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Abstract

Referring video object segmentation (R-VOS) aims to segment the object masks in a1

video given a referring linguistic expression to the object. It is a recently introduced2

task attracting growing research attention. However, all existing works make a3

strong assumption: The object depicted by the expression must exist in the video,4

namely, the expression and video must have an object-level semantic consensus.5

This is often violated in real-world applications where an expression can be queried6

to false videos, and existing methods always fail in such false queries due to abusing7

the assumption. In this work, we emphasize that studying semantic consensus is8

necessary to improve the robustness of R-VOS. Accordingly, we pose an extended9

task from R-VOS without the semantic consensus assumption, named Robust R-10

VOS (R2-VOS). The R2-VOS task is essentially related to the joint modeling of the11

primary R-VOS task and its dual problem (text reconstruction). We embrace the12

observation that the embedding spaces have relational consistency through the cycle13

of text-video-text transformation, which connects the primary and dual problems.14

We leverage the cycle consistency to discriminate the semantic consensus, thus15

advancing the primary task. Parallel optimization of the primary and dual problems16

are enabled by introducing an early grounding medium. A new evaluation dataset,17

R2-Youtube-VOS, is collected to measure the robustness of R-VOS models against18

unpaired videos and expressions. Extensive experiments demonstrate that our19

method not only identifies negative pairs of unrelated expressions and videos,20

but also improves the segmentation accuracy for positive pairs with a superior21

disambiguating ability. Our model achieves the state-of-the-art performance on22

Ref-DAVIS17, Ref-Youtube-VOS, and the novel R2-Youtube-VOS dataset.23

1 Introduction24

Referring video object segmentation (R-VOS) aims to segment a referred object in a video sequence25

given a linguistic expression. R-VOS has witnessed growing interest thanks to its promising potential26

in human-computer interaction applications such as video editing and augmented reality. Unlike27

other video segmentation tasks [45, 36, 35, 46] that only rely on visual cues, R-VOS [13] pairs a28

target video with a linguistic expression referring to an object.29

Previous works [1, 44] tackle the R-VOS problem with a strong assumption that the referred object30

exists in the video, i.e., there is an object-level semantic consensus between the expression and the31

video. However, this assumption does not always hold in practice. As shown in Figure 1, we notice a32

severe false-alarm problem experienced by previous methods when the semantic consensus does not33

exist, which may prevent those methods from being useful in various applications that cannot provide34

accurate vision-language pairs. We argue that the current R-VOS task is not completely defined with35

the assumption that the referred object always exists in the video.36

Even when semantic consensus exists in the given video-language pairs, it is still challenging to locate37

the correct object in the video due to the multimodal nature of the R-VOS task. Recently, MTTR [1]38
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Figure 1: Illustration of the new R2-VOS task. A linguistic expression is given to query a set of
videos without the semantic consensus assumption. Videos containing the referred object by the
expression are positive, otherwise negative. Unlike the previous R-VOS setting that assumes all target
videos are positive to the query expression, the new R2-VOS task is required to discriminate positive
and negative text-video pairs, and further segment object masks for all frames in positive videos
or treat entire negative videos as backgrounds. Compared to the previous state-of-the-art R-VOS
methods, MTTR [1] and ReferFormer [44], our method not only discriminates negative videos better
but also shows a superior disambiguating ability between visually similar objects in positive videos.

employs a multimodal transformer encoder to learn a joint representation of the linguistic expression39

and video, and then obtains the referred object by ranking all objects in the video. ReferFormer40

[44] follows the image-level method, ReTR [19], to adopt the linguistic expression as a query to41

the transformer decoder to avoid redundant ranking of all objects. However, these latest methods42

suffer from semantic misalignment of the segmented object and the linguistic expression, even with43

sophisticated components employed. As shown in Figure 1, the segmented objects by MTTR and44

ReferFormer are often not the object referred to by the linguistic expression.45

In this paper, we seek to investigate the semantic alignment problem between visual and linguistic46

modalities in referring video segmentation. We extend the current task definition of R-VOS [13] to47

accept both paired and unpaired video and language inputs. This new task, which we term Robust48

R-VOS (R2-VOS), overcomes the current limitation of the R-VOS task by additionally considering49

the semantic alignment of input video to referring expression. We reveal that this task is essentially50

related to two problems that are interrelated [31]: the R-VOS problem as the primary problem of51

segmenting mask sequences from videos with referring texts, and its dual problem of reconstructing52

text expressions from videos with object masks. By linking the primary and dual problems, we53

introduce a text-video-text cycle and a corresponding relational consistency constraint, which can54

enforce the semantic consensus between the text query and segmented mask to improve the primary55

task. In practice, naively conducting cyclic training of the text-video-text cycle will lead to a two-56

stage regime and significantly increasing costs. We address this problem by incorporating an early57

grounding scheme, serving as a proxy, to efficiently model the two tasks in a parallel manner. In58

addition, we discriminate the semantic misalignment between the video and text by assessing the cycle59

consistency between the original and reconstructed texts, thus alleviating the false-alarm problem.60

Our contributions can be summarized as:61

• We notice a severe false-alarm problem faced by previous R-VOS methods with unpaired62

inputs. To investigate the robustness of current referring segmentation models, we introduce63

the R2-VOS task that accepts unpaired video and text as inputs.64

• We propose a pipeline that jointly optimizes the primary referring segmentation and dual65

expression reconstruction task and introduces a relational cycle consistency constraint to66

enhance the semantic alignment between visual and textual modalities.67

• Our method surpasses previous state-of-the-art methods on Ref-Youtube-VOS, Ref-DAVIS,68

and R2-Youtube-VOS dataset in terms of both performance and speed.69

2 Related Works70

Vision and language representation learning. There have been a long line of studies on how to71

learn better vision-language representation, e.g., multimodal attention [30, 50, 8, 3], fusion scheme72

[7, 14, 15, 51], multi-step reasoning [47, 10] and pretraining [37, 5, 17]. KAC Net [2] leverages73
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knowledge-aided consistency constraints to enhance semantic alignment for weakly supervised phrase74

grounding. A structure-preserving constraint [42] is proposed to preserve some intra-modal properties75

when learning vision-language representation for image-text retrieval.76

Referring video object segmentation. R-VOS is a novel task that aims to segment an object across77

frames given a linguistic description. URVOS [39] is the first unified R-VOS framework with a78

cross-modal attention and a memory attention module, which largely improves R-VOS performance.79

ClawCraneNet [21] leverages cross-modal attention to bridge the semantic correlation between textual80

and visual modalities. ReferFormer [44] and MTTR [1] are two latest works that utilize transformers81

to decode or fuse multimodal features. ReferFormer [44] employs a linguistic prior to the transformer82

decoder to focus on the referred object. MTTR [1] leverages a multimodal transformer encoder83

to fuse linguistic and visual features. Different from other vision-language tasks, e.g., image-text84

retrieval [25, 26, 32] and video question answering [18, 40], R-VOS needs to construct object-level85

multimodal semantic consensus in a dense visual representation.86

3 R2-VOS87

3.1 Task Definition88

We introduce a novel task, robust referring video segmentation (R2-VOS), which aims to predict89

mask sequences {Mo} for an unconstrained video set {V } given a language expression Eo of an90

object o. Different from the previous R-VOS setup, the queried video V is not required to contain91

the referred object by expression Eo. We define a video V and an expression Eo to have semantic92

consensus if the object o appears in V , and the video is positive with respect to Eo, otherwise it is93

negative. The R2-VOS task is extended to discriminate positive and negative videos, and predict94

masks Mo of object o for positive videos and treat all frames in the negative videos as background.95

3.2 Problem Analysis96
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Figure 2: Problem analysis. (a) R2-VOS introduces the Primary problem of referring segmentation
and the Dual problem of text reconstruction for positive videos. The P/D problems are connected in a
cycle path from original expression Eo to reconstructed expression E′

o. (b) The cycle consistency
between the original and reconstructed embeddings (eo and e′o) can benefit to optimize the P problem.
We enable the joint optimization for cycle consistency with a cross-modal proxy fm defined between
all single-modal operations (i.e., Πenc

v , Πenc
e , Πdec

v and Πdec
e ). (c) Point-wise consistency is not

suitable in R2-VOS because the mapping between E and E ′ are not necessarily bijective. An object
can be referred by various textual expressions. (d) Instead, we apply a relational consistency to
preserve distances and angles.

Primary and dual problems for R2-VOS. The referring segmentation can be formulated as the97

maximum a posteriori estimation problem of p(Mo|V,Eo). By applying the Bayes rule, we obtain:98

p(Mo|V,Eo) ∼ p(Eo|V,Mo)p(Mo|V ) (1)

As the prior p(Mo|V ) is not affected by the expression Eo, we consider maximizing p(Eo|V,Mo)99

as a dual problem of the referring segmentation (primary problem), which is to reconstruct the text100

expression given the video and object masks. We note that for negative videos, p(Eo|V,Mo) is101

undefined because the mask Mo is empty. Thus, we only investigate the dual problem for positive102

videos. The primary problem and the dual problem can be connected in a cycle path, i.e., from the103

original expression Eo to the reconstructed expression E′
o through positive video queries, as shown104

in Figure 2 (a). We believe that the cycle constraint benefits to optimize the primary problem by105

enhancing the semantic consensus.106
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Figure 3: Overview of the proposed model. Given a video clip V = {It}Tt=1 and a textual expression
Eo referring object o, we first extract video feature and text feature separately, then fuse them in the
early grounding module to obtain the visual representation fearly of the referred object o. Then we
project fearly to a textual space to be e′ and add the relational cycle constraint with the original text
embedding e. The final segmentation is obtained by dynamic convolutions with video features from
the visual decoder and dynamic weights from the fused text embeddings. The semantic consensus of
input pairs is discriminated to be positive or negative by assessing the consistency between e and e′.

In practice, we study the cycle consistency between the original textual embedding space E and the107

transformed textual embedding space E ′ induced by positive videos. By definition, the path from the108

original text embedding eo to the reconstructed text embedding e′o is modulated with cross-modal109

interactions between video and text. Thus, to link the primary and dual problem and enable the joint110

optimization, we introduce a cross-modal intermediate feature fm to convey information of both the111

input of the primary problem (V,Eo) and the dual problem (V,Mo), as shown in Figure 2 (b). fm is112

defined between the encoder and decoder stages of single-modal operations, i.e., Πenc
v , Πenc

e , Πdec
v ,113

Πdec
e , to only focus on the multi-modal interaction.114

Relational cycle consistency. A key observation for cycle consistency between E and E ′ is that the115

mapping between them is not necessarily bijective, as there could be multiple textual descriptions for116

the same object. Thus, naively adding point-wise consistency, i.e., eo = e′o,∀eo ∈ E will collapse117

the feature space to a sub-optimal solution. Instead, we take inspiration from relational knowledge118

distillation [33], and introduce relational cycle consistency for E and E ′. The relational cycle119

consistency is to preserve the structure of the feature space rather than exact point-wise consistency,120

as illustrated in Figure 2 (c) and (d). Mathematically, the structure-preserving property is defined as121

isometric and conformal constraints to preserve pair-wise distance and angles for e ∈ E and e′ ∈ E ′:122

|e1 − e2| = |e′1 − e′2| (2)
∠(e1, e2, e3) = ∠(e′1, e

′
2, e

′
3), (3)

where | · | and ∠(·) denote distance and angle metrics.123

4 Method124

In this section, we elaborate our R2-VOS framework with the relational consistency, which mainly125

consists of four parts: feature extraction, early grounding as a medium, video-text (V-T) projection for126

text reconstruction, and mask decoding for final segmentation, as shown in Figure 3. We first extract127

the video feature f , word-level text feature g, and sentence-level text embedding e. On the one hand,128

to model the primary segmentation problem of maximizing p(Mo|V,Eo), we enable the multimodal129

interaction in the early grounding module to generate the grounded feature fearly. fearly coarsely130

locates the referred object o and filters out irrelevant features, which serves as a medium linking131

the primary segmentation and dual text reconstruction problem. The final mask Mo is obtained by132

dynamic convolution [4] on the decoded visual feature maps, with kernels learned from instance133

embedding {zt}Tt=1. On the other hand, to model the dual text reconstruction problem of maximizing134

p(Eo|V,Mo), we utilize the grounded video feature fearly as the alternative of V and Mo, since135

fearly conveys contextual video clues of object o. In this way, we enable the parallel optimization of136

the primary and dual problem by relating them to fearly. Specifically, we employ a V-T projection137

module to project fearly onto a reconstructed text embedding e′. We add relational constraint between138
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e′ and e to enforce the semantic alignment between the segmented mask and expression for positive139

videos. In addition, we introduce a semantic consensus discrimination head H(e, e′) to assess the140

consistency between original and reconstructed text embeddings, discriminating the alignment of141

multimodal semantics and identifying negative videos.142

4.1 Single-modal Feature Extraction143

Visual encoder. Following previous methods [1, 44, 43], we build the visual encoder with a visual144

backbone and a deformable transformer encoder [52] on top of it. The extracted features from the145

backbone are flattened, projected to a lower dimension, added with positional encoding [12], and146

then fed into a deformable transformer encoder [52] similar to the previous method [44]. We denote147

the multi-scale output of the transformer encoder as F and the low-resolution visual feature map from148

the backbone as f , where f ∈ RT×Cv× H
32×

W
32 , Cv is the feature channel, T is the video length and H149

and W are the original image size.150

Textual encoder. We leverage a pre-trained linguistic model RoBERTa [27] to map the input textual151

expression Eo to a textual embedding space. The textual encoder extracts a sequence of word-level152

text feature g ∈ RCe×L and a sentence-level text embedding e ∈ RCe×1, where Ce and L are the153

dimension of linguistic embedding space and the expression length respectively.154

4.2 Early Grounding155

Frame CAM of 𝐟𝐞𝐚𝐫𝐥𝐲

a black bear standing on a rock in a stream

Figure 4: Visualization of channel activa-
tion map (CAM) of fearly.

We propose an early grounding module to coarsely156

locate the referred object o and filter out irrelevant fea-157

tures. Then the grounded feature fearly encoding in-158

formation of o can not only be utilized for the primary159

segmentation problem, but also for the dual expression160

reconstruction task, which serves as a proxy connecting161

the two problems. Figure 4 shows a visualization of162

fearly. Specifically, we utilize the power of dynamic163

convolution [4] to discriminate visual features in the164

early stage. As shown in the blue part of Figure 3, we first enable the multimodal interaction between165

video and text features, then apply the dynamic convolution with kernels learned from text feature166

to discriminate the object-level semantics. In particular, multi-head cross-attention (MCA) [41] is167

leveraged to conduct the multimodal interaction:168

hf = LN(MCA(f ,g) + f) f ′ = LN(FFN(hf ) + hf ) (4)
169

hg = LN(MCA(g, f) + g) g′ = LN(FFN(hg) + hg), (5)

where MCA(X,Y) = Attention(WQX,WKY,WVY). W represents learnable weight. LN170

and FFN denote layer normalization and feed-forward network respectively. The text feature g′ is171

further pooled to a fixed length, and followed by a fully-connected layer to form the dynamic kernels172

Θ = {θi}Ki=1. K is the kernel number and θi ∈ RC×1. The dynamic kernels are applied separately173

to video feature f ′ ∈ RC×THW to form the fearly ∈ RC×THW174

fearly = BN(φ(θT1 f
′ ⊕ · · · ⊕ θTKf ′) + f ′), (6)

where ⊕ is the concatenation in channel dimension and φ(·) is a convolution to reduce the feature175

dimension. BN denotes batch normalization.176

4.3 Text Reconstruction177

V-T projection. We leverage a transformer decoder DE as textual decoder to transform the visual178

representation of the referred object into the textual space. As shown in Figure 3, a learnable text179

query e0 ∈ RCe×1 is employed to query the fearly. The output of the transformer decoder is the180

reconstructed text embedding e′ = DE(fearly, e0) ∈ RCe×1.181

4.4 Referring Segmentation182

Mask segmentation. Similar to previous methods [44, 1, 11], we leverage deformable transformer183

decoders with dynamic convolution to segment the object masks. As shown in Figure 3, we first fuse184
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the reconstructed text embedding e′ to text embedding e. The fused text embedding e is then repeated185

N times to form the instance query [43] z0 ∈ RCq×N , where Cq is the dimension of instance query186

and N is the instance query number. We then use T× deformable transformer decoders DV with187

shared weights to decode the instance embeddings zt ∈ RCq×N for each frame, i.e., zt = DV (Ft, z0).188

Ft is the multiscale visual feature from visual encoder at time t. A dynamic kernel wt is further189

learned from the instance embedding zt. The final feature map fout,t ∈ RC×H×W is obtained by190

fusing low-level features from the feature pyramid network [23] in the visual decoder. The mask191

prediction Mt ∈ RN×H×W can be computed by Mt = wT
t fout,t.192

Auxiliary heads. We build a set of auxiliary heads to obtain the final object masks across frames. In193

particular, a box head, a scoring head and a semantic consensus discrimination head are leveraged to194

predict the bounding boxes Bt ∈ RN×4, confidence scores St ∈ RN×1 and the alignment degree of195

multimodal semantics A ∈ R. The box and scoring head are two fully-connected layers upon the196

instance embedding et. The semantic consensus discrimination head H(e, e′) consists of two fully-197

connected layers upon the text embeddings e⊕ e′. Note that A represents the semantic alignment in198

the entire video rather a single frame, since the expression is a video-level description.199

4.5 Loss Function200

The loss function of our method can be boiled down to three parts:201

L = λtextLtext + λsegmLsegm + λalignLalign, (7)

where Ltext, Lsegm, and Lalign are losses for text reconstruction, referring segmentation and semantic202

consensus discrimination respectively. A ground-truth semantic alignment Â = {0, 1} is utilized203

to discriminate positive and negative pairs. The Lalign is simply a cross-entropy loss between the204

predicted alignment A and ground-truth Â. The other two terms are computed as follows:205

Loss for text reconstruction. Given the text embedding e and reconstructed text embedding e′, we206

employ a relational constraint to impose the cycle consistency between e and e′. We calculate the207

loss by208

Ltext = 1(Â) · (Ldist + λangleLangle), (8)

where the indicator function 1(Â) = 1 if the alignment indicates the referred object exists in the209

video, otherwise 0, λangle is a hyperparameter balancing the distance loss Ldist and angle loss210

Langle. We elaborate these two losses according to the relational cycle consistency Equation 2.211

Let Xn = {(x1, ..., xn)|xi ∈ X} denote a set of n-tuples, Φn = {(x,x′)|x ∈ Xn,x′ ∈ X ′n}212

denote a set of pairs consisting of two n-tuples of distinct elements from two different sets X and213

X ′. Specifically, the distance-based and angle-based relations relate text embeddings of 2-tuple and214

3-tuple respectively, i.e., Φ2 = {(x,x′)|x = (ei, ej),x
′ = (e′i, e

′
j), i ̸= j} and Φ3 = {(x,x′)|x =215

(ei, ej , ek),x
′ = (e′i, e

′
j , e

′
k), i ̸= j ̸= k}. Then the losses are given by:216

Ldist =
∑

(x,x′)∈Φ2

lδ(ϕD(x), ϕD(x′)), ϕD(x) = 1
µ(x)∥ei − ej∥2, (9)

Langle =
∑

(x,x′)∈Φ3

lδ(ϕ∠(x), ϕ∠(x
′)), ϕ∠(x) = cos∠(ei, ej , ek), (10)

where µ(x) =
∑

x=(x1,x2)∈X 2
||x1−x2||2

|X 2| is the average distance function, and the Huber loss217

lδ(x, x
′) = 1

2 (x− x′)2 if |x− x′| ≤ 1, otherwise |x− x′| − 1
2 .218

Loss for referring segmentation. Given a set of predictions y = {yi}Ni=1 and ground-truth ŷ,219

where yi = {Bi,t,Si,t,Mi,t}Tt=1 and ŷ = {B̂t, Ŝt, M̂t}Tt=1, we search for an assignment σ ∈ PN220

with the highest similarity where PN is a set of permutations of N elements (ŷ is padded with ∅).221

The similarity can be computed as222

Lmatch(yi, ŷ) = λboxLbox + λconfLconf + λmaskLmask, (11)

where λbox, λconf , and λmask are weights to balance losses. Following previous works [6, 43], we223

leverage a combination of Dice [20] and BCE loss as Lmask, focal loss [24] as Lconf , and GIoU224

[38] and L1 loss as Lbox. The best assignment σ̂ is solved by Hungarian algorithm [16]. Given225

the best assignment σ̂, the segmentation loss between ground-truth and predictions is defined as226

Lsegm = 1(Â) · Lmatch(y, ŷσ̂(i)).227
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4.6 Inference228

During inference, we select the candidate with the highest confidence to predict the final masks:229

{M̄t}Tt=1 = {1(A) ·Ms̄,t}Tt=1, s̄ = argmax
i

{Si,1 + · · ·+ Si,T }Ni=1, (12)

where {M̄t}Tt=1 is the masks of referred object. Si,t and Mi,t represent the i-th candidate in St and230

Mt respectively. s̄ is the slot with the highest confidence to be the target object. We use 1(A) to filter231

out predictions in negative videos to mitigate false alarm. 1(A) = 1 if A > 0.5, else 0.232

5 Experiment233

5.1 Dataset and Metrics234

Dataset. We conduct experiments on three datasets: Ref-Youtube-VOS, Ref-DAVIS and R2-235

Youtube-VOS. Ref-Youtube-VOS [39] is a large-scale benchmark that has 3,978 videos with about236

15k language descriptions. There are 3,471 videos with 12,913 expressions in the training set and 507237

videos with 2,096 expressions in the validation set. Ref-DAVIS-17 [13] contains 90 videos with 1,544238

expressions, including 60 and 30 videos for training and validation respectively. R2-Youtube-VOS239

is our newly proposed evaluation dataset: it extends the Ref-Youtube-VOS validation set with each240

linguistic expression to query a positive video (the same one as Ref-Youtube-VOS) and a negative241

video. To make each video can be picked as a negative video, we randomly shuffle the original video242

set and constrain all negative text-video pair unrelated.243

Metrics. We employ commonly-used region similarity J and contour accuracy F [36] for con-244

ventional Ref-Youtube-VOS and Ref-DAVIS-17 benchmarks. For the proposed R2-Youtube-VOS245

task, we additionally introduce a new metric R = 1−
∑

M∈Mneg
|M |∑

M∈Mpos
|M | to evaluate the degree of object246

false alarm in negative videos, where Mneg and Mpos are the sets containing segmented masks in247

negative and positive videos respectively. |M | denotes the foreground area of mask M . The total248

foreground area of positive videos
∑

M∈Mpos
|M | serves as a normalization term. Ideally, a model249

should treat all the negative videos as backgrounds with R = 1.250

5.2 Implementation Details251

Following previous methods [6, 44], our model is first pre-trained on Ref-COCO/+/g dataset [49, 31]252

and then finetuned on Ref-Youtube-VOS. The model is trained for 6 epochs with a learning rate253

multiplier of 0.1 at the 3rd and the 5th epoch. The initial learning rate is 1e-4 and a learning rate254

multiplier of 0.5 is applied to the backbone. We adopt a batchsize of 8 and an AdamW [29] optimizer255

with weight decay 1× 10−4. Following convention [44, 1], the evaluation on Ref-DAVIS directly256

uses models trained on Ref-Youtube-VOS without re-training. All images are cropped to have the257

longest side of 640 pixels and the shortest side of 360 pixels during evaluation. The window size is258

set to 5 for all backbones. We create negative pairs by shuffling positive pairs in each batch. Our259

method is implemented with PyTorch [34].260

5.3 Main Results261

We compare our method with state-of-the-art R-VOS methods on Ref-Youtube-VOS and Ref-DAVIS-262

17 in Table 1, and R2-VOS task in Table 2.263

Comparison on Ref-Youtube-VOS. In Table 1, we first compare our method on Ref-Youtube-VOS.264

For results of ResNet [9] backbone, our method achieves 57.3 J&F which outperforms the latest265

method ReferFormer [44] by 1.7 J&F . In addition, our method runs at 30 FPS compared to 22 FPS266

of state-of-the-art ReferFormer (FPS is measured using single NVIDIA P40 with batchsize = 1).267

For results of Swin-Transformer [28, 28] backbones, our method achieves 60.2 J&F and 61.3 J&F268

with Swin-Tiny and Video-Swin-Tiny backbones respectively, which outperforms ReferFormer [44]269

and MTTR [1] by a clear margin. More analysis is available in the additional appendix A.1.270

Comparison on Ref-DAVIS-17. Our method achieves 59.7 J&F on Ref-DAVIS-17 dataset, which271

outperforms ReferFormer by 1.2 J&F .272
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Method Backbone Ref-Youtube-VOS Ref-DAVIS-17
J&F J F J&F J F

Spatial Visual Backbone
CMSA [48] ResNet-50 34.9 33.3 36.5 34.7 32.2 37.2
CMSA + RNN [48] ResNet-50 36.4 34.8 38.1 40.2 36.9 43.5
URVOS [39] ResNet-50 47.2 45.3 49.2 51.5 47.3 56.0
PMINet [6] ResNet-101 53.0 51.5 54.5 - - -
CITD [22] ResNet-101 56.4 54.8 58.1 - - -
ReferFormer∗ [44] ResNet-50 55.6 54.8 56.5 58.5 55.8 61.3
Ours ResNet-50 57.3 56.1 58.4 59.7 57.2 62.4
ReferFormer∗ [44] Swin-T 58.7 57.6 59.9 - - -
Ours Swin-T 60.2 58.9 61.5 - - -

Spatio-temporal Visual Backbone
MTTR∗ [1] Video-Swin-T 55.3 54.0 56.6 - - -
ReferFormer∗ [44] Video-Swin-T 59.4 58.0 60.9 - - -
Ours Video-Swin-T 61.3 59.6 63.1 - - -

Table 1: Comparison to state-of-the-art R-VOS methods on Ref-Youtube-VOS and Ref-DAVIS-
17 val set. ∗ indicates results imported from preprints.

Method Backbone J&F & R J F R
ReferFormer∗ [44] ResNet-50 47.3 54.8 56.5 30.6
Ours ResNet-50 69.5 56.1 58.4 94.1
MTTR∗ [1] Video-Swin-T 40.0 55.9 58.1 5.9
ReferFormer∗ [44] Video-Swin-T 49.1 58.0 60.9 28.5
Ours Video-Swin-T 72.8 59.6 63.1 95.7

Table 2: Comparison to state-of-the-art R-VOS methods on R2-Youtube-VOS.

Comparison on R2-VOS. As shown in Table 2, the state-of-the-art R-VOS methods, ReferFormer273

and MTTR suffer from a low R metric which measures the false-alarm problem when the semantic274

consensus of the input text-video pair does not hold. Compared to the severe false alarm of previous275

R-VOS methods, our model successfully mitigates the false alarm of the model, thanks to the proposed276

multimodal cycle consistency constraint and semantic consensus discrimination head.277

ℰ ! for Pos. Videosℰ ℰ ! for Neg. Videos

Figure 5: Visualization of text embedding spaces. Dots
represent original text embeddings in E , and triangles
represent reconstructed ones in E ′ induced by positive
and negative videos respectively. Elements in the same
color belong to the same object. Note that an object
can have multiple text descriptions. The structure of E ′

is well preserved from E for positive videos (ellipses
bound embeddings of same objects), while it is not
preserved for negative videos.

Qualitative results. We compare the278

qualitative results of our method against279

state-of-the-art methods in Figure 6 on R2-280

VOS. For positive videos: The result indi-281

cates that our method predicts accurate and282

temporally-consistent results, while Refer-283

Former [44] and MTTR [1] fail to locate284

the correct object. For negative videos:285

Both ReferFormer and MTTR suffer from286

a severe false-alarm problem when the re-287

ferred object does not exist in the video. In288

contrast, with multi-modal cycle constraint289

and consensus discrimination, our method290

successfully filters out negative videos and291

mitigates the false alarm. To further ex-292

plore how the consensus discrimination293

works, we visualize the text embedding and294

reconstructed text embedding spaces for both positive and negative videos. As shown in Figure 5, we295

notice that, for embeddings of positive videos, they preserve relative relations well, while for negative296

videos, the reconstructed embeddings have a random pattern in the space.297

5.4 Ablation Study298

Module effectiveness. To investigate the effectiveness of different components in our method,299

we conduct experiments with the ResNet-50 backbone on R2-Youtube-VOS dataset. We build a300

transformer-based baseline model and equip our proposed components step-by-step. As shown in301

Table 3, the baseline model achieves 52.4 J&F . Then, we add our proposed components step-by-302

step to demonstrate the module effectiveness. After employing the early grounding module, the303

performance boosts to 55.5 J&F and the cycle-consistency constraint brings another 1.4 J&F gain.304

Since the reconstructed text embedding is generated with visual features injected, we consider it can305
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Figure 6: Qualitative comparison to the state-of-the-art R-VOS method on the R2-VOS task.

Components J&F J F R
Baseline 52.4 51.9 52.8 34.9
+EG 55.5+3.1 54.4 56.5 32.9−2.0

+CC 56.9+4.5 55.7 58.1 94.0+59.1

+FT 57.3+4.9 56.1 58.4 94.1+59.2

Table 3: Impact of different components in
our method. EG: Early grounding, CC: Consis-
tency constraint, FT: Fusing text embeddings.

Constraint J&F J F R
None 55.5 54.4 56.5 32.9
PW 54.4−1.1 53.3 55.5 88.7+55.8

RA 56.7+1.2 55.5 57.9 93.6+60.7

RD 56.4+0.9 55.2 57.6 90.4+57.5

RD+RA 56.9+1.4 55.7 58.1 94.0+61.1

Table 4: Impact of the cycle consistency con-
straint. PW: Point-wise. RA: Relational angle.
RD: Relational distance.

Query Number J&F J F R
1 54.9 54.2 55.6 94.7
5 57.3 56.1 58.4 94.1
9 57.0 56.8 57.2 93.5

Table 5: Impact of the query number.

Window Size J&F J F R
1 53.5 53.0 54.0 89.2
3 56.8 56.5 57.1 92.1
5 57.3 56.1 58.4 94.1

Table 6: Impact of the window size.

encode some visual information, thus augmenting the original text embedding. By using the fused306

text embedding as instance query, we achieve our best performance of 57.3 J&F .307

Consistency constraint. We conduct experiments to ablate the influence of cycle-consistency308

constraints. As shown in Table 4, utilizing point-wise consistency constraint will lead to a performance309

drop compared to the setting without cycle constraint. We consider the point-wise constraint may310

force an injective mapping from the textual domain to the visual domain. However, the mapping can311

be a many-to-one function for R-VOS, i.e., each object corresponds to multiple textual descriptions.312

In addition, since the early grounding leverages the text feature to locate the referred object, if we use313

the direct point-wise constraint to form reconstructed text embedding, it will encourage the network314

to memorize the text feature in the fearly and result in a collapse for text reconstruction. Table 4315

shows that sole relational angle constraint can bring 1.2 J&F gain, and it can be slightly improved316

with 1.4 J&F gain by jointly using relational angle and distance constraint.317

Instance query number. Although only one referral is involved for each frame in R-VOS task,318

to help the network optimization, we employ more than one instance query to each video. Table 5319

indicates that a query number of 5 brings the best result.320

Frame number. Since R-VOS gives a text that describes an object over a period of time, temporal321

information is vital to segment accurate and temporally-consistent results. We ablate on the best322

window size of input videos during training. As shown in Table 6, we notice that the performance323

improves as the window size increases and a window size of 5 brings the best result of 57.3 J&F .324

6 Conclusion325

In this paper, we investigate the semantic misalignment problem in R-VOS task. A pipeline jointly326

models the referring segmentation and text reconstruction problem, equipped with a relational cycle327

consistency constraint, is introduced to discriminate and enhance the semantic consensus between328

visual and textual modalities. To evaluate the model robustness, we extend the R-VOS task to329

accept unpaired inputs and collect a corresponding R2-Youtube-VOS dataset. We observe a severe330

false-alarm problem suffered from previous methods on R2-Youtube-VOS while ours accurately331

discriminates unpaired inputs and segments high-quality masks for paired inputs. Our method332

achieves state-of-the-art performance on Ref-DAVIS17, Ref-Youtube-VOS, and R2-VOS dataset. We333

believe that, with unpaired inputs, R2-VOS is a more general setting of referring video segmentation,334

which can shed light on a new direction to investigate the robustness of referring segmentation.335
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A Additional Appendix336

A.1 More Quantitative Result Analysis337

Under the same ResNet-50 backbone, our method achieves 57.3 J&F , 94.1 R and 30 FPS compared338

to the 55.6 J&F , 30.6 R and 22 FPS of ReferFormer. We will then point-to-point analyze reasons of339

improvements on J&F (for positive video), R (for negative videos) and FPS (for inference speed).340

• J&F : (1) We introduce the early-grounding module which employs both pixel-wise and341

channel-wise attention to enable multimodal interaction. Different from the CM-FPN used in342

ReferFormer that solely fuses features from text to video in pixel-level, our early-grounding343

module first enables pixel-level bi-directional fusion and then generates dynamic kernels344

using the fused text feature g′ to modulate the video feature f ′. The dynamic convolution345

(channel-wise attention) is commonly used to decode dense masks from visual features and346

is suitable to suppress irrelevant features. By equipping text-guided dynamic convolution in347

early-stage, the pixel decoder can be more focused on the target object (as shown in Figure 4).348

(2) Our method leverages relational cycle consistency to constraint the intermediate feature349

fearly to contain correct object-level information to recover some properties of original text350

embedding. By applying this constraint, our method can better avoid interference and easier351

locate the correct object. (3) Our instance query is composed of both original sentence352

embedding and the reconstructed one. Different from ReferFormer that only utilizes original353

sentence embedding as queries, the reconstructed embedding can encode visual information354

to facilitate the instance query decode the objects from visual features.355

• R: The newly introduced metric R aims to measure the robustness of the model against356

unpaired inputs. Text-video pairs with (object-level) semantic consensus can be assumed357

as in-distribution for RVOS problem where semantic consensus can be kind of easily358

modeled. In contrast, unpaired text-video is much more difficult to tackle because there can359

be unlimited out-of-distribution (OOD) scenarios for the text-video pairs. In our method,360

instead of directly detect the OOD of input pairs, we convert the problem to find semantic361

alignment between the input text embedding and reconstructed embedding and constraint362

the property of reconstructed space by introducing the cycle consistency. In this way,363

the comparison is conducted in the constraint original and reconstructed text spaces. For364

ReferFormer, it models the alignment of text to video by querying the visual features by text365

in the transformer decoder. In this way, the comparison is conducted in unconstrained text366

and video spaces thus results in a inferior performance.367

• FPS: The speed improvement of our method mainly comes from our efficient multimodal368

fusion. Compared to the multi-scale CM-FPN, our early-grounding module is only conduct369

at the high-level. In addition, our bi-direction multimodal fusion (Equ 4 & 5) only leverages370

cross-attention to avoid computational expensive video-to-video operations.371

A.2 Limitations372

An important challenge for video segmentation is that target object disappearance due to occlusion,373

which can results in false positives on a per-frame level. In our method, we predict the video-level374

semantic alignment to handle the false positive in video-level resulted from unpaired text-video pairs.375

However, since only video-level object expression is available in RVOS task, our method can not376

address the frame-level false positives resulted from occlusion.377

A.3 Additional Experiment on Negative Videos without Positive Text378

Negative Video Source R
ReferFormer Ours

Ref-Youtube-VOS 30.6 94.1
Ref-Youtube-VOS & Ref-DAVIS 33.1 92.2

Table A: Impact of different negative video sources.

As shown in Table A, we test the robustness of our model on two settings. We generate negative379

videos from Ref-Youtube-VOS and a combination of Ref-Youtube-VOS and Ref-DAVIS dataset.380
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In both settings, all videos in the validation set are leveraged. The results indicates that source of381

negative videos has minor impact on the robustness of our model.382

11



References383

[1] Adam Botach, Evgenii Zheltonozhskii, and Chaim Baskin. End-to-end referring video object384

segmentation with multimodal transformers. arXiv preprint arXiv:2111.14821, 2021.385

[2] Kan Chen, Jiyang Gao, and Ram Nevatia. Knowledge aided consistency for weakly supervised386

phrase grounding. In Proceedings of the IEEE Conference on Computer Vision and Pattern387

Recognition, pages 4042–4050, 2018.388

[3] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng,389

and Jingjing Liu. Uniter: Universal image-text representation learning. In European conference390

on computer vision, pages 104–120. Springer, 2020.391

[4] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu.392

Dynamic convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF393

Conference on Computer Vision and Pattern Recognition, pages 11030–11039, 2020.394

[5] Quan Cui, Boyan Zhou, Yu Guo, Weidong Yin, Hao Wu, and Osamu Yoshie. Zerovl: A strong395

baseline for aligning vision-language representations with limited resources. arXiv preprint396

arXiv:2112.09331, 2021.397

[6] Zihan Ding, Tianrui Hui, Shaofei Huang, Si Liu, Xuan Luo, Junshi Huang, and Xiaoming Wei.398

Progressive multimodal interaction network for referring video object segmentation. The 3rd399

Large-scale Video Object Segmentation Challenge, page 7, 2021.400

[7] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus401

Rohrbach. Multimodal compact bilinear pooling for visual question answering and visual402

grounding. arXiv preprint arXiv:1606.01847, 2016.403

[8] Peng Gao, Zhengkai Jiang, Haoxuan You, Pan Lu, Steven CH Hoi, Xiaogang Wang, and404

Hongsheng Li. Dynamic fusion with intra-and inter-modality attention flow for visual question405

answering. In Proceedings of the IEEE/CVF conference on computer vision and pattern406

recognition, pages 6639–6648, 2019.407

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image408

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,409

pages 770–778, 2016.410

[10] Drew A Hudson and Christopher D Manning. Compositional attention networks for machine411

reasoning. arXiv preprint arXiv:1803.03067, 2018.412

[11] Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan Misra, and Nicolas413

Carion. Mdetr-modulated detection for end-to-end multi-modal understanding. In Proceedings414

of the IEEE/CVF International Conference on Computer Vision, pages 1780–1790, 2021.415

[12] Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training.416

arXiv preprint arXiv:2006.15595, 2020.417

[13] Anna Khoreva, Anna Rohrbach, and Bernt Schiele. Video object segmentation with language418

referring expressions. In Asian Conference on Computer Vision, pages 123–141. Springer, 2018.419

[14] Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. Bilinear attention networks. Advances in420

neural information processing systems, 31, 2018.421

[15] Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim, Jeonghee Kim, Jung-Woo Ha, and Byoung-422

Tak Zhang. Hadamard product for low-rank bilinear pooling. arXiv preprint arXiv:1610.04325,423

2016.424

[16] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics425

quarterly, 2(1-2):83–97, 1955.426

[17] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and Jingjing Liu. Less427

is more: Clipbert for video-and-language learning via sparse sampling. In Proceedings of the428

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7331–7341, 2021.429

[18] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg. Tvqa: Localized, compositional video430

question answering. arXiv preprint arXiv:1809.01696, 2018.431

[19] Muchen Li and Leonid Sigal. Referring transformer: A one-step approach to multi-task visual432

grounding. Advances in Neural Information Processing Systems, 34, 2021.433

12



[20] Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun Liang, Fei Wu, and Jiwei Li. Dice loss for434

data-imbalanced nlp tasks. arXiv preprint arXiv:1911.02855, 2019.435

[21] Chen Liang, Yu Wu, Yawei Luo, and Yi Yang. Clawcranenet: Leveraging object-level relation436

for text-based video segmentation. arXiv preprint arXiv:2103.10702, 2021.437

[22] Chen Liang, Yu Wu, Tianfei Zhou, Wenguan Wang, Zongxin Yang, Yunchao Wei, and Yi Yang.438

Rethinking cross-modal interaction from a top-down perspective for referring video object439

segmentation. arXiv preprint arXiv:2106.01061, 2021.440

[23] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.441

Feature pyramid networks for object detection. In Proceedings of the IEEE conference on442

computer vision and pattern recognition, pages 2117–2125, 2017.443

[24] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense444

object detection. In Proceedings of the IEEE international conference on computer vision,445

pages 2980–2988, 2017.446

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr447

Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European448

conference on computer vision, pages 740–755. Springer, 2014.449

[26] Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zisserman. Use what you have: Video450

retrieval using representations from collaborative experts. arXiv preprint arXiv:1907.13487,451

2019.452

[27] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike453

Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining454

approach. arXiv preprint arXiv:1907.11692, 2019.455

[28] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin456

transformer. arXiv preprint arXiv:2106.13230, 2021.457

[29] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint458

arXiv:1711.05101, 2017.459

[30] Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan Duan, Tianrui Li, Jason Li, Taroon460

Bharti, and Ming Zhou. Univl: A unified video and language pre-training model for multimodal461

understanding and generation. arXiv preprint arXiv:2002.06353, 2020.462

[31] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin463

Murphy. Generation and comprehension of unambiguous object descriptions. In Proceedings464

of the IEEE conference on computer vision and pattern recognition, pages 11–20, 2016.465

[32] Antoine Miech, Ivan Laptev, and Josef Sivic. Learning a text-video embedding from incomplete466

and heterogeneous data. arXiv preprint arXiv:1804.02516, 2018.467

[33] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In468

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages469

3967–3976, 2019.470

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,471

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative472

style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.473

[35] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and474

Alexander Sorkine-Hornung. A benchmark dataset and evaluation methodology for video475

object segmentation. In Proceedings of the IEEE conference on computer vision and pattern476

recognition, pages 724–732, 2016.477

[36] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung,478

and Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint479

arXiv:1704.00675, 2017.480

[37] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,481

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual482

models from natural language supervision. In International Conference on Machine Learning,483

pages 8748–8763. PMLR, 2021.484

13



[38] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio485

Savarese. Generalized intersection over union: A metric and a loss for bounding box regression.486

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,487

pages 658–666, 2019.488

[39] Seonguk Seo, Joon-Young Lee, and Bohyung Han. Urvos: Unified referring video object489

segmentation network with a large-scale benchmark. In Computer Vision–ECCV 2020: 16th490

European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16, pages491

208–223. Springer, 2020.492

[40] Xiaomeng Song, Yucheng Shi, Xin Chen, and Yahong Han. Explore multi-step reasoning493

in video question answering. In Proceedings of the 26th ACM international conference on494

Multimedia, pages 239–247, 2018.495

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,496

undefinedukasz Kaiser, and Illia Polosukhin. Attention is all you need. NIPS’17, page497

6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc.498

[42] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep structure-preserving image-text499

embeddings. In Proceedings of the IEEE conference on computer vision and pattern recognition,500

pages 5005–5013, 2016.501

[43] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, Baoshan Cheng, Hao Shen, and502

Huaxia Xia. End-to-end video instance segmentation with transformers. In Proceedings of the503

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8741–8750, 2021.504

[44] Jiannan Wu, Yi Jiang, Peize Sun, Zehuan Yuan, and Ping Luo. Language as queries for referring505

video object segmentation. arXiv preprint arXiv:2201.00487, 2022.506

[45] Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen Liang, Jianchao Yang, and Thomas507

Huang. Youtube-vos: A large-scale video object segmentation benchmark. arXiv preprint508

arXiv:1809.03327, 2018.509

[46] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance segmentation. In Proceedings of the510

IEEE/CVF International Conference on Computer Vision, pages 5188–5197, 2019.511

[47] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks512

for image question answering. In Proceedings of the IEEE conference on computer vision and513

pattern recognition, pages 21–29, 2016.514

[48] Linwei Ye, Mrigank Rochan, Zhi Liu, and Yang Wang. Cross-modal self-attention network515

for referring image segmentation. In Proceedings of the IEEE/CVF Conference on Computer516

Vision and Pattern Recognition, pages 10502–10511, 2019.517

[49] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling518

context in referring expressions. In European Conference on Computer Vision, pages 69–85.519

Springer, 2016.520

[50] Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian. Deep modular co-attention networks521

for visual question answering. In Proceedings of the IEEE/CVF conference on computer vision522

and pattern recognition, pages 6281–6290, 2019.523

[51] Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. Multi-modal factorized bilinear pooling with524

co-attention learning for visual question answering. In Proceedings of the IEEE international525

conference on computer vision, pages 1821–1830, 2017.526

[52] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:527

Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159,528

2020.529

14



Checklist530

1. For all authors...531

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s532

contributions and scope? [Yes]533

(b) Have you read the ethics review guidelines and ensured that your paper conforms to534

them? [Yes]535

(c) Did you discuss any potential negative societal impacts of your work? [Yes]536

(d) Did you describe the limitations of your work? [Yes]537

2. If you are including theoretical results...538

We are not including theoretical results.539

3. If you ran experiments...540

(a) Did you include the code, data, and instructions needed to reproduce the main experi-541

mental results (either in the supplemental material or as a URL)? [No] The code are542

proprietary; most of our used dataset are public available; we plan to release code and543

novel dataset upon acceptance.544

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they545

were chosen)? [Yes]546

(c) Did you report error bars (e.g., with respect to the random seed after running experi-547

ments multiple times)? [No] We conduct several experiments multiple times and find548

the results are very close.549

(d) Did you include the total amount of compute and the type of resources used (e.g., type550

of GPUs, internal cluster, or cloud provider)? [Yes]551

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...552

(a) If your work uses existing assets, did you cite the creators? [Yes]553

(b) Did you mention the license of the assets? [Yes]554

(c) Did you include any new assets either in the supplemental material or as a URL? [No]555

(d) Did you discuss whether and how consent was obtained from people whose data you’re556

using/curating? [Yes] The data we used are public available datasets for academic557

purposes.558

(e) Did you discuss whether the data you are using/curating contains personally identifiable559

information or offensive content? [No] The dataset that we used does not contain such560

content.561

5. If you used crowdsourcing or conducted research with human subjects...562

We do not use crowdsourcing or conducted research with human subjects.563

15


	Introduction
	Related Works
	R2-VOS
	Task Definition
	Problem Analysis

	Method
	Single-modal Feature Extraction
	Early Grounding
	Text Reconstruction
	Referring Segmentation
	Loss Function
	Inference


	Experiment
	Dataset and Metrics
	Implementation Details
	Main Results
	Ablation Study

	Conclusion
	Additional Appendix
	More Quantitative Result Analysis
	Limitations
	Additional Experiment on Negative Videos without Positive Text


