

Fair Evaluation of Graph Markov Neural Networks

Anonymous ACL submission

Abstract

Graph Markov Neural Networks (GMNN) have recently been proposed to improve regular graph neural networks (GNN) by including label dependencies into the semi-supervised node classification task. They do this in a theoretically principled way and use three kinds of information to predict labels. Just like ordinary GNNs they use the node features and the graph structure but they moreover leverage information from the labels of neighboring nodes to improve the accuracy of their predictions. In this paper we introduce a new dataset named *WikiVitals* which contains a graph of 48k mutually referred Wikipedia articles classified into 32 categories and connected by 2.3M edges. Our aim is to rigorously evaluate the contributions of three distinct sources of information to the prediction accuracy of GMNN for this dataset: the content of the articles, their connections with each other and the correlations among their labels. For this purpose we adapt a method which was recently proposed for performing fair comparisons of GNN performance using an appropriate randomization over partitions and a clear separation of model selection and model assessment.

1 Introduction

Graph neural networks (GNN) (Yang et al., 2016; Kipf and Welling, 2017; Defferrard et al., 2016) have become a tool of choice when modeling datasets whose observations are not i.i.d. but are comprised of entities interconnected according to a graph of relations. They can be used either for graph classification, like molecule classification (Dobson and Doig, 2003; Borgwardt et al., 2005), or for node classification, like document classification in a citation network (Sen et al., 2008).

The most common task is certainly semi-supervised node classification in which unlabeled nodes of a given subset are to be classified using a distinct subset of labeled nodes, the train set, from

the same graph (Kipf and Welling, 2017; Defferrard et al., 2016). Inductive classification on the other hand refers to the most common setting in machine learning in which nodes to be labeled are not known ahead of time (Hamilton et al., 2017).

A number of architectures have been proposed over the years which deal with specific issues occurring with GNNs. Some combat over-smoothing, (which is the tendency for deep GNNs to predict the same labels for all nodes) (Klicpera et al., 2018), some deal with assortativity or heterophily (which refers to situations in which neighboring nodes are likely to have different labels) (Zhu et al., 2020, 2021; Bo et al., 2021) and others still try to learn the connection weights from data using an appropriate attention mechanism (Veličković et al., 2018).

Despite their diversity, these models all have one important shortcoming. Namely they assume that labels can be predicted independently for each node in the graph. In other words they neglect label dependencies altogether. More recently Graph Markov Neural Networks (GMNN) (Qu et al., 2019) were introduced as genuine probabilistic models which include label correlations in graphs by combining the strength of GNNs and those of conditional random fields (CRF) while avoiding their limitations. These are the models we shall focus on in this work.

The accuracy of the GMNN model was evaluated for node classification and link prediction tasks in (Qu et al., 2019) on the classical benchmark datasets Cora, PubMed and CiteSeer (Sen et al., 2008) using the public splits defined in (Yang et al., 2016). Under these settings a clear improvement was demonstrated when comparing the GMNN model to existing baselines that do not account for label dependencies. However, as a number of recent works (Shchur et al., 2018; Errica et al., 2020) have pointed out, a fair evaluation of the performance of GNNs requires a procedure which performs a systematic randomization over train,

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

027
028
029
030
031
032
033
034
035
036
037
038
039
040
041

042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082

validation, test set partitions and makes clear separation between model selection and model assessment.

Our aim in this paper is to subject GMNN to such a rigorous performance analysis on a new, relatively large graph of documents named *WikiVitals*. In a first step we shall evaluate the contribution of including the graph structure, using a basic GNN, when compared to a graph agnostic baseline such as a MLP. In a second step we shall estimate the increase in accuracy that results from taking into account label correlation using a GMNN on top of a basic GNN. For completeness we also perform the same thorough analysis on the classical benchmarks datasets mentioned above.

In summary, our contributions are:

- We introduce a new dataset of interconnected documents named *WikiVitals*. Compared to the classical benchmark datasets this is a relatively large graph comprising 48k nodes classified into 32 categories and connected by 2.3M edges.
- We apply the fair comparison procedure proposed in (Errica et al., 2020) to a GMNN which is sophisticated node classification model. So far only graph classification models had been evaluated in this manner.
- We evaluate the respective contributions to the accuracy of classifying *WikiVitals* articles when first including the graph structure information using a common GNN and next when leveraging the label correlations information using a GMNN model on top of that GNN.

2 Related Work

2.1 Modelling Label Dependancy in GNNs

Prior to the recent advent of GNNs a number of works had attempted to include label dependencies using various heuristics. Label propagation is such an early attempt where a cost function balances the penalty for predicting the wrong labels with the requirement that node labels should vary smoothly (Zhou et al., 2003; Zhu, 2005).

Dataset specific methods have also been proposed. As far as classifying Wikipedia articles is concerned, authors in (Viard et al., 2020) use a simple GNN whose weights are empirically adjusted depending on the similarity of the labels of neighboring nodes. Although these approaches had some

empirical success (Huang et al., 2021), they lack of a sound probabilistic foundation which makes it difficult to analyze why they fail or succeed. In particular they do not clearly distinguish the contributions of the node features, the graph structure and the label correlations to the prediction accuracy. In our work we decided to avoid using topological node features like node degrees, betweenness or assortativity (Newman, 2003; Blondel et al., 2008; Newman, 2005) to make this distinction clearer.

GNNs are a good fit for finding distributed node representations that merge the information supplied by the node features, like the content of a document for instance, with the local structure of the graph in the vicinity of that node. Each such representation is then used for predicting the label for that node independently of those of the other nodes. CRF's on the other hand come in handy for prescribing scores for arbitrary combinations of labels. However performing exact inference is hard due to the trouble of computing the partition function. GMNN propose an elegant solution to this conundrum by using two ordinary GNNs which are coupled when trained with the Expectation Maximization (EM) algorithm (see section 3.1). Their performance was evaluated in (Qu et al., 2019) in the usual way using a public partition of classical benchmarks (Sen et al., 2008) but without accounting for the robustness of this evaluation when using different splits which is essential for a fair evaluation (Errica et al., 2020; Shchur et al., 2018). This is one of our goals. We also evaluate the contributions to the classification accuracy of the three sources of information mentioned above, namely the content of the articles, their links and the correlations between the labels of connected articles.

2.2 Classifying Wikipedia Articles

Wikipedia articles provide rich textual content from which many informative n -grams can be extracted in order to build vector representations of the articles, and the mutual hyperlinks between articles define a natural graph structure underlying the corpus of articles. In this way, several datasets have been created from Wikipedia and are being used to evaluate various GNN architectures, including Squirrel and Chameleon¹. This is also the case for the *WikiVitals* dataset we introduce in this article.

The labeling of Wikipedia articles can use vari-

¹<http://snap.stanford.edu/data/wikipedia-article-networks.html>

ous sources of information. The labels of Squirrel and Chameleon for instance are based on monthly traffic data (acquired through the metadata of the articles) and correspond to an artificial segmentation into 3 or 5 categories (Bo et al., 2021). In (Viard et al., 2020), the labeling is based on a collection of labels external to Wikipedia. None of these datasets however exploit thematic classifications resulting from a consensus among Wikipedia contributors as does the list of vital articles of Wikipedia². This is the data we used to label the nodes of our *WikiVitals* dataset (see appendix A). This classification of vital articles, where each document is associated with a unique label, is not exempt of arbitrariness however. Indeed, the assignment of an article to one category or another can sometimes be ambiguous. Furthermore, this classification is imbalanced and contains categories with very few representatives.

A common feature of Wikipedia datasets (Squirrel, Chameleon as well as *WikiVitals*) is that they are more disassortative (Newman, 2003) than classical graph datasets (the notion of heterophily is also often used which generally refers to a low proportion of edges connecting nodes with the same label in the graph). This makes them particularly interesting as benchmarks for a node classification task, as basic models like GCNs show their limits in such disassortative contexts (Bo et al., 2021). Some recent models like H₂GCN or FAGCN have been proposed to overcome this problem and show better performance in those contexts (Bo et al., 2021; Zhu et al., 2020).

2.3 Evaluating Performance of GNNs

The authors of (Shchur et al., 2018) draw attention to the fact that evaluations of GNN models are almost never conducted in a rigorous manner. On the one hand, many experiments are not replicable due to the lack of a precise definition of the evaluation process. On the other hand, they argue that using a single split, usually the one defined in the paper that introduces a new benchmark dataset, is insufficient to guarantee the existence of a significant difference between the accuracy of two competing GNN architectures. The authors thus suggest standardizing the choice of hyperparameters and randomizing over many train, validation, test splits. They then search for a set of hyperparameters that optimizes the average performance over those splits. Surpris-

ingly, they find that the simplest architectures like GCN (Kipf and Welling, 2017; Defferrard et al., 2016) often perform better for the semi-supervised node classification task than the more sophisticated models (Veličković et al., 2018; Monti et al., 2017).

In our work we follow a still more rigorous accuracy assessment that was originally proposed in (Errica et al., 2020) as a SOTA evaluation procedure for the graph classification task. For a given model we search for the best hyperparameters on a per split basis and then average the accuracy estimations of those optimized models over splits. This allows for the fairest assessment possible when comparing two models. It guarantees that a practitioner who randomly chooses a split, trains her model on the train set, optimizes its hyperparameters on the validation set and estimates the accuracy on the test will obtain an estimation that is truly reliable for comparing models such as an MLP, a GCN or a GMNN.

3 Adapting the Fair Comparison Method to GMNN

3.1 Training a GMNN

Before delving into the specifics of our evaluation process let's recall the definition of GMNN model. We use the same notations as in (Qu et al., 2019) and refer to this work for a thorough justification of the training procedure we describe here. We consider a graph $G = (V, E, \mathbf{x}_V)$ where V denotes the set of nodes, E the set of edges and $\mathbf{x}_V := \{\mathbf{x}_n\}_{n \in V}$ the set of features associated to each node n . We assume that we are given the one-hot encoded labels (for K categories) $\mathbf{y}_L := \{\mathbf{y}_n\}_{n \in L}$ for the nodes in a subset $L \subset V$ and the features \mathbf{x}_V of all nodes. The task we consider is the prediction of the labels \mathbf{y}_U of the remaining unlabeled nodes in $U = V \setminus L$. The GMNN model does two things. First, it specifies a model for the joint probability $p_\phi(\mathbf{y}_L, \mathbf{y}_U | \mathbf{x}_V)$ compatible with a CRF describing correlations between neighboring nodes. Second, it describes a practical training procedure, based on the EM algorithm, for finding the parameters ϕ which maximize a variational lower bound on the marginal likelihood $p_\phi(\mathbf{y}_L | \mathbf{x}_V)$ over the observed labels which we quickly summarize.

The GMNN model requires defining two ordinary GNNs. The first one, denoted by GNN_ϕ , where ϕ is the set of its parameters, describes the conditional distribution $p_\phi(\mathbf{y}_n | \mathbf{y}_{\text{NB}(n)}, \mathbf{x}_V)$ over

²https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Level/5

277 individual node labels \mathbf{y}_n given the labels of the
 278 neighboring nodes $\text{NB}(n)$ and the node features
 279 \mathbf{x}_V . It is specified in the usual manner by a softmax
 280 applied on a d -dimensional node embedding $\mathbf{h}_{\phi,n}$
 281 read off from the last layer of GNN_ϕ and a $K \times d$
 282 learnable matrix W_ϕ :

$$283 p_\phi(\mathbf{y}_n | \mathbf{y}_{\text{NB}(n)}, \mathbf{x}_V) = \text{Cat}(\mathbf{y}_n | \text{softmax}(W_\phi \mathbf{h}_{\phi,n})) \quad (1)$$

284 A second GNN, that we denote by GNN_θ , defines
 285 a mean-field variational distribution meant to ap-
 286 proximate the posterior $p_\phi(\mathbf{y}_U | \mathbf{y}_L, \mathbf{x}_V)$ in the EM
 287 algorithm. It is defined nodewise in a similar way:

$$288 q_\theta(\mathbf{y}_n | \mathbf{x}_V) = \text{Cat}(\mathbf{y}_n | \text{softmax}(W_\theta \mathbf{h}_{\theta,n})) \quad (2)$$

289 Intuitively GNN_θ makes the prediction of a model
 290 that completely neglects correlations among labels.
 291 These predictions will then be corrected by GNN_ϕ
 292 which accounts for the correlations between neigh-
 293 boring node labels, these in turn will correct GNN_θ
 294 within an EM cyclic training procedure. The training
 295 process uses the following two objective func-
 296 tions. One is for updating θ while holding ϕ fixed:

$$297 O_\theta = \sum_{n \in U} \mathbb{E}_{p_\phi(\mathbf{y}_n | \hat{\mathbf{y}}_{\text{NB}(n)}, \mathbf{x}_V)} [\log q_\theta(\mathbf{y}_n | \mathbf{x}_V)] \\ + \sum_{n \in L} \log q_\theta(\mathbf{y}_n | \mathbf{x}_V), \quad (3)$$

300 where $\hat{\mathbf{y}}_n$ denotes the ground truth label \mathbf{y}_n if $n \in$
 301 L and is sampled from $q_\theta(\mathbf{y}_n | \mathbf{x}_V)$ if $n \in U$. Using
 302 the same notations, the other objective function
 303 used for optimizing ϕ while holding θ fixed is:

$$304 O_\phi = \sum_{n \in V} \log p_\phi(\hat{\mathbf{y}}_n | \hat{\mathbf{y}}_{\text{NB}(n)}, \mathbf{x}_V). \quad (4)$$

305 The first step of training GMNN is to initialize
 306 q_θ by maximizing the last term in (3) for θ . This
 307 corresponds to an ordinary GNN trained without
 308 accounting for label correlations. The accuracy of
 309 this initial q_θ model will thus provide a baseline
 310 to compare with the full GMNN model. Second,
 311 fix θ and maximize ϕ in (4), this is the M -step. At
 312 last, optimize (3) for θ while holding ϕ fixed, this
 313 is the E -step. Repeat the M and E step until
 314 convergence. Experience shows that q_θ is consistently
 315 a better predictor than p_ϕ (Qu et al., 2019).

316 3.2 Fair Comparison of GNNs

317 Recall that our main goal is to rigorously ascer-
 318 tain under which circumstances a GMNN model

319 architecture, which was designed to leverage label
 320 correlations, has a higher accuracy when used for
 321 classifying articles from the *WikiVitals* dataset than
 322 a correlation agnostic model like GCN or FAGCN
 323 (Bo et al., 2021). We also wish to compare GCN
 324 or FAGCN with a structure agnostic baseline like
 325 an MLP for this same dataset.

326 A crude evaluation would proceed by partition-
 327 ing the available dataset of labeled *WikiVitals* ar-
 328 ticles $\mathcal{D} = ((\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N))$ into three
 329 disjoint sets: a train set $\mathcal{D}_{\text{train}}$, a validation set
 330 $\mathcal{D}_{\text{valid}}$ for selecting the optimal hyperparameters
 331 γ^* among a set Γ and a test set $\mathcal{D}_{\text{test}}$ to evaluate
 332 the accuracy of that optimal model. Unfortunately
 333 such a simple procedure was shown to be so unsta-
 334 ble that changing the partition could totally scram-
 335 ble relative ranking of various GNN architectures
 336 (Errica et al., 2020; Shchur et al., 2018).

337 To perform reliable comparisons we shall follow
 338 the best practices described in (Errica et al., 2020).
 339 The main requirement is to clearly separate model
 340 assessment from model selection.

341 **Model assessment** uses a k -fold cross val-
 342 idation procedure. The dataset \mathcal{D} is first split into
 343 k disjoint stratified folds $\mathcal{F}_1, \dots, \mathcal{F}_k$. Then k
 344 different train and test sets are defined as:

$$345 \mathcal{D}_{\text{train}}^{(i)} := \bigcup_{j \neq i} \mathcal{F}_j, \quad \mathcal{D}_{\text{test}}^{(i)} := \mathcal{F}_i, \quad i = 1, \dots, k.$$

346 Each train set is itself split into an inner train set
 347 and a validation set:

$$348 \mathcal{D}_{\text{train}}^{(i)} := \mathcal{D}_{\text{in-train}}^{(i)} \cup \mathcal{D}_{\text{valid}}^{(i)}, \quad i = 1, \dots, k.$$

349 Model selection (see below) is performed sep-
 350 arately for each $\mathcal{D}_{\text{train}}^{(i)}$. This results in a set of
 351 hyperparameters $\gamma^{(i)}$ which is optimal for $\mathcal{D}_{\text{train}}^{(i)}$.
 352 The model is then trained with these optimal
 353 hyperparameters $\gamma^{(i)}$ on $\mathcal{D}_{\text{in-train}}^{(i)}$ using $\mathcal{D}_{\text{valid}}^{(i)}$
 354 to implement early stopping. Actually, for each fold
 355 i , the test accuracy is averaged over r training runs
 356 with different random initializations of the weights
 357 to smooth out any possible bad configuration. The
 358 average of these test accuracies over the k folds
 359 makes our final assessment of a model architecture.

360 **Model selection** correspond to choosing an
 361 optimal set of hyperparameters. It is performed,
 362 separately for each $\mathcal{D}_{\text{train}}^{(i)}$. More precisely, the
 363 model is trained on $\mathcal{D}_{\text{in-train}}^{(i)}$ using $\mathcal{D}_{\text{valid}}^{(i)}$ as a

366 holdout set for selecting the hyperparameters $\gamma^{(i)}$
367 which maximize the accuracy among a set Γ of
368 configurations.

369 3.3 Adaptation to GMNN

370 In order to evaluate GMNN using the fair evaluation
371 principle described above, we must select
372 for each split j a pair $\gamma^{(j)} := (\alpha_j, \beta_j)$ of optimal
373 hyperparameters α_j for GNN_θ and β_j for GNN_ϕ
374 respectively. In (Qu et al., 2019), the authors use
375 a simple strategy which consists in using $\alpha_j = \beta_j$,
376 however other strategies can be considered, see
377 appendix C. In this work also compute hyperpa-
378 rameters α_j for GNN_θ first and then set $\beta_i = \alpha_j$
379 for the hyperparameters of GNN_ϕ . The selection of
380 the best pair (α_j, β_j) is thus performed in two steps.
381 First, for each split j , a set of optimal hyperpa-
382 rameters α_j for GNN_θ is computed using the model
383 selection procedure introduced in the previous sec-
384 tion. In a second step, one sets $\beta_j = \alpha_j$. The model
385 assessment phase remains unchanged. For each
386 split j the set of hyperparameters $\gamma^{(j)} = (\alpha_j, \beta_j)$
387 is used to compute the test accuracy of GMNN
388 using r random weight initializations. The fair
389 evaluation model adapted to GMNN is presented
390 in figure 1.

391 Note that performing a fair evaluation of the
392 model after completion of the initial training of
393 GNN_θ and before entering the EM optimization
394 corresponds to a fair evaluation of a plain GNN
395 which thus requires no additional computation.

396 4 Experiment

397 4.1 Datasets and Settings

398 **Datasets:** For our main experiment we introduce
399 *WikiVitals*, a novel sparse and disassortative
400 document-document graph created from the
401 English Wikipedia level 5 vital articles in April
402 2022 (Wikipedia is under CC BY-SA license).
403 Nodes features \mathbf{x}_n correspond to the presence
404 or absence of some n -grams in the summary
405 section of the article. The set E of edges are the
406 mutual hyperlinks between articles found in their
407 body. Each node of the graph has been associated
408 to a single label (among 32) corresponding to
409 an intermediate level in a hierarchy of topics
410 co-constructed by Wikipedia contributors. More
411 information on this new dataset as well as statistics
412 on all datasets can be found in table 1 and appendix
413 A. For completeness, we also performed a fair
414 evaluation on the three well-known assortative

415 citation network datasets: Cora, Citeseer, and
416 Pubmed. Undirected edges in these networks
417 represent citations between two scientific articles,
418 node features \mathbf{x}_n are a bag-of-words vector of the
419 articles and labels \mathbf{y}_n corresponds to the fields of
420 the articles. For all datasets, we treat the graphs
421 as undirected.

422 **General setup:** All baseline models (MLP,
423 GCN and FAGCN) were reimplemented using
424 PyTorch with two layers (input representations
425 \rightarrow hidden layer \rightarrow output layer). For all models,
426 L^2 -regularization is performed on all layers,
427 dropout is applied on input data and on all layers.
428 For GCN and FAGCN, we used the so-called
429 *renormalization trick* of the adjacency matrix
430 (Kipf and Welling, 2017). For FAGCN, the number
431 of propagations (Bo et al., 2021) is set to 2 in
432 order to limit the aggregation of information to
433 nodes located at a maximum distance of 2. For
434 GMNN we use the annealing sampling method
435 with factor set to 0.1 (Qu et al., 2019), the number
436 of EM-loops is set to 10 and both label predictions
437 $\hat{\mathbf{y}}_n$ made with GNN_θ and node features \mathbf{x}_V are
438 used to train GNN_ϕ as defined in (4).

439 We use the same training procedure for all
440 models. For all datasets, node features are
441 binarized and then normalized (L^1 -norm) before
442 training. We used the Adam optimizer (Kingma
443 and Ba, 2015) with default parameters and no
444 learning rate decay, the same maximum number
445 of training epochs, an early stopping criterion and
446 a patience hyperparameter (see appendix B for
447 more details). Validation accuracy is evaluated
448 at the end of each epoch. All model parameters
449 (convolutional kernel coefficients for FAGCN,
450 weight matrices for all models) are initialized
451 and optimized simultaneously (weights are ini-
452 tialized according to Glorot and biases initialized
453 to zero). In all cases we use full-batch train-
454 ing (using all nodes in the training set every epoch).

455 **Fair evaluation setup:** During the assess-
456 ment phase, we perform $r = 20$ trainings for
457 each of the $k = 10$ splits. Best configurations
458 of hyperparameters α_j for GNN_θ are calculated
459 for each split j , and next we set hyperparameters
460 $\beta_j = \alpha_j$ for GNN_ϕ .

461 For each dataset, we followed the best practices
462 advocated in (Errica et al., 2020) and summa-
463 rized in section 3.2 to pre-calculate stratified splits

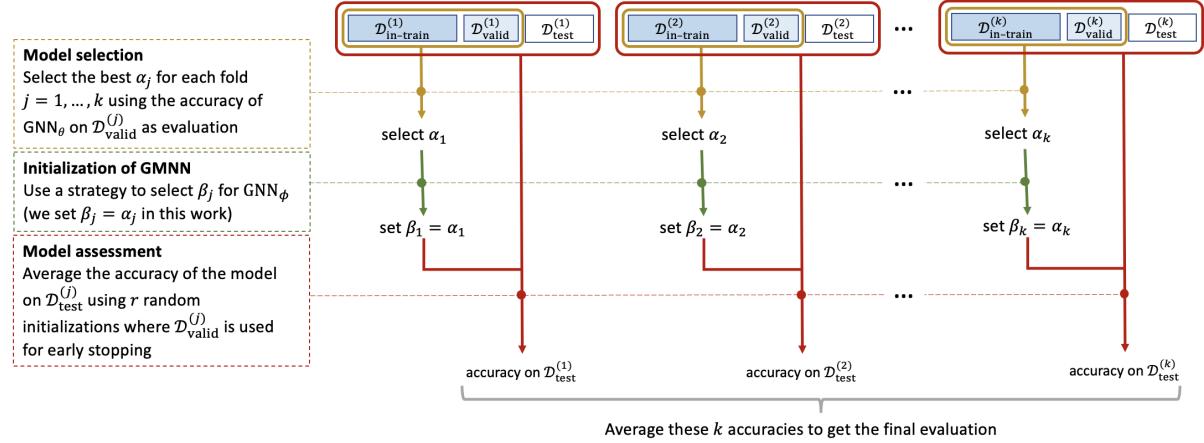


Figure 1: The fair evaluation procedure for GNN’s and its adaptation for GMNN uses k train/validation/test splits $\mathcal{D}_{\text{in-train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{test}}^{(i)}$ which are created from k stratified folds \mathcal{F}_j as explained in section 3.2.

($\mathcal{D}_{\text{in-train}}^{(j)}, \mathcal{D}_{\text{valid}}^{(j)}, \mathcal{D}_{\text{test}}^{(j)}$), $j = 1, \dots, k$ of the entire set of nodes with respective ratios of 81%, 9% and 10%. In the sequel the sets $\mathcal{D}_{\text{in-train}}^{(j)}$ will be referred to as dense training sets.

In addition, we have created two other sets of splits, whose train sets are sparse. First to allow an convenient comparison with previous work which actually use such train sets (Yang et al., 2016). Second to enlarge the scope of the methods tested in this article. As a reminder, the evaluation of GNNs as well as GMNN for Cora, Citeseer and Pubmed was classically performed using the Planetoid splits (Yang et al., 2016) of these datasets or similiarly constructed splits composed of 20 nodes per category randomly selected in the whole dataset (Shchur et al., 2018; Bo et al., 2021; Qu et al., 2019). To construct splits with sparse train sets we independently extracted two subsets $\mathcal{D}_{\text{sparse-balanced}}^{(j)}$ and $\mathcal{D}_{\text{sparse-stratified}}^{(j)}$ from each $\mathcal{D}_{\text{in-train}}^{(j)}$, $j = 1, \dots, k$. Each contains $20 * K$ nodes (where K is the number of categories). Each $\mathcal{D}_{\text{sparse-balanced}}^{(j)}$ is constructed by selecting 20 nodes of each category from $\mathcal{D}_{\text{in-train}}^{(j)}$. In the sequel these sets will be referred to as sparse balanced train sets in the sense that each category is represented equally in each of them. Each $\mathcal{D}_{\text{sparse-stratified}}^{(j)}$ is constructed by selecting nodes from $\mathcal{D}_{\text{in-train}}^{(j)}$ in a stratified way. We shall denote these sets as sparse stratified train sets. Thus we have k splits of each dataset with sparse balanced train sets ($\mathcal{D}_{\text{sparse-balanced}}^{(j)}, \mathcal{D}_{\text{valid}}^{(j)}, \mathcal{D}_{\text{test}}^{(j)}$), $j = 1, \dots, k$ and k splits of each dataset with sparse stratified train

Dataset	Assortativity	#Nodes	#Edges	#Categories	#Features
Cora	0.771	2,708	5,429	7	1,433
Citeseer	0.675	3,327	4,732	6	3,703
Pubmed	0.686	19,717	44,338	3	500
WikiVitals	0.204	48,512	2,297,782	32	4,000

Table 1: Statistics of document graphs

sets ($\mathcal{D}_{\text{sparse-stratified}}^{(j)}, \mathcal{D}_{\text{valid}}^{(j)}, \mathcal{D}_{\text{test}}^{(j)}$), $j = 1, \dots, k$. The fair evaluation method presented in section 3.3 can be easily adapted to splits with sparse train sets replacing the inner-train sets in every training phases.

Rigorously, model selection phases imply performing extensive grid searches over the hyperparameter search space Γ , which is computationally very expensive. In practice we have implemented our own evolutionary grid search algorithm which discovers suitable configurations of hyperparameters by using the validation accuracy to guide the evolution. Such an algorithm computes a suitable configuration by exploring a small portion of Γ (Young et al., 2015), see Appendix B.3 for more details.

4.2 Results

Quantitative results for the node classification task applied to our *WikiVitals* dataset and to the classical Cora, Citeseer and Pubmed datasets are presented in tables 2 and 3. To account for the unfortunate possibility that the EM phases could perhaps decrease the accuracy after the initialization phase we retain the best accuracy among the EM phases only. We thus compare the average accuracies over the k splits before and after the EM phases. More precisely, we perform a

466
467
468
469

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

	Cora	Citeseer	Pubmed	WikiVitals
MLP	78.49 (2.39)	75.02 (2.15)	88.68 (0.86)	86.55 (0.42)
GCN	88.84 (2.39)	77.24 (1.73)	89.20 (0.86)	72.74 (0.61)
+ GMNN	89.26 (1.91)	77.43 (1.70)	89.18 (0.84)	74.19 (0.42)
Significance	*			***
FAGCN	88.87 (1.99)	78.27 (3.53)	90.23 (0.90)	87.84 (0.32)
+ GMNN	89.08 (1.76)	78.32 (3.64)	90.34 (0.88)	87.92 (0.31)
Significance	*		***	***

Table 2: Fair evaluation of GMNN using dense inner-train sets. Test accuracy is reported in %. Best results are highlighted.

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

relational t -test between those paired means where the alternate hypothesis is that the accuracy after the EM phase is higher than before. Notation for significance in tables 2, 3, and 5 using p -value are: *** if $p < 0.001$, ** if $p < 0.01$, * if $p < 0.05$.

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
Fair evaluation of GNNs: These results confirm that taking into account the underlying graph structure provides a significant performance gain for the node classification task for all datasets, regardless of the fact that the train set is dense or sparse. For classical datasets, the GCN and FAGCN models outperform the use of an MLP which only takes into account node features disregarding the graph structure. For *WikiVitals*, which is a disassortative dataset, the FAGCN model performs best. Actually in this case a simple MLP performs better than the basic GCN.

566
567
568
569
570
571
Fair evaluation of GMNN: Referring to tables 2 and 3 a general observation is that using GMNN for *WikiVitals*, Cora, Citeseer, Pubmed leads to the best average performance, whether the train sets are dense or sparse.

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
For dense train sets the improvement provided by GMNN is either small, but however significant, or is insignificant. Practically, when a large proportion of the dataset is available for training a model GMNN could be worth a try. Yet this small improvement should be balanced against the high computation cost incurred.

606
607
608
609
610
611
612
613
614
For sparse train sets GMNN brings a more obvious improvement to the accuracy. This is true for all the datasets that were analyzed. More precisely, this improvement is significant when comparing GMNN with GCN on classical datasets and when comparing it with FAGCN on *WikiVitals*.

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
7

	Cora		Citeseer		Pubmed		Wikivitals		
	balanced train set	stratified train set	balanced train set	stratified train set	balanced train set	stratified train set	balanced train set	stratified train set	
MLP	58.54 (3.98)	58.32 (2.17)	59.84 (3.54)	58.35 (2.48)	71.23 (2.85)	70.39 (1.70)	68.60 (0.92)	69.35 (1.10)	
GNN (base)	80.78 (2.58)	81.31 (2.16)	69.05 (3.66)	70.94 (2.16)	80.20 (1.88)	80.50 (2.38)	70.64 (0.85)	72.68 (1.17)	
+ GMNN	$\begin{cases} p_\phi \\ q_\theta \\ \text{best} \end{cases}$	$\begin{cases} 81.14 (3.19) \\ 80.76 (3.74) \\ \textbf{81.67 (3.00)} \end{cases}$	$\begin{cases} 81.56 (2.38) \\ 81.56 (2.30) \\ \textbf{81.91 (2.21)} \end{cases}$	$\begin{cases} 67.04 (7.47) \\ 69.34 (3.96) \\ \textbf{69.61 (3.96)} \end{cases}$	$\begin{cases} 70.82 (2.54) \\ 71.52 (2.19) \\ \textbf{71.62 (2.20)} \end{cases}$	$\begin{cases} 81.26 (1.34) \\ 81.55 (1.43) \\ \textbf{81.67 (1.32)} \end{cases}$	$\begin{cases} 81.15 (2.30) \\ 81.60 (2.53) \\ \textbf{81.70 (2.45)} \end{cases}$	$\begin{cases} 74.72 (1.19) \\ 74.77 (1.18) \\ \textbf{74.80 (1.18)} \end{cases}$	$\begin{cases} 74.64 (1.38) \\ 74.69 (1.37) \\ \textbf{74.73 (1.36)} \end{cases}$
Significance	**	*	*	*	**	***	***	***	

Table 3: Fair evaluation of GMNN using sparse train sets. Test accuracy is reported in %. Best results are highlighted. The base GNN is GCN for Cora, Citeseer and Pubmed, it is FAGCN for *WikiVitals*.

5 Conclusion

This paper introduces a new disassortative document-document graph dataset named *WikiVitals* and adapts a fair comparison method of GNNs to GMNN to evaluate the contribution of three distinct sources of information for a semi-supervised node classification task: the node features, the underlying graph structure and the label correlations. Experimental results confirm the significant contribution of taking into account the graph structure in addition to node features, provided that we choose an architecture adapted to the level of assortativity of the graph. Taking into account label correlation information via GMNN seems to have a significant effect mainly in contexts where few training data are available. The results were observed for both *WikiVitals* and classical datasets, which makes us confident in this conclusion for practical use of GMNN. For future work we intend to leverage the hierarchical categorization that comes with the *WikiVitals* dataset to improve classification accuracy.

Acknowledgement

This work was performed using HPC resources from GENCI-IDRIS (Grant 2021-AD011013266).

References

- Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008(10):P10008.
- Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond low-frequency information in graph convolutional networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 3950–3957.
- Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Predict then propagate: Combining neural networks with personalized pagerank for classification on graphs. In *ICLR*.
- Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein. 2017. Geometric deep learning on graphs and manifolds using mixture model cnns. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 5115–5124.
- Mark EJ Newman. 2003. Mixing patterns in networks. *Physical review E*, 67(2):026126.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via graph kernels. *Bioinformatics*, 21(suppl_1):i47–i56.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. *Advances in neural information processing systems*, 29.

Paul D Dobson and Andrew J Doig. 2003. Distinguishing enzyme structures from non-enzymes without alignments. *Journal of molecular biology*, 330(4):771–783.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. 2020. A fair comparison of graph neural networks for graph classification. In *ICLR*.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. *NeurIPS*, 30.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. 2021. Combining label propagation and simple models out-performs graph neural networks. In *ICLR*.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In *ICLR*.

Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. 2017. *ArXiv abs/1609.02907*.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein. 2017. Geometric deep learning on graphs and manifolds using mixture model cnns. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 5115–5124.

Mark EJ Newman. 2003. Mixing patterns in networks. *Physical review E*, 67(2):026126.

- 690 Mark EJ Newman. 2005. A measure of betweenness
691 centrality based on random walks. *Social networks*,
692 27(1):39–54.
- 693 Meng Qu, Yoshua Bengio, and Jian Tang. 2019. Gmnn:
694 Graph markov neural networks. In *ICML*, pages
695 5241–5250. PMLR 97.
- 696 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
697 Getoor, Brian Gallagher, and Tina Eliassi-Rad. 2008.
698 Collective classification in network data. *AI magazine*,
699 29(3):93–93.
- 700 Oleksandr Shchur, Maximilian Mumme, Aleksandar
701 Bojchevski, and Stephan Günnemann. 2018. Pitfalls
702 of graph neural network evaluation. In *Proceedings
703 of the Relational Representation Learning Workshop
(R2L 2018), NeurIPS 2018*.
- 705 Petar Veličković, Guillem Cucurull, Arantxa Casanova,
706 Adriana Romero, Pietro Liò, and Yoshua Bengio.
707 2018. Graph attention networks. In *ICLR*.
- 708 Tiphaine Viard, Thomas McLachlan, Hamidreza
709 Ghader, and Satoshi Sekine. 2020. [Classifying
710 wikipedia in a fine-grained hierarchy: what graphs
711 can contribute](#). *CoRR*, abs/2001.07558.
- 712 Zhilin Yang, William Cohen, and Ruslan Salakhudinov.
713 2016. Revisiting semi-supervised learning with
714 graph embeddings. In *ICML*, pages 40–48. PMLR
715 48.
- 716 Steven R Young, Derek C Rose, Thomas P Karnowski,
717 Seung-Hwan Lim, and Robert M Patton. 2015. Optimizing
718 deep learning hyper-parameters through an
719 evolutionary algorithm. In *MLHPC '15: Proceedings
720 of the workshop on machine learning in high-
721 performance computing environments*, pages 1–5.
- 722 Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason
723 Weston, and Bernhard Schölkopf. 2003. Learning
724 with local and global consistency. *NeurIPS 2003*, 16.
- 725 Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim
726 Lipka, Nesreen K Ahmed, and Danai Koutra. 2021.
727 Graph neural networks with heterophily. In *Proceedings
728 of the AAAI Conference on Artificial Intelligence*,
729 volume 35, pages 11168–11176.
- 730 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann,
731 Leman Akoglu, and Danai Koutra. 2020. Beyond
732 homophily in graph neural networks: Current limita-
733 tions and effective designs. *NeurIPS 2020*, 33.
- 734 Xiaojin Jerry Zhu. 2005. Semi-supervised learning
735 literature survey. Technical report, University of
736 Wisconsin-Madison, Department of Computer Sci-
737 ences.

738 A WikiVitals

739 *WikiVitals* is a disassortative document-document
740 network created from 48512 vital Wikipedia arti-
741 cles extracted from a complete Wikipedia dump

742 dated April 2022. Nodes correspond to vital
743 Wikipedia articles. Node features are binary bag-of-
744 words sparse representations of the articles. Each
745 of the 4000 features in these representations cor-
746 responds to the presence or absence of an informative
747 unigram or bigram in the introduction, title or sec-
748 tion titles of the article. Edges correspond to the
749 mutual hyperlinks between articles in the corpus of
750 vital articles.

751 Vital articles have been selected by Wikipedia
752 contributors and have been categorized per topics.
753 We extracted a 3-level hierarchy of topics and used
754 the 32 intermediate level topics of this hierarchy
755 as labels assigned to each node of the graph. Each
756 node was assigned a single label. The table 4 shows
757 a partial view of the topic hierarchy, focusing on
758 the 32 categories used in this study³

759 Since this article is concerned with the corre-
760 lations between labels, we first analyzed the adjac-
761 ency of labels in order to derive some preliminary
762 information (see Figure 2). First of all, we can see
763 that for each label, we find a large proportion of
764 nodes of the same label in their immediate neigh-
765 borhood (this is illustrated by the blue diagonal).
766 The figure also illustrates the dissassortative char-
767 acter of the graph *WikiVitals* by the presence in the
768 neighborhood of each label of high proportions of
769 other labels (this is illustrated by the presence of
770 a large number of blue cells outside the diagonal.
771 Conversely, a very assortative graph would have
772 almost only red cells off the diagonal). We can
773 identify transverse labels that are found in large
774 proportion in the neighborhood of all other labels
775 (these are the labels corresponding to the blue ver-
776 ticals, such as '08-Cities', '09-Countries' or '11-
777 History'). Lastly, we can see clusters (these are
778 the blue rectangles in Figure 2) which indicate that
779 certain labels are mostly surrounded by labels that
780 are thematically 'close' such as the articles related
781 to Physical Sciences (labels 24 to 28).

³The highest level of the hierarchy comprises 11 coarse topics, the middle level 32 topics and the finest level 230 topics.

Class name	#articles
<i>Arts</i>	
01-Arts	3310
<i>Biological and health sciences</i>	
02-Animals	2396
03-Biology	886
04-Health	791
05-Plants	608
<i>Everyday life</i>	
06-Everyday life	1191
07-Sports, games and recreation	1231
<i>Geography</i>	
08-Cities	2030
09-Countries	1386
10-Physical	1902
<i>History</i>	
11-History	2979
<i>Mathematics</i>	
12-Mathematics	1126
<i>People</i>	
13-Artists, musicians, and composers	2310
14-Entertainers, directors, producers, and screenwriters	2342
15-Military personnel, revolutionaries, and activists	1012
16-Miscellaneous	1186
17-Philosophers, historians, political and social scientists	1335
18-Politicians and leaders	2452
19-Religious figures	500
20-Scientists, inventors, and mathematicians	1108
21-Sports figures	1210
22-Writers and journalists	2120
<i>Philosophy and religion</i>	
23-Philosophy and religion	1408
<i>Physical sciences</i>	
24-Astronomy	886
25-Basics and measurement	360
26-Chemistry	1207
27-Earth science	849
28-Physics	988
<i>Society and social sciences</i>	
29-Culture	2075
30-Politic and economic	1825
31-Social studies	355
<i>Technology</i>	
32-Technology	3148

Table 4: The 32 labels of the nodes of the *WikiVitals* dataset classified by topics of higher granularity

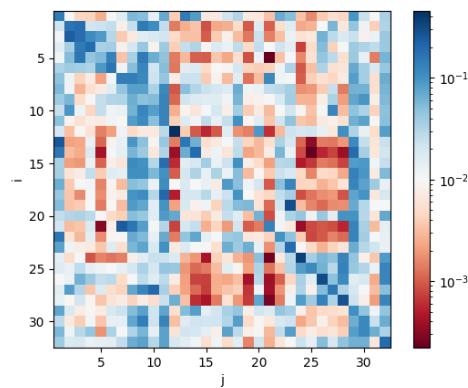


Figure 2: Heatmap representing the proportion of nodes with label j in the neighborhood of nodes with label i .

B Hyperparameters, training, and grid search

B.1 Hyperparameters and search space

Grid search during model selection was performed over the following search space Γ :

- hidden dimension: [8, 16, 32, 64]
- input dropout: [0.2, 0.4, 0.6, 0.8]
- dropout: [0.2, 0.4, 0.6, 0.8]
- learning rate: [1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4]
- L^2 -regularization strength: [1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5]
- ϵ (only for FAGCN): [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

For *WikiVitals*, we use a reduced search space: hidden dimension was set to 64 and L^2 -regularization strength to 1e-5, learning rate was in [1e-1, 5e-2], and ϵ in [0.7, 0.8, 0.9].

B.2 Training procedures for GNN models

For all GNN model training:

- we train for a maximum of 1000 epochs
- we use early stopping, patience is set to 200
- there is no learning rate decay
- L^2 -regularization is applied on all layers
- all model parameters (convolutional kernel coefficients for FAGCN, weight matrices for all models) are optimized simultaneously
- once training has stopped, we reset the state of model parameters to the step with the lowest validation loss.

For MLP and GCN, early stopping criterion is to stop optimization if the validation loss does not decrease during 200 epoches. For FAGCN, early stopping criterion is to stop optimization if the validation loss and the validation accuracy does not decrease during 200 epoches.

For GMNN training, we train models for 100 epoches and do 10 EM-loops.

B.3 Evolutionary grid search

Our evolutionary algorithm maintains a randomly initialized population of 100 configurations of hyperparameters over generations. From 2 to 50 configurations whose validation accuracy exceeds the population average are selected at each generation to be kept for the next. New configurations integrated in the population are created via a 2-pivot

	Cora			Citeseer			Pubmed		
	dense stratified train set	sparse balanced train set	sparse stratified train set	dense stratified train set	sparse balanced train set	sparse stratified train set	dense stratified train set	sparse balanced train set	sparse stratified train set
GCN	88.84 (2.39)	80.78 (2.58)	81.31 (2.16)	77.24 (1.73)	69.05 (3.66)	70.94 (2.16)	89.20 (0.86)	80.20 (1.88)	80.50 (2.38)
GMNN (strategy 1)	89.26 (1.91)	81.67 (3.00)	81.91 (2.21)	77.43 (1.70)	69.61 (3.96)	71.62 (2.20)	89.18 (0.84)	81.67 (1.32)	81.70 (2.45)
Significance	*	**	*		*	*	*	**	***
GMNN (strategy 2)	89.35 (1.79)	82.05 (2.81)	82.21 (2.10)	77.35 (1.65)	70.00 (3.83)	71.80 (2.32)	89.02 (0.84)	81.72 (1.20)	81.67 (2.51)
Significance	*	***	**		**	*	*	**	***
GMNN (strategy 3)	89.30 (1.80)	81.92 (2.81)	82.30 (2.06)	77.38 (1.70)	70.03 (3.74)	71.77 (2.30)	89.10 (0.79)	81.42 (1.66)	81.64 (2.46)
Significance		**	**		**	*		**	***

Table 5: Fair evaluation of GMNN using strategies 1, 2 and 3 to compute the value of β_j for each split j . Test accuracy is reported in %. Significance is always calculated in relation to the performance of the GCN.

random crossover of two sampled selected configurations (sampling is proportional to configuration evaluations ; configurations with a better evaluation are more likely to be selected for crossover), a mutation step assigns a new value to a configuration hyperparameter with a probability 0.05 to promote diversity in the search for configurations. Only never-ever seen configurations are added to complete the population at each generation. The number of generations is set at 10, beyond which the evaluation of the best configurations in the population seems empirically to increase little or not.

C Model selection strategies

During model selection phases of the fair evaluation, we must compute for each split j a pair $\gamma^{(j)} = (\alpha_j, \beta_j)$ of optimal hyperparameters α_j for GNN_θ and β_j for GNN_ϕ . In (Qu et al., 2019), the authors use a simple strategy which consists in using $\alpha_j = \beta_j$ (which is the strategy 1 below). This is a convenient strategy because one needs to compute α_j only. Moreover it works well in practice when using the Planetoid split. A question naturally arises as to whether this model selection strategy extends to various training contexts. We propose here to empirically test this strategy and two competing strategies in a fair evaluation context using dense or sparse train sets of the classical datasets Cora, Citeseer and Pubmed. The base model used in GMNN is GCN.

For each split j , assuming that α_i has been previously calculated, the three strategies for determining β_j are detailed hereafter:

1. Strategy 1: Set $\beta_j = \alpha_j$.
2. Strategy 2: Set β_j at a constant value. We use as constant value the set of hyperparameters provided by the authors of (Qu et al.,

2019): hidden dimension is 16, input dropout and dropout are 0.5, learning rate is 0.05, L^2 -regularization strength is 5e-4.

3. Strategy 3: Compute β_j via a grid search, the value to optimize being the validation accuracy of GNN_ϕ after 3 Expectation-Maximization loops of GMNN and α_i being set. We are searching for configurations of hyperparameters for which the performance of GNN_ϕ does not degrade over the first EM-loops of GMNN. The grid search is performed in a search space identical to that defined in Appendix B.1 except for the hidden dimension limited to the set [8, 16]. In the evolutionary grid search algorithm, we set the population size to 40 and the number of generations to 3.

The results of the evaluations are presented in the table 5. The analysis shows that, on average, each of these strategies allows an improvement of the accuracy of the models. The three strategies tested exhibit similar performance for each of the contexts. The additional computational effort required to use strategy 3 seems to be unnecessary for the determination of β_j and strategies 1 and 2 are to be preferred. In this paper, we therefore use the simple strategy of setting $\beta_j = \alpha_j$ for each split j during each model selection phase.