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Abstract

LongSplat addresses critical challenges in novel view synthe-
sis (NVS) from casually captured long videos characterized
by irregular camera motion, unknown camera poses, and
expansive scenes. Current methods often suffer from pose
drift, inaccurate geometry initialization, and severe memory
limitations. To address these issues, we introduce LongSplat,
a robust unposed 3D Gaussian Splatting framework featur-
ing: (1) Incremental Joint Optimization that concurrently
optimizes camera poses and 3D Gaussians to avoid local
minima and ensure global consistency; (2) a robust Pose
Estimation Module leveraging learned 3D priors; and (3) an
efficient Octree Anchor Formation mechanism that converts
dense point clouds into anchors based on spatial density. Ex-
tensive experiments on challenging benchmarks demonstrate
that LongSplat achieves state-of-the-art results, substantially
improving rendering quality, pose accuracy, and computa-
tional efficiency compared to prior approaches. Project page:
https://linjohnss.github.io/longsplat/

1. Introduction

High-quality 3D reconstruction and novel view synthesis
(NVS) are crucial for applications in VR/AR, digital tourism,
and video editing. With the rise of smartphones and action
cameras, casually captured videos have become a major
source of 3D content, but they are difficult to handle due
to irregular trajectories, long sequences, and the lack of
reliable camera poses. Existing approaches face two key lim-
itations: reliance on Structure-from-Motion pipelines like
COLMAP [16], which often fail in casual settings as shown
in Fig. 1, or COLMAP-free methods such as CF-3DGS [5]
and LocalRF [11], which struggle with memory constraints
or fragmented reconstructions. Even foundation models like
MASt3R [8] provide fast initialization but drift significantly
on long videos. We present LongSplat, a robust unposed 3D
Gaussian Splatting (3DGS) [6] framework for casual long
videos. LongSplat jointly optimizes camera poses and 3DGS
in a unified framework, combining correspondence-guided
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Figure 1. Novel view synthesis for casual long videos. Ex-
isting methods struggle on casually captured long videos:
COLMAP [16] fails in pose estimation, CF-3DGS [5] runs out
of memory, LocalRF [11] breaks under complex trajectories, and
MASt3R [8]+Scaffold-GS [10] yields inaccurate poses. In contrast,
LongSplat delivers robust pose estimation and high-quality novel
view synthesis without memory issues.

pose estimation with photometric refinements to maintain
accuracy under unstructured motion. In addition, an efficient
Octree Anchor Formation compresses dense point clouds
into anchors, reducing memory usage while preserving fine
scene details. These components are integrated in an in-
cremental joint optimization strategy that enforces global
consistency across long sequences. Extensive experiments
on Tanks and Temples, Free, and Hike datasets show that
LongSplat achieves sharper reconstructions and more accu-
rate pose estimates than prior methods, effectively mitigating
drift and memory issues. Our main contributions are:
• An incremental joint optimization framework for simulta-

neous camera pose and 3DGS reconstruction.
• A robust pose estimation module guided by learned 3D

priors.
• An adaptive octree-based anchor formation strategy for

efficient and scalable reconstruction.

2. Related Work
Novel View Synthesis. Novel view synthesis (NVS) has
evolved from early interpolation and geometry-based ren-
dering [3, 4] to neural representations such as NeRF [12].
Extensions improve sampling [1], sparse-view training [14],
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Figure 2. Overview of the LongSplat framework. Given a casually captured long video without known poses, LongSplat incrementally
reconstructs the scene through tightly coupled pose estimation and 3D Gaussian Splatting. (a) Initialization converts MASt3R [8] global
aligned point cloud into an octree-anchored 3DGS. (b) Global Optimization jointly refines all camera poses and 3D Gaussians for global
consistency. (c) Pose estimation estimates each new frame pose via correspondence-guided PnP, applies photometric refinement, and updates
octree anchors using unprojected points. If PnP fails, a fallback triggers global re-optimization to recover. (d) Incremental Optimization
alternates between Local Optimization within a visibility-adapted window and periodic Global Optimization to propagate consistent updates
across frames. (e) All optimization stages leverage a unified objective composed of photometric loss, depth loss, and reprojection loss to
ensure accurate geometry and appearance reconstruction.

and efficiency [13]. Recently, point-based methods, partic-
ularly 3D Gaussian Splatting (3DGS) [6], enable real-time
rendering, but typically require pre-computed camera poses.

Unposed NVS. To remove dependence on SfM, works such
as BARF [9], NeRFmm [21], and iNeRF [22] jointly opti-
mize poses and radiance fields, though they often assume
limited motion or good initialization. Recent approaches
incorporate depth or learned priors [2, 5], but robustness
degrades on challenging trajectories.

Large-scale NVS. Scaling NVS introduces memory and
consistency issues. Block-based NeRFs [17] and hierarchical
or octree-based 3DGS [10, 15] improve scalability but still
rely on SfM initialization. Our work instead adapts voxel
resolution dynamically from input point clouds, enabling
scalable reconstruction without pose supervision.

Casual Long Videos. Long, unconstrained videos pose dif-
ficulties due to drift, irregular motion, and scene growth. Lo-
calRF [11] mitigates drift with progressive optimization but
produces fragmented reconstructions. 3D foundation models
(e.g., DUSt3R [19], MASt3R [8]) provide useful priors but
accumulate errors over long sequences. LongSplat leverages
such priors as initialization and progressively refines both
poses and 3DGS through joint optimization.

3. Method
3.1. Octree Anchor Formation

To efficiently represent large-scale casual videos, LongSplat
builds anchors from MASt3R’s per-frame point clouds us-
ing an adaptive octree (Fig. 3). Voxels exceeding a density
threshold τsplit are subdivided (ϵl+1 = 1

2ϵl) while those be-
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Figure 3. Octree Anchor Formation. Starting from a voxelized
point cloud, voxels are adaptively split when density exceeds a
threshold and pruned otherwise. Iterating across octree levels yields
a compact anchor structure that reduces memory and enables effi-
cient large-scale reconstruction.

PnP + RANSAC

2D-3D correspondence

keypoint
unproject

𝑇𝑖−1 𝑇𝑖

(a) PnP initialization

Aligned Depth Occlusion Mask

𝑇𝑖

unproject

Octree Anchor Formation

(c) Anchor unprojection

rasterize

𝑇𝑖

(b) Pose refinement

3DGS

Figure 4. Camera pose estimation. (a) PnP initialization from
3D–2D correspondences with RANSAC. (b) Pose refinement by
minimizing reprojection error in the 3DGS scene. (c) Anchor un-
projection: newly visible regions are detected via occlusion masks
and converted into anchors with Octree Anchor Formation.

low τprune are pruned, repeating up to a maximum depth L.
Each anchor inherits a scale proportional to its voxel size
(sv ∝ ϵv), yielding coarse anchors for sparse regions and
finer ones for detailed areas. Redundant anchors with sig-
nificant spatial overlap are discarded, producing a compact,
density-adaptive representation that contrasts with the fixed-
resolution grids of Scaffold-GS.
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Figure 5. Visibility-Adapted Local Window. Local optimization
windows are dynamically adjusted using the IoU of visible anchors
between consecutive views. When IoU falls below a threshold,
earlier frames are removed until sufficient overlap is achieved,
ensuring balanced training and improved local reconstruction.

3.2. Pose Estimation Module
To achieve consistent reconstruction in unposed long videos,
LongSplat estimates each camera pose using 2D–3D cor-
respondences from MASt3R, refined against the evolving
3DGS scene (Fig. 2 (c)). For a new frame t, correspondences
{(xi, x

′
i)} allow back-projection via

Xi = Dt−1(xi) ·K−1x̃i, (1)

which are solved by PnP to obtain the initial pose Tt (Fig. 4
(a)). Photometric refinement then minimizes

Lphoto =
∑
p∈Ω

∥It(p)− Ît(p)∥2, (2)

ensuring alignment with the current 3DGS (Fig. 4 (b)). To
correct depth scale drift, a factor

ŝt =
⟨Dt−1, D

align
t ⟩

⟨Dalign
t , Dalign

t ⟩
(3)

rescales MASt3R predictions. Newly visible regions are
detected via an occlusion mask Mocc and unprojected as

pi = DMASt3R
t,ui

·K−1ui, (4)

then converted into octree anchors (Sec. 3.1), with overlap-
ping anchors removed (Fig. 4 (c)). This incremental strategy
maintains global consistency while expanding the scene.

3.3. Incremental Joint Optimization
To handle casually captured long videos, LongSplat adopts
a progressive incremental optimization framework that al-
ternates between per-frame local reconstruction and cross-
frame global consistency refinement.
Initialization. We begin with a small set of initial frames.
Camera poses and dense point clouds for these frames are
estimated using MASt3R [8], followed by converting the
point cloud into an initial octree-anchored 3DGS using the
proposed Octree Anchor Formation (Fig. 2 (a). When cam-
era intrinsics are unavailable, we directly adopt MASt3R’s
estimated focal length.

Global Optimization. After initialization, we jointly opti-
mize all 3D Gaussian parameters and camera poses across
all processed frames (Fig. 2 (b)). This global optimization
ensures geometric consistency across the entire sequence,
reducing accumulated pose drift and local misalignments.
Frame Insertion and Pose Estimation. As new frames
arrive, we estimate their poses using the correspondence-
guided PnP initialization and refinement strategy described
in Sec. 3.2. If PnP fails due to insufficient feature correspon-
dences or poor initialization, we trigger a fallback mecha-
nism that re-optimizes all past frames globally before retry-
ing pose estimation. This iterative fallback enhances robust-
ness under challenging motion or weak texture (Fig. 2 (c)).
Local Optimization with Visibility-Adaptive Window.
Once the pose is estimated, we optimize only the Gaussians
visible in the new frame’s frustum, while constraining them
with observations from nearby frames in a dynamically se-
lected visibility-adapted local window (Fig. 5). Covisibility
between frames is measured by:

IoU(t, t′) =
|V(t) ∩ V(t′)|
|V(t) ∪ V(t′)| , (5)

where V(t) denotes the set of Gaussians visible in frame t.
Frames with covisibility below a threshold τ are excluded
from the window. This adaptive mechanism ensures local
Gaussians are consistently supervised by reliable multi-view
constraints, balancing efficiency and accuracy.
Final Global Refinement. In the final step, a final global
refinement jointly optimizes all Gaussians and camera poses
over the sequence. This final pass further improves both
rendering quality and long-range pose consistency.
Depth and Reprojection Losses. To provide additional su-
pervision in newly revealed regions, where multi-view ob-
servations are insufficient, we introduce two regularization
terms. A monocular depth loss encourages rendered depth
to match MASt3R’s scale-aligned depth prior:

Ldepth = ∥Drendered −DMASt3R∥2. (6)

Additionally, a keypoint reprojection loss enforces alignment
between projected 3D keypoints and their 2D observations:

Lreprojection =
∑
k

∥π(Xk)− uk∥2, (7)

where π(·) denotes projection using the current pose.
Total Loss. Throughout the entire incremental reconstruc-
tion pipeline, each processed frame is optimized using the
following objective:

Ltotal = Lphoto + λdepthLdepth + λreprojectionLreprojection, (8)

This combined loss applies to both local and global opti-
mization stages, ensuring coherent multi-view, robust pose
refinement, and stable geometry reconstruction across the
evolving scene.
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Figure 6. Qualitative comparison on the Free dataset [18]. We compare our method with state-of-the-art approaches including NoPe-
NeRF [2], LocalRF [11], CF-3DGS [5], and MASt3R [8] combined with Scaffold-GS [10]. CF-3DGS fails due to memory constraints
(OOM), and other baseline methods exhibit artifacts or blurry reconstructions. In contrast, our method produces results closest to the ground
truth, demonstrating clearer details, accurate geometry, and visually consistent rendering, particularly under challenging scene structures and
complex camera trajectories. “*”: Initialized with MASt3R poses, then jointly optimized.

Table 1. Quantitative evaluation on the Free dataset [18]. We
report average rendering quality and pose accuracy across all scenes.
“*”: Initialized with MASt3R poses, then jointly optimized.

Method PSNR↑ SSIM↑ LPIPS↓ RPEt↓ RPEr↓ ATE↓
COLMAP+F2-NeRF [18] 25.55 0.78 0.28 – – –
COLMAP+Scaffold-GS [10] 29.19 0.90 0.12 – – –
MASt3R [8]+Scaffold-GS 23.05 0.72 0.27 0.162 0.265 0.013
MASt3R [8]+Scaffold-GS* 24.42 0.79 0.21 0.083 0.176 0.008
CF-3DGS [5] 13.98 0.41 0.65 0.234 3.442 0.022
NoPe-NeRF [2] 17.63 0.44 0.71 6.231 4.822 0.576
LocalRF [11] 20.17 0.54 0.49 0.754 7.086 0.035
Ours 27.88 0.85 0.17 0.028 0.103 0.004

4. Experiments

4.1. Experimental Setup
We evaluate LongSplat on three challenging real-world
datasets: Tanks and Temples [7] with smooth forward-
facing trajectories (results in supplementary), the Free
dataset [18] containing seven handheld videos with un-
constrained motion and frequent scene changes, and the
long-sequence Hike dataset [11] (results in supplemen-
tary). Novel view synthesis quality is assessed using PSNR,
SSIM [20], and LPIPS [23], while pose accuracy is mea-
sured with ATE and RPE against COLMAP ground truth. We
compare against COLMAP-based pipelines (COLMAP+F2-
NeRF, COLMAP+3DGS, COLMAP+Scaffold-GS), un-
posed methods (NoPe-NeRF, LocalRF, CF-3DGS), and
MASt3R [8]+Scaffold-GS variants, where poses are either
fixed or jointly optimized. Computational efficiency is fur-
ther reported in terms of model size, training time, and FPS.

4.2. Comparisons

Free Dataset. We evaluate LongSplat on the challenging
Free dataset, achieving superior reconstruction quality as
shown in Tab. 1 and Fig. 6. Competing methods like CF-
3DGS often face OOM issues, while LocalRF produces
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Figure 7. Robustness analysis on camera pose estimation (Free
dataset [18]). We plot cumulative error distributions for ATE, RPE
translation, and rotation. Our method consistently achieves lower
errors compared to existing methods, demonstrating superior ro-
bustness and reduced pose drift.

fragmented geometry and pose drift. Although MASt3R +
Scaffold-GS avoids OOM errors, its inaccurate global pose
estimates from MASt3R result in blurred renderings and
structural distortions. Our method also achieves consistently
lower pose errors than baselines.

Robustness Analysis of Camera Pose Estimation. We fur-
ther analyze robustness by comparing cumulative error distri-
butions for ATE and RPE (translation and rotation) in Fig. 7.
LongSplat achieves consistently lower errors than baselines,
effectively minimizing drift and maintaining stable trajecto-
ries, highlighting the advantage of our incremental optimiza-
tion and robust tracking.

5. Conclusion

We present LongSplat, a robust unposed 3D Gaussian Splat-
ting framework for casual long videos that integrates incre-
mental optimization, robust tracking, and adaptive octree
anchors. It achieves superior pose accuracy, reconstruction
quality, and memory efficiency compared to prior methods.

Limitations. LongSplat shares common limitations of un-
posed reconstruction methods, assuming static scenes and
fixed intrinsics, making it unsuitable for dynamic objects or
varying focal lengths.
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