Fair Evaluation of Graph Markov Neural Networks

Anonymous ACL submission

Abstract

Graph Markov Neural Networks (GMNN) have
recently been proposed to improve regular
graph neural networks (GNN) by including la-
bel dependencies into the semi-supervised node
classification task. They do this in a theoret-
ically principled way and use three kinds of
information to predict labels. Just like ordinary
GNNss they use the node features and the graph
structure but they moreover leverage informa-
tion from the labels of neighboring nodes to
improve the accuracy of their predictions. In
this paper we introduce a new dataset named
WikiVitals which contains a graph of 48k mutu-
ally referred Wikipedia articles classified into
32 categories and connected by 2.3M edges.
Our aim is to rigorously evaluate the contribu-
tions of three distinct sources of information
to the prediction accuracy of GMNN for this
dataset: the content of the articles, their con-
nections with each other and the correlations
among their labels. For this purpose we adapt
a method which was recently proposed for per-
forming fair comparisons of GNN performance
using an appropriate randomization over parti-
tions and a clear separation of model selection
and model assessment.

1 Introduction

Graph neural networks (GNN) (Yang et al., 2016;
Kipf and Welling, 2017; Defferrard et al., 2016)
have become a tool of choice when modeling
datasets whose observations are not i.i.d. but are
comprised of entities interconnected according to
a graph of relations. They can be used either for
graph classification, like molecule classification
(Dobson and Doig, 2003; Borgwardt et al., 2005),
or for node classification, like document classifica-
tion in a citation network (Sen et al., 2008).

The most common task is certainly semi-
supervised node classification in which unlabeled
nodes of a given subset are to be classified using a
distinct subset of labeled nodes, the train set, from

the same graph (Kipf and Welling, 2017; Deffer-
rard et al., 2016). Inductive classification on the
other hand refers to the most common setting in
machine learning in which nodes to be labeled are
not known ahead of time (Hamilton et al., 2017).
A number of architectures have been proposed
over the years which deal with specific issues oc-
curring with GNNs. Some combat over-smoothing,
(which is the tendency for deep GNNss to predict the
same labels for all nodes) (Klicpera et al., 2018),
some deal with assortativity or heterophily (which
refers to situations in which neighboring nodes are
likely to have different labels) (Zhu et al., 2020,
2021; Bo et al., 2021) and others still try to learn
the connection weights from data using an appropri-
ate attention mechanism (Velickovi¢ et al., 2018).

Despite their diversity, these models all have
one important shortcoming. Namely they assume
that labels can be predicted independently for each
node in the graph. In other words they neglect la-
bel dependencies altogether. More recently Graph
Markov Neural Networks (GMNN) (Qu et al.,
2019) were introduced as genuine probabilistic
models which include label correlations in graphs
by combining the strength of GNNs and those of
conditional random fields (CRF) while avoiding
their limitations. These are the models we shall
focus on in this work.

The accuracy of the GMNN model was evalu-
ated for node classification and link prediction tasks
in (Qu et al., 2019) on the classical benchmark
datasets Cora, PubMed and CiteSeer (Sen et al.,
2008) using the public splits defined in (Yang et al.,
2016). Under these settings a clear improvement
was demonstrated when comparing the GMNN
model to existing baselines that do not account
for label dependencies. However, as a number of
recent works (Shchur et al., 2018; Errica et al.,
2020) have pointed out, a fair evaluation of the
performance of GNNs requires a procedure which
performs a systematic randomization over train,

validation, test set partitions and makes clear sepa-
ration between model selection and model assess-
ment.

Our aim in this paper is to subject GMNN to
such a rigorous performance analysis on a new, rel-
atively large graph of documents named WikiVitals.
In a first step we shall evaluate the contribution of
including the graph structure, using a basic GNN,
when compared to a graph agnostic baseline such
as a MLP. In a second step we shall estimate the
increase in accuracy that results from taking into
account label correlation using a GMNN on top
of a basic GNN. For completeness we also per-
form the same thorough analysis on the classical
benchmarks datasets mentioned above.

In summary, our contributions are:

* We introduce a new dataset of interconnected
documents named WikiVitals. Compared to
the classical benchmark datasets this is a rela-
tively large graph comprising 48k nodes clas-
sified into 32 categories and connected by
2.3M edges.

* We apply the fair comparison procedure pro-
posed in (Errica et al., 2020) to a GMNN
which is sophisticated node classification
model. So far only graph classification models
had been evaluated in this manner.

* We evaluate the respective contributions to
the accuracy of classifying WikiVitals articles
when first including the graph structure infor-
mation using a common GNN and next when
leveraging the label correlations information
using a GMNN model on top of that GNN.

2 Related Work
2.1 Modelling Label Dependancy in GNNs

Prior to the recent advent of GNNs a number of
works had attempted to include label dependencies
using various heuristics. Label propagation is such
an early attempt where a cost function balances the
penalty for predicting the wrong labels with the
requirement that node labels should vary smoothly
(Zhou et al., 2003; Zhu, 2005).

Dataset specific methods have also been pro-
posed. As far as classifying Wikipedia articles is
concerned, authors in (Viard et al., 2020) use a sim-
ple GNN whose weights are empirically adjusted
depending on the similarity of the labels of neigh-
boring nodes. Although these approaches had some

empirical success (Huang et al., 2021), they lack
of a sound probabilistic foundation which makes
it difficult to analyze why they fail or succeed. In
particular they do not clearly distinguish the con-
tributions of the node features, the graph structure
and the label correlations to the prediction accuracy.
In our work we decided to avoid using topological
node features like node degrees, betweenness or
assortativity (Newman, 2003; Blondel et al., 2008;
Newman, 2005) to make this distinction clearer.

GNNs are a good fit for finding distributed node
representations that merge the information supplied
by the node features, like the content of a document
for instance, with the local structure of the graph in
the vicinity of that node. Each such representation
is then used for predicting the label for that node in-
dependently of those of the other nodes. CRF’s on
the other hand come in handy for prescribing scores
for arbitrary combinations of labels. However per-
forming exact inference is hard due to the trouble of
computing the partition function. GMNN propose
an elegant solution to this conundrum by using two
ordinary GNNs which are coupled when trained
with the Expectation Maximization (EM) algorithm
(see section 3.1). Their performance was evaluated
in (Qu et al., 2019) in the usual way using a pub-
lic partition of classical benchmarks (Sen et al.,
2008) but without accounting for the robustness of
this evaluation when using different splits which is
essential for a fair evaluation (Errica et al., 2020;
Shchur et al., 2018). This is one of our goals. We
also evaluate the contributions to the classification
accuracy of the three sources of information men-
tioned above, namely the content of the articles,
their links and the correlations between the labels
of connected articles.

2.2 Classifying Wikipedia Articles

Wikipedia articles provide rich textual content from
which many informative n-grams can be extracted
in order to build vector representations of the ar-
ticles, and the mutual hyperlinks between articles
define a natural graph structure underlying the cor-
pus of articles. In this way, several datasets have
been created from Wikipedia and are being used
to evaluate various GNN architectures, including
Squirrel and Chameleon'. This is also the case for
the WikiVitals dataset we introduce in this article.
The labeling of Wikipedia articles can use vari-

"http://snap.stanford.edu/data/
wikipedia-article-networks.html

http://snap.stanford.edu/data/wikipedia-article-networks.html
http://snap.stanford.edu/data/wikipedia-article-networks.html

ous sources of information. The labels of Squirrel
and Chameleon for instance are based on monthly
traffic data (acquired through the metadata of the ar-
ticles) and correspond to an artificial segmentation
into 3 or 5 categories (Bo et al., 2021). In (Viard
et al., 2020), the labeling is based on a collection of
labels external to Wikipedia. None of these datasets
however exploit thematic classifications resulting
from a consensus among Wikipedia contributors as
does the list of vital articles of Wikipedia®. This is
the data we used to label the nodes of our WikiVitals
dataset (see appendix A). This classification of vital
articles, where each document is associated with
a unique label, is not exempt of arbitrariness how-
ever. Indeed, the assignment of an article to one
category or another can sometimes be ambiguous.
Furthermore, this classification is imbalanced and
contains categories with very few representatives.

A common feature of Wikipedia datasets (Squir-
rel, Chameleon as well as WikiVitals) is that they
are more disassortative (Newman, 2003) than clas-
sical graph datasets (the notion of heterophily is
also often used which generally refers to a low pro-
portion of edges connecting nodes with the same
label in the graph). This makes them particularly
interesting as benchmarks for a node classification
task, as basic models like GCNs show their limits in
such disassortative contexts (Bo et al., 2021). Some
recent models like HoGCN or FAGCN have been
proposed to overcome this problem and show better
performance in those contexts (Bo et al., 2021; Zhu
et al., 2020).

2.3 Evaluating Performance of GNNs

The authors of (Shchur et al., 2018) draw attention
to the fact that evaluations of GNN models are al-
most never conducted in a rigorous manner. On the
one hand, many experiments are not replicable due
to the lack of a precise definition of the evaluation
process. On the other hand, they argue that using a
single split, usually the one defined in the paper that
introduces a new benchmark dataset, is insufficient
to guarantee the existence of a significant differ-
ence between the accuracy of two competing GNN
architectures. The authors thus suggest standardiz-
ing the choice of hyperparameters and randomizing
over many train, validation, test splits. They then
search for a set of hyperparameters that optimizes
the average performance over those splits. Surpris-

https://en.wikipedia.org/wiki/
Wikipedia:Vital_articles/Level/5

ingly, they find that the simplest architectures like
GCN (Kipf and Welling, 2017; Defterrard et al.,
2016) often perform better for the semi-supervised
node classification task than the more sophisticated
models (Velickovié et al., 2018; Monti et al., 2017).

In our work we follow a still more rigorous ac-
curacy assessment that was originally proposed in
(Errica et al., 2020) as a SOTA evaluation proce-
dure for the graph classification task. For a given
model we search for the best hyperparameters on a
per split basis and then average the accuracy estima-
tions of those optimized models over splits. This
allows for the fairest assessment possible when
comparing two models. It guarantees that a prac-
titioner who randomly chooses a split, trains her
model on the train set, optimizes its hyperparame-
ters on the validation set and estimates the accuracy
on the test will obtain an estimation that is truely
reliable for comparing models such as an MLP, a
GCN or a GMNN.

3 Adapting the Fair Comparison Method
to GMNN

3.1 Training a GMNN

Before delving into the specifics of our evalua-
tion process let’s recall the definition of GMNN
model. We use the same notations as in (Qu et al.,
2019) and refer to this work for a thorough jus-
tification of the training procedure we describe
here. We consider a graph G = (V, E, xy/) where
V' denotes the set of nodes, E the set of edges
and xy = {Xy}ney the set of features associ-
ated to each node n. We assume that we are
given the one-hot encoded labels (for K categories)
VL := {¥n}ner for the nodes in a subset L C V
and the features xy, of all nodes. The task we
consider is the prediction of the labels y; of the
remaining unlabeled nodes in U = V \ L. The
GMNN model does two things. First, it specifies
a model for the joint probability py4(yr,yu|xv)
compatible with a CRF describing correlations be-
tween neighboring nodes. Second, it describes a
practical training procedure, based on the EM algo-
rithm, for finding the parameters ¢ which maximize
a variational lower bound on the marginal likeli-
hood py(yr|xy) over the observed labels which
we quickly summarize.

The GMNN model requires defining two ordi-
nary GNNs. The first one, denoted by GNN,
where ¢ is the set of its parameters, describes the
conditional distribution py(yn|yNB(n),Xv) over

https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5
https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

individual node labels y,, given the labels of the
neighboring nodes NB(n) and the node features
xy . Itis specified in the usual manner by a softmax
applied on a d-dimensional node embedding hy ,,
read off from the last layer of GNNg and a K x d
learnable matrix W:

Po(YnlynB(n), Xv) = Cat(yn[softmax(Wshy ;)

)
A second GNN, that we denote by GNNpy, defines
a mean-field variational distribution meant to ap-
proximate the posterior py(y/|yr,xv) in the EM
algorithm. It is defined nodewise in a similar way:

q0(yn|xv) = Cat(yy|softmax(Wyhy ,,)) (2)

Intuitively GNNy makes the prediction of a model
that completely neglects correlations among labels.
These predictions will then be corrected by GNN
which accounts for the correlations between neigh-
boring node labels, these in turn will correct GNNjy
within an EM cyclic training procedure. The train-
ing process uses the following two objective func-
tions. One is for updating 6 while holding ¢ fixed:

Oy = Z E%(}'MS'NBW)JV) [log go(yn|xv)]
nelU

+ Y loggo(yalxv), (3)
ner

where y,, denotes the ground truth label y,, if n €
L and is sampled from gy (y, |xv) if n € U. Using
the same notations, the other objective function
used for optimizing ¢ while holding 6 fixed is:

O = Z log p(¥nlyNBn): Xv). (4)
neV

The first step of training GMNN is to initialize
gp by maximizing the last term in (3) for 6. This
corresponds to an ordinary GNN trained without
accounting for label correlations. The accuracy of
this initial gy model will thus provide a baseline
to compare with the full GMNN model. Second,
fix # and maximize ¢ in (4), this is the M -step. At
last, optimize (3) for # while holding ¢ fixed, this
is the E-step. Repeat the M and E step until con-
vergence. Experience shows that gg is consistently
a better predictor than py (Qu et al., 2019).

3.2 Fair Comparison of GNNs

Recall that our main goal is to rigorously ascer-
tain under which circumstances a GMNN model

architecture, which was designed to leverage label
correlations, has a higher accuracy when used for
classifying articles from the WikiVitals dataset than
a correlation agnostic model like GCN or FAGCN
(Bo et al., 2021). We also wish to compare GCN
or FAGCN with a structure agnostic baseline like
an MLP for this same dataset.

A crude evaluation would proceed by partition-
ing the available dataset of labeled WikiVitals ar-
ticles D = ((x1,¥1),-..,(Xn,yn)) into three
disjoint sets: a train set Dy4in, a validation set
Dyatia for selecting the optimal hyperparameters
~* among a set I" and a test set Dig; to evaluate
the accuracy of that optimal model. Unfortunately
such a simple procedure was shown to be so unsta-
ble that changing the partition could totally scram-
ble relative ranking of various GNN architectures
(Errica et al., 2020; Shchur et al., 2018).

To perform reliable comparisons we shall follow
the best practices described in (Errica et al., 2020).
The main requirement is to clearly separate model
assessment from model selection.

Model assessment uses a k-fold cross vali-
dation procedure. The dataset D is first split into
k disjoint stratified folds Fi,...,Fi. Then k
different train and test sets are defined as:

Dge)lin :UF]7 ,Dtgélt = E, Z:L,k
J#i

Each train set is itself split into an inner train set
and a validation set:

uDY)

valid’

=D

in—train

P

train

i=1,...,k

Model selection (see below) is performed sep-
(4)

erain LDis results in a set of

arately for each D
hyperparameters ’y(i) which is optimal for p

ramn*
The model is then trained with these optitrfalal
hyperparameters ~@ on Dﬁltrain using D\(,;)h qto
implement early stopping. Actually, for each fold
1, the test accuracy is averaged over 7 training runs
with different random initializations of the weights
to smooth out any possible bad configuration. The
average of these test accuracies over the k folds

makes our final assessment of a model architecture.

Model selection correspond to choosing an

optimal set of hyperparameters. It is performed,
(4)
train*

. . KA
model is trained on D, ..

separately for each D More precisely, the

(4)

using D ., as a

holdout set for selecting the hyperparameters (%)
which maximize the accuracy among a set I' of
configurations.

3.3 Adaptation to GMNN

In order to evaluate GMNN using the fair evalu-
ation principle described above, we must select
for each split j a pair v9) := (a;, 8;) of optimal
hyperparameters o; for GNNy and 3; for GNNy
respectively. In (Qu et al., 2019), the authors use
a simple strategy which consists in using a; = f3;,
however other strategies can be considered, see
appendix C. In this work also compute hyperpa-
rameters o; for GNNy first and then set 3; = o
for the hyperparameters of GNN,. The selection of
the best pair (5, 3;) is thus performed in two steps.
First, for each split j, a set of optimal hyperparam-
eters a; for GNNy is computed using the model
selection procedure introduced in the previous sec-
tion. In a second step, one sets 3; = ;. The model
assessment phase remains unchanged. For each
split j the set of hyperparameters v\9) = («, 3;)
is used to compute the test accuracy of GMNN
using r random weight initializations. The fair
evaluation model adapted to GMNN is presented
in figure 1.

Note that performing a fair evaluation of the
model after completion of the initial training of
GNNpy and before entering the EM optimization
corresponds to a fair evaluation of a plain GNN
which thus requires no additional computation.

4 Experiment

4.1 Datasets and Settings

Datasets: For our main experiment we introduce
WikiVitals, a novel sparse and disassortative
document-document graph created from the
English Wikipedia level 5 vital articles in April
2022 (Wikipedia is under CC BY-SA license).
Nodes features x, correspond to the presence
or absence of some n-grams in the summary
section of the article. The set £/ of edges are the
mutual hyperlinks between articles found in their
body. Each node of the graph has been associated
to a single label (among 32) corresponding to
an intermediate level in a hierarchy of topics
co-constructed by Wikipedia contributors. More
information on this new dataset as well as statistics
on all datasets can be found in table 1 and appendix
A. For completeness, we also performed a fair
evaluation on the three well-known assortative

citation network datasets: Cora, Citeseer, and
Pubmed. Undirected edges in these networks
represent citations between two scientific articles,
node features x,, are a bag-of-words vector of the
articles and labels y,, corresponds to the fields of
the articles. For all datasests, we treat the graphs
as undirected.

General setup: All baseline models (MLP,
GCN and FAGCN) were reimplemented using
PyTorch with two layers (input representations
— hidden layer — output layer). For all models,
L?-regularization is performed on all layers,
dropout is applied on input data and on all layers.
For GCN and FAGCN, we used the so-called
renormalization trick of the adjacency matrix
(Kipf and Welling, 2017). For FAGCN, the number
of propagations (Bo et al., 2021) is set to 2 in
order to limit the aggregation of information to
nodes located at a maximum distance of 2. For
GMNN we use the annealing sampling method
with factor set to 0.1 (Qu et al., 2019), the number
of EM-loops is set to 10 and both label predictions
yv» made with GNNy and node features xy are
used to train GNNy, as defined in (4).

We use the same training procedure for all
models. For all datasets, node features are
binarized and then normalized (L'-norm) before
training. We used the Adam optimizer (Kingma
and Ba, 2015) with default parameters and no
learning rate decay, the same maximum number
of training epochs, an early stopping criterion and
a patience hyperparameter (see appendix B for
more details). Validation accuracy is evaluated
at the end of each epoch. All model parameters
(convolutional kernel coefficients for FAGCN,
weight matrices for all models) are initialized
and optimized simultaneously (weights are ini-
tialized according to Glorot and biases initialized
to zero). In all cases we use full-batch train-
ing (using all nodes in the training set every epoch).

Fair evaluation setup: During the assess-
ment phase, we perfom r = 20 trainings for
each of the £k = 10 splits. Best configurations
of hyperparameters «; for GNNy are calculated
for each split 7, and next we set hyperparameters
5]' = Qj for GNNd).

For each dataset, we followed the best prac-
tices advocated in (Errica et al., 2020) and summa-
rized in section 3.2 to pre-calculate stratified splits

@ @) @ @ @) ())
,, (e | e e e e |
! Model selection } i

| Select the best a; for each fold | |

1 j =1, ..., k using the accuracy of | |

: (0)] ;

i GNNp on D4 as evaluation select a; select a, select ay

! Initialization of GMNN

! Use a strategy to select Bj for GNNg ;

! (we set B; = a; in this work)

[N ﬂj S A setfy = ay set By = ay set B = a

i Model assessment

i Average the accuracy of the model

i on Dt(é;t usingr random T [B (B 1

! initializations where D‘(,]a)hd is used

! for early stopping

accuracy on Dt(es)t

accuracy on p®

accuracy on 2@ test

test

Average these k accuracies to get the final evaluation

Figure 1: The fair evaluation procedure for GNN’s and its adaptation for GMNN uses k train/validation/test splits

DI(II) train? D\(/Za)hcb DE;)S
(4) (4) (4) C
(Dm train’ Dvalid’ Dtest)v J =) k of the en-

tire set of nodes with respective ratios of 81%, 9%

and 10%. In the sequel the sets Dl(n) train Will be
referred to as dense training sets.

In addition, we have created two other sets
of splits, whose train sets are sparse. First to
allow an convenient comparison with previous
work which actually use such train sets (Yang
et al.,, 2016). Second to enlarge the scope of
the methods tested in this article. As a reminder,
the evaluation of GNNs as well as GMNN for
Cora, Citeseer and Pubmed was classically per-
formed using the Planetoid splits (Yang et al.,
2016) of these datasets or similiarly constructed
splits composed of 20 nodes per category ran-
domly selected in the whole dataset (Shchur et al.,
2018; Bo et al., 2021; Qu et al., 2019). To
construct splits with sparse train sets we inde-

D(J)

pendently extracted two subsets sparse—balanced

and Déé)arse—stratiﬁed from each DI(H) train’ -7
1,..., k. Each contains 20 * K nodes (where K is
the number of categories). Each D’

)

sparse—balanced
is constructed by selecting 20 nodes of each cat-
egory from Dl(n) train- 1D the sequel these sets
will be referred to as sparse balanced train sets

in the sense that each category is represented

equally in each of them. Each pY)

sparse—stratified

is constructed by selecting nodes from Dl(n) train

in a stratified way. We shall denote these sets
as sparse stratified train sets. Thus we have k

splits of each dataset with sparse balanced train sets
(pY) U DU, j=1,... kand

sparse—balanced’ = valid’
k splits of each dataset with sparse stratified train

¢ which are created from k stratified folds J; as explained in section 3.2.

Dataset Assortativity #Nodes #Edges #Categories #Features
Cora 0.771 2,708 5,429 7 1,433
Citeseer 0.675 3,327 4,732 6 3,703
Pubmed 0.686 19,717 44,338 3 500
Wiki Vitals 0.204 48,512 2,297,782 32 4,000
Table 1: Statistics of document graphs
() (4) ©)) _
sets (Dsparsefstratiﬁed’ valid? DteSt)] 1 k

The fair evaluation method presented in section 3.3
can be easily adapted to splits with sparse train
sets replacing the inner-train sets in every training
phases.

Rigorously, model selection phases imply per-
forming extensive grid searches over the hyperpa-
rameter search space I', which is computationally
very expensive. In practice we have implemented
our own evolutionary grid search algorithm which
discovers suitable configurations of hyperparame-
ters by using the validation accuracy to guide the
evolution. Such an algorithm computes a suitable
configuration by exploring a small portion of I'
(Young et al., 2015), see Appendix B.3 for more
details.

4.2 Results

Quantitative results for the node classification
task applied to our WikiVitals dataset and to the
classical Cora, Citeseer and Pubmed datasets
are presented in tables 2 and 3. To account for
the unfortunate possibility that the EM phases
could perhaps decrease the accuracy after the
initialization phase we retain the best accuracy
among the EM phases only. We thus compare the
average accuracies over the k splits before and
after the EM phases. More precisely, we perform a

Cora Citeseer Pubmed Wiki Vitals
MLP 78.49 (2.39) 75.02(2.15) 88.68(0.86) 86.55(0.42)
GCN 88.84(2.39) 77.24(1.73) 89.20(0.86) 72.74 (0.61)
+ GMNN 89.26 (1.91) 77.43(1.70) 89.18 (0.84) 74.19 (0.42)
Significance * D
FAGCN 88.87(1.99) 78.27(3.53) 90.23(0.90) 87.84(0.32)
+ GMNN 89.08 (1.76) 78.32 (3.64) 90.34 (0.88) 87.92(0.31)
Significance * ok (GRS

Table 2: Fair evaluation of GMNN using dense inner-
train sets. Test accuracy is reported in %. Best results
are highlighted.

relational ¢-test between those paired means where
the alternate hypothesis is that the accuracy after
the EM phase is higher than before. Notation for
significance in tables 2 , 3, and 5 using p-value are:
*#*if p < 0.001, ** if p < 0.01, *if p < 0.05.

Fair evaluation of GNNs: These results
confirm that taking into account the underlying
graph structure provides a significant performance
gain for the node classification task for all datasets,
regardless of the fact that the train set is dense
or sparse. For classical datasets, the GCN and
FAGCN models outperform the use of an MLP
which only takes into account node features
disregarding the graph structure. For WikiVitals,
which is a disassortative dataset, the FAGCN
model performs best. Actually in this cas a simple
MLP performs better than the basic GCN.

Fair evaluation of GMNN: Refering to ta-
bles 2 and 3 a general observation is that using
GMNN for WikiVitals, Cora, Citeseer, Pubmed
leads to the best average performance, whether the
train sets are dense or sparse.

For dense train sets the improvement provided
by GMNN is either small, but however significant,
or is insignificant. Practically, when a large pro-
portion of the dataset is available for training a
model GMNN could be worth a try. Yet this small
improvement should be balanced against the high
computation cost incurred.

For sparse train sets GMNN brings a more obvi-
ous improvement to the accuracy. This is true for
all the datasets that were analyzed. More precisely,
this improvement is significant when comparing
GMNN with GCN on classical datasets and when
comparing it with FAGCN on WikiVitals.

Considering Table 3 we notice that the GMNN
accuracies for the balanced and stratified sparse
train sets of Cora, PubMed and Wikivitals are al-

most equal. Thus the EM iterations in GMNN
seem to converge to the optimal accuracy provided
that the model already performed well enough on
the baseline. The poor improvement observed on
CiteSeer for balanced train sets will be discussed
below in this section.

The very significant improvement brought
by GMNN for WikiVitals when using a sparse
train set may be interpreted as follows. In
such a situation the information supplied by the
correlations between labels seems particularly
useful to compensate for the small number of
nodes available for training. On the other hand,
when the train set is dense, the information for
making accurate prediction is supplied by the
features of a large number of nodes.

The cost of a fair evaluation: The fair evaluation
method is a computationally expensive method,
especially in the model selection phase. Model
selection and model assessment for Wikivitals,
which is the largest dataset we considered, required
roughly 30 GPU hours. We limit this cost using
three different techniques. First, when training the
model on WikiVitals we cannot afford exploring
the whole hyperparameters space I' that was
defined for Cora, Citeseer and Pubmed and we
thus restrict the exploration to a subset instead,
see Appendix B.1. A second method is to to
use an evolutionary grid search algorithm which
limits the exploration to roughly 2% — 15% of
I" depending on the model, see Appendix B.1.
At last, we can chose an economic strategy for
selecting the hyperparameters 3; once «; has been
determined. As we already said, we simply chose
setting 3; = «; after exploring other strategies
which did not perform better, see Appendix C.

Limits of fair evaluation: One possible is-
sue with the fair evaluation could occur when
the validation sets D\(,Qli q are too small. In such
situations the selected hyperparameters (/) are in
higher risk to be sub-optimal. To address this we
could obviously adopt the same strategy that was
used in the evaluation phase, namely randomizing
over several initializations of the model parameters.
We think this is the origin of the poor performance
observed on Citeseer with the balanced train set in
table 3.

Cora Citeseer Pubmed Wikivitals
balanced stratified balanced stratified balanced stratified balanced stratified
train set train set train set train set train set train set train set train set
MLP 58.54(3.98) 58.32(2.17) 59.84 (3.54) 58.35(2.48) 71.23(2.85) 70.39(1.70) 68.60(0.92) 69.35 (1.10)
GNN (base) 80.78 (2.58) 81.31(2.16) 69.05(3.66) 70.94 (2.16) 80.20 (1.88) 80.50(2.38) 70.64 (0.85) 72.68 (1.17)
Do 81.14 (3.19) 81.56(2.38) 67.04 (7.47) 70.82(2.54) 81.26(1.34) 81.15(2.30) 74.72(1.19) 74.64 (1.38)
+GMNN < ¢y 80.76 (3.74) 81.56 (2.30) 69.34(3.96) 71.52(2.19) 81.55(1.43) 81.60(2.53) 74.77 (1.18) 74.69 (1.37)
best 81.67 (3.00) 81.91(2.21) 69.61 (3.96) 71.62(2.20) 81.67 (1.32) 81.70 (2.45) 74.80 (1.18) 74.73 (1.36)
Significance #k * * * Hk sk sk ok

Table 3: Fair evaluation of GMNN using sparse train sets. Test accuracy is reported in %. Best results are highlighted.
The base GNN is GCN for Cora, Citeseer and Pubmed, it is FAGCN for WikiVitals.

5 Conclusion

This paper introduces a new disassortative
document-document graph dataset named
WikiVitals and adapts a fair comparison method
of GNNs to GMNN to evaluate the contribution
of three distinct sources of information for a
semi-supervised node classification task: the node
features, the underlying graph structure and the
label correlations. Experimental results confirm
the significant contribution of taking into account
the graph structure in addition to node features,
provided that we choose an architecture adapted
to the level of assortativity of the graph. Taking
into account label correlation information via
GMNN seems to have a significant effect mainly
in contexts where few training data are available.
The results were observed for both WikiVitals and
classical datasets, which makes us confident is
this conclusion for practical use of GMNN. For
future work we intend to leverage the hierarchical
categorization that comes with the WikiVitals
dataset to improve classification accuracy.

Aknowledgement

This work was performed using HPC resources
from GENCI-IDRIS (Grant 2021-AD011013266).

References

Vincent D Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Jour-
nal of statistical mechanics: theory and experiment,
2008(10):P10008.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen.
2021. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 3950-3957.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Scho-
nauer, SVN Vishwanathan, Alex J Smola, and Hans-
Peter Kriegel. 2005. Protein function prediction via
graph kernels. Bioinformatics, 21(suppl_1):147-i56.

Michaél Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances
in neural information processing systems, 29.

Paul D Dobson and Andrew J Doig. 2003. Dis-
tinguishing enzyme structures from non-enzymes
without alignments. Journal of molecular biology,
330(4):771-783.

Federico Errica, Marco Podda, Davide Bacciu, and
Alessio Micheli. 2020. A fair comparison of graph
neural networks for graph classification. In ICLR.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs.
NeurIPS, 30.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim,
and Austin R Benson. 2021. Combining label propa-
gation and simple models out-performs graph neural
networks. In ICLR.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In /CLR.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. 2017. ArXiv abs/1609.02907.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan
Giuinnemann. 2018. Predict then propagate: Combin-
ing neural networks with personalized pagerank for
classification on graphs. In ICLR.

Federico Monti, Davide Boscaini, Jonathan Masci,
Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. 2017. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 5115-5124.

Mark EJ Newman. 2003. Mixing patterns in networks.
Physical review E, 67(2):026126.

Mark EJ Newman. 2005. A measure of betweenness
centrality based on random walks. Social networks,
27(1):39-54.

Meng Qu, Yoshua Bengio, and Jian Tang. 2019. Gmnn:
Graph markov neural networks. In ICML, pages
5241-5250. PMLR 97.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad. 2008.
Collective classification in network data. Al maga-
zine, 29(3):93-93.

Oleksandr Shchur, Maximilian Mumme, Aleksandar
Bojchevski, and Stephan Giinnemann. 2018. Pitfalls
of graph neural network evaluation. In Proceedings
of the Relational Representation Learning Workshop
(R2L 2018), NeurlIPS 2018.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In /CLR.

Tiphaine Viard, Thomas McLachlan, Hamidreza
Ghader, and Satoshi Sekine. 2020. Classifying
wikipedia in a fine-grained hierarchy: what graphs
can contribute. CoRR, abs/2001.07558.

Zhilin Yang, William Cohen, and Ruslan Salakhudi-
nov. 2016. Revisiting semi-supervised learning with
graph embeddings. In ICML, pages 40-48. PMLR
48.

Steven R Young, Derek C Rose, Thomas P Karnowski,
Seung-Hwan Lim, and Robert M Patton. 2015. Op-
timizing deep learning hyper-parameters through an
evolutionary algorithm. In MLHPC ’15: Proceed-
ings of the workshop on machine learning in high-
performance computing environments, pages 1-5.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason
Weston, and Bernhard Scholkopf. 2003. Learning
with local and global consistency. NeurIPS 2003, 16.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim
Lipka, Nesreen K Ahmed, and Danai Koutra. 2021.
Graph neural networks with heterophily. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 11168-11176.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann,
Leman Akoglu, and Danai Koutra. 2020. Beyond
homophily in graph neural networks: Current limita-
tions and effective designs. NeurlPS 2020, 33.

Xiaojin Jerry Zhu. 2005. Semi-supervised learning
literature survey. Technical report, University of
Wisconsin-Madison, Department of Computer Sci-
ences.

A WikiVitals

WikiVitals is a disassortative document-document
network created from 48512 vital Wikipedia arti-
cles extracted from a complete Wikipedia dump

dated April 2022. Nodes correspond to vital
Wikipedia articles. Node features are binary bag-of-
words sparse representations of the articles. Each
of the 4000 features in these representations corre-
sponds to the presence or absence of an informative
unigram or bigram in the introduction, title or sec-
tion titles of the article. Edges correspond to the
mutual hyperlinks between articles in the corpus of
vital articles.

Vital articles have been selected by Wikipedia
contributors and have been categorized per topics.
We extracted a 3-level hierarchy of topics and used
the 32 intermediate level topics of this hierarchy
as labels assigned to each node of the graph. Each
node was assigned a single label. The table 4 shows
a partial view of the topic hierarchy, focusing on
the 32 categories used in this study?

Since this article is concerned with the correla-
tions between labels, we first analyzed the adja-
cency of labels in order to derive some preliminary
information (see Figure 2). First of all, we can see
that for each label, we find a large proportion of
nodes of the same label in their immediate neigh-
borhood (this is illustrated by the blue diagonal).
The figure also illustrates the dissassortative char-
acter of the graph WikiVitals by the presence in the
neighborhood of each label of high proportions of
other labels (this is illustrated by the presence of
a large number of blue cells outside the diagonal.
Conversely, a very assortative graph would have
almost only red cells off the diagonal). We can
identify transverse labels that are found in large
proportion in the neighborhood of all other labels
(these are the labels corresponding to the blue ver-
ticals, such as ’08-Cities’, ’09-Countries’ or "11-
History’). Lastly, we can see clusters (these are
the blue rectangles in Figure 2) which indicate that
certain labels are mostly surrounded by labels that
are thematically ’close’ such as the articles related
to Physical Sciences (labels 24 to 28).

3The highest level of the hierarchy comprises 11 coarse
topics, the middle level 32 topics and the finest level 230
topics.

https://arxiv.org/abs/2001.07558
https://arxiv.org/abs/2001.07558
https://arxiv.org/abs/2001.07558
https://arxiv.org/abs/2001.07558
https://arxiv.org/abs/2001.07558

Class name #articles
Arts

01-Arts 3310
Biological and health sciences

02-Animals 2396

03-Biology 886

04-Health 791

05-Plants 608
Everyday life

06-Everyday life 1191

07-Sports, games and recreation 1231
Geography

08-Cities 2030

09-Countries 1386

10-Physical 1902
History

11-History 2979
Mathematics

12-Mathematics 1126
People

13-Artists, musicians, and composers 2310

14-Entertainers, directors, producers, and screenwriters 2342

15-Military personnel, revolutionaries, and activists 1012

16-Miscellaneous 1186

17-Philosophers, historians, political and social scientists 1335

18-Politicians and leaders 2452

19-Religious figures 500

20-Scientists, inventors, and mathematicians 1108

21-Sports figures 1210

22-Writers and journalists 2120
Philosophy and religion

23-Philosophy and religion 1408
Physical sciences

24-Astronomy 886

25-Basics and measurement 360

26-Chemistry 1207

27-Earth science 849

28-Physics 988
Society and social sciences

29-Culture 2075

30-Politic and economic 1825

31-Social studies 355
Technology

32-Technology 3148

Table 4: The 32 labels of the nodes of the WikiVitals
dataset classified by topics of higher granularity

1073

Figure 2: Heatmap representing the proportion of nodes
with label j in the neighborhood of nodes with label i.

B Hyperparameters, training, and grid
search

B.1 Hyperparameters and search space

Grid search during model selection was performed
over the following search space I':

* hidden dimension: [8, 16, 32, 64]

* input dropout: [0.2,0.4,0.6,0.8]

¢ dropout: [0.2,0.4,0.6,0.8]

* learning rate:
[le-1, S5e-2, 1e-2, S5e-3, 1e-3, Se-4, le-4]

* L?-regularization strength:
[le-1, Se-2, 1e-2, 5e-3, 1e-3, Se-4, le-4, Se-5,
le-5]

* ¢ (only for FAGCN):
[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

For WikiVitals, we use a reduced search
space: hidden dimension was set to 64 and L?-
regularization strength to 1e-5, learning rate was in
[le-1, Se-2], and € in [0.7,0.8,0.9].

B.2 Training procedures for GNN models
For all GNN model training:

* we train for a maximum of 1000 epochs

* we use early stopping, patience is set to 200

* there is no learning rate decay

» [?-regularization is applied on all layers

* all model parameters (convolutional kernel
coefficients for FAGCN, weight matrices for
all models) are optimized simultaneously

* once training has stopped, we reset the state of
model parameters to the step with the lowest
validation loss.

For MLP and GCN, early stopping criterion is
to stop optimization if the validation loss does not
decrease during 200 epoches. For FAGCN, early
stopping criterion is to stop optimization if the val-
idation loss and the validation accuracy does not
decrease during 200 epoches.

For GMNN training, we train models for 100
epoches and do 10 EM-loops.

B.3 Evolutionary grid search

Our evolutionary algorithm maintains a randomly
initialized population of 100 configurations of hy-
perparameters over generations. From 2 to 50 con-
fiurations whose validation accuracy exceeds the
population average are selected at each generation
to be kept for the next. New configurations inte-
grated in the population are created via a 2-pivot

Cora Citeseer Pubmed

dense sparse sparse dense sparse sparse dense sparse sparse

stratified balanced stratified stratified balanced stratified stratified balanced stratified

train set train set train set train set train set train set train set train set train set

GCN 88.84 (2.39) 80.78 (2.58) 81.31(2.16) 77.24(1.73) 69.05 (3.66) 70.94 (2.16) 89.20 (0.86) 80.20 (1.88) 80.50 (2.38)
GMNN (strategy 1) 89.26 (1.91) 81.67 (3.00) 81.91(2.21) 77.43(1.70) 69.61 (3.96) 71.62(2.20) 89.18 (0.84) 81.67 (1.32) 81.70 (2.45)
Significance * sk * * * sk sk
GMNN (strategy 2) 89.35(1.79) 82.05 (2.81) 82.21(2.10) 77.35(1.65) 70.00(3.83) 71.80(2.32) 89.02(0.84) 81.72(1.20) 81.67 (2.51)
Significance * Hokesk ok ek * ok k%
GMNN (strategy 3) 89.30 (1.80) 81.92 (2.81) 82.30(2.06) 77.38(1.70) 70.03 (3.74) 71.77 (2.30) 89.10(0.79) 81.42(1.66) 81.64 (2.46)
Signiﬁcance k% ET3 FT3 * T3 PETY

Table 5: Fair evaluation of GMNN using strategies 1, 2 and 3 to compute the value of /3; for each split j. Test
accuracy is reported in %. Significance is always calculated in relation to the performance of the GCN.

random crossover of two sampled selected configu-
rations (sampling is proportional to configuration
evaluations ; configurations with a better evalua-
tion are more likely to be selected for crossover),
a mutation step assigns a new value to a configu-
ration hyperparameter with a probability 0.05 to
promote diversity in the search for configurations.
Only never-ever seen configurations are added to
complete the population at each generation. The
number of generations is set at 10, beyond which
the evaluation of the best configurations in the pop-
ulation seems empirically to increase little or not.

C Model selection strategies

During model selection phases of the fair evalu-
ation, we must compute for each split j a pair
yU) = (aj, ;) of optimal hyperparameters «;
for GNNpy and 3; for GNN. In (Qu et al., 2019),
the authors use a simple strategy which consists in
using a; = [3; (which is the strategy 1 below). This
is a convenient strategy because one needs to com-
pute «j only. Moreover it works well in practice
when using the Planetoid split. A question naturally
arises as to whether this model selection strategy
extends to various training contexts. We propose
here to empirically test this strategy and two com-
peting strategies in a fair evaluation context using
dense or sparse train sets of the classical datasets
Cora, Citeseer and Pubmed. The base model used
in GMNN is GCN.

For each split 5, assuming that c; has been previ-
ously calculated, the three strategies for determin-
ing 3; are detailed hereafter:

1. Strategy 1: Set §5; = «;.

2. Strategy 2: Set 3; at a constant value. We
use as constant value the set of hyperparam-
eters provided by the authors of (Qu et al.,

11

2019): hidden dimension is 16, input dropout
and dropout are 0.5, learning rate is 0.05, L2-
regularization strength is Se-4.

3. Strategy 3: Compute 3; via a grid search,
the value to optimize being the valida-
tion accuracy of GNN, after 3 Expectation-
Maximization loops of GMNN and «; being
set. We are searching for configurations of
hyperparameters for which the performance
of GNN, does not degrade over the first EM-
loops of GMNN. The grid search is performed
in a search space identical to that defined in
Appendix B.1 except for the hidden dimension
limited to the set [8, 16]. In the evolutionary
grid search algorithm, we set the population
size to 40 and the number of generations to 3.

The results of the evaluations are presented in
the table 5. The analysis shows that, on average,
each of these strategies allows an improvement of
the accuracy of the models. The three strategies
tested exhibit similar performance for each of the
contexts. The additional computational effort re-
quired to use strategy 3 seems to be unnecessary
for the determination of 3; and strategies 1 and 2
are to be preferred. In this paper, we therefore use
the simple strategy of setting 3; = «; for each split
j during each model selection phase.

