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ABSTRACT

Masked generative models (MGMs) are widely used to capture complex data and
enable faster generation than autoregressive models (AR) through parallel decoding.
However, MGMs typically operate on fixed-length inputs, which can be inefficient:
early in sampling, most tokens are masked and carry little information, leading
to wasted computation. In contrast, AR models process only tokens generated
previously, making early iterations faster. In this work, we introduce the “Partition
Generative Model” (PGM), a novel approach that combines the strengths of AR and
MGMs. Rather than masking, PGM partitions tokens into two groups and employs
group-wise attention to block information flow between them. Since there is no in-
formation flow between partitions, the model can process the previously-generated
tokens only during sampling, while retaining the ability to generate tokens in paral-
lel and in any order. On OpenWebText, PGMs offer at least 5× improvements in
sampling latency and throughput, while producing samples with superior generative
perplexity, compared to Masked Diffusion Language Models. In the ImageNet
dataset, PGMs achieve up to 7× better throughput compared to MaskGIT with only
a small change in FID. Finally, we show that PGMs are compatible with distillation
methods for MGMs, enabling further inference speedups.

1 INTRODUCTION
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Figure 1: Throughput: PGM (ours) achieves bet-
ter generative perplexity with a ∼ 5.3× higher
sampling throughput compared to MDLM, at a
context length of 1024. The improvements come
from our proposed neural network architecture.

Masked generative modeling (MGM) excels at
sampling from complex data distributions by it-
eratively denoising masked inputs. In fact, the
MGM paradigm has proven successful in var-
ious modalities, such as images (Chang et al.,
2022), video (Yu et al., 2023; Villegas et al.,
2022), and audio spectrograms (Comunità et al.,
2024). Furthermore, recent advances leverag-
ing discrete diffusion (Campbell et al., 2022;
Zhao et al., 2024; Lou et al., 2024; Sahoo et al.,
2024; Shi et al., 2025; Ou et al., 2025) and dis-
crete flow matching (Campbell et al., 2024; Gat
et al., 2024) have shown that MGM can also be
applied to text generation, challenging the tradi-
tional dominance of autoregressive modeling in
this domain.

Modern MGMs use the transformer architecture
(Vaswani et al., 2023) with bidirectional atten-
tion to reconstruct masked tokens. This simple
approach, which can be viewed as a form of gen-
eralized BERT (Devlin et al., 2019), can generate new samples by iteratively denoising a sequence of
masked inputs.

Despite their ability to generate high-quality samples, MGMs face two challenges compared to
autoregressive models (ARM). First, during sampling, MGMs process many masked tokens that carry
minimal information, particularly in the early iterations, when most tokens are masked. In contrast,
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ARMs only process tokens they have previously generated. Secondly, during training, MGMs learn
only at masked input positions, as unmasked tokens are trivial to predict with their unrestricted
architectures, whereas AR models can learn at all but the first position due to their causal design.

In this work, we introduce “Partition Generative Models” (PGM), a novel approach that combines
strengths from both ARMs and MGMs. In particular, PGMs do not need to process masked tokens
during training and inference and can be implemented using Transformers with group-wise attention.
The key insight behind PGM is simple: during training, instead of masking tokens, we partition
them into two disjoint groups and train the model to predict one group from the other. As shown in
Figure 2 (right), this crucial choice allows PGMs to only process unmasked tokens during sampling.
In contrast, MGMs always handle full-length sequences. This leads to significant throughput and
latency improvements for PGMs. Furthermore, like ARMs, PGMs can learn at every position in a
single forward pass during training due to their constrained attention.

Our main contributions can be summarized as follows.

• We introduce “Partition Generative Models” (PGM), a simple alternative to MGM that
combine strengths of ARMs and MGMs. We propose an encoder-decoder architecture,
based on the Diffusion Transformer of Peebles & Xie (2023) that does not need to process
any masked token during training and inference.

• PGM achieves a reduction of 1.95 in validation perplexity in LM1B (Chelba et al., 2014),
compared to Masked Diffusion Language Models (MDLM; Sahoo et al. (2024)). In Open-
WebText (Gokaslan & Cohen, 2019), PGMs can generate samples of better quality than
MDLM with a 5− 5.5× improvement in sampling throughput and latency, when using the
same number of steps as MDLM.

• PGMs can achieve up to 7.5× higher throughput than MaskGIT, with only a marginal
increase in FID.

• PGMs are compatible with distillation algorithms designed for MDLM, and preserve their
performance on downstream tasks after distillation.

2 BACKGROUND

2.1 GENERATIVE LANGUAGE MODELING

Language modeling addresses the task of generating sequences of discrete tokens (xi) from a
vocabulary X = Z<N = {0, ..., N − 1}. A language model generates sequences of length L,

defined as elements of XL =
{
x(i) = (x

(i)
0 , . . . , x

(i)
L−1) : x

(i)
j ∈ X

}NL

i=0
. The training data set

D :=
{
x(0), . . . , x(K−1) : x(i) ∈ XL

}
contains K such sequences. One fundamental objective of

language modeling is to generate samples similar to those of the unknown distribution p0 : XL →
[0, 1] that induced the training data set D.

2.2 MASKED GENERATIVE MODELING

In MGM, the vocabulary X includes a special MASK token absent from the training set D. During
training, the MASK token is used to replace a fraction of the original tokens in the input sequences
x ∈ D. Formally, we train a denoiser xθ : XL → RL×N with learnable parameters θ. To generate
new samples, we initialize the sampling procedure with sequences composed entirely of MASK tokens.
The model then iteratively replaces a subset of these masked tokens based on the predictions of xθ.
The training objective of the denoiser xθ can generally be written as follows:

LMGM := Ex∼D,t∼U [0,1] [w(t)CE(xθ(zt; t),x)] , (1)
where t determines the proportion of tokens to mask. The corrupted sequence zt is generated by
independently masking each token in the sequence with time-dependent probability pt. For simplicity,
we could set pt = t. The function w : [0, 1]→ R≥0 can be used to emphasize certain noise levels
more than others. Finally, CE(x̂, y) denotes the cross-entropy loss between the vector x̂ and integer
target y. Oftentimes, the cross-entropy loss is applied exclusively at the masked positions. In such
cases, the denoiser model xθ is implemented to assign all probability mass to the input token at
positions where the input tokens are not masked.

2
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Figure 2: Masked Generative Modeling (MGM) vs. Partition Generative Modeling (PGM).
Training: PGMs receive feedback at every position, while MGMs usually only apply loss to masked
tokens. Inference: PGMs process only unmasked tokens, working with shorter sequences and
predicting logits only for tokens to denoise. MGMs must process full-length sequences and compute
logits at all positions. Important note: PGMs use a specialized architecture that ensures predictions
for position i never depend on the token at position i.

2.3 MASKED DIFFUSION LANGUAGE MODELING

Masked diffusion language models (MDLM; Sahoo et al. (2024)) are sequence generative models
that operate in discrete space. Sahoo et al. (2024) showed that MDLMs approach ARMs in validation
perplexity and generation quality. We use MDLM as our primary baseline for the text experiments.
For images, we compare against MaskGIT (Chang et al., 2022), which resembles MDLM and whose
objective is also of the form in Equation (1).

Discrete Absorbing Diffusion Process MDLMs define a forward process that corrupts the data and
a backward process that recovers it. For each token x in the sequence, the forward process linearly
interpolates between its one-hot encoding x and π, the one-hot vector for the MASK token. Formally:

q(zt|x) := Cat(zt;αtx+ (1− αt)π), (2)

where αt : t → [0, 1], the noise schedule, is a strictly decreasing function of t, and represents the
noise level at time t. Furthermore, the following boundary conditions apply: α0 = 1, α1 = 0. The
process is termed "absorbing" because the corruption is irreversible. Once a token is masked, it
remains so throughout the forward process. The generative distribution pθ(zs|zt) uses the same
analytical form as the true posterior p(zs|zt,x) = p(zs|x)p(zt|zs)

p(zt|x) , where x comes from the data
distribution. Since x is not available during sampling, the output of the denoiser xθ is used in place
of x. Formally, pθ(zs|zt) := q(zs|zt,x = xθ(zt; t)). To derive a simple expression for pθ(zs|zt),
MDLM enforces that unmasked tokens are carried over during reverse diffusion, which induces the
following expression:

pθ(zs|zt) =

{
Cat(zs; zt), zt ̸= m,

Cat
(
zs;

(1−αs)m+(αs−αt)xθ(zt,t)
(1−αt)

)
, zt = m

(3)

3
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Training Objective MDLM trains the denoiser xθ using a continuous-time limit of the typical
negative evidence lower bound (NELBO) of diffusion models (?), which provides a tighter bound
to the log-likelihood (Kingma et al., 2023). The denoiser defines a learned posterior distribution
pθ(zs|zt) := q(zs|zt,xθ(zt, t)), and the NELBO simplifies to a weighted cross-entropy loss between
ground-truth samples x and the predictions of the denoiser xθ:

L∞
NELBO = Eq

∫ t=1

t=0

α′
t

1− αt
log⟨xθ(zt, t),x⟩dt. (4)

2.4 SELF-DISTILLATION THROUGH TIME

Self-Distillation Through Time (SDTT) (Deschenaux & Gulcehre, 2025) speeds up the sampling
of MDLMs through a similar approach as Progressive Distillation (Salimans & Ho, 2022). SDTT
creates student and teacher copies of a pre-trained MDLM. The student learns to match the teacher’s
predictions over two steps of size dt. Once converged, the student can serve as the teacher for a new
distillation round with step size 2dt, halving the number of sampling steps.

3 PARTITION GENERATIVE MODELING

3.1 MOTIVATIONS

“Partition Generative Modeling” (PGM) is similar to MGM but introduces key modifications to the
training and sampling procedures. Most notably, PGMs eliminate the need for MASK tokens.

Training As seen in Figure 2a (left), in a single forward pass of an MGM, a loss can be computed
for the masked positions only. In contrast, autoregressive language (AR) models receive a training
signal at every position in a single forward pass. Intuitively, this difference could make MGMs less
sample efficient than ARMs. We design PGMs such that we can compute the loss at every position in
the sequence in a single forward pass, as shown in Figure 2b (left).

Sampling MGMs typically employ bidirectional architectures trained on fixed-length inputs. Con-
sequently, during sampling, these models have to process arrays with the same dimensions as those
used during training. Hence, during the initial sampling steps, the neural network processes primarily
MASK tokens. These numerous MASK tokens provide minimal information, only indicating the current
noise level. On the other hand, autoregressive models only process previously generated tokens.
Additionally, MGMs compute predictions at all masked positions, whereas autoregressive models
only generate predictions for the one position to denoise. PGMs only process previously generated
tokens and compute predictions solely for tokens that will be denoised (Figure 2b, right). Nonetheless,
PGMs maintain the parallel decoding capabilities of MGMs while offering substantial inference
speedups.

3.2 APPROACH

Partitioning Tokens Instead of Masking For a training sequence x ∈ D, we partition tokens
into two distinct groups labeled 0 and 1, rather than using MASK tokens. From the perspective of
each group, tokens in the other group will not be visible due to constraints on the neural network
architecture, even though no explicit MASK token is used. Since each training sequence is partitioned
into two groups that predict each other, PGMs effectively create two sub-training examples per
sequence. This is conceptually similar to training on two complementary masked sequences within
the same batch. We isolate and study the effect of complementary masking from the neural network
architecture in Section 5.3.

Training Objective Let g ∈ {0, 1}L be the binary sequence that denotes the group index of each
token in x. We train a denoiser network xθ that takes as input x and g, and we ensure that only tokens
in the same group are involved with each other to avoid information leakage. From the objective, xθ

is trained to predict its input, which is only useful because of the constraints on the attention:

LPGM := Ex∼D,t∼U [0,1]

[
wPGM(g, t)CE(xθ(x;g; t),x)

]
. (5)

4
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Figure 3: PGM-compatible transformer architecture. RoPE (Su et al., 2023) is applied before
every attention layer but not shown for clarity. (A) Decoder layer with cross-attention to the encoder
output and no self-attention between tokens. (B) GroupSwap layer that exchanges information
between positions in group 0 and group 1, enabling each group to make predictions based on tokens
from the other group. (C) Encoder layer with group-wise self-attention.

The key distinction from Equation 1 lies in the weighting function wPGM. Let t ∈ [0, 1] be the
probability of assigning a token to group 1, and assume for simplicity that exactly a fraction t of
tokens belong to this group. From the perspective of group 0, the available information is equivalent
to that of an MGM with noise level t, since it cannot access tokens in group 1. Conversely, group 1
experiences a noise level of 1− t. Therefore, for the PGM loss in Equation 5 to respect the original
MGM objective in Equation 1, we must scale the loss for tokens in group 0 according to the weight
at the noise level t, and at 1− t for tokens in group 1. For example, if MDLM masked 30% of tokens,
the PGM groups would contain 30% and 70% of the tokens. Let w represent the weighing function
used to train an MGM. Then, the corresponding weight function wPGM to train PGMs is defined as

wPGM(g, t)i =

{
w(t) if gi = 0

w(1− t) if gi = 1.
(6)

We adopt the weighting function of MDLM, namely w(t) =
α′

t

1−αt
(Equation 4). A visual comparison

of the training processes for MGM and PGM is provided in Figure 2 (left).

Sampling Since the two groups never interact during training, PGMs can process clean tokens only
(Figure 2b, right) during inference. Assuming the same posterior distribution pθ(zs|zt) (Equation 3)
as MDLM, an MGM denoises each MASK token randomly and independently with probability αs−αt

1−αt
.

When implemented as a PGM, it means that one can equivalently select a subset of tokens and
denoise exclusively those positions. To simplify the implementation of batched sampling, PGM can
denoise a fixed number of tokens at each sampling step, unlike MDLM, which denoises a random
number of tokens. The pseudocode is presented in Algorithm 1. PGMs can also sample a random
number of tokens at each step, though this requires padding batched sequences. We provide the
pseudocode for this approach in Algorithm 2 and compare the perplexity, latency, and throughput of
both approaches in Table 6. Empirically, sampling a deterministic number of tokens at every step
improves the generative perplexity.

4 THE PARTITION TRANSFORMER

Figure 3 illustrates our proposed PGM-compatible Transformer model. The architecture consists of
three components: an encoder, the novel GroupSwap layer, and a decoder.

5
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Model ↓ #Params Val. PPL Latency (sec) ↓ TP (tok/sec) ↑
LM1B (ctx len. 128)

MDLM 170M 27.67 3.78 1’081.57
MDLM† (Compl. masking) 170M 25.72 3.78 1’081.57
PGM 6 / 6 171M 26.80 2.12 1’930.93

OpenWebText (ctx len. 1024)
MDLM 170M 23.07 31.41 1’043.22
MDLM† (Compl. masking) 170M 22.98 31.41 1’043.22
PGM 8 / 8 203M 22.61 5.86 5’585.57
PGM 6 / 6 (dim. 1024) 268M 21.43 5.93 5’518.09

Table 1: Validation Perplexity: On LM1B, PGM with matching number of layers outperform
MDLM. PGM k / m denotes our model with k encoder and m decoder layers. We highlight the
best PGM in gray. The sampling latency and throughput (TP) are measured with a batch size of 32.
On OWT, our PGM outperforms MDLM while delivering at least 5× higher throughput. See
Table 5 for ablations on the architecture. † Models trained with a 2× larger batch size (subsection 5.3).

Encoder The encoder consists of a series of partition-wise self-attention transformer blocks. These
blocks operate similarly to standard transformer blocks with bidirectional attention, with the key
difference that we prevent information from flowing between different groups by masking entries in
the attention matrix that correspond to pairs of tokens in different groups.

Decoder The decoder consists of cross-attention layers, where the keys and values are computed
based on the output of the encoder. In contrast, the queries are computed using either the output of the
GroupSwap layer (first block of the decoder) or the output of the previous decoder block. Importantly,
there is no self-attention layer in the decoder, which allows efficient generation, as we can compute
predictions solely at the positions that we will decode.

4.1 THE GROUPSWAP LAYER

In the encoder, information remains localized: if a token belongs to group 0, its hidden representation
only depend on tokens in group 0. For prediction, however, we require the opposite: representations
at positions in group 0 must depend exclusively on group 1, and vice versa. To enforce this, we
introduce the GroupSwap layer (Figure 3B), which exchanges information between groups. The
GroupSwap layer is implemented using cross-attention. If a token at position ℓ belongs to group 0, the
predictions at position ℓ must rely only on information from group 1. Hence, to prevent information
leakage, the queries used in cross-attention cannot depend on tokens in group 0. We describe two
ways of initializing these queries below.

Data-Independent Initialization Let u ∈ RH be a learnable vector. To initialize the queries, we
replicate u across the sequence length, add fixed positional encodings, and apply layer normalization
followed by a linear projection. Formally, let V ∈ RL×H denote the query initialization such that
Vi;· denotes the i-th row of V . Then,

Vi;· = W
[
LN
(
u+ posi;·

)
+ b
]
, (7)

where W ∈ RH×H , b ∈ RH are learnable parameters and LN denotes layer normalization (Ba et al.,
2016). The positional encoding is computed as

posi,j =
{
cos
(

i
100002j/H

)
if j < H/2

sin
(

i
100002j/H−1

)
otherwise

(8)

Data-Dependent Initialization Let X ∈ RL×H be the encoder output. We first perform a
group-wise aggregation over the sequence length (e.g., logsumexp or mean) to obtain vectors

6
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Figure 4: Left: FID on Imagenet256. PGM achieves at least 7× higher throughput than MaskGIT
with competitive quality. Right: After distillation, PGM (6 / 6, dim. 1024) with nucleus sampling
remains significantly faster than MDLM. The text next to each point is the unigram entropy, as a
proxy for diversity (Dieleman et al., 2022). Importantly, PGM is significantly faster for matched Gen.
PPL and entropy.

Y0, Y1 ∈ RH , representing the aggregated information for groups 0 and 1, respectively. The data-
dependent query initialization V ′ is then computed as

V ′
i;· = Vi;· +

{
Y1, if gi = 0

Y0 otherwise.
(9)

5 EXPERIMENTS

We investigate the performance of PGMs on language and image modeling tasks. Find complete
details of the hyperparameters of the experiments in Section B. We report language modeling
experiments in Section 5.1, and on OWT in Section 5.2. Finally, we study the effect of complementary
masking on the final performance in Section 5.3.

5.1 LANGUAGE MODELING ON LM1B

Experimental setting. We closely follow the settings of Sahoo et al. (2024) and train models with
a context length of 128 tokens. The shorter documents are padded to 128 tokens. We train a Diffusion
Transformer (Peebles & Xie, 2023) with 12 layers without time conditioning and compare it with
our Partition Transformer (Section 4). All models are trained with a batch size of 512. We evaluate
different variants of the Partition Transformer after 200k training steps, and the version with the best
validation perplexity is further trained until reaching 1M training steps.

Results Table 1 shows that after 1M steps, PGM reaches a validation perplexity of 1.95 lower than
MDLM. In Table 5 (left), we observe that using as many encoder and decoder layers performs best.
Surprisingly, data-independent queries perform similarly to data-dependent queries. Therefore, we
use the simpler, data-independent queries in the rest of the experiments. While PGM outperforms
MDLM on LM1B, it does not reach its theoretical limit (subsection 5.3) yet.

5.2 LANGUAGE MODELING ON OPENWEBTEXT

Experimental Settings We closely follow Sahoo et al. (2024), and train models with a context
length of 1024 tokens with sentence packing (Raffel et al., 2023). To ablate the architecture, we train
models for 200k steps and compare them based on the validation perplexity. The two models with the
best performance are further trained until 1M steps.

7
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Results Table 1 shows that after 1M steps, slightly larger PGM variants outperform MDLM in
validation perplexity, while delivering up at least 5× higher throughput. As shown in Table 5
(right), PGMs with the same number of layers as MDLM underperform slighly in terms of validation
perplexity. Figure 1, Table 6 and 8 provide more detailed latency and throughput evaluation. We
hypothesize that the speedups in inference could make PGMs particularly relevant for the scaling of
test-time computation (Madaan et al., 2023; Yao et al., 2023; Snell et al., 2024; Wu et al., 2024; Chen
et al., 2024; Brown et al., 2024; Goyal et al., 2024).

Downstream Performance Following Deschenaux & Gulcehre (2024); Nie et al. (2025), we com-
pare PGM and MDLM on downstream tasks from the lm-eval-harness suite (Gao et al., 2024).
As shown in Table 2, PGM outperforms MDLM on six of eight tasks, while overall performance
remains similar. These results suggest that PGM achieves faster inference without sacrificing down-
stream accuracy. Note that lm-eval-harness is originally designed for ARMs, and needs to be
adapted for MGMs. We explain how in Section C.4 and compare MDLM and PGMs on additional
tasks.

5.3 DISENTANGLING THE EFFECT OF THE ARCHITECTURE AND COMPLEMENTARY MASKING

To disentangle the contributions of PGM, we isolate the effect of complementary masking (sub-
section 3.2) by training a standard bidirectional transformer encoder with double batch size, using
two complementary masked versions of each input sequence. This approach establishes an upper
bound on potential performance gains, as it directly measures the impact of having complementary
masks during gradient updates. We evaluated standard MDLM against MDLM with complementary
masking on LM1B (Chelba et al., 2014) and OpenWebText Gokaslan & Cohen (2019).

Table 1 shows that complementary masking reduces validation perplexity in LM1B but provides
smaller gains on OpenWebText. This may explain why PGMs with the same number of parameters
outperform MDLMs on LM1B but not on OpenWebText. In both datasets, a gap remains between
MDLM with complementary masking and PGM, likely due to the current neural network architecture.
Because complementary masking does not improve models on OpenWebText, we increase model size
to surpass the validation perplexity of MDLM. Nonetheless, PGMs with more parameters generate
higher-quality text and achieve significantly faster inference (Figure 1). In Section C.1, we present
preliminary experiments exploring why complementary masking improves performance on LM1B
but not on OpenWebText.

5.4 FURTHER SPEEDUPS VIA DISTILLATION

PGM already delivers improvements over MDLM in both throughput and latency, but we can push
these gains further using “Self Distillation Through Time” (SDTT; Deschenaux & Gulcehre (2025)).
We apply the distillation loss to the token in one of the partitions only, as if they were MASKed, and
leave the design of new distillation methods for PGMs to future work. Hence, our setting naturally
favors the MDLM baseline.

Figure 4 (right) and Table 7 compare the generative perplexity, entropy, and generation speed of
PGMs and MDLM. We find that after 5 rounds of distillation with SDTT, PGMs reach higher
Generative Perplexity and unigram Entropy than MDLM (see Table 7 for more precise numbers).
After introducing nucleus sampling (p = 0.9) (Holtzman et al., 2020), PGMs produce samples with
comparable Generative Perplexity and entropy as MDLM. Because nucleus sampling introduces
some overhead, PGMs go from being at least 5× faster than MDLM to about 4.6× faster for the
same number of steps.

Since generative perplexity alone does not fully capture language modeling performance, we also
evaluate the distilled models on downstream tasks. As shown in Table 2, distillation slightly improves
the accuracy on some tasks and reduces it on others, but the overall performance remains similar.
Notably, PGMs still achieve slightly higher accuracy than MDLM on most tasks.

5.5 PGM ON IMAGENET

In Figure 4 (left), we compare the Fréchet Inception Distance (FID; (Heusel et al., 2018)) of samples
from MaskGIT (Chang et al., 2022) and PGM. All models are trained for 500k steps on ImageNet256
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Table 2: Accuracy on downstream tasks (Gao et al., 2024). HS: HellaSwag, OQA: OpenBook
QA. Arc: Arc-easy. We select the tasks following Nie et al. (2025). We see that distillation slightly
changes the downstream tasks performance, but that PGMs continue to outperform MDLM on most
tasks.

LAMBADA Arc BoolQ HS OQA PIQA RACE SIQA

Before Distillation
MDLM 38.52 37.88 49.42 31.36 28.60 58.27 28.04 38.84
PGM 8 / 8 46.98 40.40 53.49 33.20 26.60 58.92 26.89 39.97
PGM 6 / 6 (1024) 41.39 39.98 49.82 34.27 25.40 59.19 27.37 40.28

After Distillation (SDTT)
MDLM 41.34 33.80 48.59 30.75 28.80 57.73 27.94 38.79
PGM 8 / 8 47.22 37.42 51.50 31.62 25.80 59.03 30.62 39.61
PGM 6 / 6 (1024) 44.48 36.70 49.36 32.55 25.00 59.85 27.37 39.25

(Deng et al., 2009), with the same pre-trained VQGAN tokenizer (Esser et al., 2021) as Besnier
et al. (2025). We evaluate the FID of samples generated with MaskGIT’s original confidence-based
sampler and the Halton sampler of Besnier et al. (2025). We sample with classifier-free guidance
weight γ ∈ {0, 1, 4}, and report the result with the best γ for each model. Using the confidence-based
sampler, PGM slightly outperforms MaskGIT, whereas with the Halton sampler it performs slightly
worse. In terms of throughput, PGM is at least 7× faster than MaskGIT. Find more experimental
details in Section B.3.

6 RELATED WORK

Discrete diffusion Although autoregressive models currently dominate text generation, recent
advances in discrete diffusion (Austin et al., 2023; Lou et al., 2024; Shi et al., 2025; Sahoo et al.,
2024; von Rütte et al., 2025; Schiff et al., 2025; Haxholli et al., 2025; Sahoo et al., 2025) and discrete
flow matching (Campbell et al., 2024; Gat et al., 2024) have demonstrated can MGMs can approach
AR models in generation quality. We propose an efficient inference approach that, unlike previous
methods, does not require processing MASK tokens, yet remains able to generate tokens in any order.

Block Diffusion “Block Diffusion” (Arriola et al., 2025) (BD) proposes a hybrid architecture that
interpolates between an autoregressive and a discrete diffusion model. Although BDs can generate
tokens in parallel and allow KV caching (Pope et al., 2022), BDs still require generating tokens in a
(block-) autoregressive fashion. In contrast, MDLM and PGMs can generate tokens in completely
arbitrary orders.

Non-Autoregressive Language Models Any-order and any-subset autoregressive models (Yang
et al., 2020; Pannatier et al., 2024; Shih et al., 2022; Guo & Ermon, 2025) learn an autoregressive
distribution of tokens given arbitrary token subsets. In contrast, in this work, we accelerate MDLMs
(Sahoo et al., 2024), which do not enforce causal attention on the tokens.

7 CONCLUSION

We introduce “Partition Generative Modeling” (PGM), a novel approach to masked generative
modeling that eliminates MASK tokens entirely. PGM achieves significant improvements in inference
speed on both text and images, with minimal effect on quality. The significant improvements suggest
that PGM might be suited for domains that benefit from test-time scaling, such as coding and
reasoning. We show that PGMs can be distilled with SDTT (Deschenaux & Gulcehre, 2025) for
further acceleration. Future work could explore optimizations to the PGM architecture, investigating
distillation techniques specifically designed for PGMs, and extending the approach to multimodal
settings. Additionally, exploring how PGMs can be scaled to larger sizes and longer context lengths
is an interesting direction. In summary, PGM offers an alternative to masked generative models, with
particular advantages for applications where inference speed is critical.
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A LIMITATIONS

To match the validation perplexity of the MDLM baseline at a context length of 1024, our models
require an increased parameter count. We attribute this to the GroupSwap layer, and future work
will explore more efficient mechanisms for information exchange between groups in PGMs. While
PGMs offer faster inference, their training is slightly more computationally expensive (Section D),
as use torch’s default attention implementation (“sdpa”) for simplicity. By reordering tokens
according to their group assignment, the self-attention matrix becomes block-diagonal. Future work
will explore efficient kernel implementations that exploit this block-diagonal sparsity. Partition
Generative Modeling is a general framework, and its application to multimodal settings remains an
open direction for future research.

B EXPERIMENTAL DETAILS

We trained all models from scratch rather than using the pre-trained models released by the MDLM
authors. Our models achieve comparable performance to the original work. On LM1B, we obtain a
validation perplexity of 27.67 after 1M steps (compared to MDLM’s reported 27.04), while on OWT,
we reach 23.07 (versus MDLM’s 23.21).

Minor differences can be expected since estimating the perplexity of diffusion language models
involves a Monte-Carlo approximation of the NELBO (Equation 4) with finitely many samples.
Although we used libraries (e.g PyTorch) with the same version as MDLM, differences in compute
environments and underlying software stacks may also contribute to these variations. Since the
performance gap is small, we are confident that we used the code of MDLM correctly.

B.1 LM1B

For the LM1B dataset, we employed the bert-base-uncased tokenizer with a context length of
128 tokens, padding shorter sequences. Our architecture consisted of a Diffusion Transformer (DiT)
with 12 transformer blocks, 12 attention heads, a hidden dimension of 768, and a dropout rate of 0.1.
We optimized the model using Adam (Kingma & Ba, 2017) (learning rate 3e-4, betas of (0.9, 0.999),
epsilon 1e-8) without weight decay. We based our implementation on the official MDLM codebase.
We trained with a global batch size of 512 across 8 GPUs (2 nodes with 4 GPUs), gradient clipping at
1.0, and a constant learning rate with 2,500 steps of linear warmup. We trained for 1 million steps
with an EMA rate of 0.9999. Besides the neural network hyperparameters, the other parameters were
unchanged when training the PGM.

B.2 OWT

For the OpenWebText (OWT) dataset, we used the GPT-2 tokenizer with a context length of 1024
tokens. Our architecture consisted of a Diffusion Transformer (DiT) with 12 transformer blocks,
12 attention heads, a hidden dimension of 768, and a dropout rate of 0.1. We optimized the model
using Adam (Kingma & Ba, 2017) with a learning rate of 3e-4, betas of (0.9, 0.999), and epsilon
of 1e-8, without weight decay. We trained with a global batch size of 512 across 16 GPUs (4 nodes
with 4 GPUs). We applied gradient clipping at 1.0 and used a constant learning rate schedule with
2,500 steps of linear warmup. The model was trained for 1 million steps with an EMA rate of 0.9999.
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Table 3: Latency and throughput for a single training step of the MDLMs and PGMs, computed on a
single A100-SXM4-80GB GPU. On LM1B, PGM introduces a negligible overhead over MDLM. On
OWT, our PGM with 6 encoder and decoder layers and an embedding dimension of 1024 achieves
around 75% of the training throughput of MDLM. Recall that at inference, the same PGM is around
5× faster than MDLM.

Model Forward Pass Forward + Backward

Latency (ms) Seq/sec Latency (ms) Seq/Sec

LM1B (context length 128, batch size 64, trained on 8 GPUs)
MDLM 0.03± 0.00 1′978.87± 44.21 0.08± 0.00 714.80± 15.47
PGM 6 / 6 0.03± 0.00 1′966.60± 102.14 0.08± 0.00 794.42± 18.81

OpenWebText (context length 1024, batch size 32, trained on 16 GPUs)
MDLM 0.13± 0.00 233.28± 2.58 0.39± 0.00 80.86± 0.15
PGM 8 / 8 0.17± 0.00 188.07± 0.75 0.47± 0.00 68.04± 0.08
PGM 6 / 6 (dim. 1024) 0.18± 0.00 176.47± 0.65 0.50± 0.00 62.85± 0.19

Besides the neural network hyperparameters, the other parameters were unchanged when training the
PGM.

B.3 IMAGENET

For the ImageNet experiments, we used a pre-trained VQGAN tokenizer (Esser et al., 2021; Besnier
et al., 2025), following exactly the setup of HaltonMaskGIT (Besnier et al., 2025). The images are
tokenized into sequences of 1024 tokens. This allowed for a direct comparison between PGM and
MaskGIT, both trained in the codebase of Besnier et al. (2025) and the FID is evaluated using the
Halton sampler and the original sampler.

All models use 24 transformer blocks. For PGM, we add a GroupSwap layer to enable information
exchange between partition groups. We use the same hyperparameters as HaltonMaskGIT for all
models, except we reduce the training duration to 500k steps (from 2M) due to computational
constraints. All models are trained to be class-conditional, which enables the use of classifier-free
guidance to significantly improve performance.

As shown in Table 9, PGMs slightly outperform MaskGIT in FID when using the original confidence-
based sampler. With the Halton sequence-based sampler, PGMs achieve a marginally higher FID,
as reported in Table 10. In terms of efficiency, PGMs deliver up to 7.5× higher throughput than
MaskGIT, as shown in Table 11.

B.4 IMPACT OF NUMERICAL PRECISION ON SAMPLING

Zheng et al. (2025) identified that Masked Diffusion Models often achieve lower generative perplexity
results because of underflow in the logits when sampling using low precision. The resulting decrease
in token diversity can make evaluations based solely on generative perplexity misleading. Hence, we
always cast the logits to FP64 before sampling.

B.5 SAMPLE-BASED EVALUATION

Generative Perplexity We use the generative perplexity to evaluate the quality of samples, follow-
ing prior work (Lou et al., 2024; Sahoo et al., 2024; Deschenaux & Gulcehre, 2025). The generative
perplexity measures how well a reference model (in our case, GPT-2 Large) can predict the next token
in generated sequences. Specifically, we generate 1′024 samples from each model being evaluated.
For each generated sample, we compute the generative perplexity using GPT-2 Large as follows:

Perplexity = exp

(
− 1

N

N∑
i=1

log pGPT-2 Large(xi|x<i)

)
, (10)

where L is the length of the sequence, xi is the i-th token, and pGPT-2 Large(xi|x<i) is the probability
assigned by GPT-2 Large to token xi given the preceding tokens x<i.
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Figure 5: Training loss of MDLM, MDLM with Complementary Masking (Section 5.3) and PGM.
Complementary masking seems to introduce spikes in the loss, even though it did not cause the
models to diverge.

Unigram Entropy Unfortunately, a low generative perplexity can be achieved by generating
repetitive text. To catch such cases, we compute the average unigram entropy of the generated
samples:

Unigram Entropy = − 1

N

N∑
i=1

∑
v∈X

c(v,x(i))

L
log

c(v,x(i))

L
, (11)

where X is the vocabulary, v is a token of the vocabulary, and c(v,x) is the empirical appearance
count of the token v in the sequence x. Low unigram entropy helps us to catch degenerate generation,
as shown in prior work (Dieleman et al., 2022).

Fréchet Inception Distance and Inception Score On image generation tasks, we evaluate the
quality of samples using the Fréchet Inception Distance (FID) (Heusel et al., 2018) and Inception
Score (IS) (Salimans et al., 2016). Both metrics are computed using 50′000 images, following the
standard practice.

C ADDITIONAL RESULTS

C.1 IMPACT OF CONTEXT LENGTH ON THE EFFECTIVENESS OF COMPLEMENTARY MASKING

There are three key differences between our experiments on LM1B and OWT. First, we used different
tokenizers: bert-base-uncased for LM1B and GPT2’s tokenizer for OWT, following the setup
of MDLM (Sahoo et al., 2024). Second, the context lengths differ significantly: 128 tokens for LM1B
versus 1024 for OWT. Third, we train on different datasets that might have different characteristics.

We observed that complementary masking helps when training on OWT using a shorter context
length of 128 tokens with the GPT-2 tokenizer. Indeed, after the 200k training step, the MDLM with
complementary masking achieved a validation PPL of 37.92, outperforming the standard MDLM,
which reached 39.90. This suggests that PGMs may not need extra parameters when the sequence
length is short. Exploring the use of PGMs in domains where the sequence length is short, such as
modeling chemical sequences, is a promising direction for future work.

C.2 MDLM+SDTT VS PGM+SDTT

The precision of logits during sampling can have a significant effect on sample quality, as noted in
Section B.4. Hence, we cast all logits to FP64 prior to sampling, unlike the original MDLM and
SDTT implementations.
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Model LAMBADA ARC-e ARC-c HSwag MathQA PIQA WinoG

MDLM 38.52 34.26 24.66 31.54 20.70 57.89 51.93
PGM 8 / 8 46.98 37.37 24.06 33.10 21.24 59.09 51.30
PGM 6 / 6 (1024) 41.39 38.80 22.95 33.92 21.71 61.43 54.30

Table 4: Accuracy on downstream tasks. We evaluate MDLM and PGM on LAMBADA, ARC
Easy and Challenge, HellaSwag, MathQA, PIQA, and WinoGrande. Both models show comparable
performance across tasks. PGM outperforms MDLM on all but one benchmark, where the difference
between MDLM and PGM 8 / 8 is small.

Using higher precision also affects distillation, which compresses two sampling steps into one. As
shown in Table 7, models distilled with float32 achieve lower generative perplexity than those trained
with mixed precision (bfloat16). We therefore report float32 results in the main body.

C.3 TRAINING STABILITY

Complementary masking introduces occasional spikes in the training loss in both MDLMs and
PGMs, as shown in Figure 5. This phenomenon should be kept in mind when scaling PGMs to larger
sizes. Despite these spikes, all runs converged on the first attempt. We observed different precision
requirements between models. For loss computations, MDLMs performed best with BF16 precision,
while PGMs achieved better results with FP32 precision. Both models use mixed precision within
the neural network; the precision difference only affects computations performed outside the model,
such as the loss calculation.

C.4 ADDITIONAL DOWNSTREAM TASKS

Table 4 shows more downstream evaluation results following SDTT (Deschenaux & Gulcehre, 2025),
where PGM outperforms MDLM on all but one benchmark, where the difference is small. We compare
the models using the lm-eval-harness library (Gao et al., 2024). The lm-eval-harness
library was designed for autoregressive language models and needs to be adapted for MDLM. For
multiple choice questions, lm-eval-harness relies on a function that computes the log-likelihood
of each answer yi given a prefix x. The model computes p(yi|x) for each possible answer i and
choosing the one with the highest log-likelihood.

Table 4 reports additional downstream results as in Deschenaux & Gulcehre (2025), where PGM
outperforms MDLM on all but one benchmark, with only a small gap on the latter. We evaluate models
with the lm-eval-harness library (Gao et al., 2024), originally designed for autoregressive LMs
and adapted here for MDLM. For multiple-choice tasks, lm-eval-harness computes the log-
likelihood of each candidate answer yi given a prefix x, i.e., p(yi|x), and selects the answer with the
highest score.

While lm-eval-harness uses the log-likelihood of the continuation, the NELBO objective
(Equation 4) bounds the log-likelihood of the complete sequence (x,yi). However, we only need to
know which continuation achieves the highest log-likelihood, not to compute the exact log-likelihood.
Using Bayes’ theorem, we note that

log p(yi|x) = log p(x,yi)− log p(x) ∝ log p(x,yi), (12)

since log p(x) is constant with respect to yi. Therefore, we can simply evaluate the variational bound
on log p(x,yi) to select the most likely continuation yi.

C.5 PERFORMANCE ON LONGER CONTEXT LENGTH

Due to the high computational cost, we were unable to train models with context lengths greater
than 1024. Nevertheless, we report the latency and throughput of both MDLM and PGM at a context
length of 4096. As shown in Table 8, PGM remains substantially faster than MDLM in this setting.
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D COMPUTATIONAL COSTS

This section presents the computational costs associated with the models reported in this paper. We
exclude costs associated with exploratory experiments that yielded inferior results and were not
included in this manuscript.

D.1 TRAINING COSTS

Training PGMs is currently slower than training MGMs since we use torch.sdpa with dense
tensor masks. Future work should explore efficient kernels to address this limitation. We measure the
latency and throughput using a single NVIDIA A100-SXM4-80GB GPU, with results reported in
Table 3. We compute the mean and standard deviation over 100 batches after 2 warmup batches.

The total training duration approximately equals the per-step latency multiplied by the number of
steps. Experiments with complementary masking required twice the computational resources due
to larger batch sizes and gradient accumulation. Training times for 1M steps varied by dataset:
approximately 22 hours for LM1B, 4.5 days for OWT, and 3.8 days for ImageNet.

D.2 INFERENCE COSTS

We evaluate the inference efficiency of PGMs compared to MDLMs and GPT-2 with KV caching. As
shown in Figure 1, PGMs achieve around 5− 5.5× improvements in throughput over MDLM while
reaching superior generative perplexity. For inference measurements, we use a single NVIDIA A100-
SXM4-80GB GPU. The efficiency gain stems from the ability of PGMs to process only unmasked
tokens during inference, as illustrated in Figure 2. Table 6 compares MDLM and PGMs on the
generative perplexity, unigram entropy, latency, and throughput. We compute the mean and standard
deviation of the latency and throughput over 20 batches after two warmup batches.

D.3 LICENSING

Our code and model artifacts will be released under the MIT license. The OWT dataset (Gokaslan
& Cohen, 2019) is available under the Apache License 2.0. We were unable to identify a specific
license for the LM1B dataset (Chelba et al., 2014). The images in ImageNet remain the property of
their respective copyright holders.

Algorithm 1 Simplified Sampling for PGMs

1: Input: Batch size BS, number of steps K, model length L, special BOS index
2: Output: Generated samples x
3: x← empty_tensor(BS, 1) ▷ Initialize
4: x[:, 0]← BOS ▷ Set BOS as first token
5: k← L/K ▷ Number of tokens to denoise at each step
6: decoded_positions← zeros(BS, 1) ▷ Keep track of already-decoded and positions to decode
7: positions_to_decode← 1+ rand_row_perm(BS, L-1) ▷ Each rows is a permutation of {1, ..., L}
8: for _ in range(K) do
9: pos_to_decode← positions_to_decode[:, :k] ▷ Random positions to be predicted

10: new_values← pgm_predict(x, decoded_positions, pos_to_decode)
11: x← concat([x, new_values], dim=1) ▷ Add new values to the sequence length dimension
12: decoded_positions← concat([decoded_positions, pos_to_decode], dim=1)
13: positions_to_decode← positions_to_decode[:, k:] ▷ Remove the k decoded positions
14: end for
15: out← reoder(x, decoded_positions) ▷ Sort based on positions
16: return out
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Algorithm 2 MDLM-equivalent sampling for PGMs.

1: Input: Batch size BS, number of steps K, model length L, special BOS index
2: Output: Generated samples x
3: x← empty_tensor(BS, 1) ▷ Initialize
4: x[:, 0]← BOS ▷ Set BOS as first token
5: k← L/K ▷ Number of tokens to denoise at each step
6: clean_positions← zeros(BS, 1) ▷ Keep track of clean and noisy positions
7: concrete_lengths← ones(BS, 1) ▷ Keep track of the actual length of each sequence (some are

padded).
8: noisy_positions← 1+ rand_row_perm(BS, L-1)
9: for _ in range(K) do

10: n_denoise_per_seq, noisy_pos_input← sample_noisy(noisy_positions, k) ▷ Algorithm 3
11: new_values← pgm_predict(x, clean_positions, noisy_pos_input)
12: x, clean_positions, noisy_positions, concrete_lengths← extract_predictions(
13: x, ▷ Algorithm 4
14: clean_positions,
15: noisy_positions,
16: noisy_pos_input,
17: concrete_lengths,
18: n_denoise_per_seq,
19: new_values)
20: end for
21: out← reoder(x, clean_positions) ▷ Sort based on clean_positions
22: return out

Algorithm 3 Sample the number of tokens to denoise from a binomial distribution and pad the input.

1: Input: Noisy positions tensor, probability of denoising prob_denoise, model length L, concrete
lengths tensor

2: Output: Noisy positions to denoise
3: n_denoise_per_seq← binomial(BS, L, prob_denoise) ▷ Sample from binomial distribution
4: n_denoise_per_seq← min(n_denoise_per_seq, L - concrete_lengths) ▷ Don’t denoise more

than available
5: denoise_seq_len← max(n_denoise_per_seq, 0) ▷ Maximum number of tokens to denoise
6: if denoise_seq_len = 0 then
7: return empty_tensor() ▷ Nothing to denoise
8: end if
9: noisy_pos_input← noisy_positions[:, :denoise_seq_len] ▷ Some predictions won’t be used

10: return n_denoise_per_seq, noisy_pos_input
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Algorithm 4 Extract the correct number of predictions per sequence

1: Input: x, concrete_lengths, n_denoise_per_seq, denoised_token_values, clean_positions,
noisy_positions, noisy_pos_input

2: Output: Updated x, clean_positions, noisy_positions, concrete_lengths
3: new_concrete_lengths← concrete_lengths + n_denoise_per_seq ▷ Update sequence lengths
4: n_tok_to_add← max(new_concrete_lengths) - shape(x, 1) ▷ Calculate padding needed
5: if n_tok_to_add > 0 then
6: pad← zeros(BS, n_tok_to_add) ▷ Create padding tensor
7: x← concat(x, pad, dim=1) ▷ Pad the sequences
8: clean_positions← concat(clean_positions, pad, dim=1) ▷ Pad the positions
9: end if

10: for i in range(BS) do
11: if n_denoise_per_seq[i] = 0 then
12: continue ▷ Skip if no tokens to denoise
13: end if
14: x[i, concrete_lengths[i]:new_concrete_lengths[i]]←
15: denoised_token_values[i, :n_denoise_per_seq[i]]
16: clean_positions[i, concrete_lengths[i]:new_concrete_lengths[i]]←
17: noisy_pos_input[i, :n_denoise_per_seq[i]]
18: noisy_positions[i, :shape(noisy_positions, 1) - n_denoise_per_seq[i]]←
19: noisy_positions[i, n_denoise_per_seq[i]:]
20: end for
21: return x, clean_positions, noisy_positions, new_concrete_lengths

Model (LM1B) Val. PPL ↓
200k steps

MDLM 34.29
MDLM (Compl. masking) 30.87
PGM 8 / 4 32.83
PGM 10 / 2 33.55
PGM 4 / 8 32.84
PGM 6 / 6 32.69
PGM 6 / 6 (lsm) 32.70
PGM 6 / 6 (mean) 33.89

1M steps
MDLM 27.67
MDLM (Compl. masking) 25.72
PGM 6 / 6 26.80

Model (OWT) Val. PPL ↓
200k steps

MDLM 25.35
MDLM (Compl. masking) 25.32
PGM 6 / 6 26.96
PGM 8 / 8 25.10
PGM 10 / 6 25.19
PGM 6 / 6 (dim. 1024) 23.75

1M steps
MDLM 23.07
MDLM (Compl. masking) 22.98
PGM 8 / 8 22.61
PGM 6 / 6 (dim. 1024) 21.43

Table 5: Perplexity evaluations. Validation perplexity of the Masked Diffusion Language Model
(MDLM) and PGMs (ours) on LM1B and OpenWebText (OWT). The row MDLM (Compl. masking)
denotes an MDLM trained with the complementary masking strategy discussed in Section 5.3. The
row PGM k / m denotes a PGM with k encoder and m decoder layers, and we highlighted the best
PGM results in gray. lsm and mean denote the logsumexp and mean queries initializations (Section 4).
Takeaway: using the same number of layers in the encoder and decoder, and data-independent
queries performed best. On LM1B, our PGM reaches 1.95 lower perplexity than MDLM after 1M
steps. On OWT, we grow the embedding dimension or the number of layers to outperform OWT.
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Table 6: Sample quality and efficiency on OpenWebText with different numbers of sampling steps.
We generate sequences of 1024 tokens with a batch size of 32 to measure the latency and throughput.
PGM 6 / 6 with a hidden dimension of 1024 and uniform sampling achieves at least a 5× latency and
throughput improvement over MDLM, with better generative perplexity and matching entropy.

Model Gen. PPL ↓ Entropy ↑ Latency ↓ Throughput ↑
(ms) (tok/s)

MDLM
32 steps 192.31 5.73 8.037± 0.01 4′077.08± 3.06
64 steps 142.58 5.69 15.82± 0.01 2′070.67± 0.69
128 steps 122.89 5.67 31.41± 0.01 1′043.22± 0.16
256 steps 113.96 5.66 62.54± 0.01 523.90± 0.06
512 steps 109.05 5.64 124.94± 0.16 262.26± 0.33
1024 steps 106.75 5.64 249.31± 0.11 131.42± 0.05

PGM 8 / 8 (uniform sampling)
32 steps 189.02 5.73 1.55± 0.01 21′120.99± 83.59
64 steps 143.79 5.69 3.00± 0.01 10′914.91± 41.69
128 steps 122.21 5.66 5.86± 0.02 5′585.57± 24.49
256 steps 112.48 5.65 11.64± 0.03 2′814.99± 9.33
512 steps 108.76 5.64 22.98± 0.02 1′425.89± 1.61
1024 steps 107.03 5.63 45.84± 0.03 714.71± 0.50

PGM 8 / 8 (non uniform sampling)
32 steps 194.09 5.73 2.07± 0.02 15′764.09± 192.12
64 steps 143.60 5.69 3.90± 0.07 8′405.14± 158.01
128 steps 124.38 5.67 7.41± 0.08 4′419.77± 53.27
256 steps 116.85 5.66 14.73± 0.19 2′223.6372± 28.47
512 steps 111.11 5.64 28.15± 0.32 1′163.79± 13.25
1024 steps 108.24 5.63 54.62± 0.66 599.97± 7.27

PGM 6 / 6 (dim. 1024, uniform sampling)
32 steps 185.16 5.73 1.59± 0.01 20′569.99± 95.63
64 steps 138.87 5.70 3.03± 0.01 10′805.31± 14.11
128 steps 116.95 5.67 5.93± 0.01 5′518.09± 13.46
256 steps 108.51 5.65 11.77± 0.01 2′782.78± 3.46
512 steps 101.94 5.63 23.25± 0.01 1′408.88± 1.05
1024 steps 99.64 5.62 46.31± 0.02 707.52± 0.34

PGM 6 / 6 (dim. 1024, non-uniform sampling)
32 steps 191.30 5.74 2.12± 0.07 15′415.56± 467.20
64 steps 138.67 5.69 3.940± 0.06 8′318.72± 135.47
128 steps 118.17 5.67 7.60± 0.09 4′311.80± 54.92
256 steps 108.93 5.65 14.84± 0.20 2′207.71± 29.71
512 steps 105.41 5.64 28.56± 0.33 1′147.17± 13.47
1024 steps 102.93 5.62 55.50± 0.36 590.37± 3.85
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Table 7: Generative perpleixty of MDLM and PGM after distillation with varying precision.

Model Gen. PPL ↓ Entropy ↑ Latency ↓ Throughput ↑
(ms) (tok/s)

MDLM+SDTT (loss in BF16)
32 steps 66.26 5.49 8.037± 0.01 4′077.08± 3.06
64 steps 53.98 5.46 15.82± 0.01 2′070.67± 0.69
128 steps 48.02 5.44 31.41± 0.01 1′043.22± 0.16
256 steps 45.86 5.42 62.54± 0.01 523.90± 0.06
512 steps 44.21 5.40 124.94± 0.16 262.26± 0.33
1024 steps 43.19 5.38 249.31± 0.11 131.42± 0.05

MDLM+SDTT (loss in FP32)
32 steps 61.65 5.46 8.037± 0.01 4′077.08± 3.06
64 steps 50.65 5.43 15.82± 0.01 2′070.67± 0.69
128 steps 45.06 5.40 31.41± 0.01 1′043.22± 0.16
256 steps 41.70 5.37 62.54± 0.01 523.90± 0.06
512 steps 40.63 5.36 124.94± 0.16 262.26± 0.33
1024 steps 39.50 5.32 249.31± 0.11 131.42± 0.05

PGM 6 / 6 (dim. 1024)+SDTT (loss in BF16)
32 steps 91.61 5.56 1.59± 0.01 20′569.99± 95.63
64 steps 72.73 5.52 3.03± 0.01 10′805.31± 14.11
128 steps 63.83 5.49 5.93± 0.01 5′518.09± 13.46
256 steps 58.74 5.47 11.77± 0.01 2′782.78± 3.46
512 steps 58.77 5.47 23.25± 0.01 1′408.88± 1.05
1024 steps 56.47 5.46 46.31± 0.02 707.52± 0.34

PGM 6 / 6 (dim. 1024) nucleus (p=0.9)+SDTT (loss in BF16)
32 steps 68.33 5.50 1.74± 0.01 18′866.12± 18.35
64 steps 53.88 5.45 3.18± 0.01 10′307.16± 6.58
128 steps 46.99 5.42 6.10± 0.01 5′375.20± 2.40
256 steps 43.22 5.40 11.95± 0.01 2′742.74± 1.32
512 steps 42.79 5.39 23.63± 0.01 1′386.79± 0.69
1024 steps 40.99 5.38 46.83± 0.02 699.80± 0.24

PGM 6 / 6 (dim. 1024)+SDTT (loss in FP32)
32 steps 84.97 5.52 1.74± 0.01 20′569.99± 95.63
64 steps 67.60 5.49 3.18± 0.01 10′805.31± 14.11
128 steps 60.06 5.47 6.10± 0.01 5′518.09± 13.46
256 steps 55.97 5.45 11.95± 0.01 2′782.78± 3.46
512 steps 54.13 5.44 1′408.88± 1.05 1′408.88± 1.05
1024 steps 52.77 5.44 46.83± 0.02 707.52± 0.34

PGM 6 / 6 (dim. 1024) nucleus (p=0.9)+SDTT (loss in FP32)
32 steps 63.46 5.45 1.59± 0.01 18′866.12± 18.35
64 steps 49.94 5.41 3.03± 0.01 10′307.16± 6.58
128 steps 43.84 5.39 5.93± 0.01 5′375.20± 2.40
256 steps 40.76 5.36 11.77± 0.01 2′742.74± 1.32
512 steps 39.46 5.36 23.25± 0.01 1′386.79± 0.69
1024 steps 38.81 5.35 46.31± 0.02 699.80± 0.24

PGM 8 / 8 +SDTT (loss in BF16)
32 steps 102.64 5.54 1.55± 0.01 21′120.99± 83.59
64 steps 82.93 5.50 3.00± 0.01 10′914.91± 41.69
128 steps 73.19 5.48 5.86± 0.02 5′585.57± 24.49
256 steps 70.30 5.47 11.64± 0.03 2′814.99± 9.33
512 steps 68.07 5.46 22.98± 0.02 1′425.89± 1.61
1024 steps 65.87 5.44 45.84± 0.03 714.71± 0.50

PGM 8 / 8 +SDTT (loss in FP32)
32 steps 87.64 5.51 1.55± 0.01 21′120.99± 83.59
64 steps 70.47 5.48 3.00± 0.01 10′914.91± 41.69
128 steps 62.66 5.46 5.86± 0.02 5′585.57± 24.49
256 steps 59.38 5.45 11.64± 0.03 2′814.99± 9.33
512 steps 57.57 5.44 22.98± 0.02 1′425.89± 1.61
1024 steps 56.12 5.44 45.84± 0.03 714.71± 0.50
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Table 8: Throughput (TP) of MDLM and PGM with a context length of 4096, for varying number of
inference steps. PGM is significantly faster than MDLM.

Model TP (4096) TP (1024) TP (256) TP (64)
MDLM 30.45± 0.06 121.25± 0.02 483.53± 0.25 1′912.16± 1.44
PGM 8/8 128.99± 0.23 697.36± 32.83 2’216.91± 3.06 8’203.82± 6.60
PGM 6/6 (dim=1024) 129.01± 0.67 706.65± 36.23 2′146.60± 15.12 8′175.69± 7.85

Table 9: Comparison of the quality of samples from PGM and MaskGIT with the same number of
layers, using the original confidence-based sampler.

Model FID ↓ IS ↑
w = 0.0 w = 1.0 w = 4.0 w = 0.0 w = 1.0 w = 4.0

MaskGIT 14.38 7.74 7.53 82.49 151.26 289.75
PGM 12/12 18.68 8.91 7.30 67.39 136.51 289.43
PGM 14/10 21.81 10.18 7.71 59.98 121.06 265.72

Table 10: Comparison of the quality of samples from PGM and MaskGIT with the same number of
layers, using the Halton sampler (Besnier et al., 2025).

Model FID ↓ IS ↑
w = 0.0 w = 1.0 w = 4.0 w = 0.0 w = 1.0 w = 4.0

MaskGIT 28.84 4.14 12.51 59.18 263.66 367.62
PGM 12/12 22.58 10.07 6.38 66.50 134.44 311.06
PGM 14/10 25.09 11.43 5.54 62.17 120.02 302.36

Table 11: Latency and Throughput of PGM and Maskgit on ImageNet256, when sampling in 32
steps with a batch size of 32. PGM is significantly faster than MaskGIT, especially when using
classifier-free guidance (cfg).

Model Num. params. TP (sec.) Speedup TP (sec.) Speedup Lat.
MaskGIT 458M 1.048 1x 1.033 1x 30.599
PGM 12/12 464M 12.883 >6.54x 7.771 >7.52x 2.484
PGM 14/10 464M 12.715 >6.15x 7.235 >6.97x 2.642
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