finally, we show that PGMs are compatible with distillation methods for MGMs, enabling further inference speedups.

1 INTRODUCTION

Masked generative modeling (MGM) excels at sampling from complex data distributions by iteratively denoising masked inputs. In fact, the MGM paradigm has proven successful in various modalities, such as images (Chang et al., 2022), video (Yu et al., 2023; Villegas et al., 2022), and audio spectrograms (Comunità et al., 2024). Furthermore, recent advances leveraging discrete diffusion (Campbell et al., 2022; Zhao et al., 2024; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025) and discrete flow matching (Campbell et al., 2024; Gat et al., 2024) have shown that MGM can also be applied to text generation, challenging the traditional dominance of autoregressive modeling in this domain.

Modern MGMs use the transformer architecture (Vaswani et al., 2023) with bidirectional attention to reconstruct masked tokens. This simple approach, which can be viewed as a form of generalized BERT (Devlin et al., 2019), can generate new samples by iteratively denoising a sequence of masked inputs.

Despite their ability to generate high-quality samples, MGMs face two challenges compared to autoregressive models (ARM). First, during sampling, MGMs process many masked tokens that carry minimal information, particularly in the early iterations, when most tokens are masked. In contrast,

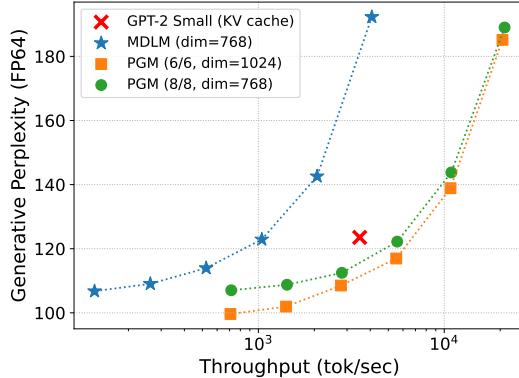


Figure 1: **Throughput:** PGM (ours) achieves better generative perplexity with a $\sim 5.3\times$ higher sampling throughput compared to MDLM, at a context length of 1024. The improvements come from our proposed neural network architecture.

new samples by iteratively denoising a sequence of

054 ARMs only process tokens they have previously generated. Secondly, during training, MGMs learn
 055 only at masked input positions, as unmasked tokens are trivial to predict with their unrestricted
 056 architectures, whereas AR models can learn at all but the first position due to their causal design.
 057

058 In this work, we introduce “Partition Generative Models” (PGM), a novel approach that combines
 059 strengths from both ARMs and MGMs. In particular, PGMs do not need to process masked tokens
 060 during training and inference and can be implemented using Transformers with **group-wise** attention.
 061 The key insight behind PGM is simple: during training, instead of masking tokens, we partition
 062 them into two disjoint groups and train the model to predict one group from the other. As shown in
 063 Figure 2 (right), this crucial choice allows PGMs to only process unmasked tokens during sampling.
 064 In contrast, MGMs always handle full-length sequences. This leads to significant throughput and
 065 latency improvements for PGMs. Furthermore, like ARMs, PGMs can learn at every position in a
 066 single forward pass during training due to their constrained attention.
 067

Our main contributions can be summarized as follows.

- 068 • We introduce “Partition Generative Models” (PGM), a simple alternative to MGM that
 069 combine strengths of ARMs and MGMs. We propose an encoder-decoder architecture,
 070 based on the Diffusion Transformer of Peebles & Xie (2023) that does not need to process
 071 any masked token during training and inference.
- 072 • PGM achieves a reduction of 1.95 in validation perplexity in LM1B (Chelba et al., 2014),
 073 compared to Masked Diffusion Language Models (MDLM; Sahoo et al. (2024)). In Open-
 074 WebText (Gokaslan & Cohen, 2019), PGMs can generate samples of better quality than
 075 MDLM with a $5 - 5.5 \times$ improvement in sampling throughput and latency, when using the
 076 same number of steps as MDLM.
- 077 • PGMs can achieve up to $7.5 \times$ higher throughput than MaskGIT, with only a marginal
 078 increase in FID.
- 079 • PGMs are compatible with distillation algorithms designed for MDLM, and preserve their
 080 performance on downstream tasks after distillation.

082 2 BACKGROUND

084 2.1 GENERATIVE LANGUAGE MODELING

085 Language modeling addresses the task of generating sequences of discrete tokens (x_i) from a
 086 vocabulary $\mathcal{X} = \mathbb{Z}^{< N} = \{0, \dots, N - 1\}$. A language model generates sequences of length L ,
 087 defined as elements of $\mathcal{X}^L = \left\{ \mathbf{x}^{(i)} = (x_0^{(i)}, \dots, x_{L-1}^{(i)}) : x_j^{(i)} \in \mathcal{X} \right\}_{i=0}^{N^L}$. The training data set
 088 $\mathcal{D} := \{ \mathbf{x}^{(0)}, \dots, \mathbf{x}^{(K-1)} : \mathbf{x}^{(i)} \in \mathcal{X}^L \}$ contains K such sequences. One fundamental objective of
 089 language modeling is to generate samples similar to those of the unknown distribution $p_0 : \mathcal{X}^L \rightarrow$
 090 $[0, 1]$ that induced the training data set \mathcal{D} .
 091

093 2.2 MASKED GENERATIVE MODELING

095 In MGM, the vocabulary \mathcal{X} includes a special MASK token absent from the training set \mathcal{D} . During
 096 training, the MASK token is used to replace a fraction of the original tokens in the input sequences
 097 $\mathbf{x} \in \mathcal{D}$. Formally, we train a denoiser $\mathbf{x}_\theta : \mathcal{X}^L \rightarrow \mathbb{R}^{L \times N}$ with learnable parameters θ . To generate
 098 new samples, we initialize the sampling procedure with sequences composed entirely of MASK tokens.
 099 The model then iteratively replaces a subset of these masked tokens based on the predictions of \mathbf{x}_θ .
 100 The training objective of the denoiser \mathbf{x}_θ can generally be written as follows:

$$101 \quad \mathcal{L}_{\text{MGM}} := \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, t \sim \mathcal{U}[0,1]} [w(t) \text{CE}(\mathbf{x}_\theta(\mathbf{z}_t; t), \mathbf{x})], \quad (1)$$

102 where t determines the proportion of tokens to mask. The corrupted sequence \mathbf{z}_t is generated by
 103 independently masking each token in the sequence with time-dependent probability p_t . For simplicity,
 104 we could set $p_t = t$. The function $w : [0, 1] \rightarrow \mathbb{R}_{\geq 0}$ can be used to emphasize certain noise levels
 105 more than others. Finally, $\text{CE}(\hat{\mathbf{x}}, y)$ denotes the cross-entropy loss between the vector $\hat{\mathbf{x}}$ and integer
 106 target y . Oftentimes, the cross-entropy loss is applied exclusively at the masked positions. In such
 107 cases, the denoiser model \mathbf{x}_θ is implemented to assign all probability mass to the input token at
 108 positions where the input tokens are *not* masked.

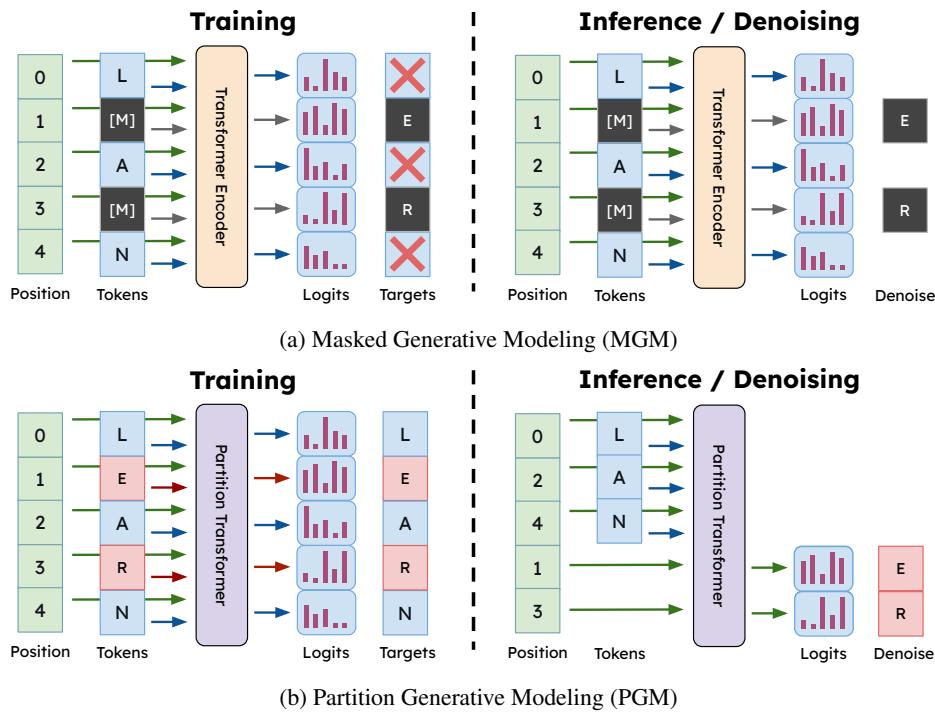


Figure 2: **Masked Generative Modeling (MGM) vs. Partition Generative Modeling (PGM).** **Training:** PGMs receive feedback at every position, while MGMs usually only apply loss to masked tokens. **Inference:** PGMs process only unmasked tokens, working with shorter sequences and predicting logits only for tokens to denoise. MGMs must process full-length sequences and compute logits at all positions. **Important note:** PGMs use a specialized architecture that ensures predictions for position i never depend on the token at position i .

2.3 MASKED DIFFUSION LANGUAGE MODELING

Masked diffusion language models (MDLM; Sahoo et al. (2024)) are sequence generative models that operate in discrete space. Sahoo et al. (2024) showed that MDLMs approach ARMs in validation perplexity and generation quality. We use MDLM as our primary baseline for the text experiments. For images, we compare against MaskGIT (Chang et al., 2022), which resembles MDLM and whose objective is also of the form in Equation (1).

Discrete Absorbing Diffusion Process MDLMs define a forward process that corrupts the data and a backward process that recovers it. For each token x in the sequence, the forward process linearly interpolates between its one-hot encoding \mathbf{x} and $\boldsymbol{\pi}$, the one-hot vector for the MASK token. Formally:

$$q(\mathbf{z}_t | \mathbf{x}) := \text{Cat}(\mathbf{z}_t; \alpha_t \mathbf{x} + (1 - \alpha_t) \boldsymbol{\pi}), \quad (2)$$

where $\alpha_t : t \rightarrow [0, 1]$, the noise schedule, is a strictly decreasing function of t , and represents the noise level at time t . Furthermore, the following boundary conditions apply: $\alpha_0 = 1, \alpha_1 = 0$. The process is termed "absorbing" because the corruption is irreversible. Once a token is masked, it remains so throughout the forward process. The generative distribution $p_\theta(\mathbf{z}_s | \mathbf{z}_t)$ uses the same analytical form as the true posterior $p(\mathbf{z}_s | \mathbf{z}_t, \mathbf{x}) = \frac{p(\mathbf{z}_s | \mathbf{x}) p(\mathbf{z}_t | \mathbf{z}_s)}{p(\mathbf{z}_t | \mathbf{x})}$, where \mathbf{x} comes from the data distribution. Since \mathbf{x} is not available during sampling, the output of the denoiser \mathbf{x}_θ is used in place of \mathbf{x} . Formally, $p_\theta(\mathbf{z}_s | \mathbf{z}_t) := q(\mathbf{z}_s | \mathbf{z}_t, \mathbf{x} = \mathbf{x}_\theta(\mathbf{z}_t; t))$. To derive a simple expression for $p_\theta(\mathbf{z}_s | \mathbf{z}_t)$, MDLM enforces that unmasked tokens are carried over during reverse diffusion, which induces the following expression:

$$p_\theta(\mathbf{z}_s | \mathbf{z}_t) = \begin{cases} \text{Cat}(\mathbf{z}_s; \mathbf{z}_t), & \mathbf{z}_t \neq \mathbf{m}, \\ \text{Cat} \left(\mathbf{z}_s; \frac{(1 - \alpha_s)\mathbf{m} + (\alpha_s - \alpha_t)\mathbf{x}_\theta(\mathbf{z}_t, t)}{(1 - \alpha_t)} \right), & \mathbf{z}_t = \mathbf{m} \end{cases} \quad (3)$$

162 **Training Objective** MDLM trains the denoiser \mathbf{x}_θ using a continuous-time limit of the typical
 163 negative evidence lower bound (NLLBO) of diffusion models (?), which provides a tighter bound
 164 to the log-likelihood (Kingma et al., 2023). The denoiser defines a learned posterior distribution
 165 $p_\theta(\mathbf{z}_s | \mathbf{z}_t) := q(\mathbf{z}_s | \mathbf{z}_t, \mathbf{x}_\theta(\mathbf{z}_t, t))$, and the NLLBO simplifies to a weighted cross-entropy loss between
 166 ground-truth samples \mathbf{x} and the predictions of the denoiser \mathbf{x}_θ :

$$\mathcal{L}_{\text{NLLBO}}^\infty = \mathbb{E}_q \int_{t=0}^{t=1} \frac{\alpha'_t}{1 - \alpha_t} \log \langle \mathbf{x}_\theta(\mathbf{z}_t, t), \mathbf{x} \rangle dt. \quad (4)$$

170 2.4 SELF-DISTILLATION THROUGH TIME

172 Self-Distillation Through Time (SDTT) (Deschenaux & Gulcehre, 2025) speeds up the sampling
 173 of MDLMs through a similar approach as Progressive Distillation (Salimans & Ho, 2022). SDTT
 174 creates student and teacher copies of a pre-trained MDLM. The student learns to match the teacher’s
 175 predictions over two steps of size dt . Once converged, the student can serve as the teacher for a new
 176 distillation round with step size $2dt$, halving the number of sampling steps.

178 3 PARTITION GENERATIVE MODELING

179 3.1 MOTIVATIONS

182 “Partition Generative Modeling” (PGM) is similar to MGM but introduces key modifications to the
 183 training and sampling procedures. Most notably, PGMs eliminate the need for MASK tokens.

185 **Training** As seen in Figure 2a (left), in a single forward pass of an MGM, a loss can be computed
 186 for the masked positions only. In contrast, autoregressive language (AR) models receive a training
 187 signal at every position in a single forward pass. Intuitively, this difference could make MGMs less
 188 sample efficient than ARMs. We design PGMs such that we can compute the loss at every position in
 189 the sequence in a single forward pass, as shown in Figure 2b (left).

191 **Sampling** MGMs typically employ bidirectional architectures trained on fixed-length inputs. Con-
 192sequently, during sampling, these models *have to* process arrays with the same dimensions as those
 193 used during training. Hence, during the initial sampling steps, the neural network processes primarily
 194 MASK tokens. These numerous MASK tokens provide minimal information, only indicating the current
 195 noise level. On the other hand, autoregressive models only process previously generated tokens.
 196 Additionally, MGMs compute predictions at all masked positions, whereas autoregressive models
 197 only generate predictions for the one position to denoise. PGMs only process previously generated
 198 tokens and compute predictions solely for tokens that will be denoised (Figure 2b, right). Nonetheless,
 199 PGMs maintain the parallel decoding capabilities of MGMs while offering substantial inference
 200 speedups.

201 3.2 APPROACH

203 **Partitioning Tokens Instead of Masking** For a training sequence $\mathbf{x} \in \mathcal{D}$, we partition tokens
 204 into two distinct groups labeled 0 and 1, rather than using MASK tokens. From the perspective of
 205 each group, tokens in the other group will not be visible due to constraints on the neural network
 206 architecture, even though no explicit MASK token is used. Since each training sequence is partitioned
 207 into two groups that predict each other, PGMs effectively create two sub-training examples per
 208 sequence. This is conceptually similar to training on two complementary masked sequences within
 209 the same batch. We isolate and study the effect of complementary masking from the neural network
 210 architecture in Section 5.3.

211 **Training Objective** Let $\mathbf{g} \in \{0, 1\}^L$ be the binary sequence that denotes the group index of each
 212 token in \mathbf{x} . We train a denoiser network \mathbf{x}_θ that takes as input \mathbf{x} and \mathbf{g} , and we ensure that only tokens
 213 in the same group are involved with each other to avoid information leakage. From the objective, \mathbf{x}_θ
 214 is trained to predict its input, which is only useful because of the constraints on the attention:

$$\mathcal{L}_{\text{PGM}} := \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, t \sim \mathcal{U}[0, 1]} [w^{\text{PGM}}(\mathbf{g}, t) \text{CE}(\mathbf{x}_\theta(\mathbf{x}; \mathbf{g}; t), \mathbf{x})]. \quad (5)$$

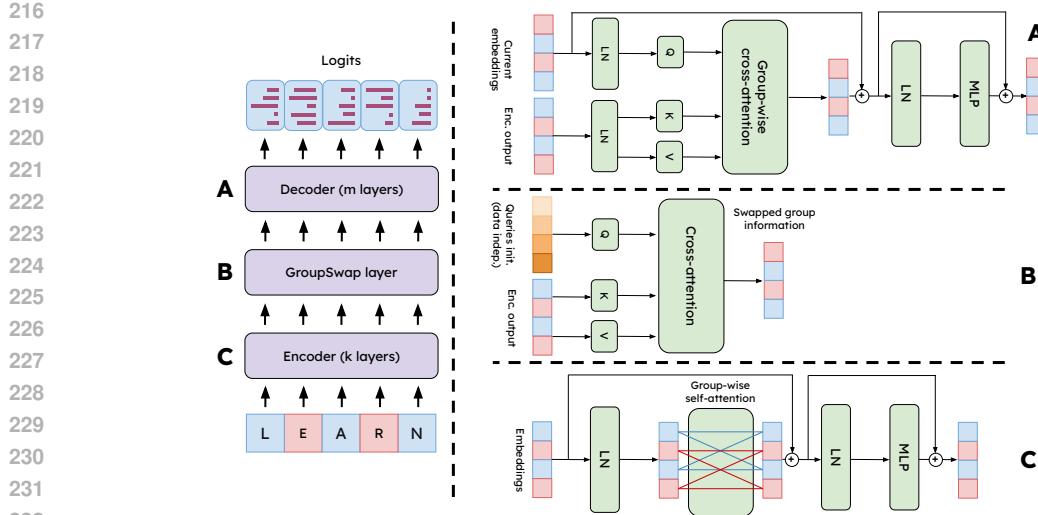


Figure 3: **PGM-compatible transformer architecture.** RoPE (Su et al., 2023) is applied before every attention layer but not shown for clarity. **(A)** Decoder layer with cross-attention to the encoder output and no self-attention between tokens. **(B)** GroupSwap layer that exchanges information between positions in group 0 and group 1, enabling each group to make predictions based on tokens from the other group. **(C)** Encoder layer with group-wise self-attention.

The key distinction from Equation 1 lies in the weighting function w^{PGM} . Let $t \in [0, 1]$ be the probability of assigning a token to group 1, and assume for simplicity that exactly a fraction t of tokens belong to this group. From the perspective of group 0, the available information is equivalent to that of an MGM with noise level t , since it cannot access tokens in group 1. Conversely, group 1 experiences a noise level of $1 - t$. Therefore, for the PGM loss in Equation 5 to respect the original MGM objective in Equation 1, we must scale the loss for tokens in group 0 according to the weight at the noise level t , and at $1 - t$ for tokens in group 1. **For example, if MDLM masked 30% of tokens, the PGM groups would contain 30% and 70% of the tokens.** Let w represent the weighing function used to train an MGM. Then, the corresponding weight function w^{PGM} to train PGMs is defined as

$$w^{\text{PGM}}(\mathbf{g}, t)_i = \begin{cases} w(t) & \text{if } \mathbf{g}_i = 0 \\ w(1 - t) & \text{if } \mathbf{g}_i = 1. \end{cases} \quad (6)$$

We adopt the weighting function of MDLM, namely $w(t) = \frac{\alpha'_t}{1 - \alpha_t}$ (Equation 4). A visual comparison of the training processes for MGM and PGM is provided in Figure 2 (left).

Sampling Since the two groups never interact during training, PGMs can process clean tokens only (Figure 2b, right) during inference. Assuming the same posterior distribution $p_\theta(\mathbf{z}_s | \mathbf{z}_t)$ (Equation 3) as MDLM, an MGM denoises each MASK token randomly and independently with probability $\frac{\alpha_s - \alpha_t}{1 - \alpha_t}$. When implemented as a PGM, it means that one can equivalently select a subset of tokens and denoise exclusively those positions. To simplify the implementation of batched sampling, PGM can denoise a fixed number of tokens at each sampling step, unlike MDLM, which denoises a random number of tokens. The pseudocode is presented in Algorithm 1. PGMs can also sample a random number of tokens at each step, though this requires padding batched sequences. We provide the pseudocode for this approach in Algorithm 2 and compare the perplexity, latency, and throughput of both approaches in Table 6. Empirically, sampling a deterministic number of tokens at every step improves the generative perplexity.

4 THE PARTITION TRANSFORMER

Figure 3 illustrates our proposed PGM-compatible Transformer model. The architecture consists of three components: an encoder, the novel GroupSwap layer, and a decoder.

Model ↓	#Params	Val. PPL	Latency (sec) ↓	TP (tok/sec) ↑
<i>LM1B (ctx len. 128)</i>				
MDLM	170M	27.67	3.78	1'081.57
MDLM [†] (Compl. masking)	170M	25.72	3.78	1'081.57
PGM 6 / 6	171M	<u>26.80</u>	2.12	1'930.93
<i>OpenWebText (ctx len. 1024)</i>				
MDLM	170M	23.07	31.41	1'043.22
MDLM [†] (Compl. masking)	170M	22.98	31.41	1'043.22
PGM 8 / 8	203M	<u>22.61</u>	5.86	5'585.57
PGM 6 / 6 (dim. 1024)	268M	21.43	5.93	5'518.09

Table 1: **Validation Perplexity:** On LM1B, PGM with matching number of layers outperform MDLM. $PGM\ k / m$ denotes our model with k encoder and m decoder layers. We highlight the best PGM in gray. The sampling latency and throughput (TP) are measured with a batch size of 32. **On OWT, our PGM outperforms MDLM while delivering at least 5× higher throughput.** See Table 5 for ablations on the architecture. [†] Models trained with a 2× larger batch size (subsection 5.3).

Encoder The encoder consists of a series of partition-wise self-attention transformer blocks. These blocks operate similarly to standard transformer blocks with bidirectional attention, with the key difference that we prevent information from flowing between different groups by masking entries in the attention matrix that correspond to pairs of tokens in different groups.

Decoder The decoder consists of cross-attention layers, where the keys and values are computed based on the output of the encoder. In contrast, the queries are computed using either the output of the GroupSwap layer (first block of the decoder) or the output of the previous decoder block. Importantly, there is no self-attention layer in the decoder, which allows efficient generation, as we can compute predictions solely at the positions that we will decode.

4.1 THE GROUPSWAP LAYER

In the encoder, information remains localized: if a token belongs to group 0, its hidden representation only depend on tokens in group 0. For prediction, however, we require the opposite: representations at positions in group 0 must depend exclusively on group 1, and vice versa. To enforce this, we introduce the *GroupSwap* layer (Figure 3B), which exchanges information between groups. The GroupSwap layer is implemented using cross-attention. If a token at position ℓ belongs to group 0, the predictions at position ℓ must rely only on information from group 1. Hence, to prevent information leakage, the queries used in cross-attention cannot depend on tokens in group 0. We describe two ways of initializing these queries below.

Data-Independent Initialization Let $\mathbf{u} \in \mathbb{R}^H$ be a learnable vector. To initialize the queries, we replicate \mathbf{u} across the sequence length, add fixed positional encodings, and apply layer normalization followed by a linear projection. Formally, let $V \in \mathbb{R}^{L \times H}$ denote the query initialization such that $V_{i,:}$ denotes the i -th row of V . Then,

$$V_{i,:} = W \left[\text{LN} \left(\mathbf{u} + \text{pos}_{i,:} \right) + b \right], \quad (7)$$

where $W \in \mathbb{R}^{H \times H}$, $b \in \mathbb{R}^H$ are learnable parameters and LN denotes layer normalization (Ba et al., 2016). The positional encoding is computed as

$$\text{pos}_{i,j} = \begin{cases} \cos \left(\frac{i}{10000^{2j/H}} \right) & \text{if } j < H/2 \\ \sin \left(\frac{i}{10000^{2j/H-1}} \right) & \text{otherwise} \end{cases} \quad (8)$$

Data-Dependent Initialization Let $X \in \mathbb{R}^{L \times H}$ be the encoder output. We first perform a group-wise aggregation over the sequence length (e.g., `logsumexp` or `mean`) to obtain vectors

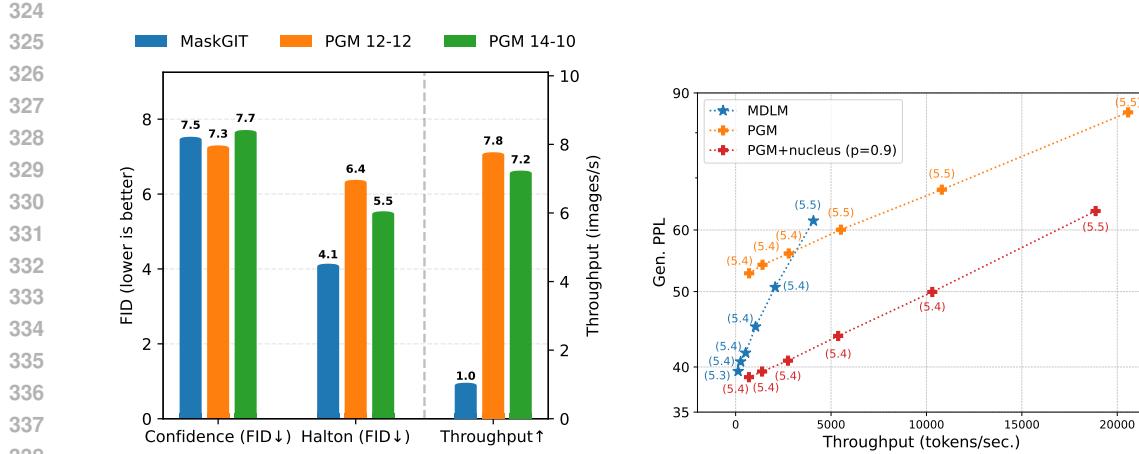


Figure 4: **Left:** FID on Imagenet256. PGM achieves at least 7× higher throughput than MaskGIT with competitive quality. **Right:** After distillation, PGM (6 / 6, dim. 1024) with nucleus sampling remains significantly faster than MDLM. The text next to each point is the unigram entropy, as a proxy for diversity (Dieleman et al., 2022). Importantly, PGM is significantly faster for matched Gen. PPL and entropy.

$Y_0, Y_1 \in \mathbb{R}^H$, representing the aggregated information for groups 0 and 1, respectively. The data-dependent query initialization V' is then computed as

$$V'_{i \cdot} = V_{i \cdot} + \begin{cases} Y_1, & \text{if } g_i = 0 \\ Y_0 & \text{otherwise.} \end{cases} \quad (9)$$

5 EXPERIMENTS

We investigate the performance of PGMs on language and image modeling tasks. Find complete details of the hyperparameters of the experiments in Section B. We report language modeling experiments in Section 5.1, and on OWT in Section 5.2. Finally, we study the effect of complementary masking on the final performance in Section 5.3.

5.1 LANGUAGE MODELING ON LM1B

Experimental setting. We closely follow the settings of Sahoo et al. (2024) and train models with a context length of 128 tokens. The shorter documents are padded to 128 tokens. We train a *Diffusion Transformer* (Peebles & Xie, 2023) with 12 layers without time conditioning and compare it with our Partition Transformer (Section 4). All models are trained with a batch size of 512. We evaluate different variants of the Partition Transformer after 200k training steps, and the version with the best validation perplexity is further trained until reaching 1M training steps.

Results Table 1 shows that after 1M steps, PGM reaches a validation perplexity of 1.95 lower than MDLM. In Table 5 (left), we observe that using as many encoder and decoder layers performs best. Surprisingly, data-independent queries perform similarly to data-dependent queries. Therefore, we use the simpler, data-independent queries in the rest of the experiments. While PGM outperforms MDLM on LM1B, it does not reach its theoretical limit (subsection 5.3) yet.

5.2 LANGUAGE MODELING ON OPENWEBTEXT

Experimental Settings We closely follow Sahoo et al. (2024), and train models with a context length of 1024 tokens with sentence packing (Raffel et al., 2023). To ablate the architecture, we train models for 200k steps and compare them based on the validation perplexity. The two models with the best performance are further trained until 1M steps.

378 **Results** Table 1 shows that after 1M steps, slightly larger PGM variants outperform MDLM in
 379 validation perplexity, while delivering up at least 5 \times higher throughput. As shown in Table 5
 380 (right), PGMs with the same number of layers as MDLM underperform slightly in terms of validation
 381 perplexity. Figure 1, Table 6 and 8 provide more detailed latency and throughput evaluation. We
 382 hypothesize that the speedups in inference could make PGMs particularly relevant for the scaling of
 383 test-time computation (Madaan et al., 2023; Yao et al., 2023; Snell et al., 2024; Wu et al., 2024; Chen
 384 et al., 2024; Brown et al., 2024; Goyal et al., 2024).
 385

386 **Downstream Performance** Following Deschenaux & Gulcehre (2024); Nie et al. (2025), we com-
 387 pare PGM and MDLM on downstream tasks from the lm-eval-harness suite (Gao et al., 2024).
 388 As shown in Table 2, PGM outperforms MDLM on six of eight tasks, while overall performance
 389 remains similar. These results suggest that PGM achieves faster inference without sacrificing down-
 390 stream accuracy. Note that lm-eval-harness is originally designed for ARMs, and needs to be
 391 adapted for MGGMs. We explain how in Section C.4 and compare MDLM and PGMs on additional
 392 tasks.
 393

393 5.3 DISENTANGLING THE EFFECT OF THE ARCHITECTURE AND COMPLEMENTARY MASKING

395 To disentangle the contributions of PGM, we isolate the effect of complementary masking (sub-
 396 section 3.2) by training a standard bidirectional transformer encoder with double batch size, using
 397 two complementary masked versions of each input sequence. This approach establishes an upper
 398 bound on potential performance gains, as it directly measures the impact of having complementary
 399 masks during gradient updates. We evaluated standard MDLM against MDLM with complementary
 400 masking on LM1B (Chelba et al., 2014) and OpenWebText Gokaslan & Cohen (2019).
 401

402 Table 1 shows that complementary masking reduces validation perplexity in LM1B but provides
 403 smaller gains on OpenWebText. This may explain why PGMs with the same number of parameters
 404 outperform MDLMs on LM1B but not on OpenWebText. In both datasets, a gap remains between
 405 MDLM with complementary masking and PGM, likely due to the current neural network architecture.
 406 Because complementary masking does not improve models on OpenWebText, we increase model size
 407 to surpass the validation perplexity of MDLM. Nonetheless, PGMs with more parameters generate
 408 higher-quality text and achieve significantly faster inference (Figure 1). In Section C.1, we present
 409 preliminary experiments exploring why complementary masking improves performance on LM1B
 410 but not on OpenWebText.
 411

5.4 FURTHER SPEEDUPS VIA DISTILLATION

412 PGM already delivers improvements over MDLM in both throughput and latency, but we can push
 413 these gains further using “Self Distillation Through Time” (SDTT; Deschenaux & Gulcehre (2025)).
 414 We apply the distillation loss to the token in one of the partitions only, as if they were MASKed, and
 415 leave the design of new distillation methods for PGMs to future work. Hence, our setting naturally
 416 favors the MDLM baseline.
 417

418 Figure 4 (right) and Table 7 compare the generative perplexity, entropy, and generation speed of
 419 PGMs and MDLM. We find that after 5 rounds of distillation with SDTT, PGMs reach higher
 420 Generative Perplexity and unigram Entropy than MDLM (see Table 7 for more precise numbers).
 421 After introducing nucleus sampling ($p = 0.9$) (Holtzman et al., 2020), PGMs produce samples with
 422 comparable Generative Perplexity and entropy as MDLM. Because nucleus sampling introduces
 423 some overhead, PGMs go from being at least 5 \times faster than MDLM to about 4.6 \times faster for the
 424 same number of steps.
 425

426 Since generative perplexity alone does not fully capture language modeling performance, we also
 427 evaluate the distilled models on downstream tasks. As shown in Table 2, distillation slightly improves
 428 the accuracy on some tasks and reduces it on others, but the overall performance remains similar.
 429 Notably, PGMs still achieve slightly higher accuracy than MDLM on most tasks.
 430

5.5 PGM ON IMAGENET

431 In Figure 4 (left), we compare the Fréchet Inception Distance (FID; (Heusel et al., 2018)) of samples
 432 from MaskGIT (Chang et al., 2022) and PGM. All models are trained for 500k steps on ImageNet256

432 Table 2: **Accuracy on downstream tasks** (Gao et al., 2024). HS: HellaSwag, OQA: OpenBook
 433 QA. Arc: Arc-easy. We select the tasks following Nie et al. (2025). We see that distillation slightly
 434 changes the downstream tasks performance, but that PGMs continue to outperform MDLM on most
 435 tasks.

	LAMBADA	Arc	BoolQ	HS	OQA	PIQA	RACE	SIQA
<i>Before Distillation</i>								
MDLM	38.52	37.88	49.42	31.36	28.60	58.27	28.04	38.84
PGM 8 / 8	46.98	40.40	53.49	<u>33.20</u>	<u>26.60</u>	<u>58.92</u>	26.89	<u>39.97</u>
PGM 6 / 6 (1024)	41.39	<u>39.98</u>	49.82	34.27	25.40	59.19	<u>27.37</u>	40.28
<i>After Distillation (SDTT)</i>								
MDLM	41.34	33.80	48.59	30.75	28.80	57.73	27.94	38.79
PGM 8 / 8	47.22	37.42	51.50	<u>31.62</u>	<u>25.80</u>	<u>59.03</u>	30.62	39.61
PGM 6 / 6 (1024)	44.48	<u>36.70</u>	49.36	32.55	25.00	59.85	27.37	<u>39.25</u>

446
 447 (Deng et al., 2009), with the same pre-trained VQGAN tokenizer (Esser et al., 2021) as Besnier
 448 et al. (2025). We evaluate the FID of samples generated with MaskGIT’s original confidence-based
 449 sampler and the Halton sampler of Besnier et al. (2025). We sample with classifier-free guidance
 450 weight $\gamma \in \{0, 1, 4\}$, and report the result with the best γ for each model. Using the confidence-based
 451 sampler, PGM slightly outperforms MaskGIT, whereas with the Halton sampler it performs slightly
 452 worse. In terms of throughput, PGM is at least $7 \times$ faster than MaskGIT. Find more experimental
 453 details in Section B.3.

454 6 RELATED WORK

455 **Discrete diffusion** Although autoregressive models currently dominate text generation, recent
 456 advances in discrete diffusion (Austin et al., 2023; Lou et al., 2024; Shi et al., 2025; Sahoo et al.,
 457 2024; von Rütte et al., 2025; Schiff et al., 2025; Haxholli et al., 2025; Sahoo et al., 2025) and discrete
 458 flow matching (Campbell et al., 2024; Gat et al., 2024) have demonstrated can MGMs can approach
 459 AR models in generation quality. We propose an efficient inference approach that, unlike previous
 460 methods, does not require processing MASK tokens, yet remains able to generate tokens in any order.

461 **Block Diffusion** “Block Diffusion” (Arriola et al., 2025) (BD) proposes a hybrid architecture that
 462 interpolates between an autoregressive and a discrete diffusion model. Although BDs can generate
 463 tokens in parallel and allow KV caching (Pope et al., 2022), BDs still require generating tokens in a
 464 (block-) autoregressive fashion. In contrast, MDLM and PGMs can generate tokens in completely
 465 arbitrary orders.

466 **Non-Autoregressive Language Models** Any-order and any-subset autoregressive models (Yang
 467 et al., 2020; Pannatier et al., 2024; Shih et al., 2022; Guo & Ermon, 2025) learn an autoregressive
 468 distribution of tokens given arbitrary token subsets. In contrast, in this work, we accelerate MDLMs
 469 (Sahoo et al., 2024), which do not enforce causal attention on the tokens.

470 7 CONCLUSION

471 We introduce “Partition Generative Modeling” (PGM), a novel approach to masked generative
 472 modeling that eliminates MASK tokens entirely. PGM achieves significant improvements in inference
 473 speed on both text and images, with minimal effect on quality. The significant improvements suggest
 474 that PGM might be suited for domains that benefit from test-time scaling, such as coding and
 475 reasoning. We show that PGMs can be distilled with SDTT (Descheneaux & Gulcehre, 2025) for
 476 further acceleration. Future work could explore optimizations to the PGM architecture, investigating
 477 distillation techniques specifically designed for PGMs, and extending the approach to multimodal
 478 settings. Additionally, exploring how PGMs can be scaled to larger sizes and longer context lengths
 479 is an interesting direction. In summary, PGM offers an alternative to masked generative models, with
 480 particular advantages for applications where inference speed is critical.

486 REFERENCES
487

488 Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
489 ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
490 sive and diffusion language models, 2025. URL <https://arxiv.org/abs/2503.09573>.

491 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
492 denoising diffusion models in discrete state-spaces, 2023. URL <https://arxiv.org/abs/2107.03006>.

493

494 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
495 <https://arxiv.org/abs/1607.06450>.

496

497 Victor Besnier, Mickael Chen, David Hurých, Eduardo Valle, and Matthieu Cord. Halton scheduler
498 for masked generative image transformer, 2025. URL <https://arxiv.org/abs/2503.17076>.

499

500 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
501 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
502 2024. URL <https://arxiv.org/abs/2407.21787>.

503

504 Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
505 Arnaud Doucet. A continuous time framework for discrete denoising models, 2022. URL
506 <https://arxiv.org/abs/2205.14987>.

507

508 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
509 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design,
510 2024. URL <https://arxiv.org/abs/2402.04997>.

511

512 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
513 image transformer, 2022. URL <https://arxiv.org/abs/2202.04200>.

514

515 Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Philipp Koehn, and Tony
516 Robinson. One billion word benchmark for measuring progress in statistical language modeling,
517 2014. URL <https://arxiv.org/abs/1312.3005>.

518

519 Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
520 Zou. Are more llm calls all you need? towards scaling laws of compound inference systems, 2024.
521 URL <https://arxiv.org/abs/2403.02419>.

522

523 Marco Comunità, Zhi Zhong, Akira Takahashi, Shiqi Yang, Mengjie Zhao, Koichi Saito, Yukara
524 Ikemiya, Takashi Shibuya, Shusuke Takahashi, and Yuki Mitsufuji. Specmaskgit: Masked generative
525 modeling of audio spectrograms for efficient audio synthesis and beyond, 2024. URL
526 <https://arxiv.org/abs/2406.17672>.

527

528 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
529 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
530 pp. 248–255. Ieee, 2009.

531

532 Justin Deschenaux and Caglar Gulcehre. Promises, outlooks and challenges of diffusion language
533 modeling, 2024. URL <https://arxiv.org/abs/2406.11473>.

534

535 Justin Deschenaux and Caglar Gulcehre. Beyond autoregression: Fast llms via self-distillation
536 through time, 2025. URL <https://arxiv.org/abs/2410.21035>.

537

538 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
539 bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.

540

541 Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
542 Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
543 Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data, 2022. URL
544 <https://arxiv.org/abs/2211.15089>.

540 Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
 541 synthesis, 2021. URL <https://arxiv.org/abs/2012.09841>.

542

543 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
 544 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
 545 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
 546 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
 547 harness, 07 2024. URL <https://zenodo.org/records/12608602>.

548

549 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
 550 and Yaron Lipman. Discrete flow matching, 2024. URL <https://arxiv.org/abs/2407.15595>.

551

552 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. <http://Skylion007.github.io/OpenWebTextCorpus>, 2019.

553

554 Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
 555 Nagarajan. Think before you speak: Training language models with pause tokens, 2024. URL
 556 <https://arxiv.org/abs/2310.02226>.

557

558 Gabe Guo and Stefano Ermon. Reviving any-subset autoregressive models with principled parallel
 559 sampling and speculative decoding, 2025. URL <https://arxiv.org/abs/2504.20456>.

560

561 Etrit Haxholli, Yeti Z. Gurbuz, Oğul Can, and Eli Waxman. Efficient perplexity bound and ratio match-
 562 ing in discrete diffusion language models. In *The Thirteenth International Conference on Learning
 563 Representations*, 2025. URL <https://openreview.net/forum?id=Mri9WIfxSm>.

564

565 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 566 Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018. URL
 567 <https://arxiv.org/abs/1706.08500>.

568

569 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
 570 degeneration, 2020. URL <https://arxiv.org/abs/1904.09751>.

571

572 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 573 <https://arxiv.org/abs/1412.6980>.

574

575 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 576 of the data distribution, 2024. URL <https://arxiv.org/abs/2310.16834>.

577

578 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
 579 Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
 Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
 refinement with self-feedback, 2023. URL <https://arxiv.org/abs/2303.17651>.

580

581 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 582 Li. Scaling up masked diffusion models on text, 2025. URL <https://arxiv.org/abs/2410.18514>.

583

584 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
 585 Your absorbing discrete diffusion secretly models the conditional distributions of clean data, 2025.
 586 URL <https://arxiv.org/abs/2406.03736>.

587

588 Arnaud Pannatier, Evann Courdier, and François Fleuret. Sigma-gpts: A new approach to autoregres-
 589 sive models, 2024. URL <https://arxiv.org/abs/2404.09562>.

590

591 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.

592

593 Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
 594 Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
 595 transformer inference, 2022. URL <https://arxiv.org/abs/2211.05102>.

594 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 595 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 596 transformer, 2023. URL <https://arxiv.org/abs/1910.10683>.

597 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
 598 Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 599 models, 2024. URL <https://arxiv.org/abs/2406.07524>.

600 Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and
 601 Volodymyr Kuleshov. The diffusion duality, 2025. URL <https://arxiv.org/abs/2506.10892>.

602 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
 603 URL <https://arxiv.org/abs/2202.00512>.

604 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Im-
 605 proved techniques for training gans, 2016. URL <https://arxiv.org/abs/1606.03498>.

606 Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
 607 Bernardo P. de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
 608 guidance mechanisms for discrete diffusion models, 2025. URL <https://arxiv.org/abs/2412.10193>.

609 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
 610 generalized masked diffusion for discrete data, 2025. URL <https://arxiv.org/abs/2406.04329>.

611 Andy Shih, Dorsa Sadigh, and Stefano Ermon. Training and inference on any-order autoregressive
 612 models the right way, 2022. URL <https://arxiv.org/abs/2205.13554>.

613 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 614 can be more effective than scaling model parameters, 2024. URL <https://arxiv.org/abs/2408.03314>.

615 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
 616 transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.

617 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 618 Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.

619 Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang,
 620 Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable
 621 length video generation from open domain textual description, 2022. URL <https://arxiv.org/abs/2210.02399>.

622 Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
 623 Hofmann. Generalized interpolating discrete diffusion, 2025. URL <https://arxiv.org/abs/2503.04482>.

624 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis
 625 of compute-optimal inference for problem-solving with language models, 2024. URL <https://arxiv.org/abs/2408.00724>.

626 Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V.
 627 Le. Xlnet: Generalized autoregressive pretraining for language understanding, 2020. URL
 628 <https://arxiv.org/abs/1906.08237>.

629 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
 630 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
 631 URL <https://arxiv.org/abs/2305.10601>.

648 Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G.
 649 Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, and Lu Jiang. Magvit: Masked generative
 650 video transformer, 2023. URL <https://arxiv.org/abs/2212.05199>.

651
 652 Lingxiao Zhao, Xueying Ding, Lijun Yu, and Leman Akoglu. Unified discrete diffusion for categorical
 653 data, 2024. URL <https://arxiv.org/abs/2402.03701>.

654 Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
 655 diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
 656 sampling, 2025. URL <https://arxiv.org/abs/2409.02908>.

658 659 A LIMITATIONS 660

661 To match the validation perplexity of the MDLM baseline at a context length of 1024, our models
 662 require an increased parameter count. We attribute this to the GroupSwap layer, and future work
 663 will explore more efficient mechanisms for information exchange between groups in PGMs. While
 664 PGMs offer faster inference, their training is slightly more computationally expensive (Section D),
 665 as use `torch`’s default attention implementation (“`sdpa`”) for simplicity. By reordering tokens
 666 according to their group assignment, the self-attention matrix becomes block-diagonal. Future work
 667 will explore efficient kernel implementations that exploit this block-diagonal sparsity. Partition
 668 Generative Modeling is a general framework, and its application to multimodal settings remains an
 669 open direction for future research.

670 671 B EXPERIMENTAL DETAILS 672

673 We trained all models from scratch rather than using the pre-trained models released by the MDLM
 674 authors. Our models achieve comparable performance to the original work. On LM1B, we obtain a
 675 validation perplexity of 27.67 after 1M steps (compared to MDLM’s reported 27.04), while on OWT,
 676 we reach 23.07 (versus MDLM’s 23.21).

677 Minor differences can be expected since estimating the perplexity of diffusion language models
 678 involves a Monte-Carlo approximation of the NELBO (Equation 4) with finitely many samples.
 679 Although we used libraries (e.g PyTorch) with the same version as MDLM, differences in compute
 680 environments and underlying software stacks may also contribute to these variations. Since the
 681 performance gap is small, we are confident that we used the code of MDLM correctly.

682 683 B.1 LM1B 684

685 For the LM1B dataset, we employed the `bert-base-uncased` tokenizer with a context length of
 686 128 tokens, padding shorter sequences. Our architecture consisted of a Diffusion Transformer (DiT)
 687 with 12 transformer blocks, 12 attention heads, a hidden dimension of 768, and a dropout rate of 0.1.
 688 We optimized the model using Adam (Kingma & Ba, 2017) (learning rate 3e-4, betas of (0.9, 0.999),
 689 epsilon 1e-8) without weight decay. We based our implementation on the official MDLM codebase.
 690 We trained with a global batch size of 512 across 8 GPUs (2 nodes with 4 GPUs), gradient clipping at
 691 1.0, and a constant learning rate with 2,500 steps of linear warmup. We trained for 1 million steps
 692 with an EMA rate of 0.9999. Besides the neural network hyperparameters, the other parameters were
 693 unchanged when training the PGM.

694 695 B.2 OWT

696 For the OpenWebText (OWT) dataset, we used the GPT-2 tokenizer with a context length of 1024
 697 tokens. Our architecture consisted of a Diffusion Transformer (DiT) with 12 transformer blocks,
 698 12 attention heads, a hidden dimension of 768, and a dropout rate of 0.1. We optimized the model
 699 using Adam (Kingma & Ba, 2017) with a learning rate of 3e-4, betas of (0.9, 0.999), and epsilon
 700 of 1e-8, without weight decay. We trained with a global batch size of 512 across 16 GPUs (4 nodes
 701 with 4 GPUs). We applied gradient clipping at 1.0 and used a constant learning rate schedule with
 2,500 steps of linear warmup. The model was trained for 1 million steps with an EMA rate of 0.9999.

702 Table 3: Latency and throughput for a single training step of the MDLMs and PGMs, computed on a
 703 single A100-SXM4-80GB GPU. On LM1B, PGM introduces a negligible overhead over MDLM. On
 704 OWT, our PGM with 6 encoder and decoder layers and an embedding dimension of 1024 achieves
 705 around 75% of the training throughput of MDLM. Recall that at inference, the same PGM is around
 706 5× faster than MDLM.

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755		707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	
	708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755	707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
<i>LM1B (context length 128, batch size 64, trained on 8 GPUs)</i>				
MDLM	0.03 ± 0.00	1'978.87 ± 44.21	0.08 ± 0.00	714.80 ± 15.47
PGM 6 / 6	0.03 ± 0.00	1'966.60 ± 102.14	0.08 ± 0.00	794.42 ± 18.81
<i>OpenWebText (context length 1024, batch size 32, trained on 16 GPUs)</i>				
MDLM	0.13 ± 0.00	233.28 ± 2.58	0.39 ± 0.00	80.86 ± 0.15
PGM 8 / 8	0.17 ± 0.00	188.07 ± 0.75	0.47 ± 0.00	68.04 ± 0.08
PGM 6 / 6 (dim. 1024)	0.18 ± 0.00	176.47 ± 0.65	0.50 ± 0.00	62.85 ± 0.19

718 Besides the neural network hyperparameters, the other parameters were unchanged when training the
 719 PGM.

721 B.3 IMAGENET

723 For the ImageNet experiments, we used a pre-trained VQGAN tokenizer (Esser et al., 2021; Besnier
 724 et al., 2025), following exactly the setup of HaltonMaskGIT (Besnier et al., 2025). The images are
 725 tokenized into sequences of 1024 tokens. This allowed for a direct comparison between PGM and
 726 MaskGIT, both trained in the codebase of Besnier et al. (2025) and the FID is evaluated using the
 727 Halton sampler and the original sampler.

728 All models use 24 transformer blocks. For PGM, we add a GroupSwap layer to enable information
 729 exchange between partition groups. We use the same hyperparameters as HaltonMaskGIT for all
 730 models, except we reduce the training duration to 500k steps (from 2M) due to computational
 731 constraints. All models are trained to be class-conditional, which enables the use of classifier-free
 732 guidance to significantly improve performance.

733 As shown in Table 9, PGMs slightly outperform MaskGIT in FID when using the original confidence-
 734 based sampler. With the Halton sequence-based sampler, PGMs achieve a marginally higher FID,
 735 as reported in Table 10. In terms of efficiency, PGMs deliver up to 7.5× higher throughput than
 736 MaskGIT, as shown in Table 11.

738 B.4 IMPACT OF NUMERICAL PRECISION ON SAMPLING

740 Zheng et al. (2025) identified that Masked Diffusion Models often achieve lower generative perplexity
 741 results because of underflow in the logits when sampling using low precision. The resulting decrease
 742 in token diversity can make evaluations based solely on generative perplexity misleading. Hence, we
 743 always cast the logits to FP64 before sampling.

745 B.5 SAMPLE-BASED EVALUATION

747 **Generative Perplexity** We use the generative perplexity to evaluate the quality of samples, following
 748 prior work (Lou et al., 2024; Sahoo et al., 2024; Deschenaux & Gulcehre, 2025). The generative
 749 perplexity measures how well a reference model (in our case, GPT-2 Large) can predict the next token
 750 in generated sequences. Specifically, we generate 1'024 samples from each model being evaluated.
 751 For each generated sample, we compute the generative perplexity using GPT-2 Large as follows:

$$752 \text{Perplexity} = \exp \left(-\frac{1}{N} \sum_{i=1}^N \log p_{\text{GPT-2 Large}}(x_i | x_{<i}) \right), \quad (10)$$

753 where L is the length of the sequence, x_i is the i -th token, and $p_{\text{GPT-2 Large}}(x_i | x_{<i})$ is the probability
 754 assigned by GPT-2 Large to token x_i given the preceding tokens $x_{<i}$.

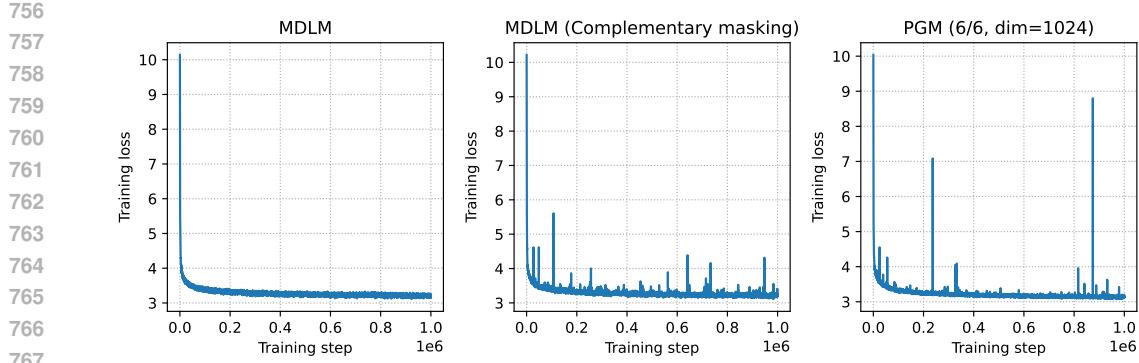


Figure 5: Training loss of MDLM, MDLM with Complementary Masking (Section 5.3) and PGM. Complementary masking seems to introduce spikes in the loss, even though it did not cause the models to diverge.

Unigram Entropy Unfortunately, a low generative perplexity can be achieved by generating repetitive text. To catch such cases, we compute the average unigram entropy of the generated samples:

$$\text{Unigram Entropy} = -\frac{1}{N} \sum_{i=1}^N \sum_{v \in \mathcal{X}} \frac{c(v, \mathbf{x}^{(i)})}{L} \log \frac{c(v, \mathbf{x}^{(i)})}{L}, \quad (11)$$

where \mathcal{X} is the vocabulary, v is a token of the vocabulary, and $c(v, \mathbf{x})$ is the empirical appearance count of the token v in the sequence \mathbf{x} . Low unigram entropy helps us to catch degenerate generation, as shown in prior work (Dieleman et al., 2022).

Fréchet Inception Distance and Inception Score On image generation tasks, we evaluate the quality of samples using the Fréchet Inception Distance (FID) (Heusel et al., 2018) and Inception Score (IS) (Salimans et al., 2016). Both metrics are computed using 50'000 images, following the standard practice.

C ADDITIONAL RESULTS

C.1 IMPACT OF CONTEXT LENGTH ON THE EFFECTIVENESS OF COMPLEMENTARY MASKING

There are three key differences between our experiments on LM1B and OWT. First, we used different tokenizers: `bert-base-uncased` for LM1B and GPT2’s tokenizer for OWT, following the setup of MDLM (Sahoo et al., 2024). Second, the context lengths differ significantly: 128 tokens for LM1B versus 1024 for OWT. Third, we train on different datasets that might have different characteristics.

We observed that complementary masking helps when training on OWT using a shorter context length of 128 tokens with the GPT-2 tokenizer. Indeed, after the 200k training step, the MDLM with complementary masking achieved a validation PPL of 37.92, outperforming the standard MDLM, which reached 39.90. This suggests that PGMs may not need extra parameters when the sequence length is short. Exploring the use of PGMs in domains where the sequence length is short, such as modeling chemical sequences, is a promising direction for future work.

C.2 MDLM+SDTT vs PGM+SDTT

The precision of logits during sampling can have a significant effect on sample quality, as noted in Section B.4. Hence, we cast all logits to FP64 prior to sampling, unlike the original MDLM and SDTT implementations.

Model	LAMBADA	ARC-e	ARC-c	HSwag	MathQA	PIQA	WinoG
MDLM	38.52	34.26	24.66	31.54	20.70	57.89	51.93
PGM 8 / 8	46.98	37.37	24.06	33.10	21.24	59.09	51.30
PGM 6 / 6 (1024)	41.39	38.80	22.95	33.92	21.71	61.43	54.30

Table 4: Accuracy on downstream tasks. We evaluate MDLM and PGM on LAMBADA, ARC Easy and Challenge, HellaSwag, MathQA, PIQA, and WinoGrande. Both models show comparable performance across tasks. PGM outperforms MDLM on all but one benchmark, where the difference between MDLM and PGM 8 / 8 is small.

Using higher precision also affects distillation, which compresses two sampling steps into one. As shown in Table 7, models distilled with float32 achieve lower generative perplexity than those trained with mixed precision (bfloating16). We therefore report float32 results in the main body.

C.3 TRAINING STABILITY

Complementary masking introduces occasional spikes in the training loss in both MDLMs and PGMs, as shown in Figure 5. This phenomenon should be kept in mind when scaling PGMs to larger sizes. Despite these spikes, all runs converged on the first attempt. We observed different precision requirements between models. For loss computations, MDLMs performed best with BF16 precision, while PGMs achieved better results with FP32 precision. Both models use mixed precision within the neural network; the precision difference only affects computations performed outside the model, such as the loss calculation.

C.4 ADDITIONAL DOWNSTREAM TASKS

Table 4 shows more downstream evaluation results following SDTT (Deschenaux & Gulcehre, 2025), where PGM outperforms MDLM on all but one benchmark, where the difference is small. We compare the models using the lm-eval-harness library (Gao et al., 2024). The lm-eval-harness library was designed for autoregressive language models and needs to be adapted for MDLM. For multiple choice questions, lm-eval-harness relies on a function that computes the log-likelihood of each answer y_i given a prefix x . The model computes $p(y_i|x)$ for each possible answer i and choosing the one with the highest log-likelihood.

Table 4 reports additional downstream results as in Deschenaux & Gulcehre (2025), where PGM outperforms MDLM on all but one benchmark, with only a small gap on the latter. We evaluate models with the lm-eval-harness library (Gao et al., 2024), originally designed for autoregressive LMs and adapted here for MDLM. For multiple-choice tasks, lm-eval-harness computes the log-likelihood of each candidate answer y_i given a prefix x , i.e., $p(y_i|x)$, and selects the answer with the highest score.

While lm-eval-harness uses the log-likelihood of the continuation, the NELBO objective (Equation 4) bounds the log-likelihood of the *complete* sequence (x, y_i) . However, we only need to know which continuation achieves the highest log-likelihood, not to compute the exact log-likelihood. Using Bayes' theorem, we note that

$$\log p(y_i|x) = \log p(x, y_i) - \log p(x) \propto \log p(x, y_i), \quad (12)$$

since $\log p(x)$ is constant with respect to y_i . Therefore, we can simply evaluate the variational bound on $\log p(x, y_i)$ to select the most likely continuation y_i .

C.5 PERFORMANCE ON LONGER CONTEXT LENGTH

Due to the high computational cost, we were unable to train models with context lengths greater than 1024. Nevertheless, we report the latency and throughput of both MDLM and PGM at a context length of 4096. As shown in Table 8, PGM remains substantially faster than MDLM in this setting.

864 **D COMPUTATIONAL COSTS**
865866 This section presents the computational costs associated with the models reported in this paper. We
867 exclude costs associated with exploratory experiments that yielded inferior results and were not
868 included in this manuscript.
869870 **D.1 TRAINING COSTS**
871872 Training PGMs is currently slower than training MGMS since we use `torch.sdp` with dense
873 tensor masks. Future work should explore efficient kernels to address this limitation. We measure the
874 latency and throughput using a single NVIDIA A100-SXM4-80GB GPU, with results reported in
875 Table 3. We compute the mean and standard deviation over 100 batches after 2 warmup batches.
876877 The total training duration approximately equals the per-step latency multiplied by the number of
878 steps. Experiments with complementary masking required twice the computational resources due
879 to larger batch sizes and gradient accumulation. Training times for 1M steps varied by dataset:
880 approximately 22 hours for LM1B, 4.5 days for OWT, and 3.8 days for ImageNet.
881882 **D.2 INFERENCE COSTS**
883884 We evaluate the inference efficiency of PGMs compared to MDLMs and GPT-2 with KV caching. As
885 shown in Figure 1, PGMs achieve around $5 - 5.5 \times$ improvements in throughput over MDLM while
886 reaching superior generative perplexity. For inference measurements, we use a single NVIDIA A100-
887 SXM4-80GB GPU. The efficiency gain stems from the ability of PGMs to process only unmasked
888 tokens during inference, as illustrated in Figure 2. Table 6 compares MDLM and PGMs on the
889 generative perplexity, unigram entropy, latency, and throughput. We compute the mean and standard
890 deviation of the latency and throughput over 20 batches after two warmup batches.
891892 **D.3 LICENSING**
893894 Our code and model artifacts will be released under the MIT license. The OWT dataset (Gokaslan
895 & Cohen, 2019) is available under the Apache License 2.0. We were unable to identify a specific
896 license for the LM1B dataset (Chelba et al., 2014). The images in ImageNet remain the property of
897 their respective copyright holders.
898899 **Algorithm 1** Simplified Sampling for PGMs

 1: **Input:** Batch size BS, number of steps K, model length L, special BOS index
 2: **Output:** Generated samples x
 3: $x \leftarrow \text{empty_tensor}(\text{BS}, 1)$ \triangleright Initialize
 4: $x[:, 0] \leftarrow \text{BOS}$ \triangleright Set BOS as first token
 5: $k \leftarrow L/K$ \triangleright Number of tokens to denoise at each step
 6: $\text{decoded_positions} \leftarrow \text{zeros}(\text{BS}, 1)$ \triangleright Keep track of already-decoded and positions to decode
 7: $\text{positions_to_decode} \leftarrow 1 + \text{rand_row_perm}(\text{BS}, L-1)$ \triangleright Each rows is a permutation of $\{1, \dots, L\}$
 8: **for** $_i$ in range(K) **do**
 9: $\text{pos_to_decode} \leftarrow \text{positions_to_decode}[:, :k]$ \triangleright Random positions to be predicted
 10: $\text{new_values} \leftarrow \text{pgm_predict}(x, \text{decoded_positions}, \text{pos_to_decode})$
 11: $x \leftarrow \text{concat}([x, \text{new_values}], \text{dim}=1)$ \triangleright Add new values to the sequence length dimension
 12: $\text{decoded_positions} \leftarrow \text{concat}([\text{decoded_positions}, \text{pos_to_decode}], \text{dim}=1)$
 13: $\text{positions_to_decode} \leftarrow \text{positions_to_decode}[:, k:]$ \triangleright Remove the k decoded positions
 14: **end for**
 15: $\text{out} \leftarrow \text{reorder}(x, \text{decoded_positions})$ \triangleright Sort based on positions
 16: **return** out

913
914
915
916
917

918
919
920
921
922

Algorithm 2 MDLM-equivalent sampling for PGMs.

923
924: **Input:** Batch size BS, number of steps K, model length L, special BOS index
 925: **Output:** Generated samples x
 926: $x \leftarrow \text{empty_tensor}(BS, 1)$ \triangleright Initialize
 927: $x[:, 0] \leftarrow \text{BOS}$ \triangleright Set BOS as first token
 928: $k \leftarrow L/K$ \triangleright Number of tokens to denoise at each step
 929: $\text{clean_positions} \leftarrow \text{zeros}(BS, 1)$ \triangleright Keep track of clean and noisy positions
 930: $\text{concrete_lengths} \leftarrow \text{ones}(BS, 1)$ \triangleright Keep track of the actual length of each sequence (some are padded).
 931: $\text{noisy_positions} \leftarrow 1 + \text{rand_row_perm}(BS, L-1)$
 932: 9: **for** $_i$ in range(K) **do**
 933: 10: $n_{\text{denoise_per_seq}}, \text{noisy_pos_input} \leftarrow \text{sample_noisy}(\text{noisy_positions}, k)$ \triangleright Algorithm 3
 934: 11: $\text{new_values} \leftarrow \text{pgm_predict}(x, \text{clean_positions}, \text{noisy_pos_input})$
 935: 12: $x, \text{clean_positions}, \text{noisy_positions}, \text{concrete_lengths} \leftarrow \text{extract_predictions}($ \triangleright Algorithm 4
 936: 13: $x,$
 937: 14: $\text{clean_positions},$
 938: 15: $\text{noisy_positions},$
 939: 16: $\text{noisy_pos_input},$
 940: 17: $\text{concrete_lengths},$
 941: 18: $n_{\text{denoise_per_seq}},$
 942: 19: $\text{new_values})$
 943: 20: **end for**
 944: 21: $\text{out} \leftarrow \text{reorder}(x, \text{clean_positions})$ \triangleright Sort based on clean_positions
 945: 22: **return** out

946
947
948
949
950
951
952
953
954

Algorithm 3 Sample the number of tokens to denoise from a binomial distribution and pad the input.

955
956: 1: **Input:** Noisy positions tensor, probability of denoising prob_denoise, model length L, concrete
 957: lengths tensor
 958: 2: **Output:** Noisy positions to denoise
 959: 3: $n_{\text{denoise_per_seq}} \leftarrow \text{binomial}(BS, L, \text{prob_denoise})$ \triangleright Sample from binomial distribution
 960: 4: $n_{\text{denoise_per_seq}} \leftarrow \min(n_{\text{denoise_per_seq}}, L - \text{concrete_lengths})$ \triangleright Don't denoise more than available
 961: 5: $\text{denoise_seq_len} \leftarrow \max(n_{\text{denoise_per_seq}}, 0)$ \triangleright Maximum number of tokens to denoise
 962: 6: **if** $\text{denoise_seq_len} = 0$ **then**
 963: 7: **return** empty_tensor() \triangleright Nothing to denoise
 964: 8: **end if**
 965: 9: $\text{noisy_pos_input} \leftarrow \text{noisy_positions}[:, : \text{denoise_seq_len}]$ \triangleright Some predictions won't be used
 966: 10: **return** $n_{\text{denoise_per_seq}}, \text{noisy_pos_input}$

968
969
970
971

972
973**Algorithm 4** Extract the correct number of predictions per sequence

```

974
975 1: Input: x, concrete_lengths, n_denoise_per_seq, denoised_token_values, clean_positions,
976    noisy_positions, noisy_pos_input
977 2: Output: Updated x, clean_positions, noisy_positions, concrete_lengths
978 3: new_concrete_lengths  $\leftarrow$  concrete_lengths + n_denoise_per_seq     $\triangleright$  Update sequence lengths
979 4: n_tok_to_add  $\leftarrow$  max(new_concrete_lengths) - shape(x, 1)       $\triangleright$  Calculate padding needed
980 5: if n_tok_to_add  $> 0$  then
981    pad  $\leftarrow$  zeros(BS, n_tok_to_add)                                 $\triangleright$  Create padding tensor
982    x  $\leftarrow$  concat(x, pad, dim=1)                                 $\triangleright$  Pad the sequences
983    clean_positions  $\leftarrow$  concat(clean_positions, pad, dim=1)       $\triangleright$  Pad the positions
984 6: end if
985 7: for i in range(BS) do
986    if n_denoise_per_seq[i] = 0 then
987      continue
988    end if
989    x[i, concrete_lengths[i]:new_concrete_lengths[i]]  $\leftarrow$ 
990      denoised_token_values[i, :n_denoise_per_seq[i]]
991    clean_positions[i, concrete_lengths[i]:new_concrete_lengths[i]]  $\leftarrow$ 
992      noisy_pos_input[i, :n_denoise_per_seq[i]]
993    noisy_positions[i, :shape(noisy_positions, 1) - n_denoise_per_seq[i]]  $\leftarrow$ 
994      noisy_positions[i, n_denoise_per_seq[i]:]
995 8: end for
996 9: return x, clean_positions, noisy_positions, new_concrete_lengths
997
998
999
1000

```

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

Model (LM1B)	Val. PPL \downarrow	Model (OWT)	Val. PPL \downarrow
<i>200k steps</i>			
MDLM	34.29	MDLM	25.35
MDLM (Compl. masking)	30.87	MDLM (Compl. masking)	25.32
PGM 8 / 4	32.83	PGM 6 / 6	26.96
PGM 10 / 2	33.55	PGM 8 / 8	25.10
PGM 4 / 8	32.84	PGM 10 / 6	25.19
PGM 6 / 6	<u>32.69</u>	PGM 6 / 6 (dim. 1024)	23.75
PGM 6 / 6 (lsm)	32.70		
PGM 6 / 6 (mean)	33.89		
<i>1M steps</i>			
MDLM	27.67	MDLM	23.07
MDLM (Compl. masking)	25.72	MDLM (Compl. masking)	22.98
PGM 6 / 6	<u>26.80</u>	PGM 8 / 8	22.61
		PGM 6 / 6 (dim. 1024)	21.43

Table 5: Perplexity evaluations. Validation perplexity of the Masked Diffusion Language Model (MDLM) and PGMs (ours) on LM1B and OpenWebText (OWT). The row *MDLM (Compl. masking)* denotes an MDLM trained with the complementary masking strategy discussed in Section 5.3. The row *PGM k / m* denotes a PGM with *k* encoder and *m* decoder layers, and we highlighted the best PGM results in gray. *lsm* and *mean* denote the *logsumexp* and *mean* queries initializations (Section 4). **Takeaway:** using the same number of layers in the encoder and decoder, and data-independent queries performed best. On LM1B, our PGM reaches 1.95 lower perplexity than MDLM after 1M steps. On OWT, we grow the embedding dimension or the number of layers to outperform OWT.

1024
1025

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036

Table 6: Sample quality and efficiency on OpenWebText with different numbers of sampling steps. We generate sequences of 1024 tokens with a batch size of 32 to measure the latency and throughput. PGM 6 / 6 with a hidden dimension of 1024 and uniform sampling achieves at least a 5× latency and throughput improvement over MDLM, with better generative perplexity and matching entropy.

Model	Gen. PPL ↓	Entropy ↑	Latency ↓ (ms)	Throughput ↑ (tok/s)
<i>MDLM</i>				
32 steps	192.31	5.73	8.037 ± 0.01	$4'077.08 \pm 3.06$
64 steps	142.58	5.69	15.82 ± 0.01	$2'070.67 \pm 0.69$
128 steps	122.89	5.67	31.41 ± 0.01	$1'043.22 \pm 0.16$
256 steps	113.96	5.66	62.54 ± 0.01	523.90 ± 0.06
512 steps	109.05	5.64	124.94 ± 0.16	262.26 ± 0.33
1024 steps	106.75	5.64	249.31 ± 0.11	131.42 ± 0.05
<i>PGM 8 / 8 (uniform sampling)</i>				
32 steps	189.02	5.73	1.55 ± 0.01	$21'120.99 \pm 83.59$
64 steps	143.79	5.69	3.00 ± 0.01	$10'914.91 \pm 41.69$
128 steps	122.21	5.66	5.86 ± 0.02	$5'585.57 \pm 24.49$
256 steps	112.48	5.65	11.64 ± 0.03	$2'814.99 \pm 9.33$
512 steps	108.76	5.64	22.98 ± 0.02	$1'425.89 \pm 1.61$
1024 steps	107.03	5.63	45.84 ± 0.03	714.71 ± 0.50
<i>PGM 8 / 8 (non uniform sampling)</i>				
32 steps	194.09	5.73	2.07 ± 0.02	$15'764.09 \pm 192.12$
64 steps	143.60	5.69	3.90 ± 0.07	$8'405.14 \pm 158.01$
128 steps	124.38	5.67	7.41 ± 0.08	$4'419.77 \pm 53.27$
256 steps	116.85	5.66	14.73 ± 0.19	$2'223.6372 \pm 28.47$
512 steps	111.11	5.64	28.15 ± 0.32	$1'163.79 \pm 13.25$
1024 steps	108.24	5.63	54.62 ± 0.66	599.97 ± 7.27
<i>PGM 6 / 6 (dim. 1024, uniform sampling)</i>				
32 steps	185.16	5.73	1.59 ± 0.01	$20'569.99 \pm 95.63$
64 steps	138.87	5.70	3.03 ± 0.01	$10'805.31 \pm 14.11$
128 steps	116.95	5.67	5.93 ± 0.01	$5'518.09 \pm 13.46$
256 steps	108.51	5.65	11.77 ± 0.01	$2'782.78 \pm 3.46$
512 steps	101.94	5.63	23.25 ± 0.01	$1'408.88 \pm 1.05$
1024 steps	99.64	5.62	46.31 ± 0.02	707.52 ± 0.34
<i>PGM 6 / 6 (dim. 1024, non-uniform sampling)</i>				
32 steps	191.30	5.74	2.12 ± 0.07	$15'415.56 \pm 467.20$
64 steps	138.67	5.69	3.940 ± 0.06	$8'318.72 \pm 135.47$
128 steps	118.17	5.67	7.60 ± 0.09	$4'311.80 \pm 54.92$
256 steps	108.93	5.65	14.84 ± 0.20	$2'207.71 \pm 29.71$
512 steps	105.41	5.64	28.56 ± 0.33	$1'147.17 \pm 13.47$
1024 steps	102.93	5.62	55.50 ± 0.36	590.37 ± 3.85

1074
 1075
 1076
 1077
 1078
 1079

1080 Table 7: Generative perplexity of MDLM and PGM after distillation with varying precision.
1081

1082	Model	Gen. PPL \downarrow	Entropy \uparrow	Latency \downarrow (ms)	Throughput \uparrow (tok/s)
<i>MDLM+SDTT (loss in BF16)</i>					
1086	32 steps	66.26	5.49	8.037 ± 0.01	$4'077.08 \pm 3.06$
1087	64 steps	53.98	5.46	15.82 ± 0.01	$2'070.67 \pm 0.69$
1088	128 steps	48.02	5.44	31.41 ± 0.01	$1'043.22 \pm 0.16$
1089	256 steps	45.86	5.42	62.54 ± 0.01	523.90 ± 0.06
1090	512 steps	44.21	5.40	124.94 ± 0.16	262.26 ± 0.33
1091	1024 steps	43.19	5.38	249.31 ± 0.11	131.42 ± 0.05
<i>MDLM+SDTT (loss in FP32)</i>					
1092	32 steps	61.65	5.46	8.037 ± 0.01	$4'077.08 \pm 3.06$
1093	64 steps	50.65	5.43	15.82 ± 0.01	$2'070.67 \pm 0.69$
1094	128 steps	45.06	5.40	31.41 ± 0.01	$1'043.22 \pm 0.16$
1095	256 steps	41.70	5.37	62.54 ± 0.01	523.90 ± 0.06
1096	512 steps	40.63	5.36	124.94 ± 0.16	262.26 ± 0.33
1097	1024 steps	39.50	5.32	249.31 ± 0.11	131.42 ± 0.05
<i>PGM 6/6 (dim. 1024)+SDTT (loss in BF16)</i>					
1098	32 steps	91.61	5.56	1.59 ± 0.01	$20'569.99 \pm 95.63$
1099	64 steps	72.73	5.52	3.03 ± 0.01	$10'805.31 \pm 14.11$
1100	128 steps	63.83	5.49	5.93 ± 0.01	$5'518.09 \pm 13.46$
1101	256 steps	58.74	5.47	11.77 ± 0.01	$2'782.78 \pm 3.46$
1102	512 steps	58.77	5.47	23.25 ± 0.01	$1'408.88 \pm 1.05$
1103	1024 steps	56.47	5.46	46.31 ± 0.02	707.52 ± 0.34
<i>PGM 6/6 (dim. 1024) nucleus (p=0.9)+SDTT (loss in BF16)</i>					
1104	32 steps	68.33	5.50	1.74 ± 0.01	$18'866.12 \pm 18.35$
1105	64 steps	53.88	5.45	3.18 ± 0.01	$10'307.16 \pm 6.58$
1106	128 steps	46.99	5.42	6.10 ± 0.01	$5'375.20 \pm 2.40$
1107	256 steps	43.22	5.40	11.95 ± 0.01	$2'742.74 \pm 1.32$
1108	512 steps	42.79	5.39	23.63 ± 0.01	$1'386.79 \pm 0.69$
1109	1024 steps	40.99	5.38	46.83 ± 0.02	699.80 ± 0.24
<i>PGM 6/6 (dim. 1024)+SDTT (loss in FP32)</i>					
1110	32 steps	84.97	5.52	1.74 ± 0.01	$20'569.99 \pm 95.63$
1111	64 steps	67.60	5.49	3.18 ± 0.01	$10'805.31 \pm 14.11$
1112	128 steps	60.06	5.47	6.10 ± 0.01	$5'518.09 \pm 13.46$
1113	256 steps	55.97	5.45	11.95 ± 0.01	$2'782.78 \pm 3.46$
1114	512 steps	54.13	5.44	$1'408.88 \pm 1.05$	$1'408.88 \pm 1.05$
1115	1024 steps	52.77	5.44	46.83 ± 0.02	707.52 ± 0.34
<i>PGM 6/6 (dim. 1024) nucleus (p=0.9)+SDTT (loss in FP32)</i>					
1116	32 steps	63.46	5.45	1.59 ± 0.01	$18'866.12 \pm 18.35$
1117	64 steps	49.94	5.41	3.03 ± 0.01	$10'307.16 \pm 6.58$
1118	128 steps	43.84	5.39	5.93 ± 0.01	$5'375.20 \pm 2.40$
1119	256 steps	40.76	5.36	11.77 ± 0.01	$2'742.74 \pm 1.32$
1120	512 steps	39.46	5.36	23.25 ± 0.01	$1'386.79 \pm 0.69$
1121	1024 steps	38.81	5.35	46.31 ± 0.02	699.80 ± 0.24
<i>PGM 8/8 +SDTT (loss in BF16)</i>					
1122	32 steps	102.64	5.54	1.55 ± 0.01	$21'120.99 \pm 83.59$
1123	64 steps	82.93	5.50	3.00 ± 0.01	$10'914.91 \pm 41.69$
1124	128 steps	73.19	5.48	5.86 ± 0.02	$5'585.57 \pm 24.49$
1125	256 steps	70.30	5.47	11.64 ± 0.03	$2'814.99 \pm 9.33$
1126	512 steps	68.07	5.46	22.98 ± 0.02	$1'425.89 \pm 1.61$
1127	1024 steps	65.87	5.44	45.84 ± 0.03	714.71 ± 0.50
<i>PGM 8/8 +SDTT (loss in FP32)</i>					
1128	32 steps	87.64	5.51	1.55 ± 0.01	$21'120.99 \pm 83.59$
1129	64 steps	70.47	5.48	3.00 ± 0.01	$10'914.91 \pm 41.69$
1130	128 steps	62.66	5.46	5.86 ± 0.02	$5'585.57 \pm 24.49$
1131	256 steps	59.38	5.45	11.64 ± 0.03	$2'814.99 \pm 9.33$
1132	512 steps	57.57	5.44	22.98 ± 0.02	$1'425.89 \pm 1.61$
1133	1024 steps	56.12	5.44	45.84 ± 0.03	714.71 ± 0.50

1134
 1135
 1136
 1137 Table 8: Throughput (TP) of MDLM and PGM with a context length of 4096, for varying number of
 1138 inference steps. PGM is significantly faster than MDLM.

Model	TP (4096)	TP (1024)	TP (256)	TP (64)
MDLM	30.45 ± 0.06	121.25 ± 0.02	483.53 ± 0.25	$1'912.16 \pm 1.44$
PGM 8/8	128.99 ± 0.23	697.36 ± 32.83	2'216.91 ± 3.06	8'203.82 ± 6.60
PGM 6/6 (dim=1024)	129.01 ± 0.67	706.65 ± 36.23	$2'146.60 \pm 15.12$	$8'175.69 \pm 7.85$

1144
 1145
 1146
 1147
 1148
 1149 Table 9: Comparison of the quality of samples from PGM and MaskGIT with the same number of
 1150 layers, using the original confidence-based sampler.

Model	FID ↓			IS ↑		
	w = 0.0	w = 1.0	w = 4.0	w = 0.0	w = 1.0	w = 4.0
MaskGIT	14.38	7.74	<u>7.53</u>	82.49	151.26	289.75
PGM 12/12	<u>18.68</u>	<u>8.91</u>	7.30	<u>67.39</u>	136.51	289.43
PGM 14/10	21.81	10.18	7.71	<u>59.98</u>	121.06	265.72

1152
 1153
 1154
 1155
 1156
 1157 Table 10: Comparison of the quality of samples from PGM and MaskGIT with the same number of
 1158 layers, using the Halton sampler (Besnier et al., 2025).

Model	FID ↓			IS ↑		
	w = 0.0	w = 1.0	w = 4.0	w = 0.0	w = 1.0	w = 4.0
MaskGIT	28.84	4.14	12.51	59.18	263.66	367.62
PGM 12/12	22.58	10.07	6.38	66.50	<u>134.44</u>	<u>311.06</u>
PGM 14/10	<u>25.09</u>	11.43	5.54	62.17	120.02	302.36

1158
 1159
 1160
 1161
 1162
 1163 Table 11: Latency and Throughput of PGM and Maskgit on ImageNet256, when sampling in 32
 1164 steps with a batch size of 32. PGM is significantly faster than MaskGIT, especially when using
 1165 classifier-free guidance (cfg).

Model	Num. params.	TP (sec.)	Speedup	TP (sec.)	Speedup	Lat.
MaskGIT	458M	1.048	1x	1.033	1x	30.599
PGM 12/12	464M	12.883	>6.54x	7.771	>7.52x	2.484
PGM 14/10	464M	<u>12.715</u>	<u>>6.15x</u>	<u>7.235</u>	<u>>6.97x</u>	<u>2.642</u>