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Abstract

Graph Markov Neural Networks (GMNN) have001
recently been proposed to improve regular002
graph neural networks (GNN) by including la-003
bel dependencies into the semi-supervised node004
classification task. They do this in a theoret-005
ically principled way and use three kinds of006
information to predict labels. Just like ordinary007
GNNs they use the node features and the graph008
structure but they moreover leverage informa-009
tion from the labels of neighboring nodes to010
improve the accuracy of their predictions. In011
this paper we introduce a new dataset named012
WikiVitals which contains a graph of 48k mutu-013
ally referred Wikipedia articles classified into014
32 categories and connected by 2.3M edges.015
Our aim is to rigorously evaluate the contribu-016
tions of three distinct sources of information017
to the prediction accuracy of GMNN for this018
dataset: the content of the articles, their con-019
nections with each other and the correlations020
among their labels. For this purpose we adapt021
a method which was recently proposed for per-022
forming fair comparisons of GNN performance023
using an appropriate randomization over parti-024
tions and a clear separation of model selection025
and model assessment.026

1 Introduction027

Graph neural networks (GNN) (Yang et al., 2016;028

Kipf and Welling, 2017; Defferrard et al., 2016)029

have become a tool of choice when modeling030

datasets whose observations are not i.i.d. but are031

comprised of entities interconnected according to032

a graph of relations. They can be used either for033

graph classification, like molecule classification034

(Dobson and Doig, 2003; Borgwardt et al., 2005),035

or for node classification, like document classifica-036

tion in a citation network (Sen et al., 2008).037

The most common task is certainly semi-038

supervised node classification in which unlabeled039

nodes of a given subset are to be classified using a040

distinct subset of labeled nodes, the train set, from041

the same graph (Kipf and Welling, 2017; Deffer- 042

rard et al., 2016). Inductive classification on the 043

other hand refers to the most common setting in 044

machine learning in which nodes to be labeled are 045

not known ahead of time (Hamilton et al., 2017). 046

A number of architectures have been proposed 047

over the years which deal with specific issues oc- 048

curring with GNNs. Some combat over-smoothing, 049

(which is the tendency for deep GNNs to predict the 050

same labels for all nodes) (Klicpera et al., 2018), 051

some deal with assortativity or heterophily (which 052

refers to situations in which neighboring nodes are 053

likely to have different labels) (Zhu et al., 2020, 054

2021; Bo et al., 2021) and others still try to learn 055

the connection weights from data using an appropri- 056

ate attention mechanism (Veličković et al., 2018). 057

Despite their diversity, these models all have 058

one important shortcoming. Namely they assume 059

that labels can be predicted independently for each 060

node in the graph. In other words they neglect la- 061

bel dependencies altogether. More recently Graph 062

Markov Neural Networks (GMNN) (Qu et al., 063

2019) were introduced as genuine probabilistic 064

models which include label correlations in graphs 065

by combining the strength of GNNs and those of 066

conditional random fields (CRF) while avoiding 067

their limitations. These are the models we shall 068

focus on in this work. 069

The accuracy of the GMNN model was evalu- 070

ated for node classification and link prediction tasks 071

in (Qu et al., 2019) on the classical benchmark 072

datasets Cora, PubMed and CiteSeer (Sen et al., 073

2008) using the public splits defined in (Yang et al., 074

2016). Under these settings a clear improvement 075

was demonstrated when comparing the GMNN 076

model to existing baselines that do not account 077

for label dependencies. However, as a number of 078

recent works (Shchur et al., 2018; Errica et al., 079

2020) have pointed out, a fair evaluation of the 080

performance of GNNs requires a procedure which 081

performs a systematic randomization over train, 082
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validation, test set partitions and makes clear sepa-083

ration between model selection and model assess-084

ment.085

Our aim in this paper is to subject GMNN to086

such a rigorous performance analysis on a new, rel-087

atively large graph of documents named WikiVitals.088

In a first step we shall evaluate the contribution of089

including the graph structure, using a basic GNN,090

when compared to a graph agnostic baseline such091

as a MLP. In a second step we shall estimate the092

increase in accuracy that results from taking into093

account label correlation using a GMNN on top094

of a basic GNN. For completeness we also per-095

form the same thorough analysis on the classical096

benchmarks datasets mentioned above.097

In summary, our contributions are:098

• We introduce a new dataset of interconnected099

documents named WikiVitals. Compared to100

the classical benchmark datasets this is a rela-101

tively large graph comprising 48k nodes clas-102

sified into 32 categories and connected by103

2.3M edges.104

• We apply the fair comparison procedure pro-105

posed in (Errica et al., 2020) to a GMNN106

which is sophisticated node classification107

model. So far only graph classification models108

had been evaluated in this manner.109

• We evaluate the respective contributions to110

the accuracy of classifying WikiVitals articles111

when first including the graph structure infor-112

mation using a common GNN and next when113

leveraging the label correlations information114

using a GMNN model on top of that GNN.115

2 Related Work116

2.1 Modelling Label Dependancy in GNNs117

Prior to the recent advent of GNNs a number of118

works had attempted to include label dependencies119

using various heuristics. Label propagation is such120

an early attempt where a cost function balances the121

penalty for predicting the wrong labels with the122

requirement that node labels should vary smoothly123

(Zhou et al., 2003; Zhu, 2005).124

Dataset specific methods have also been pro-125

posed. As far as classifying Wikipedia articles is126

concerned, authors in (Viard et al., 2020) use a sim-127

ple GNN whose weights are empirically adjusted128

depending on the similarity of the labels of neigh-129

boring nodes. Although these approaches had some130

empirical success (Huang et al., 2021), they lack 131

of a sound probabilistic foundation which makes 132

it difficult to analyze why they fail or succeed. In 133

particular they do not clearly distinguish the con- 134

tributions of the node features, the graph structure 135

and the label correlations to the prediction accuracy. 136

In our work we decided to avoid using topological 137

node features like node degrees, betweenness or 138

assortativity (Newman, 2003; Blondel et al., 2008; 139

Newman, 2005) to make this distinction clearer. 140

GNNs are a good fit for finding distributed node 141

representations that merge the information supplied 142

by the node features, like the content of a document 143

for instance, with the local structure of the graph in 144

the vicinity of that node. Each such representation 145

is then used for predicting the label for that node in- 146

dependently of those of the other nodes. CRF’s on 147

the other hand come in handy for prescribing scores 148

for arbitrary combinations of labels. However per- 149

forming exact inference is hard due to the trouble of 150

computing the partition function. GMNN propose 151

an elegant solution to this conundrum by using two 152

ordinary GNNs which are coupled when trained 153

with the Expectation Maximization (EM) algorithm 154

(see section 3.1). Their performance was evaluated 155

in (Qu et al., 2019) in the usual way using a pub- 156

lic partition of classical benchmarks (Sen et al., 157

2008) but without accounting for the robustness of 158

this evaluation when using different splits which is 159

essential for a fair evaluation (Errica et al., 2020; 160

Shchur et al., 2018). This is one of our goals. We 161

also evaluate the contributions to the classification 162

accuracy of the three sources of information men- 163

tioned above, namely the content of the articles, 164

their links and the correlations between the labels 165

of connected articles. 166

2.2 Classifying Wikipedia Articles 167

Wikipedia articles provide rich textual content from 168

which many informative n-grams can be extracted 169

in order to build vector representations of the ar- 170

ticles, and the mutual hyperlinks between articles 171

define a natural graph structure underlying the cor- 172

pus of articles. In this way, several datasets have 173

been created from Wikipedia and are being used 174

to evaluate various GNN architectures, including 175

Squirrel and Chameleon1. This is also the case for 176

the WikiVitals dataset we introduce in this article. 177

The labeling of Wikipedia articles can use vari- 178

1http://snap.stanford.edu/data/
wikipedia-article-networks.html
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ous sources of information. The labels of Squirrel179

and Chameleon for instance are based on monthly180

traffic data (acquired through the metadata of the ar-181

ticles) and correspond to an artificial segmentation182

into 3 or 5 categories (Bo et al., 2021). In (Viard183

et al., 2020), the labeling is based on a collection of184

labels external to Wikipedia. None of these datasets185

however exploit thematic classifications resulting186

from a consensus among Wikipedia contributors as187

does the list of vital articles of Wikipedia2. This is188

the data we used to label the nodes of our WikiVitals189

dataset (see appendix A). This classification of vital190

articles, where each document is associated with191

a unique label, is not exempt of arbitrariness how-192

ever. Indeed, the assignment of an article to one193

category or another can sometimes be ambiguous.194

Furthermore, this classification is imbalanced and195

contains categories with very few representatives.196

A common feature of Wikipedia datasets (Squir-197

rel, Chameleon as well as WikiVitals) is that they198

are more disassortative (Newman, 2003) than clas-199

sical graph datasets (the notion of heterophily is200

also often used which generally refers to a low pro-201

portion of edges connecting nodes with the same202

label in the graph). This makes them particularly203

interesting as benchmarks for a node classification204

task, as basic models like GCNs show their limits in205

such disassortative contexts (Bo et al., 2021). Some206

recent models like H2GCN or FAGCN have been207

proposed to overcome this problem and show better208

performance in those contexts (Bo et al., 2021; Zhu209

et al., 2020).210

2.3 Evaluating Performance of GNNs211

The authors of (Shchur et al., 2018) draw attention212

to the fact that evaluations of GNN models are al-213

most never conducted in a rigorous manner. On the214

one hand, many experiments are not replicable due215

to the lack of a precise definition of the evaluation216

process. On the other hand, they argue that using a217

single split, usually the one defined in the paper that218

introduces a new benchmark dataset, is insufficient219

to guarantee the existence of a significant differ-220

ence between the accuracy of two competing GNN221

architectures. The authors thus suggest standardiz-222

ing the choice of hyperparameters and randomizing223

over many train, validation, test splits. They then224

search for a set of hyperparameters that optimizes225

the average performance over those splits. Surpris-226

2https://en.wikipedia.org/wiki/
Wikipedia:Vital_articles/Level/5

ingly, they find that the simplest architectures like 227

GCN (Kipf and Welling, 2017; Defferrard et al., 228

2016) often perform better for the semi-supervised 229

node classification task than the more sophisticated 230

models (Veličković et al., 2018; Monti et al., 2017). 231

In our work we follow a still more rigorous ac- 232

curacy assessment that was originally proposed in 233

(Errica et al., 2020) as a SOTA evaluation proce- 234

dure for the graph classification task. For a given 235

model we search for the best hyperparameters on a 236

per split basis and then average the accuracy estima- 237

tions of those optimized models over splits. This 238

allows for the fairest assessment possible when 239

comparing two models. It guarantees that a prac- 240

titioner who randomly chooses a split, trains her 241

model on the train set, optimizes its hyperparame- 242

ters on the validation set and estimates the accuracy 243

on the test will obtain an estimation that is truely 244

reliable for comparing models such as an MLP, a 245

GCN or a GMNN. 246

3 Adapting the Fair Comparison Method 247

to GMNN 248

3.1 Training a GMNN 249

Before delving into the specifics of our evalua- 250

tion process let’s recall the definition of GMNN 251

model. We use the same notations as in (Qu et al., 252

2019) and refer to this work for a thorough jus- 253

tification of the training procedure we describe 254

here. We consider a graph G = (V,E,xV ) where 255

V denotes the set of nodes, E the set of edges 256

and xV := {xn}n∈V the set of features associ- 257

ated to each node n. We assume that we are 258

given the one-hot encoded labels (for K categories) 259

yL := {yn}n∈L for the nodes in a subset L ⊂ V 260

and the features xV of all nodes. The task we 261

consider is the prediction of the labels yU of the 262

remaining unlabeled nodes in U = V \ L. The 263

GMNN model does two things. First, it specifies 264

a model for the joint probability pϕ(yL,yU |xV ) 265

compatible with a CRF describing correlations be- 266

tween neighboring nodes. Second, it describes a 267

practical training procedure, based on the EM algo- 268

rithm, for finding the parameters ϕ which maximize 269

a variational lower bound on the marginal likeli- 270

hood pϕ(yL|xV ) over the observed labels which 271

we quickly summarize. 272

The GMNN model requires defining two ordi- 273

nary GNNs. The first one, denoted by GNNϕ, 274

where ϕ is the set of its parameters, describes the 275

conditional distribution pϕ(yn|yNB(n),xV ) over 276
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individual node labels yn given the labels of the277

neighboring nodes NB(n) and the node features278

xV . It is specified in the usual manner by a softmax279

applied on a d-dimensional node embedding hϕ,n280

read off from the last layer of GNNϕ and a K × d281

learnable matrix Wϕ:282

pϕ(yn|yNB(n),xV ) = Cat(yn|softmax(Wϕhϕ,n))
(1)283

A second GNN, that we denote by GNNθ, defines284

a mean-field variational distribution meant to ap-285

proximate the posterior pϕ(yU |yL, xV ) in the EM286

algorithm. It is defined nodewise in a similar way:287

qθ(yn|xV ) = Cat(yn|softmax(Wθhθ,n)) (2)288

Intuitively GNNθ makes the prediction of a model289

that completely neglects correlations among labels.290

These predictions will then be corrected by GNNϕ291

which accounts for the correlations between neigh-292

boring node labels, these in turn will correct GNNθ293

within an EM cyclic training procedure. The train-294

ing process uses the following two objective func-295

tions. One is for updating θ while holding ϕ fixed:296

297

Oθ =
∑
n∈U

Epϕ(yn|ŷNB(n),xV )[log qθ(yn|xV )]298

+
∑
n∈L

log qθ(yn|xV ), (3)299

where ŷn denotes the ground truth label yn if n ∈300

L and is sampled from qθ(yn|xV ) if n ∈ U . Using301

the same notations, the other objective function302

used for optimizing ϕ while holding θ fixed is:303

Oϕ =
∑
n∈V

log pϕ(ŷn|ŷNB(n),xV ). (4)304

The first step of training GMNN is to initialize305

qθ by maximizing the last term in (3) for θ. This306

corresponds to an ordinary GNN trained without307

accounting for label correlations. The accuracy of308

this initial qθ model will thus provide a baseline309

to compare with the full GMNN model. Second,310

fix θ and maximize ϕ in (4), this is the M -step. At311

last, optimize (3) for θ while holding ϕ fixed, this312

is the E-step. Repeat the M and E step until con-313

vergence. Experience shows that qθ is consistently314

a better predictor than pϕ (Qu et al., 2019).315

3.2 Fair Comparison of GNNs316

Recall that our main goal is to rigorously ascer-317

tain under which circumstances a GMNN model318

architecture, which was designed to leverage label 319

correlations, has a higher accuracy when used for 320

classifying articles from the WikiVitals dataset than 321

a correlation agnostic model like GCN or FAGCN 322

(Bo et al., 2021). We also wish to compare GCN 323

or FAGCN with a structure agnostic baseline like 324

an MLP for this same dataset. 325

A crude evaluation would proceed by partition- 326

ing the available dataset of labeled WikiVitals ar- 327

ticles D = ((x1,y1), . . . , (xN ,yN )) into three 328

disjoint sets: a train set Dtrain, a validation set 329

Dvalid for selecting the optimal hyperparameters 330

γ∗ among a set Γ and a test set Dtest to evaluate 331

the accuracy of that optimal model. Unfortunately 332

such a simple procedure was shown to be so unsta- 333

ble that changing the partition could totally scram- 334

ble relative ranking of various GNN architectures 335

(Errica et al., 2020; Shchur et al., 2018). 336

To perform reliable comparisons we shall follow 337

the best practices described in (Errica et al., 2020). 338

The main requirement is to clearly separate model 339

assessment from model selection. 340

341

Model assessment uses a k-fold cross vali- 342

dation procedure. The dataset D is first split into 343

k disjoint stratified folds F1, . . . ,Fk. Then k 344

different train and test sets are defined as: 345

D(i)
train :=

⋃
j ̸=i

Fj , D(i)
test := Fi, i = 1, . . . , k. 346

Each train set is itself split into an inner train set 347

and a validation set: 348

D(i)
train := D(i)

in−train ∪ D(i)
valid, i = 1, . . . , k. 349

Model selection (see below) is performed sep- 350

arately for each D(i)
train. This results in a set of 351

hyperparameters γ(i) which is optimal for D(i)
train. 352

The model is then trained with these optimal 353

hyperparameters γ(i) on D(i)
in−train using D(i)

valid to 354

implement early stopping. Actually, for each fold 355

i, the test accuracy is averaged over r training runs 356

with different random initializations of the weights 357

to smooth out any possible bad configuration. The 358

average of these test accuracies over the k folds 359

makes our final assessment of a model architecture. 360

361

Model selection correspond to choosing an 362

optimal set of hyperparameters. It is performed, 363

separately for each D(i)
train. More precisely, the 364

model is trained on D(i)
in−train using D(i)

valid as a 365
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holdout set for selecting the hyperparameters γ(i)366

which maximize the accuracy among a set Γ of367

configurations.368

3.3 Adaptation to GMNN369

In order to evaluate GMNN using the fair evalu-370

ation principle described above, we must select371

for each split j a pair γ(j) := (αj , βj) of optimal372

hyperparameters αj for GNNθ and βj for GNNϕ373

respectively. In (Qu et al., 2019), the authors use374

a simple strategy which consists in using αj = βj ,375

however other strategies can be considered, see376

appendix C. In this work also compute hyperpa-377

rameters αj for GNNθ first and then set βi = αj378

for the hyperparameters of GNNϕ. The selection of379

the best pair (αj , βj) is thus performed in two steps.380

First, for each split j, a set of optimal hyperparam-381

eters αj for GNNθ is computed using the model382

selection procedure introduced in the previous sec-383

tion. In a second step, one sets βj = αj . The model384

assessment phase remains unchanged. For each385

split j the set of hyperparameters γ(j) = (αj , βj)386

is used to compute the test accuracy of GMNN387

using r random weight initializations. The fair388

evaluation model adapted to GMNN is presented389

in figure 1.390

Note that performing a fair evaluation of the391

model after completion of the initial training of392

GNNθ and before entering the EM optimization393

corresponds to a fair evaluation of a plain GNN394

which thus requires no additional computation.395

4 Experiment396

4.1 Datasets and Settings397

Datasets: For our main experiment we introduce398

WikiVitals, a novel sparse and disassortative399

document-document graph created from the400

English Wikipedia level 5 vital articles in April401

2022 (Wikipedia is under CC BY-SA license).402

Nodes features xn correspond to the presence403

or absence of some n-grams in the summary404

section of the article. The set E of edges are the405

mutual hyperlinks between articles found in their406

body. Each node of the graph has been associated407

to a single label (among 32) corresponding to408

an intermediate level in a hierarchy of topics409

co-constructed by Wikipedia contributors. More410

information on this new dataset as well as statistics411

on all datasets can be found in table 1 and appendix412

A. For completeness, we also performed a fair413

evaluation on the three well-known assortative414

citation network datasets: Cora, Citeseer, and 415

Pubmed. Undirected edges in these networks 416

represent citations between two scientific articles, 417

node features xn are a bag-of-words vector of the 418

articles and labels yn corresponds to the fields of 419

the articles. For all datasests, we treat the graphs 420

as undirected. 421

422

General setup: All baseline models (MLP, 423

GCN and FAGCN) were reimplemented using 424

PyTorch with two layers (input representations 425

→ hidden layer → output layer). For all models, 426

L2-regularization is performed on all layers, 427

dropout is applied on input data and on all layers. 428

For GCN and FAGCN, we used the so-called 429

renormalization trick of the adjacency matrix 430

(Kipf and Welling, 2017). For FAGCN, the number 431

of propagations (Bo et al., 2021) is set to 2 in 432

order to limit the aggregation of information to 433

nodes located at a maximum distance of 2. For 434

GMNN we use the annealing sampling method 435

with factor set to 0.1 (Qu et al., 2019), the number 436

of EM-loops is set to 10 and both label predictions 437

ŷn made with GNNθ and node features xV are 438

used to train GNNϕ as defined in (4). 439

We use the same training procedure for all 440

models. For all datasets, node features are 441

binarized and then normalized (L1-norm) before 442

training. We used the Adam optimizer (Kingma 443

and Ba, 2015) with default parameters and no 444

learning rate decay, the same maximum number 445

of training epochs, an early stopping criterion and 446

a patience hyperparameter (see appendix B for 447

more details). Validation accuracy is evaluated 448

at the end of each epoch. All model parameters 449

(convolutional kernel coefficients for FAGCN, 450

weight matrices for all models) are initialized 451

and optimized simultaneously (weights are ini- 452

tialized according to Glorot and biases initialized 453

to zero). In all cases we use full-batch train- 454

ing (using all nodes in the training set every epoch). 455

456

Fair evaluation setup: During the assess- 457

ment phase, we perfom r = 20 trainings for 458

each of the k = 10 splits. Best configurations 459

of hyperparameters αj for GNNθ are calculated 460

for each split j, and next we set hyperparameters 461

βj = αj for GNNϕ. 462

For each dataset, we followed the best prac- 463

tices advocated in (Errica et al., 2020) and summa- 464

rized in section 3.2 to pre-calculate stratified splits 465
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Figure 1: The fair evaluation procedure for GNN’s and its adaptation for GMNN uses k train/validation/test splits
D(i)

in−train,D
(i)
valid,D

(i)
test which are created from k stratified folds Fj as explained in section 3.2.

(D(j)
in−train,D

(j)
valid,D

(j)
test), j = 1, . . . , k of the en-466

tire set of nodes with respective ratios of 81%, 9%467

and 10%. In the sequel the sets D(j)
in−train will be468

referred to as dense training sets.469

In addition, we have created two other sets470

of splits, whose train sets are sparse. First to471

allow an convenient comparison with previous472

work which actually use such train sets (Yang473

et al., 2016). Second to enlarge the scope of474

the methods tested in this article. As a reminder,475

the evaluation of GNNs as well as GMNN for476

Cora, Citeseer and Pubmed was classically per-477

formed using the Planetoid splits (Yang et al.,478

2016) of these datasets or similiarly constructed479

splits composed of 20 nodes per category ran-480

domly selected in the whole dataset (Shchur et al.,481

2018; Bo et al., 2021; Qu et al., 2019). To482

construct splits with sparse train sets we inde-483

pendently extracted two subsets D(j)
sparse−balanced484

and D(j)
sparse−stratified from each D(j)

in−train, j =485

1, . . . , k. Each contains 20 ∗K nodes (where K is486

the number of categories). Each D(j)
sparse−balanced487

is constructed by selecting 20 nodes of each cat-488

egory from D(j)
in−train. In the sequel these sets489

will be referred to as sparse balanced train sets490

in the sense that each category is represented491

equally in each of them. Each D(j)
sparse−stratified492

is constructed by selecting nodes from D(j)
in−train493

in a stratified way. We shall denote these sets494

as sparse stratified train sets. Thus we have k495

splits of each dataset with sparse balanced train sets496

(D(j)
sparse−balanced,D

(j)
valid,D

(j)
test), j = 1, . . . , k and497

k splits of each dataset with sparse stratified train498

Dataset Assortativity #Nodes #Edges #Categories #Features

Cora 0.771 2,708 5,429 7 1,433
Citeseer 0.675 3,327 4,732 6 3,703
Pubmed 0.686 19,717 44,338 3 500
WikiVitals 0.204 48,512 2,297,782 32 4,000

Table 1: Statistics of document graphs

sets (D(j)
sparse−stratified,D

(i)
valid,D

(j)
test), j = 1, . . . , k. 499

The fair evaluation method presented in section 3.3 500

can be easily adapted to splits with sparse train 501

sets replacing the inner-train sets in every training 502

phases. 503

Rigorously, model selection phases imply per- 504

forming extensive grid searches over the hyperpa- 505

rameter search space Γ, which is computationally 506

very expensive. In practice we have implemented 507

our own evolutionary grid search algorithm which 508

discovers suitable configurations of hyperparame- 509

ters by using the validation accuracy to guide the 510

evolution. Such an algorithm computes a suitable 511

configuration by exploring a small portion of Γ 512

(Young et al., 2015), see Appendix B.3 for more 513

details. 514

4.2 Results 515

Quantitative results for the node classification 516

task applied to our WikiVitals dataset and to the 517

classical Cora, Citeseer and Pubmed datasets 518

are presented in tables 2 and 3. To account for 519

the unfortunate possibility that the EM phases 520

could perhaps decrease the accuracy after the 521

initialization phase we retain the best accuracy 522

among the EM phases only. We thus compare the 523

average accuracies over the k splits before and 524

after the EM phases. More precisely, we perform a 525
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Cora Citeseer Pubmed WikiVitals

MLP 78.49 (2.39) 75.02 (2.15) 88.68 (0.86) 86.55 (0.42)

GCN 88.84 (2.39) 77.24 (1.73) 89.20 (0.86) 72.74 (0.61)
+ GMNN 89.26 (1.91) 77.43 (1.70) 89.18 (0.84) 74.19 (0.42)
Significance * ***

FAGCN 88.87 (1.99) 78.27 (3.53) 90.23 (0.90) 87.84 (0.32)
+ GMNN 89.08 (1.76) 78.32 (3.64) 90.34 (0.88) 87.92 (0.31)
Significance * *** ***

Table 2: Fair evaluation of GMNN using dense inner-
train sets. Test accuracy is reported in %. Best results
are highlighted.

relational t-test between those paired means where526

the alternate hypothesis is that the accuracy after527

the EM phase is higher than before. Notation for528

significance in tables 2 , 3, and 5 using p-value are:529

*** if p < 0.001, ** if p < 0.01, * if p < 0.05.530

531

Fair evaluation of GNNs: These results532

confirm that taking into account the underlying533

graph structure provides a significant performance534

gain for the node classification task for all datasets,535

regardless of the fact that the train set is dense536

or sparse. For classical datasets, the GCN and537

FAGCN models outperform the use of an MLP538

which only takes into account node features539

disregarding the graph structure. For WikiVitals,540

which is a disassortative dataset, the FAGCN541

model performs best. Actually in this cas a simple542

MLP performs better than the basic GCN.543

544

Fair evaluation of GMNN: Refering to ta-545

bles 2 and 3 a general observation is that using546

GMNN for WikiVitals, Cora, Citeseer, Pubmed547

leads to the best average performance, whether the548

train sets are dense or sparse.549

For dense train sets the improvement provided550

by GMNN is either small, but however significant,551

or is insignificant. Practically, when a large pro-552

portion of the dataset is available for training a553

model GMNN could be worth a try. Yet this small554

improvement should be balanced against the high555

computation cost incurred.556

For sparse train sets GMNN brings a more obvi-557

ous improvement to the accuracy. This is true for558

all the datasets that were analyzed. More precisely,559

this improvement is significant when comparing560

GMNN with GCN on classical datasets and when561

comparing it with FAGCN on WikiVitals.562

Considering Table 3 we notice that the GMNN563

accuracies for the balanced and stratified sparse564

train sets of Cora, PubMed and Wikivitals are al-565

most equal. Thus the EM iterations in GMNN 566

seem to converge to the optimal accuracy provided 567

that the model already performed well enough on 568

the baseline. The poor improvement observed on 569

CiteSeer for balanced train sets will be discussed 570

below in this section. 571

The very significant improvement brought 572

by GMNN for WikiVitals when using a sparse 573

train set may be interpreted as follows. In 574

such a situation the information supplied by the 575

correlations between labels seems particularly 576

useful to compensate for the small number of 577

nodes available for training. On the other hand, 578

when the train set is dense, the information for 579

making accurate prediction is supplied by the 580

features of a large number of nodes. 581

582

The cost of a fair evaluation: The fair evaluation 583

method is a computationally expensive method, 584

especially in the model selection phase. Model 585

selection and model assessment for Wikivitals, 586

which is the largest dataset we considered, required 587

roughly 30 GPU hours. We limit this cost using 588

three different techniques. First, when training the 589

model on WikiVitals we cannot afford exploring 590

the whole hyperparameters space Γ that was 591

defined for Cora, Citeseer and Pubmed and we 592

thus restrict the exploration to a subset instead, 593

see Appendix B.1. A second method is to to 594

use an evolutionary grid search algorithm which 595

limits the exploration to roughly 2% − 15% of 596

Γ depending on the model, see Appendix B.1. 597

At last, we can chose an economic strategy for 598

selecting the hyperparameters βj once αj has been 599

determined. As we already said, we simply chose 600

setting βj = αj after exploring other strategies 601

which did not perform better, see Appendix C. 602

603

Limits of fair evaluation: One possible is- 604

sue with the fair evaluation could occur when 605

the validation sets D(j)
valid are too small. In such 606

situations the selected hyperparameters γ(j) are in 607

higher risk to be sub-optimal. To address this we 608

could obviously adopt the same strategy that was 609

used in the evaluation phase, namely randomizing 610

over several initializations of the model parameters. 611

We think this is the origin of the poor performance 612

observed on Citeseer with the balanced train set in 613

table 3. 614
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Cora Citeseer Pubmed Wikivitals

balanced stratified balanced stratified balanced stratified balanced stratified
train set train set train set train set train set train set train set train set

MLP 58.54 (3.98) 58.32 (2.17) 59.84 (3.54) 58.35 (2.48) 71.23 (2.85) 70.39 (1.70) 68.60 (0.92) 69.35 (1.10)

GNN (base) 80.78 (2.58) 81.31 (2.16) 69.05 (3.66) 70.94 (2.16) 80.20 (1.88) 80.50 (2.38) 70.64 (0.85) 72.68 (1.17)

+ GMNN


pϕ
qθ
best

81.14 (3.19) 81.56 (2.38) 67.04 (7.47) 70.82 (2.54) 81.26 (1.34) 81.15 (2.30) 74.72 (1.19) 74.64 (1.38)
80.76 (3.74) 81.56 (2.30) 69.34 (3.96) 71.52 (2.19) 81.55 (1.43) 81.60 (2.53) 74.77 (1.18) 74.69 (1.37)
81.67 (3.00) 81.91 (2.21) 69.61 (3.96) 71.62 (2.20) 81.67 (1.32) 81.70 (2.45) 74.80 (1.18) 74.73 (1.36)

Significance ** * * * ** *** *** ***

Table 3: Fair evaluation of GMNN using sparse train sets. Test accuracy is reported in %. Best results are highlighted.
The base GNN is GCN for Cora, Citeseer and Pubmed, it is FAGCN for WikiVitals.

5 Conclusion615

This paper introduces a new disassortative616

document-document graph dataset named617

WikiVitals and adapts a fair comparison method618

of GNNs to GMNN to evaluate the contribution619

of three distinct sources of information for a620

semi-supervised node classification task: the node621

features, the underlying graph structure and the622

label correlations. Experimental results confirm623

the significant contribution of taking into account624

the graph structure in addition to node features,625

provided that we choose an architecture adapted626

to the level of assortativity of the graph. Taking627

into account label correlation information via628

GMNN seems to have a significant effect mainly629

in contexts where few training data are available.630

The results were observed for both WikiVitals and631

classical datasets, which makes us confident is632

this conclusion for practical use of GMNN. For633

future work we intend to leverage the hierarchical634

categorization that comes with the WikiVitals635

dataset to improve classification accuracy.636
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A WikiVitals738

WikiVitals is a disassortative document-document739

network created from 48512 vital Wikipedia arti-740

cles extracted from a complete Wikipedia dump741

dated April 2022. Nodes correspond to vital 742

Wikipedia articles. Node features are binary bag-of- 743

words sparse representations of the articles. Each 744

of the 4000 features in these representations corre- 745

sponds to the presence or absence of an informative 746

unigram or bigram in the introduction, title or sec- 747

tion titles of the article. Edges correspond to the 748

mutual hyperlinks between articles in the corpus of 749

vital articles. 750

Vital articles have been selected by Wikipedia 751

contributors and have been categorized per topics. 752

We extracted a 3-level hierarchy of topics and used 753

the 32 intermediate level topics of this hierarchy 754

as labels assigned to each node of the graph. Each 755

node was assigned a single label. The table 4 shows 756

a partial view of the topic hierarchy, focusing on 757

the 32 categories used in this study3 758

Since this article is concerned with the correla- 759

tions between labels, we first analyzed the adja- 760

cency of labels in order to derive some preliminary 761

information (see Figure 2). First of all, we can see 762

that for each label, we find a large proportion of 763

nodes of the same label in their immediate neigh- 764

borhood (this is illustrated by the blue diagonal). 765

The figure also illustrates the dissassortative char- 766

acter of the graph WikiVitals by the presence in the 767

neighborhood of each label of high proportions of 768

other labels (this is illustrated by the presence of 769

a large number of blue cells outside the diagonal. 770

Conversely, a very assortative graph would have 771

almost only red cells off the diagonal). We can 772

identify transverse labels that are found in large 773

proportion in the neighborhood of all other labels 774

(these are the labels corresponding to the blue ver- 775

ticals, such as ’08-Cities’, ’09-Countries’ or ’11- 776

History’). Lastly, we can see clusters (these are 777

the blue rectangles in Figure 2) which indicate that 778

certain labels are mostly surrounded by labels that 779

are thematically ’close’ such as the articles related 780

to Physical Sciences (labels 24 to 28). 781

3The highest level of the hierarchy comprises 11 coarse
topics, the middle level 32 topics and the finest level 230
topics.
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Class name #articles

Arts
01-Arts 3310

Biological and health sciences
02-Animals 2396
03-Biology 886
04-Health 791
05-Plants 608

Everyday life
06-Everyday life 1191
07-Sports, games and recreation 1231

Geography
08-Cities 2030
09-Countries 1386
10-Physical 1902

History
11-History 2979

Mathematics
12-Mathematics 1126

People
13-Artists, musicians, and composers 2310
14-Entertainers, directors, producers, and screenwriters 2342
15-Military personnel, revolutionaries, and activists 1012
16-Miscellaneous 1186
17-Philosophers, historians, political and social scientists 1335
18-Politicians and leaders 2452
19-Religious figures 500
20-Scientists, inventors, and mathematicians 1108
21-Sports figures 1210
22-Writers and journalists 2120

Philosophy and religion
23-Philosophy and religion 1408

Physical sciences
24-Astronomy 886
25-Basics and measurement 360
26-Chemistry 1207
27-Earth science 849
28-Physics 988

Society and social sciences
29-Culture 2075
30-Politic and economic 1825
31-Social studies 355

Technology
32-Technology 3148

Table 4: The 32 labels of the nodes of the WikiVitals
dataset classified by topics of higher granularity

Figure 2: Heatmap representing the proportion of nodes
with label j in the neighborhood of nodes with label i.

B Hyperparameters, training, and grid 782

search 783

B.1 Hyperparameters and search space 784

Grid search during model selection was performed 785

over the following search space Γ: 786

• hidden dimension: [8, 16, 32, 64] 787

• input dropout: [0.2, 0.4, 0.6, 0.8] 788

• dropout: [0.2, 0.4, 0.6, 0.8] 789

• learning rate: 790

[1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4] 791

• L2-regularization strength: 792

[1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 793

1e-5] 794

• ϵ (only for FAGCN): 795

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 796

For WikiVitals, we use a reduced search 797

space: hidden dimension was set to 64 and L2- 798

regularization strength to 1e-5, learning rate was in 799

[1e-1, 5e-2], and ϵ in [0.7, 0.8, 0.9]. 800

B.2 Training procedures for GNN models 801

For all GNN model training: 802

• we train for a maximum of 1000 epochs 803

• we use early stopping, patience is set to 200 804

• there is no learning rate decay 805

• L2-regularization is applied on all layers 806

• all model parameters (convolutional kernel 807

coefficients for FAGCN, weight matrices for 808

all models) are optimized simultaneously 809

• once training has stopped, we reset the state of 810

model parameters to the step with the lowest 811

validation loss. 812

For MLP and GCN, early stopping criterion is 813

to stop optimization if the validation loss does not 814

decrease during 200 epoches. For FAGCN, early 815

stopping criterion is to stop optimization if the val- 816

idation loss and the validation accuracy does not 817

decrease during 200 epoches. 818

For GMNN training, we train models for 100 819

epoches and do 10 EM-loops. 820

B.3 Evolutionary grid search 821

Our evolutionary algorithm maintains a randomly 822

initialized population of 100 configurations of hy- 823

perparameters over generations. From 2 to 50 con- 824

fiurations whose validation accuracy exceeds the 825

population average are selected at each generation 826

to be kept for the next. New configurations inte- 827

grated in the population are created via a 2-pivot 828
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Cora Citeseer Pubmed

dense sparse sparse dense sparse sparse dense sparse sparse
stratified balanced stratified stratified balanced stratified stratified balanced stratified
train set train set train set train set train set train set train set train set train set

GCN 88.84 (2.39) 80.78 (2.58) 81.31 (2.16) 77.24 (1.73) 69.05 (3.66) 70.94 (2.16) 89.20 (0.86) 80.20 (1.88) 80.50 (2.38)

GMNN (strategy 1) 89.26 (1.91) 81.67 (3.00) 81.91 (2.21) 77.43 (1.70) 69.61 (3.96) 71.62 (2.20) 89.18 (0.84) 81.67 (1.32) 81.70 (2.45)
Significance * ** * * * ** ***

GMNN (strategy 2) 89.35 (1.79) 82.05 (2.81) 82.21 (2.10) 77.35 (1.65) 70.00 (3.83) 71.80 (2.32) 89.02 (0.84) 81.72 (1.20) 81.67 (2.51)
Significance * *** ** ** * ** ***

GMNN (strategy 3) 89.30 (1.80) 81.92 (2.81) 82.30 (2.06) 77.38 (1.70) 70.03 (3.74) 71.77 (2.30) 89.10 (0.79) 81.42 (1.66) 81.64 (2.46)
Significance ** ** ** * ** ***

Table 5: Fair evaluation of GMNN using strategies 1, 2 and 3 to compute the value of βj for each split j. Test
accuracy is reported in %. Significance is always calculated in relation to the performance of the GCN.

random crossover of two sampled selected configu-829

rations (sampling is proportional to configuration830

evaluations ; configurations with a better evalua-831

tion are more likely to be selected for crossover),832

a mutation step assigns a new value to a configu-833

ration hyperparameter with a probability 0.05 to834

promote diversity in the search for configurations.835

Only never-ever seen configurations are added to836

complete the population at each generation. The837

number of generations is set at 10, beyond which838

the evaluation of the best configurations in the pop-839

ulation seems empirically to increase little or not.840

C Model selection strategies841

During model selection phases of the fair evalu-842

ation, we must compute for each split j a pair843

γ(j) = (αj , βj) of optimal hyperparameters αj844

for GNNθ and βj for GNNϕ. In (Qu et al., 2019),845

the authors use a simple strategy which consists in846

using αj = βj (which is the strategy 1 below). This847

is a convenient strategy because one needs to com-848

pute αj only. Moreover it works well in practice849

when using the Planetoid split. A question naturally850

arises as to whether this model selection strategy851

extends to various training contexts. We propose852

here to empirically test this strategy and two com-853

peting strategies in a fair evaluation context using854

dense or sparse train sets of the classical datasets855

Cora, Citeseer and Pubmed. The base model used856

in GMNN is GCN.857

For each split j, assuming that αi has been previ-858

ously calculated, the three strategies for determin-859

ing βj are detailed hereafter:860

1. Strategy 1: Set βj = αj .861

2. Strategy 2: Set βj at a constant value. We862

use as constant value the set of hyperparam-863

eters provided by the authors of (Qu et al.,864

2019): hidden dimension is 16, input dropout 865

and dropout are 0.5, learning rate is 0.05, L2- 866

regularization strength is 5e-4. 867

3. Strategy 3: Compute βj via a grid search, 868

the value to optimize being the valida- 869

tion accuracy of GNNϕ after 3 Expectation- 870

Maximization loops of GMNN and αi being 871

set. We are searching for configurations of 872

hyperparameters for which the performance 873

of GNNϕ does not degrade over the first EM- 874

loops of GMNN. The grid search is performed 875

in a search space identical to that defined in 876

Appendix B.1 except for the hidden dimension 877

limited to the set [8, 16]. In the evolutionary 878

grid search algorithm, we set the population 879

size to 40 and the number of generations to 3. 880

The results of the evaluations are presented in 881

the table 5. The analysis shows that, on average, 882

each of these strategies allows an improvement of 883

the accuracy of the models. The three strategies 884

tested exhibit similar performance for each of the 885

contexts. The additional computational effort re- 886

quired to use strategy 3 seems to be unnecessary 887

for the determination of βj and strategies 1 and 2 888

are to be preferred. In this paper, we therefore use 889

the simple strategy of setting βj = αj for each split 890

j during each model selection phase. 891
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