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ABSTRACT

Analyzing long-term behaviors in high-dimensional nonlinear dynamical systems
remains a significant challenge. The Koopman operator framework has emerged
as a powerful tool to address this issue by providing a globally linear perspec-
tive on nonlinear dynamics. However, existing methods for approximating the
Koopman operator and its spectral components, particularly in large-scale sys-
tems, often lack robust theoretical guarantees. Residual Dynamic Mode Decom-
position (ResDMD) introduces a spectral residual measure to assess the conver-
gence of the estimated Koopman spectrum, which helps filter out spurious spec-
tral components. Nevertheless, it depends on pre-computed spectra, thereby in-
heriting their inaccuracies. To overcome its limitations, we introduce the Neural
Network-ResDMD (NN-ResDMD), a method that directly estimates Koopman
spectral components by minimizing the spectral residual. By leveraging neural
networks, NN-ResDMD automatically identifies the optimal basis functions of
the Koopman invariant subspace, eliminating the need for manual selection and
improving the reliability of the analysis. Experiments on physical and biological
systems demonstrate that NN-ResDMD significantly improves both accuracy and
scalability, making it an effective tool for analyzing complex dynamical systems.

1 INTRODUCTION

In the study of complex dynamical systems, a critical challenge lies in accurately extracting and
analyzing long-term behavior in high-dimensional nonlinear systems. Various data-driven methods
(Brunton & Kutz, [2019; |Schetzen, 20065 [Wiggins, 2003} [Slotine & Li, [1991; |[Lan & Mezic} 2013}
Mezic, [2005) have been developed to address this challenge, with the Koopman operator (Koopman,
1931; [Koopman & Neumann, [1932)) framework emerging as a powerful tool due to its ability to
globally linearize nonlinear systems. Unlike local linearization methods (Hartman, [1960;|Grobman)
1959), which approximate dynamics near fixed points, the Koopman operator transforms the entire
system into a linear form within an infinite-dimensional space, which allows the use of spectral
analysis techniques to study complex dynamics.

Despite its promise, practical computational challenges arise from the infinite-dimensional nature
of the Koopman operator. Numerical methods such as Extended Dynamic Mode Decomposition
(EDMD) (Williams et al., |2015) have been developed to approximate the Koopman operator using a
finite set of observables, making it possible to extract dynamic modes from data. However, EDMD
lacks theoretical guarantees of convergence and may fail to capture the full Koopman spectrum
accurately, particularly in large-scale, complex systems.

To address these limitations, the Residual Dynamic Mode Decomposition (ResDMD) method (Col-
brook & Townsend, |[2024) was introduced, which offers convergence guarantees by using a spectral
residual measure that quantifies the extent to which the estimated Koopman spectrum converges to
the true spectrum of the system. By assessing the convergence, ResDMD can eliminate spurious
spectral components—those that do not correspond to the true dynamics of the system—thereby
enhancing the reliability and robustness of the spectral estimation. However, ResDMD primarily
serves as a filtering tool for precomputed spectra rather than providing a direct and more accurate
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approximation of Koopman spectra. Consequently, it lacks the capacity to independently refine the
spectral estimation.

In this paper, we propose Neural Network-ResDMD (NN-ResDMD), which overcomes this limi-
tation by providing a method to directly compute Koopman eigenpairs by minimizing the spectral
residual. Additionally, NN-ResDMD employs neural networks to automatically select basis func-
tions, eliminating the need for manual intervention, a common challenge in EDMD-based methods.
Through experiments on both toy models and real-world high-dimensional systems, we demonstrate
that NN-ResDMD significantly improves accuracy and scalability, making it a practical and effective
tool for analyzing complex dynamical systems.

2 PRELIMINARY ON KOOPMAN OPERATOR

Consider a discrete-time dynamical system (2, i) governed by a map F :  — €2, where Q C R?
is the state space, and p is a probability measure. The evolution of the system is described by:

Tpy1 = F(zy), keZt.
The Koopman operator K acts on observables g € L?(€, 1) as:
Kg=goPF.

Although F' is nonlinear, the Koopman operator X is linear, enabling spectral analysis of the system
in the infinite-dimension function space.

A key aspect of modern Koopman operator theory is Koopman Mode Decomposition (KMD)
(Mezicl [2005), which represents system dynamics through its spectral components, i.e. the eigen-
values, Koopman modes, and eigenfunctions. The discrete spectrum is particularly important for
insights into long-term behavior, such as periodicity and stability. Our analysis emphasizes these
spectral components derived from KMD. Specifically, we seek eigenpairs ()\;, ¢;), where \; are
eigenvalues and ¢; are the corresponding Koopman eigenfunctions.

One of the most prominent numerical methods to approximate the Koopman operator and its
spectral components is the Extended Dynamic Mode Decomposition (EDMD) method, intro-
duced by [Williams et al.| (2015). In EDMD, a set of observables (dictionary or basis func-
tions) ¥ = [¢1,...,¥N,] is selected, and the span of these observables defines the subspace
Vg = span{z/)i}fi . Snapshots of the system’s state are then collected, and the method constructs
a finite-dimensional approximation of the Koopman operator by solving a least-squares problem that
relates the snapshots of observables. This enables the computation of eigenvalues, eigenfunctions,
and Koopman modes. Note that while common choices of dictionary functions are polynomials,
Fourier basis, RBF functions, etc., the optimal choice of basis functions is usually unknown a priori
and depends heavily on the specific dynamical system.

Given independent and identically distributed data snapshots {(z;,y;)}", with y; = F(z;), two
matrices ¥ x and Uy are formed by evaluating the dictionary on the data snapshots:

Yi(r1) oo Yng(T1) Vi(yr) o N (1)
L N PO P I

EDMD computes the Koopman matrix approximation as K = \I/J;(\I/y, where \IIE( is the pseudo-
inverse of ¥ x. The eigenvalues of K provide approximations of the Koopman operator’s spectrum,
and the Koopman eigenfunctions ¢; are approximated as ¢; = Wv;, where v; € CNx is the i-th
eigenvector of K.

3 KOOPMAN OPERATOR LEARNING

While EDMD effectively approximates the Koopman operator, it still suffers from issues like spec-
tral pollution. As the dictionary size increases, spurious eigenvalues can accumulate, leading to an
inaccurate or over-saturated spectrum that misrepresents the system’s true dynamics. This makes
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it difficult to distinguish between meaningful dynamic modes and noise, ultimately reducing the
accuracy of the analysis. To address these limitations, Residual Dynamic Mode Decomposition
(ResDMD) (Colbrook & Townsend, 2024) filters out spurious eigenvalues by assessing their spec-
tral residuals. However, ResDMD relies on precomputed eigenpairs, inheriting inaccuracies from
methods like EDMD without directly improving the initial spectral estimation.

In contrast, we introduce the Neural Network-ResDMD (NN-ResDMD), a new method that provides
a theoretically convergent way to approximate the Koopman operator and its spectral components by
minimizing a ResDMD-specific loss function. Additionally, NN-ResDMD optimizes the dictionary
functions for the Koopman invariant subspace using a Feedforward Neural Network (FNN), which
eliminates the need for manual design of basis functions.

3.1 RESDMD REVIEW

Now, suppose we have obtained an eigenpair (), ¢) of K from EDMD or other methods (Colbrook,
2023} Baddoo et al., 2021} [Alford-Lago et al., [2022a; |[Schmid|, [2010; [Tu et al.l 2014} |Li et al.,
2017) where A € C and the eigenfunction ¢ is expanded in terms of dictionary functions, i.e.,
¢ = ¥v = Zfi’i Yv; € Vn, for some v € CNx, where v; represents weights of the span.
Without loss of generality, we consider ¢ has been normalized, i.e., ||¢||2 = 1. The accuracy of
this eigenpair approximation in the ResDMD framework can be measured by computing its squared
relative residual using the dictionary in the following way:

_ o K@) = A(x) Pdpa(x)

X, b)2:
res(h,9) T 6@ Pdu(z)
Ny
=3 0 [(Kebi, K)o — Mabi, Kby — MK bi, 050 0+ [N (@i, 9050 ] 05, @3.D
ij=1

where 7;, A denote the complex conjugate of v;, \.

This squared relative residual in is the theoretical value that measures the distance between
¢ and the eigenspace associated with A, especially under the assumption that X is in the discrete
spectrum of /. To approximate this residual in practice, we apply the Galerkin approximation
(Boyd, |2013), which states that as the number of data points m increases, the following limits hold:

lim i [\II}\I/XL] = <¢i7¢j>w

m—o00 M,
1

dim (W Wy ] = (Wi, K, (3.2)
R )

7r}gnoo m [\DY\I]Y]ij = <K:w“lcwj>l»t = <w2alc ’ij>/u

where * denotes complex conjugate. Using this approximation, the squared relative residual from
(3-1) is approximated as follows (see[A.T]for more details):

—~ ]- * * * N ATy * *
res(\, ¢)? == Ev* (U3 Uy — A5 Uy )" — AU Uy + [(APTU5 U] v (3.3)

where (3.3, denoted as 7es(\, ¢)2, represents the approximation of the theoretical value in (3.1).

By definition in @), the residual quantifies the deviation from the spectral property, measuring
how far the estimated eigenpair is from the true spectrum. In practice, (33) is calculated for all
precomputed eigenpairs, retaining those with residuals below a threshold. However, while residuals
help filter and select valid eigenpairs, they do not improve the accuracy of eigenpair estimation.

3.2 NEURAL NETWORK-RESDMD

General framework In this section, we present the Neural Network-ResDMD (NN-ResDMD)
framework, designed to compute the eigenpairs of the Koopman operator directly using ResDMD-
based spectral residuals, as illustrated in Figure[T} The method first determines the optimal dictio-

nary functions by minimizing the total residual J = Zf\g res(\;, ¢;)%, over all computed eigen-

pairs {(\;, ;) }% . The spectral residual directly impacts the finite-dimensional projection of the
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Koopman operator and our method minimizes this residual to ensure the learned basis functions
adequately capture the Koopman dynamics. This approach allows the construction of the Koopman
operator matrix K without relying on external methods or post-processing. Equation enables
NN-ResDMD to compute eigenpairs directly, improving accuracy compared to ResDMD, which
relies on filtering precomputed results from other methods.

In this framework, neural networks parameterize the dictionary functions ¥ (x; @), where 6 repre-
sents the network parameters. By minimizing the spectral residual J, this approach directly op-
timizes the dictionary functions towards better approximation of Koopman spectral components,
which ensures the learned operator captures the underlying spectral properties of the dynamical
system. This is fundamentally different from traditional methods like EDMD, which focus on min-
imizing prediction errors in the observable space without explicitly considering spectral accuracy.
The neural network architecture serves as a flexible function approximator, that allows the frame-
work to adaptively learn the optimal dictionary that minimizes spectral residuals, thereby producing
more accurate and reliable Koopman spectral decompositions. This spectral-oriented optimization
improves the accuracy of eigenvalues approximations and enhances the quality of the computed
eigenfunctions, which leads to better characterization of the system’s dynamic behavior.

Neural Network

Input. data snapshots Initialize 6 for ¥ (z; 6)

{(xi y:) Hita l
Construct & (6)
Lo\;ki)r {z:zii:rta.l .?i;z:x:?ry }(— Compute residual J(6)

Update § = argmingJ(6)

Output:
- IfJ <e J

Koopman matrix f,
pseudospectrum, eigenfunctions

Return ¥ (z; )

Figure 1: (Left) The classical ResDMD and (Right) the Neural Networks based ResDMD methods

From Residual to NN This section explains how neural networks are integrated into the ResDMD
framework. In ResDMD, the squared relative residual approximation (3.3) measures how well a
computed eigenpair fits the dataset. If the Koopman matrix K is well-approximated by the projected
Koopman operator Ky, , the fotal residual J should approach zero as more data is provided. Thus,

J can be used as a loss function, and the optimal Koopman matrix K is obtained by minimizing:
Ng
J = res(\i, ¢i)° (3.4)
i=1

which is equivalent to minimization the following (See[A.2]for more details):
1
J =[Oy - UxK)V|F (3.5)

where V' is a matrix in which each column is an eigenvector v; of Koopman matrix K. Thus, with

a fixed dictionary function ¥, the explicit form for the optimal Koopman matrix K can be directly
computed as

K=G'A (3.6)
where G = LWL Ux, A= LU5 Uy,
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Remark. Typically a regularization term is needed to enhance stability. Here we add a small
perturbation, i.e., K = (G + o)~ A for some small number o > 0.

As shown in , NN-ResDMD provides an explicit expression for K given the optimal dictionary
function ¥, allowing for the direct computation of Koopman eigenpairs. The optimization prob-
lem in Equation [3.3]is to minimize the error along the eigen-basis, in contrast to the optimization
problem ||¥y — WU x K||% for EDMD, thereby yielding different optimal ¥ compared to EDMD.
Therefore, although the K update procedure appear identical to the EDMD approach, they originate
from different theoretical foundations and serve different optimization purposes. Additionally, it
automatically optimizes basis functions using neural networks, removing the need for manual se-
lection. Since NN-ResDMD is based on the ResDMD framework, it also retains the theoretical
convergence guarantees that EDMD lacks: EDMD has convergence results under strong assump-

tions, such as requiring the Koopman operator to be bounded (Assumption 2 in [Korda & Mezi¢
(2018))), ResDMD requires only that the operator is closed and densely defined.

In NN-ResDMD, neural networks parameterize the dictionary functions W(x;6) to minimize the
total residual J(0), as defined in (3.4). The feedforward neural network generates the dictionary
functions based on data snapshots, and the total residual is given by:

1
J(0) = — [Ty (0) = Ux (6)K(0))V (6)]7 3.7
where K (6) and V() depend on . The Koopman matrix K (6) is computed as:
K(0) = G(0)TA®6) (3.8)
with G(6) = LU x(0)*Ux(0) and A() = LW (6)* Ty ().

The algorithm alternates between updating K (6) via least squares and optimizing # using gradient
descent until J(#) converges, yielding the approximated Koopman spectrum and optimized dictio-
nary functions. While it is possible to optimize both K (f) and J() simultaneously, as done in

Takeishi et al| (2017) and [Otto & Rowley| (2019)), our separate procedure ensures computational

efficiency and numerical stability compared to the coupled optimization case.

Computing Algorithm In our neural networks implementation, we include some non-trainable ba-
sis outputs to enhance the dictionary functions. Specifically, we add a vector of ones and the coordi-
nates of the state space as non-trainable basis in the output layer, which help avoid trivial solutions,
i.e., J = 0 for some initial §. For the network architecture, we build a three-layer Feedforward Net-
work where each hidden layer size can be specified during training. We use the hyperbolic tangent
(tanh) function as the activation function for the hidden layers. In terms of optimization, we employ
the Adam optimizer for updating the network parameters. Adam is particularly well-suited for this
task due to its ability to adapt the learning rate for each parameter, which can lead to faster con-
vergence in the alternating optimization process between the network parameters and the Koopman
matrix. The computing steps are illustrated in the following Algorithm ]

Algorithm 1: NN-ResDMD

Input: Dataset X, Y, number of observables N, learning step d, regularization parameter o,
loss function threshold e > 0, grid points {zy, ...z }.

Initialize 6, thus initializing ¥(6) ;
Compute K (#) and its eigenvector matrix V() ;
while J(6) > e do

Update = 6 — 6V, J(0) ;

Compute G(0) = ZW5 Uy, A(f) = L U4 Uy,

Update K (0) = (G(0) + oI)"*A(6) and V() ;
Output: K (6), eigenpairs {(\;, »; = ¥v;)} V% and pseudospectrum {z; : 7; < ¢}.

While the practical advantages of NN-ResDMD are demonstrated through experiments, it is impor-
tant to note its computational demands. The algorithm’s computational complexity stems primarily
from its iterative optimization process. Each iteration involves a gradient descent update with com-
plexity scaling linearly with both system dimensionality and neural network parameters. Although
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individual gradient steps are computationally lightweight for standard network architectures, the
algorithm’s efficiency issue lies in its repeated least-squares optimizations. Compared to standard
single least-squares computation as in most numerical algorithms, NN-ResDMD requires multiple
iterations to achieve convergence, with stochastic gradient descent methods showing a theoretical
O(1/n) convergence rate. However, the method’s nonlinear optimization nature also presents chal-
lenges for establishing concrete convergence bounds and error estimates.

If the continuous spectrum of the Koopman operator is of interest, following the ResDMD paper’s
idea, we can scan candidate spectrum values within a grid in the complex plane using the residuals.
Specifically, we compute 7; = min,, ccn, 7es(z;, ®(0)v;), where 7; is the minimum residual for a
grid point z; € C. The approximated whole spectrum containing the continuous spectrum is then
given by {z; : 7; < e}. More details can be found in (Colbrook & Townsend] [2024)).

While the practical advantages of NN-ResDMD are demonstrated through experiments, it’s also
worth noting that the method has theoretical underpinnings (Haykin, [2009; Weinan et al., 2019) that
support its convergence properties. A brief discussion on the convergence aspects of NN-ResDMD,
leveraging existing results from approximation theory in Barron spaces, is provided in Appendix
[A3] This discussion offers insights into how the neural network component of NN-ResDMD con-
tributes to its effectiveness in approximating complex dynamical systems.

4  APPLICATION IN PHYSICAL AND BIOLOGICAL SYSTEMS

In this chapter, we present three examples demonstrating the effectiveness of NN-ResDMD in esti-
mating the key quantities of Koopman Mode Decomposition (KMD): spectrum, eigenfunctions, and
Koopman modes. In the first low-dimensional example of a classical pendulum system, our method
requires significantly fewer dictionary observables than (Colbrook & Townsend}[2024] Section 4.3.1,
Section 6.3) to compute the Koopman spectrum and achieves better approximations of continuous
spectra. The second high-dimensional example on turbulence highlights our method’s ability to
detect acoustic vibrations and distinguish the pressure field through Koopman modes. The third
example, a real-world high-dimensional neural system, compares NN-ResDMD with three popular
methods—Hankel-DMD (Arbabi & Mezicl2017), EDMD with RBF basis, and kernelized-ResDMD
(Colbrook & Townsend| 2024)—and demonstrates its superiority in identifying and clustering latent
dynamic structures. Together, these examples showcase NN-ResDMD'’s performance across diverse
systems and comprehensively evaluate its capabilities.

4.1 PENDULUM

The pendulum system is a measure-preserving system due to its Hamiltonian nature, which theoret-
ically implies its whole spectrum lies on the unit circle. For its dynamical behaviors, if the initial
position of the pendulum is sufficiently far from the peak and the initial angular speed sufficiently
small, the pendulum will oscillate; otherwise, the pendulum will pass the peak and rotate. In other
words, this complex system exhibits two types of dynamical behaviors: rotation and oscillation.
Here we simulate two cases with different numbers of initial points. We choose 90 and 240 initial
points uniformly in the domain [—7, 7]pe, X [—15, 15]. Each point evolves 1000 steps with a step
size of 0.5. Thus, the total data size in each set is approximately 9 x 10* and 2.4 x 10°, respectively.

As shown in Figure 2} only Nx = 300 observables are needed to approximate the full spectrum,
significantly fewer than the nearly 1000 required in (Colbrook & Townsend] [2024] Section 4.3.1) for
the same data size. Even with a much larger data size (Figure E[) the required observables remain
small (Nx = 350), demonstrating the robustness of efficient observables across data sizes.

As shown in Figure[d, we compare our method to four approaches: EDMD, EDMD with Dictionary
Learning (EDMD-DL), Hankel-DMD, and ResDMD, on the dataset with 90 initial points to compute
the Koopman matrix and its corresponding spectral information. The first three methods (EDMD
(Williams et al., 2015), EDMD-DL [2017), and Hankel-DMD are limited to computing
eigenvalues associated with the point spectrum. In these experiments, both EDMD and ResDMD
use the hyperbolic cross approximation with Hermite functions up to order 15 and Fourier functions
up to order 20. Hankel-DMD uses a time delay of 150. Although Hankel-DMD yields accurate
eigenvalues, it still suffers from spectral pollution and requires careful tuning of the time delay
parameter. With 300 basis functions, ResDMD is still unable to fully capture the whole spectrum,




Under review as a conference paper at ICLR 2025

i.e., the unit circle, due to the insufficient number of basis functions. In the original ResDMD work,
964 basis functions using a hyperbolic cross approximation of order 100 were required to adequately
cover the spectrum with a dataset of the same size (Colbrook & Townsend, [2024] Section 4.3.1).
This comparison demonstrates that NN-ResDMD, even with only 300 basis functions, outperforms
all four classical methods in terms of capturing the complete spectrum with greater accuracy and
fewer basis functions.

NK=25 NK =50 NK =100 N_K = 300

-15 -15 -15 -15
-15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15

NN-ResDMD: Ni = 25 NN-ResDMD: Ni = 50 NN-ResDMD: Nx = 100 NN-ResDMD: Nx = 300

Figure 2: The four plots depict the spectrum of the Koopman operator, constructed using varying
dictionary size N of 25, 50, 100, and 300. Each plot utilizes 90 initial points to illustrate the impact
of increasing the dictionary size on approximating the spectrum of the Koopman operator.

N_K =50 N_K = 150 N_K =250 N_K = 350
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-15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15 -15 -10 -05 00 05 10 15

NN-ResDMD: Nk = 50 NN-ResDMD: Nx = 150 NN-ResDMD: N = 250 NN-ResDMD: Nx = 350

Figure 3: Same example as Figurebut with larger data size, using 240 initial points to show the
effect of increasing dictionary size on approximating the Koopman operator spectrum.

Hankel.DMD: N_K= 300

ResDMD: N_K= 300

EDMD: N K= 300 EDMD-DL: N K= 300

EDMD: Ni = 300 EDMD-DL: Ni = 300 Hankel-DMD: N = 300 ResDMD: Nx = 300

Figure 4: Comparison with classical methods. The four plots above represent the spectral informa-
tion obtained from a 300 x 300 Koopman matrix, calculated using four methods: EDMD, EDMD
with Dictionary Learning (EDMD-DL), Hankel-DMD, and ResDMD. The illustrated eigenvalue
spectra of the Koopman operator highlight the differences in results produced by these methods.

4.2 TURBULENCE

Recovering spatial patterns is a typical goal of DMD-based methods, especially in fluid dynamics,
where Kernel ResDMD has been particularly successful in capturing such patterns and detecting
acoustic vibrations in the turbulence system. However, Kernel ResDMD requires careful selection
of kernel functions, while NN-ResDMD bypasses this by using neural networks to train observables
and compute Koopman modes.

We demonstrate this by applying NN-ResDMD to the turbulence system using the dataset from
(Colbrook & Townsend, 2024}, Section 6.3). The ground truth in the first plot of Figure 5 represents
a high-dimensional pressure field distribution (approximately 30,000 spatial dimensions) around
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an airfoil, with a clear distinction between the upper and lower surfaces. Technically, we apply
truncated Singular Value Decomposition (SVD), select 300 observables, compute Koopman modes,
and project them back into the original state space.

In Figure [} the first Koopman mode estimated by NN-ResDMD with the smallest residual value
successfully highlights a clear global spatial separation that aligns with patterns observed in the
original pressure field. This advantage allows the first Koopman mode to directly distinguish spatial
features that are present in the true pressure field, which makes it a powerful tool for the interpre-
tation of complex fluid dynamics data. Subsequent Koopman modes also reveal strong acoustic
waves that are critical in various aeronautical engineering fields. In contrast, Kernel ResDMD with
a generic normalized Gaussian kernel function, as shown in the original work, is unable to produce a
Koopman mode similar to the first Koopman mode from NN-ResDMD that clearly distinguishes the
pressure field. For comparison, we also plot four Koopman modes computed by Hankel-DMD with
a time delay of 5, corresponding to the four smallest residual values, which similarly do not reveal
the pressure field patterns as in NN-ResDMD. These results are presented in Appendix Figure [7]

2D Scatter Plot of Pressure Field Koopman Mode 1 (Residual: 2.18e-08) Koopman Mode 6 (Residual: 4.09¢-02) Koopman Mode 7 (Residual: 4.87e-02)
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Figure 5: The plots illustrate turbulence detection with Koopman modes computed by 300 observ-
ables. The first plot shows a 2D scatter plot of the pressure field, while the other plots display various
Koopman modes, each labeled with corresponding residuals. The small residual values in the figures
associated with the Koopman modes confirm the estimation accuracy.

4.3 IDENTIFICATION OF NEURAL DYNAMICS IN MICE VISUAL CORTEX

Since NN-ResDMD directly minimizes the residuals based on eigenfunctions, its estimated evo-
lution of eigenfunctions over time should ideally capture latent dynamics. To evaluate how ef-
fectively NN-ResDMD reveals latent temporal dynamics in real data, we apply it to a dataset of
high-dimensional neural signals and demonstrate its advantages over a series of classical methods:
the Hankel-DMD, EDMD (combined with RBF basis) and Kernel ResDMD. These methods are
selected as representative approaches for handling high-dimensional data.

The dataset is part of the open dataset on mice from the competition ’Sensorium 2023 (Turishcheval
et al} [2023} [2024). In the experiments, mice viewed natural videos while their neural signals were
recorded via calcium imaging in the primary visual cortex, reflecting the activity of thousands of
neurons. Here, we focus on the state partitioning of neural signals. Specifically, in each mouse, six
video stimuli were repeatedly shown, creating ideal conditions to define brain states. Neural activity
during repeated trials with the same stimuli is assumed to reflect the same underlying dynamic
system, enabling Koopman decomposition methods to uncover and separate these brain states.

The dataset consists of neural recordings from five mice, each exposed to 6 video stimuli, repeated
9-10 times for a total of around 60 trials. Each recording captures the activity of over 7,000 neurons,
with each 10-second video sampled at 50 Hz, resulting in 300 data points per trial.

We applied NN-ResDMD and three classical Koopman decomposition methods (Hankel-DMD,
EDMD with RBF basis, and Kernel ResDMD) to these datasets, using different implementations
and Koopman subspace dimensions. For NN-ResDMD, we trained dictionaries on all snapshots
from each mouse to avoid overfitting, reduced the data to 300 dimensions via SVD, and selected
501 eigenfunctions. The decomposed eigenfunctions are shown in Figure [gJA(top), with markers
indicating ground truth state separations. For Hankel-DMD, we built a Hankel matrix with a delay
of 50, producing 50 eigenfunctions per trial. In EDMD with RBF basis, we used the SVD-truncated
300 basis and 1000 RBF functions, resulting in 1301 eigenfunctions. For Kernel ResDMD, we
used normalized Gaussians as kernel functions, setting the Koopman subspace dimension to 299
eigenfunctions based on [Colbrook et al] (2023). See Appendix [A-8:4] for method details and Ap-
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pendix [AZ9] for dictionary size justification. These eigenfunctions, shown in Figure [BJA(bottom),
Appendix Figure[9A, and Appendix Figure[TOJA, are compared to the ground truth trial identities.

The Koopman eigenfunctions represent dynamical features corresponding to the video stimuli. To
evaluate their effectiveness, we assess how well eigenfunctions of the same stimuli cluster together,
distinguishing them from other states. If the eigenfunctions capture key dynamics related to the
stimuli, those from trials with the same video should be separable from others. This turns the
problem into a clustering task based on the separability of eigenfunctions across different stimuli.
Note that averaged trial differences are even visibly clear for the NN-ResDMD case.

We use Multi-dimensional Scaling (MDS) to visualize how these eigenfunction-based features clus-
ter according to ground truth states. MDS reduces data dimensionality based on similarities, making
it ideal for visualizing clustering performance. While UMAP and t-SNE are alternative methods,
we show MDS results in 2D space (Figure [6B-E), with similar results for UMAP and t-SNE in the
supplementary materials (Appendix Figure EBAppendix Figure[9C,D and Appendix Figure [IOC,D).

The 2D MDS visualization reveals clear separation of features for all 5 mice using NN-ResDMD
(Figure [6B), whereas no other method shows clear clustering (Figure [(C-E, Appendix Figure OB,
Appendix Figure[I0B). To quantify this clustering, we calculate the Davies-Bouldin index (DBI), a
measure of clustering quality that assesses how compact and well-separated the clusters are. A lower
DBI indicates more compact clusters that are farther apart from each other, which corresponds to
better clustering. The DBI is significantly lower for NN-ResDMD (Figure [6F), suggesting that it
captures the latent dynamic structure more effectively than all three other methods. Similar cluster-
ing patterns are confirmed with UMAP and t-SNE (Appendix Figure [TT).

5 CONCLUSION AND FUTURE WORK

Koopman spectral components (eigenpairs) are fundamental to understanding dynamical systems, as
they reveal intrinsic patterns and structures underlying complex temporal behavior through a linear
framework for analyzing nonlinear dynamics. In this paper, we introduced NN-ResDMD, a method
for estimating eigenpairs by minimizing spectral residuals, eliminating ResDMD’s need to filter
precomputed results. Despite higher computational costs, using neural networks to learn eigenpairs
provides a significant advantage by capturing patterns automatically and reducing manual interven-
tion in basis selection. This flexibility is particularly beneficial for high-dimensional systems where
traditional methods often struggle. Our experiments demonstrate that NN-ResDMD outperforms
classical methods—including EDMD, Hankel-DMD, ResDMD, and their variants—in uncovering
critical spatiotemporal characteristics of nonlinear dynamics.

Despite the advantages, NN-ResDMD has several limitations and we discuss the major ones here.
First, the neural network structure incurs higher computational costs compared to classical ap-
proaches, making it unsuitable for real-time learning tasks (see a brief discussion in Appendix [A3).
Second, the deterministic nature of the framework does not account for stochastic aspects of the sys-
tem, such as those addressed by methods like VAMP [Mardt et al.| (2018), limiting its applicability
to highly noisy data. Additionally, the performance of NN-ResDMD is sensitive to hyperparame-
ter tuning, including network architecture, dictionary size, and training criteria, which can require
significant effort to optimize.

Koopman eigenpairs provide unique perspectives into the interpretation of nonlinear dynamical
mechanisms, and feedforward neural networks (FNNs) represent an initial step in learning spec-
tral properties directly from data. In recent years, various deep neural network structures have been
employed to learn the Koopman representations with different optimization targets other than the
spectral residuals (e.g. [Lusch et al.| (2018); [Takeishi et al.|(2017); [Mardt et al.| (2018)); [Yeung et al.
2019);|0Otto & Rowley|(2019));|/Azencot et al.|(2020); [Alford-Lago et al.|(2022b)); |Iwata & Kawahara
2020)(see Appendix section|A.4]for a comparison with the VAMP framework). With our approach,
we demonstrate that even basic architectures can achieve significant improvements in Koopman op-
erator estimation by using the spectral residual loss. Therefore, future work could focus on refining
neural network architectures to enhance the accuracy and efficiency of Koopman eigenpair estima-
tion. One promising direction is the incorporation of Physics-Informed Neural Networks (PINNs)
and Physics-Informed Neural Operators (PINOs), which integrate physical laws directly into the
learning process. This integration will ensure that the resulting Koopman eigenfunctions align with
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Figure 6: NN-ResDMD outperforms Hankel-DMD in identifying latent dynamic structures in neu-
ral signals with a dictionary size of 501. (A) (Top) 500 Koopman eigenfunctions estimated by
NN-ResDMD across 6 states characterized by different video stimuli in an example mouse. Each
trial contains 300 data points (10s at SOHz). (Bottom) 50 Koopman eigenfunctions approximated by
Hankel-DMD, each 50 points long, reflecting the dimension of the Hankel matrix. (B) 2D represen-
tation of Koopman eigenfunctions for all tested mice, computed by NN-ResDMD and reduced via
Multidimensional Scaling (MDS). Trials of the same state cluster well. (C) Same as (B) but com-
puted with Hankel-DMD, showing no clear state separation. (D) 2D representation of Koopman
eigenfunctions for the first mouse, computed by EDMD with an RBF basis. See Appendix Figure[J]
for full results. (E) Same as (D) but computed with Kernel ResDMD. See Appendix Figure [10| for
full results. (F) Davies-Bouldin Indices (DBIs) evaluating clustering quality across four methods
(NN-ResDMD, Hankel-DMD, EDMD+RBF, and Kernel ResDMD) for five mice. Lower DBI val-
ues for NN-ResDMD indicate better clustering.

known physical constraint, avoid overfitting and faciliatates generalization. Indeed, the integration
of PINNs and PINOs with the Koopman framework has the potential to serve as a powerful bridge
between data-driven and model-driven approaches, offering enhanced insights into complex systems
and enabling more robust temporal evolution predictions.
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A APPENDIX

A.1 CALCULATION STEPS FOR[3.3]

Here we are going to show how squared relative residual implies (3.I) and then implies (3.3).
Consider ¢ = ®v = S"V% v, with [|¢[|2 = 1, then
Jo IKé(2) — Ap()[*dp(z)
Jo l¢(2)2du(z)

- /Q K () — A()Pdu(z)
— (K6 — A6, Kb — Ad)

= <K:¢7 IC(b)M - <)‘¢> K¢>H - <K¢a )‘¢>}J« + </\¢7 )‘(b)ll
= <101:v lC\Ilv} — MNP, IC\Ilv> - /\(IC\IIV Tv), + \A|2<xpv Tv),

Zicwzvz,Zicwm szvz,zijv] vaz,Zwm + AP Zwm,Z%vw

NK NK
= > Vil Kbj) vy — A Z Viti, Kbj) vy — A Z Vi(Kabss ) uvs + A7 Y Vilts ) v
Q=1 ij=1 ij=1 ij=1
szk ) J J J
D Vi [, Kty = M Kty ) e = A, 05+ AP (Wi 05),] v 1'
ij=1
o
~ Z Vi l:m[‘l/;/‘l/y]” -

4,j=1

1, .
IR - AWy P | v,

1 _
= v [y - AW Ty) - ATy + \AW}@X] v 1;

Remark. the inner product above is defined as (f, g fQ frgdu(x)
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A.2 DETAILS FOR DERIVING ([3.5)

Ny
J = res(hi, i)’
=1
K
1 * * * * 3\ * 24Ty *
= Z Evi [\I/y\py - )\l(\I/X\I’y) - )\i\I/X\I/y + |Az| \IJX\I/)(} A%
i=1
K 1 B
— Z — [Vi(@3 Uy )v; — vi (UK Uy ) Aivi — viA (UK Uy )v; + vi K* (U5 Uy ) K]
m
i=1
X1
= Z — [Vi(Py Py v, — vi (U5 Uy) " Kv;, — v K (U5 Uy )v; + vi K (U5 U x ) Kv,]
m
i=1
K1
=y = <<\IIYV1'> Uy vi) = (Uyvi, Ux Kv;)
m
i=1
— <\I/XKV¢, \Inyi> + <q/XKVi7 \I/XKV1>>
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= Z —(Uyv; — UxKv;, Uyv; — UxKv;)
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i=1
NK 1
=Y = Wyvi — UxKvj3
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1 2
= —|[(¥y — UKV}
Next, by matrix calculus with denominator layout convention, we try to find minimal of J:
dJ dtr(J) . .
0= K= di (since J is a scalar)

d AL
= ot <m > v [\p;xpy — (T Uy ) K

i=1
— K (W5 Uy) + K*(\I/}\I/X)K} v>

N

=

tr (vf [L —A*K—K*A—&—K*GK]VZ»)

=~

tr (viLv;) + K tr (viA*Kv;) + K tr (viK*Av;) + IK tr (v K*GKv;)

5=~
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M=M= LM I

«
I
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(—2A+2GK)v;v; (G is symmetric)

?

where tr() is trace of a matrix and G = V5 Uy, A = U WUy L = U Uy,
Since eigenvector v; is not a zero vector, v;v; is not a zero matrix. So

—2A+2GK =0= K = GTA.
Remark. To solve & tr (vi K*GKv;), we simply rewrite it as

Atr (ViK*GKv;) = 4% tr (Kv;)*G(KV;))
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A.3 DIscUSSION ON CONVERGENCE

To understand how neural networks enhance NN-ResDMD, it is important to introduce Barron space
(Pinkus|, [T999; [Cybenko}, (1989}, [Haykin|, 2009} [Barronl, [1993)). Barron space characterizes functions
efficiently approximated by two-layer neural networks, which is central to NN-ResDMD. By lever-
aging networks that approximate functions within this space, NN-ResDMD can flexibly optimize the
dictionary functions for Koopman operator approximation, making it highly effective for complex,
high-dimensional systems.

A function f belongs to Barron space B if it can be represented as:

@) = [ aotuTz)p(da.dw)

where o is the activation function, w is a weight vector, a is a coefficient, and p is a probability
distribution. The complexity of f is measured by the Barron norm || f||5:

= inf da,d
11 = ing ([ lallwluptaa,an)).

where P is the set of distributions for which f can be represented. This framework provides a basis
for analyzing approximation errors in neural networks.

The following theorem (E et al.,[2020) discusses the approximation capabilities of two-layer neural
networks within this context, establishing a foundation for the subsequent analysis.

Theorem A.1 (Direct Approximation Theorem, L2-version). Forany f € Bandr € N, there exists
a two-layer neural network f, with v neurons {(a;, w;)} such that

1 = ol < Wl
>

This result implies that the approximation error decreases at a rate of 1/+/7 as the number of neurons
r increases, with the constant || f||z reflecting the complexity of the function f within the Barron
space.

Now, consider a Barron space B which is dense in L?(£2, 1) and a projected Koopman operator
Kny @ By, — L*(Q,p) where By,, C B is a Nx-dimensional subspace spanned by some

dictionary ¥ = {l/%}fiKl According to Theorem we can have a well-trained dictionary that
almost spans By, , i.e., given € > 0, we can always obtain a dictionary ¥, = {Q/JM}Z]\L"l such that

N
2ich i — il <e.

A.4 HIGHLIGHTS OF NN-RESDMD COMPARED WITH TYPICAL EXISTING NEURAL
NETWORK-BASED KOOPMAN FRAMEWORK

Our NN-ResDMD method takes a fundamentally different approach from existing deep learning
methods by building upon the residual-based framework of ResDMD rather than the different
Koopman-approximating loss functions following the variational principles of VAMPnets or the
deep autoencoder structure in Lusch et al. By incorporating spectral residual measures into deep
learning and introducing a structured representation that captures dependencies among eigenvalues,
we achieve more compact and interpretable models for nonlinear systems with continuous spec-
tra. This approach enables us to directly minimize Koopman spectral approximation errors while
avoiding the high-dimensional representations or point-spectrum limitations of previous methods.

If we take the VAMP framework as example, here are the connections and differences. The proposed
loss function and the VAMP score share the goal of optimizing approximations of the Koopman op-
erator’s spectral properties, establishing a connection in their ultimate purpose. However, although
they both depend on the covariance matrices (in our manuscript Equation 3.2), their methodologies
differ significantly. Our residual-based method directly minimizes the spectral approximation error
of the Koopman operator and accommodates both point and continuous spectra, while the VAMP
score follows a variational framework, maximizing the sum of singular values to approximate the
point spectrum, primarily for stochastic systems. Moreover, while VAMP is specifically designed for

16



Under review as a conference paper at ICLR 2025

Markov processes and requires the Koopman operator to be Hilbert-Schmidt, our approach is focus-
ing on deterministic systems and enabling a more comprehensive spectral analysis that incorporate
continuous spectra. This distinction in scope and methodology highlights how the two frameworks
complement each other in addressing different aspects of spectral estimation.

A.5 DISCUSSION OF COMPUTATION COSTS

Despite the various advantages of the NN-ResDMD framework, one significant limitation is its
higher computational cost compared to the original ResDMD and other classical methods.

Theoretical Perspective: In ResDMD, the computational procedure typically consists of two main
steps: an EDMD step and an eigenpair evaluation step, both of which are one-shot processes, result-
ing in high computational efficiency. In contrast, NN-ResDMD incorporates an iterative optimiza-
tion process driven by a neural network, which naturally incurs a higher computational cost. While
NN-ResDMD avoids direct residual evaluation at each iteration by leveraging the general form of
spectral residuals as a function of network parameters, the overall computation time is still signif-
icantly greater than ResDMD. This is further amplified when using large neural networks, where
optimization steps can become especially time-consuming.

Empirical Perspective: In our experiments, without computing the pseudospectrum, the compu-
tational cost of ResDMD typically ranges from seconds to minutes. NN-ResDMD, on the other
hand, can require tens of minutes to several hours, depending on factors such as data dimensionality,
the number of snapshots, hidden layer configurations, dictionary sizes, and training convergence
criteria.

Trade-off Between Cost and Accuracy: While NN-ResDMD’s additional computational steps
introduce higher costs, they enhance the accuracy and robustness of Koopman eigenpair estimation
by allowing automatic dictionary learning and minimizing spurious spectral components. This trade-
off makes NN-ResDMD particularly valuable in applications where precision is critical. However,
its computational demands render it less suitable for real-time or online Koopman model learning
tasks.

A.6 SOURCE CODE

For reproducibility, the source code will be available at the following anonymous URL:
https://anonymous.4open.science/r/ICLR-7305-PROJ. A full version of the codebase will be re-
leased upon acceptance of the paper.

A.7 KOOPMAN MODES COMPUTED BY HANKEL-DMD

Here we present the Koopman modes computed by Hankel-DMD for comparison with the NN-
ResDMD results. As shown in Figure[7] despite having small residuals, these modes fail to clearly
capture the fundamental pressure field structure that was successfully identified by NN-ResDMD’s
first Koopman mode (see Figure [5). This comparison demonstrates the superior ability of NN-
ResDMD to extract physically meaningful patterns from complex fluid systems.

A.8 PRACTICAL DETAILS FOR NEURAL DATA ANALYSIS

A.8.1 DATASET DETAILS AND EXPERIMENTAL SETUP

The dataset utilized in this study is part of the open dataset provided for the ’Sensorium 2023’
competition (Turishcheva et al.,2023)). The dataset consists of calcium imaging recordings from the
primary visual cortex of mice. During the experiments, the mice were presented with natural video
stimuli while the activity of thousands of neurons was recorded. The objective of the competition
is to predict large-scale neuronal population activity in response to different frames of the stimulus
videos, based on the hypothesis that population dynamics in the primary visual cortex, driven by
visual stimuli, encode significant information about the dynamics of the videos (Basole et al., 2003;
Onat et al., 2011; |[Henatf et al., [2021).
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Figure 7: The plots illustrate turbulence detection using the four Koopman modes computed by
Hankel-DMD, which are ranked with their corresponding residuals from the smallest.

A.8.2 TASK DEFINITION AND RATIONALE

In contrast to the competition’s prediction objective, our study focuses on the task of state par-
titioning of neural signals. While prediction remains feasible, we aim to demonstrate that state
partitioning is sufficient to highlight the superiority of NN-ResDMD over a series of other methods
in uncovering the latent dynamics of the system. Specifically, in each experiment, a set of six video
stimuli was repeatedly presented to each mouse, creating ideal conditions for defining brain states.
The recording setup remained consistent for each mouse, ensuring that the neural activities could
be interpreted as originating from the same dynamical system, with the primary variable being the
input stimulus.

We hypothesize that during repeated trials with identical visual stimuli, the underlying dynamics of
the neural system remain consistent. Consequently, the recurrence of the same brain state is expected
during these trials. This provides a reliable basis for testing the efficacy of Koopman decomposition
methods in uncovering latent dynamics and distinguishing these states.

A.8.3 DATASET STRUCTURE AND DIMENSIONALITY

The dataset includes neural recordings from five mice, with each mouse responding to six distinct
video stimuli, presented in 9-10 repeated trials (resulting in approximately 60 trials in total). Each
trial involves recordings of over 7000 neurons. The duration of each video stimulus is 10 seconds,
with a sampling rate of 50 Hz, yielding 300 data points (299 snapshots) per trial. Thus, the data to
be analyzed consists of a high-dimensional time series with 7000+ observables per snapshot.

A.8.4 IMPLEMENTATIONS OF NN-RESDMD AND OTHER CLASSICAL METHODS

We compare here four methods: the proposed NN-ResDMD and three classical Koopman decom-
position methods for high-dimensional systems: the Hankel-DMD, the EDMD with RBF basis, and
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the Kernel ResDMD. We applied them to the 5 datasets, although with slightly different implemen-
tations and different dimensions of approximated Koopman invariance subspace.

For NN-ResDMD, we train the dictionaries with all the snapshots recorded in each mouse such that
the total snapshot number is the product of the snapshot number in one trial and the number of all tri-
als. This is to avoid overfitting with the small snapshot numbers within a trial. The high-dimensional
data is first reduced to 300 dimensions with Singular Value Decomposition. The dimension of the
Koopman subspace is chosen to be 601, consisting of 300 trained bases and 301 pre-chosen ones
(constant and the first-degree polynomials of the SVD-ed 300 dimensions). The first 501 eigenfunc-
tions sorted by the modulus of eigenvalues are selected to avoid spurious eigenvalues estimation
due to noise. One can find the decomposed eigenfunctions in Figure [6JA(top), with a marker of the
ground truth state separations based on stimulus identity.

For Hankel-DMD, the Koopman eigenfunctions were approximated using the eigenvectors of the
Hankel matrix. Specifically, the Hankel matrix was formed as in Equation 53 from
(2017), using all the observables from one trial of each mouse with a delay of 50. Consequently, the
snapshot size became 249 times the observable number, and the resulting number of eigenfunctions
was 50, each with a length of 50. The Hankel-DMD eigenfunctions for each trial of data are shown
in Figure[6JA (bottom), alongside the ground truth trial identities for comparison.

For EDMD with RBF basis, the high-dimensional dataset is first reduced to 300 dimensions with
SVD. Then RBF basis is calculated with 1000 RBF functions. The choice of the basis number is
decided based on classical experiments of using RBF basis to estimate the Koopman operator of

Duffing systems 2017).

For Kernel ResDMD, as it is a variant of Kernel EDMD (Kevrekidis et al,[2016)), the dimension of
the Koopman invariant subspace should corresponds to the sample number (in time). Given the data
size to be 300, we have 299 snapshots, resulting in 299 Koopman bases. The detailed calculated
is performed for each trial with the program provided in the original ResDMD paper (Colbrook|
et al}, 2023}, [Colbrook & Townsend, 2024). We chose the kernel function as the commonly-used
normalized Gaussian function in the calculation.

The Koopman eigenfunctions from both NN-ResDMD and other methods represent dynamical fea-
tures corresponding to one of the six video stimuli. To evaluate how well the eigenfunctions capture
the latent dynamics, we assess the similarity of the features for trials with the same stimulus and
their dissimilarity from those corresponding to different stimuli. Effectively, this makes the prob-
lem a clustering task, where the separability of the Koopman eigenfunctions reflects how well they
capture the key dynamic components related to the stimuli.

A.9 CHOICE JUSTIFICATION OF DICTIONARY SIZES

In this section, we provide justifications for the use of different dictionary sizes (i.e., the number of
Koopman eigenfunctions) in the aforementioned four methods for the neural dynamics experiment.

First, the high-dimensional data was pre-processed using SVD to reduce its dimensionality to 300.
Then, for the four methods:

1. For NN-ResDMD, we selected 300 trained basis functions and 300 first-order monomial
basis functions as the dictionary for the 300 reduced observables. This choice ensures the
dictionary is rich enough to span the Koopman invariant subspace. Hence, the size of the
trained dictionary was set to be at least equal to the original observable size. Then based
on the rank of estimated Koopman eigenvalues, we select the dominant 501 eigenfunctions
to avoid the eigenfunctions with zero eigenvalues.

2. For Hankel DMD, the number of delays (as dictionary size/number of eigenfunctions) is
first constrained by the temporal sample size (i.e., snapshot size) because it cannot exceed
the maximum snapshot size. Therefore, it is impossible to choose the same dictionary size
as the NN-ResDMD example. Choosing the delay too small will result in an insufficient
dictionary size to span the Koopman invariant subspace, and too large will reduce the actual
snapshot size to estimate the covariance matrices in the estimation of the Koopman matrix.
Therefore, we chose a compromise delay number of 50 that satisfies both needs.
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3. For RBF basis, in principle, we can use the same dictionary size. However, our previous
experience with a similar dataset and the results of using the RBF basis for the EDMD
method all suggest that the performance will be better with more dictionary functions.
Therefore, we chose 1000 RBF basis and the original 300 first-order monomial basis as a
better condition compared to the same dictionary size with NN-ResDMD.

4. For Kernel ResDMD, the dictionary size is theoretically determined to be the number of
snapshots. Therefore, we cannot make the dictionary size consistent with the NN-ResDMD
example.

Based on the above justifications, we believe our choices of dictionary sizes are reasonable and
ensure a fair comparison across the methods.

A.9.1 VISUALIZATION AND CLUSTERING PERFORMANCE

To visualize the clustering of high-dimensional Koopman eigenfunctions, we perform dimension-
ality reduction using Multi-dimensional Scaling (MDS). MDS is particularly useful for visualizing
high-dimensional data by preserving pairwise similarities (here we use correlation
as a measure of similarities). While UMAP (Mclnnes et al., [2018) and t-SNE (Van der Maaten &
are alternative visualization methods, with different emphasis on global-local rela-
tionships, we primarily use MDS in this study and provide UMAP and t-SNE results in the supple-
mentary materials (see Appendix Figure [§JA, B, Appendix Figure[9[C, D and Appendix Figure[I0[C,
D). UMAP in implementation is still correlation-based. For t-SNE estimation we use the perplexity
of 15, as a value for optimal separation.

By applying MDS, the high-dimensional eigenfunction-based features are reduced to a low-
dimensional space. For illustration, we present the results of reducing the feature space to two
dimensions (Figure [6B-E). The NN-ResDMD reduced features for the six types of trials (corre-
sponding to the six video stimuli) are well-separated for all five mice (Figure [6B). In contrast, the
Hankel-DMD features show no clear clustering structure (Figure [6C). Similarly, the features pro-
duced by EDMD with an RBF basis and Kernel ResDMD do not show clear separability (Figure[6]D-
E, Appendix Figure[OB-D, Appendix Figure[I0B-D).

A.9.2 CLUSTERING QUALITY METRICS

We further quantified the clustering quality by calculating the Davies-Bouldin Index (DBI) for both
Koopman decomposition methods across all mice (Figure [6F). The DBI is designed to assess the
compactness of clusters and the separability between them. A lower DBI indicates better cluster-
ing performance. NN-ResDMD features yield significantly lower DBI scores compared to other
methods, confirming that NN-ResDMD produces more clearly defined clusters corresponding to the
ground truth trials. Similar clustering results are observed with UMAP and t-SNE (see Appendix
Figure [TT)), further supporting the superior performance of NN-ResDMD in capturing the latent
dynamic structure compared to the other classical methods.
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Figure 8: State Partition performance of eigenfunctions for NN-ResDMD and Hankel-DMD in 2D
space visualized with UMAP (A) and t-SNE (B).
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Figure 9: Full results of EDMD with RBF basis. (A) 1301 Koopman eigenfunctions estimated by
EDMD with RBF basis in 6 states characterized by 6 different video stimuli in an example mouse.
Eigenfunctions in each trial of each state contain 300 data points (10s with a sampling rate of S0Hz).
(B) 2-D representation of Koopman eigenfunctions for each trial of all tested mice, calculated by
EDMD with RBF basis and reduced by Multidimensional Scaling (MDS). No clear separation of
states can be seen from the reduced representation. (C) Same as (B) but visualized with UMAP.
No clear separation of states can be seen from the reduced representation. (D) Same as (C) but
visualized with t-SNE. No clear separation of states can be seen from the reduced representation.
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Figure 10: Same as Figure Elbut estimated with Kernel ResDMD, with 299 basis of the Koopman
subspace, thus 299 eigenfunctions.
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Figure 11: Davies-Bouldin Indices evaluating the clustering performance of dynamical components
learned by four methods (NN-ResDMD, Hankel DMD, EDMD+RBF, and Kernel ResDMD) across

five mice. Comparisons are shown using UMAP (A) and t-SNE (B).
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