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Abstract—Recent work has applied differential privacy (DP)
methods to adapt large language models (LLMs) for sensitive
applications. While DP offers theoretical privacy guarantees,
their practical implications for LLM adaptations remain
uncertain. This uncertainty arises from LLM pretraining,
where overlap and interdependencies between pretraining
and adaptation data can impact privacy leakage despite DP
adaptation efforts. To analyze the issue from a practical
standpoint, we thoroughly investigate privacy risks under
”private” adaptations in LLMs. Relying on the latest privacy
attacks, such as robust membership inference, we study the
actual privacy risks for the pretraining and adaptation data.
We benchmark the privacy risks by systematically varying the
distribution of adaptation data, ranging from data perfectly
overlapping with the pretraining set through in-distribution
(IID) scenarios to entirely out-of-distribution (OOD) examples.
Additionally, we evaluate how different kinds of adaptation
methods and different privacy regimes impact the vulnerability.
Our results reveal that distribution shifts significantly affect
the vulnerability to privacy attacks: the closer the distribution
of the adaptation data is to the pretraining distribution, the
higher its practical privacy risk, even when there is no overlap
between pretraining and adaptation data. We find that the
highest empirical privacy protection is achieved for OOD data
using parameter-efficient fine-tuning (PEFT) methods, such
as LoRA. Surprisingly, when considering data from the same
distribution, using the pertaining data for adaptations exhibits
a similar privacy leakage as the corresponding validation data.
To effectively prevent privacy leakage, it is required to train
the adaptations with strict differential privacy protection (with
ε < 0.1). Finally, our results show that private adaptations,
especially done with prefix tuning, can also decrease the
empirical leakage from the pretraining data.

1. Introduction

The use of large language models (LLMs) for sen-
sitive downstream tasks has grown rapidly, often imple-
mented through methods that guarantee differential privacy
(DP) [1, 2] for the adaptation data [3, 4, 5, 6, 7]. However,
this approach may not provide the anticipated privacy pro-
tections [8]. The challenge arises from potential overlap or
complex dependencies between data used to pretrain the
LLMs and the adaptation dataset and from the leakage
of the pretraining data that is not protected through the
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Figure 1: Setup for Privacy Auditing of LLM Adaptations.
We consider different types of datasets used for LLM
adaptations ranging from perfect overlap to OOD data with
respect to the pretraining data. The auditor is assumed to have
query access to the LLM after its adaptation. To instantiate
the membership inference attack, we use one reference model
that is fully fine-tuned on Z, where Z is a set of samples
from the same distribution as the adaptation data.

differentially private adaptations. The problem is exacerbated
by the fact that for most large models, their pretraining
datasets are not disclosed, rendering a structured study of the
interdependencies with the private adaptation data impossible.

Contributions. In this paper, we examine practical
privacy risks that arise under ”private” LLM adaptations.
Therefore, we first systematically characterize the setup of
privacy auditing required for the novel pretrain-adapt learn-
ing paradigm that underlies LLMs and their adaptations. We
identify four different stages of auditing under the pretrain-
adapt paradigm, namely (1) audit pretraining, (2) audit
adaptations, (3) joint audit of pretraining and adaptations,
and (4) post-adaptation auditing of the pretraining. A general
overview of privacy auditing for adapted LLMs is provided
in Figure 1. Second, we re-define the membership inference
game for each of the identified stages to provide a formal
grounding necessary for structured privacy audits. We then
instantiate multiple membership inference attacks [9, 10]
against adapted LLMs to audit privacy leakage from the
adaptations, and to understand the impact of adaptations on
the pretraining privacy, corresponding to stage (2) and (4)
in our taxonomy on privacy audits in the pretrain-adapt
paradigm.

We systematically analyze a spectrum of possible distri-
butions for the adaptation data with respect to the pretraining



data—from perfect OOD examples—to understand the pos-
sible privacy implications over all setups. We also study
a wide range of private adaptation methods and different
privacy regimes for structured reasoning about the resulting
risks. Finally, we discuss the way and the challenges towards
a wholistic privacy auditing of adapted LLMs in the pretrain-
adapt paradigm.

Summary of our Empirical Findings. Our results
empirically confirm the theoretical concern that pretraining
significantly impacts the privacy risk of the adaptation
data [8]. Especially the closeness of pretraining and adap-
tation data distributions plays a crucial role: the closer the
adaptation data distribution is to the pretraining data, even
when there is no overlap in the datasets, the higher the privacy
risks. Also, the type of (private) adaptation has a significant
impact on privacy leakage. We find that parameter-efficient
fine-tuning (PEFT) methods, such as LoRA [11] with their
DP version [4], even though they yield utility on par with
fine-tuning approaches, cause significantly lower empirical
privacy leakage. Thus, the best empirical privacy protection
can be achieved for adaptations with PEFT methods on
OOD data. Interestingly, when adapting on data from the
same distribution, privacy leakage levels are similar between
adaptation data and the corresponding validation data. To ef-
fectively prevent privacy leakage, adaptations must be trained
with stringent differential privacy constraints (ε < 0.1).
Finally, we find that (privately) adapting pretrained models
with prefix tuning [12, 13] using their DP versions [6, 14]
can also reduce the leakage of the pretraining data. This is
probably because the noise added for the private adaptation
adds protection to the pretraining data [15].

2. Background

We begin with a background on DP, DP adaptations for
LLMs, and MIA.

2.1. Differential Privacy

The mathematical framework of DP [1] formalizes the
intuition that privacy guarantees can be obtained when a
randomized mechanism M executed on two neighboring
datasets D, D′ that differ in only one data point, yields
roughly the same result, i.e.,

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ. (1)

The privacy parameter ε specifies by how much the result
is allowed to differ and δ is the probability of failure to
meet that guarantee. There are two canonical algorithms
to implement DP guarantees in machine learning (ML):
DPSGD (the Differentially Private Stochastic Gradient De-
scent) algorithm [16], which extends standard stochastic
gradient descent with clipping and noising gradients, and
PATE (Private Aggregation of Teacher Ensembles) [17, 18],
which is an inference time algorithm that privately transfers
knowledge from an ensemble of teachers to a public student
model.

2.2. Private Adaptations of LLMs

LLMs are pretrained on extensive amounts of public
data, followed by their adaptation to private downstream
tasks. The existing methods for private LLM adaptations
fall into two categories: (1) private tuning methods, such as
PrivateLoRA [4] or PromptDPSGD [6], that rely on access to
the LLM gradients and are based on the DPSGD algorithm,
and (2) private in-context learning (ICL) methods, such
as DP-ICL [19] or PromptPATE [6], which require only
API (black-box) access to the LLM and are based on the
PATE algorithm. The private tuning-based methods can be
applied only to LLMs that expose their parameters, which
are commonly referred to as open LLMs. On the contrary,
the private ICL techniques are applicable to both open and
closed LLMs, such as GPT4 [20] or Claude3 [21]. However,
individual users have to share their private data with the
LLM providers to perform adaptations of the closed LLMs.
Given this additional privacy leakage and the fact that it
was recently shown that adaptations on open LLMs strictly
outperform their closed counterparts in terms of privacy
protection, performance, and price [14], in our work, we rely
on the private adaptations of open LLMs.

There are three main approaches to private adaptations of
open LLMs: prompt-based, parameter-efficient fine-tuning,
and full fine-tuning.

(1) Prompt-based adaptations introduce a small number
of additional parameters, usually comprising less than 1%
of the total LLM parameters, which are applied only in the
input space of the model. These parameters may be added
at the level of token embeddings (soft prompts [22, 23]) or
to all (attention) layers of the LLM (prefix-tuning [12, 24]).
[6] proposed PromptDPSGD, which adapts the differential
private stochastic gradient descent (DPSGD) algorithm [16]
for use with soft prompts. A key advantage of prompt-
based adaptations is their ability to support multi-task batch
processing, meaning multiple soft prompts for different tasks
(and users) can be handled in the same mini-batch during
training or inference.

(2) Parameter-efficient fine-tuning-based adaptations
introduce a slightly larger number of parameters, typically
under 10% of the total LLM parameters, which are placed
within the model, often in each block of a transformer [25].
These added parameters are tuned while keeping the origi-
nal pretrained parameters frozen. PrivateLoRA [4] extends
LoRA [11] with DP guarantees by leveraging the DPSGD
algorithm.

(3) Full fine-tuning involves fine-tuning either the entire
model or the last few layers (the latter is also referred to
as ”head fine-tuning”). DP-FineTune [5], which also relies
on the DPSGD algorithm, demonstrates that full fine-tuning
with DP optimization can offer strong privacy guarantees
while maintaining good performance. The general trend in
selecting an appropriate method suggests that more complex
tasks require a higher number of tunable parameters [6]. For
simple tasks, PromptDPSGD [6] is often sufficient, while DP-
LoRA [4] is recommended for tasks of moderate difficulty,
and full fine-tuning [5] is best suited for complex tasks.



2.3. Membership Inference Attacks

A membership inference attack (MIA) [9] aims to de-
termine whether a specific data point can be identified as
part of a model’s training set. This approach plays a crucial
role in applications ranging from privacy assurance [26] to
identifying protected or copyrighted content embedded in pre-
training data [27]. While most MIA research has focused on
supervised learning settings [28], new advancements reveal
their broader relevance. [29] revealed a discrete-prompt-based
MIA, disclosing vulnerabilities in proprietary LLMs like GPT-
3, which risk leaking private information through prompt-
based queries [6]. Robust membership inference attack
(RMIA) [10] were recently introduced and outperformed
prior attacks by optimizing computation with a more precise
null hypothesis and leveraging both a reference model and
population data. This not only enhances the attack’s strength
and robustness but also makes the attack computationally
more tractable, as it requires only one reference (shadow)
model where prior work [28] required training hundreds. Due
to its strong performance, we mainly harness RMIA in our
work to quantify privacy leakage from private adaptations of
open LLMs. Min-K% [30] offers a computationally efficient
and reference-free method for pretraining data detection in
LLMs. By focusing on outlier tokens with low probabilities,
this method calculates an average log-likelihood score to
determine whether a text was included in the training corpus.
We rely on Min-K% for additional privacy evaluations. See
Appendix A for a more in-depth description.

3. Characterizing Privacy Audits under the
Pretrain-Adapt Learning Paradigm

In standard ML, where models are trained from scratch
on a given, potentially sensitive, dataset, privacy audits
can be conducted directly with respect to the training data.
However, under the pretrain-adapt learning paradigm, we
find that privacy audits are significantly more complex due
to the availability of both the pretraining and the adaptation
dataset and their interplay. In this section, we taxonomize
the different stages relevant for auditing under the pretrain-
adapt paradigm and define auditing of the different stages
as adversarial games that allow us for a structured reasoning
about leakage and privacy protection.

3.1. Taxonomizing Audit Stages

We identify four stages of auditing based on the learn-
ing paradigm and its respective pretraining dataset S and
adaptation data D in our taxonomy.

(1) Auditing pretraining is the most similar stage to
the standard ML auditing. It aims at identifying privacy
leakage of the pretraining data from the pretrained model.
The difference to privacy audits in standard ML is that the
pretraining is usually done on much larger datasets, with
larger models where the applicability and effectiveness of
rigorous privacy protection through DP [31], as well as the

applicability of standard privacy auditing techniques like
MIA [32], are limited.

(2) Auditing adaptations is a new aspect in the pretrain-
adapt paradigm. It is concerned with detecting leakage of
the adaptation dataset from the adapted LLM. The key
differentiating factor to privacy audits in standard ML is
using a pretrained model that the adaptations are trained
on instead of a random initialization. We assume the same
pretrained model is used for all the considered adaptations
in an adaptation audit.

(3) Joint Auditing of Pretraining and Adaptations
considers both stages of pretraining and adaptations together.
The goal is to audit leakage from both the pretraining
and adaptation set from the adapted LLM. Under privacy
preservation, the most standard setup consists of a non-DP-
trained LLM and DP-trained adaptations.

(4) Auditing Pretraining Post-Adaptations evaluates
how the (private) adaptations influence the potential protec-
tion of the data points used for pretraining, which is usually
conducted without any formal guarantees. Changes to the
model behavior induced through adaptations or noise added
during their training might influence the effective exposure
of pretraining data from model predictions.

3.2. Defining Audits as Adversarial Games

Privacy audits can be modeled as an adversarial game
G [33, 34] where the main task is to guess if a given data
point x was in a model’s training set or not. This game can,
therefore, also be referred to as the membership inference
game. For standard ML, it is formulated as follows:

Standard ML Adversarial Game. Given a dataset D,
the target sample x, a training algorithm θ

T←− D, a sampling
procedure x

R←− {0, 1}, G is executed as:

1) The challenger samples a binary variable a
R←− {0, 1}

uniformly at random
2) The challenger trains a model θ T←− D̃, where D̃ = D if

a = 0, otherwise D̃ = D ∪ {x}
3) The challenger sends θ to the attacker
4) The attacker guesses â← A(θ, x)
The attacker wins if his guess â on whether x was used to
train θ is correct.

To audit the different stages of the pretrain-adapt
paradigm, we need to define a new game that accounts
for the existence of both the pretraining dataset S and the
adaptation data D.

Pretrain-Adapt Adversarial Game. We define the
adversarial game G analogous to the one for standard ML,
yet take two datasets, S the pretraining data, and D the
adaptation data into account. Additionally, we denote the
pretraining procedure by T and an adaptation procedure by
T ′. We mark the deviations to the original game in blue.

1) The challenger samples a
R←− {0, 1} and b

R←− {0, 1}
(where a and b are binary variables)



2) The challenger trains a model θ T←− S̃, θ0, where S̃ = S
if a = 0, otherwise S̃ = S ∪ {x}

3) The challenger adapts θ such that θ′ T’←− D̃, where D̃ = D
if b = 0, otherwise D̃ = D ∪ {x}

4) The challenger sends θ′ to the attacker
5) The attacker guesses â, b̂← A(θ, θ′, x)
Whether the attacker has to guess both â, b̂ and what
background knowledge they have, i.e., whether they get
access to both θ and θ′ depends on the auditing stage.
We detail the background knowledge and guesses by the
attacker—formulated as hypotheses with a null hypothesis
H0 and an alternative hypothesis HA—for the four auditing
stages from our taxonomy.

(1) Auditing Pretraining. In this setting, the challenger
releases the pretrained model θ to the attacker. The attacker’s
goal is correctly guessing whether x was in the pretraining
data S. Their guesses â, are over the random variable a.

H0 : a = 0 HA : a = 1

(2) Auditing Adaptation. In this setting, the challenger
releases only the adapted model θ′ to the attacker. The
attacker does not know whether x ∈ S or not and considers
only the adaptation. Their guesses b̂, are, hence, over the
random variable b.

H0 : b = 0 HA : b = 1

(3) Joint Auditing. In this setting, the challenger releases
both the pretrained model θ and the adapted θ′ to the attacker.
Depending on the attacker’s background knowledge, we
consider three possible cases.
1) The attacker knows that x /∈ S and guesses b.

H0 : (a, b) = (0, 0) HA : (a, b) = (0, 1)

2) The attacker knows that x ∈ S and guesses b.

H0 : (a, b) = (1, 0) HA : (a, b) = (1, 1)

3) The attacker knows that the target sample x is either in
both (pretraining and adaptation sets) or neither of them
and guesses (a, b).

H0 : (a, b) = (0, 0) HA : (a, b) = (1, 1)

(4) Post-Adaptation Auditing. In this setting, the challenger
releases both the pretrained θ and the adapted θ′. It is known
that the target sample x is not in D and the attacker takes a
guess on a.

H0 : (a, b) = (0, 0) HA : (a, b) = (1, 0)

In essence, auditing pretraining considers only the pre-
training itself. Similarly, auditing the adaptations considers
the adaptations themselves. On the other hand, the joint
adaptation reasons about both pretraining and adaptation
sets. Finally, the post-adaptation auditing is also only for
the pretraining set, but the applied adaptation influences the
auditing. In this work, we focus mainly on the auditing of

adaptations as defined in (2) but, on the way, also provide em-
pirical insights into the post-adaptation leakage (4). Finally,
we provide a discussion on ways and challenges towards
holistic privacy audits under the pretrain-adapt paradigm that
take into account all four stages.

4. Assessing Empirical Privacy Risks of Private
LLM Adaptations

In the following experiments, we evaluate the empirical
privacy risks of LLM adaptations in a ”black-box” scenario.
We focus on open LLMs, i.e., LLMs whose weights are
publicly available, since relying on closed LLMs, such as
GPT or Claude, for adaptations usually requires sharing
the private data with the LLM provider, causing additional
privacy risks [14].

Our results reveal the vulnerability of LLM adaptations to
privacy leakage, which is higher when the adaptation dataset
comes from the same distribution as pretraining datasets.
The leakage is slightly lower when there is no overlap in
the distribution of the adaptation data with the pretraining
data. Furthermore, by experimenting with different LLM
adaptation techniques, we demonstrate that this choice also
impacts privacy vulnerability across most datasets, with prefix
tuning leaking the most for the in-distribution adaptation
data and full fine-tuning leaking more than other methods
for the out-of-distribution adaptation.

4.1. Experimental Setup

Models. We focus on the open-source Pythia suite of
models [35] and its publicly available pretraining data, the
Pile dataset [36], which is an 800GB collection of diverse
English-language datasets, including text from sources, such
as books, academic papers, or source code repositories.

Datasets. We categorize the datasets used in our exper-
iments into in-distribution (IID) and out-of-distribution
(OOD), depending on their relationship to the pretraining
data. IID datasets come from the same distribution as the
pretraining data, and we identify two cases: one with a full
overlap between pretraining and adaptation data, where we
use data directly from the pretraining set for the adaptations,
and one with no overlap, where the data is sourced from the
corresponding validation set from the pretraining distribution.
For the IID datasets, we focus on the following Pile subsets:
BookCorpus2, consisting of publicly available books, GitHub,
a set of open-source code repositories, and Enron Emails [37],
a variety of different emails. In contrast, OOD datasets are
derived from a different distribution and do not overlap
with pretraining data. The OOD datasets we chose for
our experiments are: SAMSum [38], an English-language
dialogue summarization dataset, and GermanWiki [39], a
large set of German Wikipedia entries. These OOD datasets
were selected because of their different degrees of variation
from the original distribution of the Pile dataset. Although
SAMSum shares the same language (English), its general
dialogue format, followed by the dialogue summary, is not



present in the pretraining set. GermanWiki, on the other
hand, presents wide syntactic and lexical variation from the
pretraining dataset.

Memorized samples. Another privacy concern showed
in prior work [40] is the memorization of samples during
pretraining of an LLM. We analyze how adaptations can
reduce the effect of the memorization of pretraining data. The
definition of a memorized sample follows k-extractability
from [40]. Here, we have a prompt p of length k and a suffix
s. If the generation of a model given prompt p generates
exactly s, the sequence consisting of p and s concatenated is
memorized. Furthermore, we also rely on samples from the
Pile reported as memorized in Pythia 2.8B by prior work [41].
This set of memorized samples consists of 505 sequences,
and we refer to it as Mem Pile.

Adaptations. We evaluate different types of adaptations,
including fine-tuning of all model parameters [5], or the last
layer (i.e., the head) and PEFT methods, such as LoRA [4,
11] and prefix tuning [6, 22]. Considering a Pythia 1B model,
we train 1B parameter for full fine-tuning, 1M for LoRA,
130M for prefix tuning, and 100M for last-layer (head) fine-
tuning.

Membership Inference. For membership inference, we
rely on the latest membership inference attack, RMIA
(Robust Membership Inference Attack) [10]. We use its
offline version because it is computationally effective and
it does not require to train customized reference models
for each targeted sample (as in the online version of the
attack). We also leverage a single reference model for our
experiments, as the authors show strong MIA performance
even with only one reference model. We consider different
types of reference models. Unless explicitly stated, we focus
on using a ”shadow” model (adaptation) trained in the
same way as the target model, but on a different split
of the same fine-tuning data. However, we also consider
other models: Pythia-14M, Pythia-160M, Pythia-1B (which
we report in the results below), Pythia-2.8B [35] , GPT-
neox [42], and GPT-2. RMIA has two hyperparameters, a
threshold γ, and a scaling factor α (see Algorithm 1). The
results represent the highest AUC achieved through a grid
search to optimize these parameters. For an ablation on the
RMIA hyperparameters choice, see Figure 6 in Appendix C.
Additionally, we consider another commonly used reference-
based MIA called Reference [43], which calibrates the loss
of the target model on the target sample by dividing it by
the loss of a reference model on the target sample. Finally,
we also compare Min-K%, as a reference-less baseline. As
with RMIA, we report the highest AUC achieved through a
grid search on K.

4.2. Evaluating Practical Privacy Leakage through
Membership Inference

We begin by assessing privacy leakage across various
LLM adaptation methods. We present the control setup
in Figure 2, where all adaptations are trained with ε = 8,
share the same learning rate (LR = 0.0001) and the number of
epochs (20). Privacy leakage is measured by the AUC score
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Figure 2: LoRA exhibits the lowest privacy leakage for
a given loss value. The other methods: Full fine-tune and
Head find-tune leak much more. Prefix Tuning leaks the
least for OOD (SAMSum) data, however, it is an exception
for IID (Bookcorpus2 Val). The x-axis shows the evaluation
loss. The y-axis represents the AUC score. All adaptations
have been trained with ε = 8, a learning rate of 0.0001, and
over 20 epochs.

and plotted against validation loss, representing different
stages of model training. Each point in the graph reflects
the metric values at the end of a training epoch, with the
rightmost lower points marking the start of training. As
training progresses, points shift upward and to the left.

The results indicate that for the OOD adaptation dataset
(SAMSum), privacy leakage is the highest with Head fine-
tuning, followed by Full fine-tuning, for any given loss
value. In contrast, LoRA and Prefix Tuning demonstrate
significantly lower privacy leakage, with Prefix Tuning
yielding the lowest AUC scores. We observe a similar trend
with the IID BookCorpus2 dataset: privacy leakage is again
the highest for Head fine-tuning, followed by Full fine-tuning,
with LoRA consistently showing the lowest AUC scores
across the board. An exception occurs with Prefix Tuning on
this dataset, where it is more sensitive to parameter settings
and incurs a much higher loss than other methods, making
direct comparisons challenging. To address this issue, next,
we shift to a detailed comparison of each method using its
optimal parameter settings and present the individual results
accordingly.

We compare privacy leakage across the two dataset types,
IID and OOD, in Table 1 and Table 2, respectively. Since



TABLE 1: Membership Inference for OOD Adaptations. We audit only the adaptations and assume the same pretrained
LLM is used for all adaptations. We present the AUC scores obtained with RMIA, reference, and Min-K% MIAs for the
Pythia 1B model adapted on different datasets with ε ∈ {0.1, 8,∞}.

Adaptation
Dataset SAMSum GermanWiki Average

MIA ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix Tuning 1.00 0.62 0.63 1.00 0.64 0.61 1.00 0.63 0.62
LoRA 0.86 0.69 0.50 1.00 0.59 0.66 0.93 0.64 0.58
Full fine-tune 1.00 0.82 0.62 1.00 0.71 0.55 1.00 0.77 0.59
Head fine-tune 1.00 0.98 0.62 1.00 0.76 0.70 1.00 0.87 0.66
Average 0.97 0.78 0.59 1.00 0.67 0.63 0.98 0.73 0.61

RMIA (Pythia 1B)

Prefix Tuning 0.94 0.51 0.51 0.91 0.50 0.50 0.92 0.50 0.51
LoRA 0.51 0.51 0.51 0.81 0.51 0.51 0.66 0.51 0.51
Full fine-tune 0.94 0.51 0.51 0.98 0.51 0.51 0.96 0.51 0.51
Head fine-tune 0.96 0.52 0.51 0.97 0.51 0.50 0.97 0.52 0.50
Average 0.84 0.51 0.51 0.92 0.51 0.50 0.88 0.51 0.51

Reference (Pythia 1B)

Prefix Tuning 0.93 0.50 0.51 0.92 0.50 0.50 0.92 0.50 0.50
LoRA 0.51 0.51 0.51 0.82 0.51 0.51 0.66 0.51 0.51
Full fine-tune 0.94 0.51 0.51 0.99 0.51 0.50 0.96 0.51 0.51
Head fine-tune 0.97 0.52 0.51 0.98 0.51 0.50 0.97 0.51 0.50
Average 0.84 0.51 0.51 0.93 0.51 0.50 0.88 0.51 0.51

Min-K%

Prefix Tuning 0.84 0.51 0.51 0.71 0.50 0.50 0.78 0.50 0.50
LoRA 0.51 0.51 0.50 0.61 0.51 0.51 0.56 0.51 0.51
Full fine-tune 0.83 0.51 0.50 0.88 0.51 0.50 0.86 0.51 0.50
Head fine-tune 0.92 0.51 0.50 0.87 0.51 0.51 0.89 0.51 0.50
Average 0.77 0.51 0.50 0.77 0.50 0.51 0.77 0.51 0.50

TABLE 2: Membership Inference for in-distribution (IID) Adaptations. We use the same setup as in Table 1.

Adaptation
Dataset Bookcorpus2 Val Bookcorpus2 Train Github val Enron Val Average

MIA ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1

RMIA (shadow)

Prefix Tuning 1.00 0.89 0.56 1.00 0.90 0.55 1.00 0.93 0.63 1.00 0.88 0.58 1.00 0.90 0.58
LoRA 1.00 0.70 0.52 1.00 0.69 0.53 1.00 0.74 0.52 1.00 0.73 0.52 1.00 0.71 0.52
Full fine-tune 1.00 0.75 0.77 1.00 0.75 0.76 1.00 0.78 0.80 1.00 0.91 0.66 1.00 0.80 0.75
Head fine-tune 1.00 0.72 0.73 1.00 0.72 0.72 1.00 0.80 0.74 1.00 0.57 0.65 1.00 0.70 0.71
Average 1.00 0.77 0.65 1.00 0.76 0.64 1.00 0.81 0.67 1.00 0.77 0.60 1.00 0.78 0.64

RMIA (Pythia 1B)

Prefix Tuning 0.91 0.56 0.51 0.97 0.57 0.50 0.96 0.54 0.52 0.98 0.54 0.51 0.95 0.55 0.51
LoRA 0.87 0.52 0.52 0.96 0.51 0.51 0.91 0.51 0.50 0.98 0.56 0.51 0.93 0.52 0.51
Full fine-tune 0.99 0.54 0.52 1.00 0.54 0.52 0.99 0.53 0.52 0.99 0.59 0.50 1.00 0.55 0.51
Head fine-tune 0.96 0.57 0.52 0.99 0.56 0.51 0.99 0.65 0.52 1.00 0.54 0.50 0.99 0.58 0.51
Average 0.94 0.55 0.52 0.98 0.55 0.51 0.96 0.56 0.51 0.99 0.56 0.51 0.97 0.55 0.51

Reference (Pythia 1B)

Prefix Tuning 0.93 0.56 0.52 0.97 0.57 0.50 0.97 0.53 0.51 0.97 0.54 0.50 0.96 0.55 0.51
LoRA 0.89 0.52 0.52 0.97 0.51 0.51 0.92 0.51 0.50 0.97 0.55 0.51 0.94 0.52 0.51
Full fine-tune 1.00 0.54 0.52 1.00 0.54 0.52 0.99 0.54 0.52 0.98 0.59 0.50 0.99 0.55 0.51
Head fine-tune 0.98 0.57 0.52 1.00 0.56 0.51 0.99 0.66 0.50 0.99 0.54 0.50 0.99 0.58 0.51
Average 0.95 0.55 0.52 0.98 0.55 0.51 0.97 0.56 0.51 0.98 0.55 0.50 0.97 0.55 0.51

Min-K%

Prefix Tuning 0.78 0.51 0.50 0.70 0.51 0.50 0.65 0.52 0.52 0.66 0.51 0.52 0.70 0.51 0.51
LoRA 0.67 0.51 0.51 0.63 0.50 0.50 0.61 0.52 0.52 0.65 0.51 0.51 0.64 0.51 0.51
Full fine-tune 0.87 0.51 0.51 0.82 0.50 0.50 0.77 0.52 0.52 0.78 0.51 0.51 0.81 0.51 0.51
Head fine-tune 0.75 0.51 0.51 0.72 0.50 0.51 0.64 0.52 0.52 0.70 0.51 0.51 0.70 0.51 0.51
Average 0.77 0.51 0.51 0.72 0.50 0.50 0.67 0.52 0.52 0.70 0.51 0.51 0.71 0.51 0.51

membership inference success is highly dependent on the
train-test gap, for a fair comparison of the privacy leakage, we
ensure similar evaluation perplexities, in particular, similar
validation loss values for specific datasets across adaptation
methods, see Table 3. Since the GitHub data subset in the
Pile [36] is much bigger than Bookcorpus2 or Enron and
has a low perplexity (of only 0.6 compared to 1.0 for Enron)
it has a much lower validation loss value, as well. We report
the AUC scores for the adaptations in Table 1 and Table 2
and their corresponding validation loss at the end of the
adaptation’s training (see Table 3 from Appendix D).

We observe different trends in the AUC scores from
RMIA (shadow) across the data distributions. For ε = ∞,
both OOD and IID distributions show similar performance,
with an average AUC score close to 1 (almost perfect privacy
leakage). However, with ε = 8, the results are more varied.
For models adapted with the IID datasets at ε = 8, as shown
in Table 2, adapting with prefix tuning results in the highest

privacy leakage, with an average AUC score of 0.9, reaching
up to 0.93 for GitHub Val. The second-highest leakage for
IID data is observed with Full fine-tuning, averaging an
AUC score of 0.8. In contrast, for models adapted with the
OOD datasets (see Table 1), Head fine-tuning shows the
highest leakage, with an average AUC score of 0.87, while
prefix adaptation results in the lowest leakage, with an AUC
score of 0.63. Across both dataset types, LoRA consistently
provides strong privacy protection, with an average AUC
score of 0.64 for OOD data and 0.71 for IID.

We further analyze the differences in privacy leakage
between the OOD vs IID datasets used for adaptations. We
focus on the ε = 8 that strikes a balance between full leakage
with ε =∞ and very small or no leakage for ε = 0.1. For
a fair comparison, we take into account similar validation
loss values from Table 3. The SAMSum (OOD) dataset
has a similar validation loss as the Enron Val (IID) dataset
for ε = 8. We consider the strongest MIA with the RMIA



(shadow) and their AUC scores from Table 1 and Table 2.
For three out of four adaptation methods (Prefix tuning,
LoRA, and Full fine-tune) we observe much higher privacy
leakage for Enron (IID) than for SAMSum (OOD). The only
exception is the Head fine-tune, for which the adaptation with
SAMSum exhibits much higher leakage than with Enron.
Overall, for most adaptations, the overlap in the distributions
between pretraining sets and the adaptation data incurs higher
privacy leakage.

Next, we examine data from the same distribution,
specifically Bookcorpus2, where its Train version was used
for pretraining whereas the corresponding Val (validation)
set was held out. The observed validation loss values in
Table 3 for both the training and validation versions of
Bookcorpus2 are very similar. Likewise, the reported AUC
scores in Table 2 are also almost the same in both cases. Thus,
our findings indicate a comparable privacy leakage when
using the pertaining data and the corresponding validation
data for the adaptations.

Moreover, we also consider the more realistic settings
with RMIA (Pythia-1B) and Reference (Pythia-1B), where the
attacker does not have access to a shadow model and instead
uses the (non-adapted) pretrained model as the reference
model. In both cases, AUC scores are similar across all
tested models, suggesting that there is no gain in using RMIA
when shadow models cannot be trained. Moreover, both cases
show significantly reduced performance compared to RMIA
(shadow). For ε = 0.1, AUC scores drop to near random
guessing for both types of datasets. Increasing the privacy
budget to ε = 8 slightly improves the MIA performance on
IID datasets, with an average AUC score of 0.58, while the
OOD datasets remain at random guessing. At ε =∞ the two
MIAs become more effective. LoRA continues to show high
privacy protection compared to the other tested adaptations.
On IID datasets, LoRA achieves an average AUC score of
0.93, slightly lower than the scores for Prefix Tuning (0.95),
Full fine-tune (1.00), and Head fine-tune (0.99). However, for
SAMSum and GermanWiki, we observe a higher difference.
Here, we have on average 0.66 for LoRA, while the other
adaptations reach scores of more than 0.9.

These results confirm the concerns raised by [8], high-
lighting the risk of privacy leakage even under the application
of DP with ε = 8, usually considered protective in prior
literature [4, 5, 6, 44].

Lastly, we compare the development of AUC scores
during training on IID and overlap data, as shown in Figure 3.
Similar to Figure 2, these results display the AUC score
at each epoch during training. To better compare IID and
overlap data, we adjust the x-axis to represent the loss
difference at each training step, calculated as the initial
pretraining loss minus the adapted loss at the current training
step. This calibration of the x-axis allows us to compare
the two dataset types more precisely. With this setup, we
evaluate two subsets of the Pile pretraining set: GitHub
and BookCorpus2. First, the figures indicate that further
adapting a model on IID data does not significantly improve
its performance on that data, with the loss decreasing by
only a maximum of 0.015 (GitHub with Full fine-tune).
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Figure 3: Overlap (Train) and IID data (Val) show the
same amount of privacy leakage across training. The
x-axis shows the difference between the initial pretrained
loss and the evaluation loss. The y-axis represents the AUC
score. All adaptations have been trained with ε = 8.

However, the observed increase in AUC score throughout
training shows that the model does learn from the adaptation
data.

Additionally, we do not observe any significant difference
in privacy leakage or its progression during training between
adaptation on the overlap and IID data. A small difference
between overlap and IID suggests that dataset inference
on the pretraining data, which is currently known to be a
complex problem on LLMs pretraining data [45], cannot be
easily resolved by analyzing the fine-tuning trajectory loss
or the privacy leakage of the fine-tuned data alone.

5. Discussion

In the following, we discuss the implications of our
findings and the way and challenges towards holistic privacy
auditing under the pretrain-adapt paradigm.

5.1. Implications of our Findings

Our evaluation highlights a critical trade-off between
utility and privacy across different adaptation methods.
Despite achieving lower leakage in OOD settings, even
the best-performing adaptations like LoRA show vulner-
abilities in the scenario of utilizing shadow models with
RMIA. Consequently, privacy adaptations that regard
public pretraining data as entirely non-sensitive may
unintentionally integrate sensitive information into the
models, even when adapted with DP. This highlights the
necessity to perform private LLM adaptations in the high-
privacy regime, i.e., with low ε.
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Figure 4: Fewer memorized samples after prefix tuning.
There are fewer verbatim generations of training samples
after the prefix tuning, especially for small ε values. We
present the number of memorized samples from the Pile that
remain memorized after adapting Pythia 1B on SAMSum
and GermanWiki datasets. The evaluation was done for ε =
{0.1, 1, 3, 8, 50, 100,∞}. The x-axis is represented in a log
scale.

5.2. Towards a Holistic Privacy Auditing for LLMs

In this work, we focus solely on auditing the private
adaptations and leakage from pretraining data after adapta-
tions, corresponding to stages (2) and (4) in our taxonomy,
respectively. However, for holistic privacy auditing under the
pretrain-adapt paradigm, we need ways to audit all stages
of the process (jointly).

Given its correspondence to standard ML training—in the
sense that it starts from training a randomly initialized model
on a given dataset—prior research has attempted to audit
pretraining with the same means as used to audit standard
ML, namely MIAs, however, with no access to shadow
models. Previous work has shown that these new MIAs for
LLMs [46, 47] are ineffective for pretraining data [45, 48, 49].
The problem stems from the large pertaining sets (with
trillions of tokens) and single training rounds that weaken the
membership signal to minimum [50]. The standard MIAs [28]
are also not effective in this case. They require training
many additional shadow models of similar architecture to

the audited model, which are impractical to train for large
models like LLMs due to their size. However, LLMs do
memorize some of their training data points [43]. Therefore,
[45] proposed an alternative method to membership inference
for LLMs based on the established framework of dataset
inference [50]. They leveraged the selective combination of
many features from many MIAs and aggregated the signals
across hundreds or more data points. Future work might
leverage these insights to propose better auditing methods
for pretraining.

The joint audit of pretraining and adaptation privacy,
corresponding to (3) in our taxonomy, represents the largest
challenge in practical setups. A main difficulty results from
the complex dependencies between pretraining and adaptation
data. The problem is exacerbated by the fact that for most
LLMs, the pretraining data is either unknown or too large to
effectively search through. Thus, advancing effective privacy
auditing across all stages of the pretrain-adapt paradigm
remains essential to truly privacy-preserving LLMs.

6. Conclusions

In this work, we examined the practical privacy risks
that arise under ”private” adaptations of LLMs within the
pretrain-adapt paradigm. We systematically characterized the
privacy auditing setup required for this paradigm, identifying
four distinct stages: (1) pretraining audits, (2) adaptation
audits, (3) joint pretraining and adaptation audits, and (4)
post-adaptation audits of pretraining. To enable structured
and rigorous privacy audits, we redefined the membership
inference game for each stage and instantiated multiple
membership inference attacks to assess privacy leakage.
Our empirical analysis confirms the theoretical concern
that pretraining significantly affects the privacy risks of
adaptation data. We found that the closeness of adaptation
and pretraining data distributions plays a critical role: even in
the absence of overlap, higher distributional similarity results
in increased privacy leakage. Additionally, we observed that
the choice of adaptation method impacts privacy leakage,
with PEFT methods, such as LoRA, offering significantly
lower privacy risks while maintaining strong utility. When
adapting on OOD data, these methods provide the best
empirical privacy protection. Furthermore, prefix tuning can
reduce the leakage of pretraining data, likely due to the
added input noise during private adaptation. Our findings
highlight the need for stringent DP constraints (e.g., ε < 0.1)
to effectively mitigate privacy risks in LLM adaptations. By
providing a comprehensive framework for privacy auditing
and uncovering key factors influencing leakage, this work
lays a foundation for future research aimed at safeguarding
privacy in the pretrain-adapt paradigm.
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Appendix

1. Membership Inference Attacks

Min-K% Min-K% [46] is a recently proposed black-box
MIA for large language models. The intuition is that an
unseen sample is likely to have low-probability tokens. The
MI score is defined as

Min-K%(x) =
1

|S|
∑
xi∈S

log p(xi|x1, ..., xi−1), (2)

where S is the set of K% tokens with the smallest loss.
Reference This approach [43] uses a reference model to

calibrate the MI score as follows

Ref(x) =
L(x|θ)
L(x|θref)

, (3)

where L(x|θ) indicates the loss of the target sample x on
the model θ. θref represents the reference model used.

Robust Membership inference attack (RMIA The
adapted RMIA score (Equation (4)) calculation for LLMs for
text generation is based on comparing loss values rather than
outputs probabilities. For this reason, we have to, instead of
comparing prediction probabilities or logits, compare the loss
of the target data point against the loss of reference models
on population data (Equation (5)) and flip to a minority
voting approach, where the decision is based on how much
lower the loss of the target data is compared to the population
data.

ScoreMIA(x; θ) = Pr
z∼π

(LRθ(x, z) ≥ γ) (4)

LRθ(x, z) =
L(θ|x)
L(θ|z)

(5)

The adopted offline mode Algorithm 1 shrinks from the
need to retrain reference models per query, thus relying on
pretrained LLMs, which are computationally expensive to
train. For most experiments, we used just one reference model
(k = 1), thus demonstrating the power of RMIA attack and
highlighting data leakage, especially from pretrained data.

Algorithm 1 MIA score calculation with offline RMIA [10]
adapted to LLMs.
Input: k reference models Θ, target sample x, threshold γ,
scaling factor α, population dataset π,
Output: ScoreMIA(x; θ)

1: Randomly choose a subset Z from the population dataset
2: C ← 0
3: L(x)OUT ← 1

k

∑
θ′∈Θ L(x|θ′)

4: L(x)← 1
2 ((1 + α)L(x)OUT + (1− α))

5: Ratiox ← L(x|θ)
L(x)

6: for each sample z in Z do
7: L(z)← 1

k

∑
θ′∈Θ L(z|θ′)

8: Ratioz ← L(z|θ)
L(z)

9: if Ratiox/Ratioz<γ then
10: C ← C + 1
11: end if
12: end for
13: return ScoreMIA(x; θ)← C

|Z|

2. Privacy leakage

In Figure 5, we explore privacy leakage at different levels
of DP guarantees ε. We find that even with small ε, there
can still be a significant privacy leakage, especially when
adaptations are trained with IID data.

3. RMIA Hyperparameters

We focus on the importance of γ, as α has a much
more limited effect, and we set it to 0. Figure 6 shows the
importance and γ and suggests that γ = 1 is often the best
choice. We omit it for simplicity, but a similar trend can be
observed for the other settings.

4. Validation loss

Table 3 shows the validation loss at the end of the training
for each adaptation on the selected hyperparameters.
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Figure 5: The protection against MIA even for out-of-distribution (OOD) data requires tight privacy with ε < 0.1
for all the adaptations. The x-axis represents the privacy budget with a log scale and the y-axis is the AUC score. The
evaluation was done for ε = {0.1, 0.5, 1, 3, 8, 50}.

TABLE 3: Validation loss values for the Pythia 1B model on different adaptation datasets.

Adaptation
Dataset samsum german wiki Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val

ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1 ε = ∞ ε = 8 ε = 0.1
Prefix Tuning 2.311 2.451 2.778 2.573 2.738 2.838 2.968 2.993 3.387 2.997 2.994 3.390 1.599 1.557 2.054 2.412 2.426 3.002
LoRA 2.313 2.462 2.761 2.578 2.737 2.801 2.951 3.007 3.013 2.979 3.002 3.003 1.558 1.572 1.558 2.394 2.402 2.403
Full fine-tune 2.251 2.457 2.759 2.511 2.726 2.747 2.934 2.999 3.028 2.960 2.995 3.020 1.598 1.566 1.577 2.375 2.397 2.413
Head fine-tune 2.354 2.454 2.761 2.574 2.731 2.756 2.949 3.007 3.339 2.966 3.002 3.332 1.577 1.573 1.750 2.409 2.403 2.536
Average 2.307 2.456 2.764 2.559 2.733 2.785 2.950 3.002 3.192 2.976 2.998 3.186 1.583 1.567 1.734 2.397 2.407 2.589
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Figure 6: γ = 1 is a strong baseline. We present the
AUC using RMIA with different types values of γ after
adapting Pythia 1B on SAMSum. The evaluation was done
for ε = {8,∞}.
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