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ABSTRACT

Federated Learning (FL) enables a decentralized machine-learning paradigm to
collaboratively train a generalized global model without sharing users’ private
data. However, most existing FL approaches solely utilize single-modal data, thus
limiting the systems for exploiting valuable multimodal data in future personalized
applications. Furthermore, most FL. methods still rely on the labeled data at the
client side, which is limited in real-world applications due to the inability of data
self-annotation from users. To leverage the representations from different modal-
ities in FL, we propose a novel multimodal FL framework with a semi-supervised
learning setting. Specifically, we develop the split multimodal embedding knowl-
edge transfer mechanism in federated learning, namely, FedMEKT, which enables
the personalized and generalized multimodal representations exchange between
server and clients using a small multimodal proxy dataset. Hence, FedMEKT iter-
atively updates the generalized encoders from the collaborative embedding knowl-
edge of each client, such as modality-averaging representations. Thereby, a gen-
eralized encoder could guide personalized encoders to enhance the generalization
abilities of client models; afterward, personalized classifiers could be trained using
the proxy labeled data to perform supervised tasks. Through the extensive experi-
ments on three multimodal human activity recognition tasks, we demonstrate that
FedMEKT achieves superior performance in both local and global encoder mod-
els on linear evaluation and guarantees user privacy for personal data and model
parameters.

1 INTRODUCTION

With the tremendous emerging development of technologies, Al has gained many achievements
with multiple remarkable applications such as virtual assistants, e-commerce, recommendation and
healthcare Pawar et al.| (2020); Lugano| (2017). The rapid growth of Al technologies necessitates a
massive amount of personalized data at the end-users. Consequently, data privacy concerns become
a hindrance in centralized machine learning system where the server collects personal data and train
the deep neural networks model to provide Al services. Due to privacy and security issues, federated
learning (FL) has been proposed as a decentralized machine learning paradigm that aggregates the
model parameters from multiple users without sharing private data, thus protecting user information
McMahan et al.|(2017); Kairouz et al.[|(2021). FL only requires the clients to transfer local model
parameters to the server, therefore, guaranteeing data privacy of users.

Despite many advantages in avoiding privacy leakage, existing FL. methods consider the scenario
where clients own only single-modal data, restricting the utilization of multimodal data in various
equipment. Until now, many recent works on deep multimodal learning illustrate that the com-
plementary information from multimodal data provides more accuracy and robustness performance
than single-modal data in many applications such as text and image in language translation Rajen-
dran et al.[(2015)), different wearable sensors in healthcare|Garcia-Ceja et al.[(2018)), audio and video
for emotion recognitionLiang et al.|(2018)). Thus, the design for the FL framework using multimodal
data becomes more practical where users own data generated from multiple data sources and devices
such as smartphones and smartwatches. To leverage the benefits of multimodal data for decentral-
ized machine learning systems, there have been some prior works in multimodal FL. One approach
designs the co-attention layer to merge the representations from different modalities to obtain the
fused features to train the personalized models Xiong et al.|(2022). This method requires all users to
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have labeled data from all modalities, which means that users have to annotate the data. However,
in the real world, this could be a cost hindrance for users to collect the labeled data from different
modalities, such as various types of sensor data. One possible solution to save the annotation cost is
to design the multimodal FL under the semi-supervised setting where clients own private unlabeled
data, and the server holds labeled data for the supervised training task. To deal with the labeled
constraint of local clients in multimodal FL, [Zhao et al.| (2022) proposed the framework that works
under the semi-supervised setting using multiple autoencoders for different modalities. This work
applies the mechanism of the traditional FL framework FedAvg McMabhan et al. (2017) by aggre-
gating model parameters from local clients to construct the global multimodal encoders from client
autoencoder models that for supervised training tasks. Nonetheless, those above methods rely on
the model parameters aggregation on the server from the skewed private data based on the average
scheme, which can cause degradation in the generalization ability of personalized models and limit
the personalization ability of the global model.

In this paper, we design a novel multimodal FL framework under a semi-supervised setting to tackle
the limitations of existing multimodal FL. works [Zhao et al.| (2022); Xiong et al.| (2022) and re-
solve the labeled data constraint in users. We thus propose FedMEKT, a novel split multimodal
embedding knowledge transfer-based semi-supervised learning technique that adopts the federated
learning systems to achieve the generalized encoder for participating users. To this end, we formu-
late the embedding knowledge transfer mechanism in multimodal FL utilizing the split multimodal
autoencoders Ngiam et al. (2011, which enable communication between the server and clients by
leveraging the small multimodal proxy dataset. Specifically, instead of updating the global model
by aggregating local model parameters, FedMEKT updates generalized autoeconder model via the
collaborative embedding knowledge from all clients such as modality-averaging representations. We
illustrate that our proposed method can achieve significant speedups and outperform the multimodal
version of FedAvg|Zhao et al.| (2022) in both global and personalized encoders on supervised tasks.
Our main contributions are:

* For the first time, we propose the knowledge transfer mechanism in multimodal FL. We
design a novel multimodal FL framework FedMEKT that allows the embedding knowledge
exchange between the server and clients.

* We design the embedding knowledge transfer with four general problems: 1) generalized
multimodal autoencoder construction to transfer the knowledge from client encoders to
global encoders, 2) personalized multimodal autoencoder learning to transfer knowledge
from the global encoder to client encoders, 3) generalized classifier learning to train the
classifier for global supervised tasks, 4) personalized classifier learning to train the person-
alized classifier for personalized supervised tasks.

* We deploy the personalized classifier for each client to improve the personalized perfor-
mance of the client encoders. We validate the proposed method by conducting extensive
experiments over three multimodal activity recognition datasets and achieve superior per-
formance in both global and local classification tasks compared to multimodal FedAvg.

2 RELATED WORK

Semi-supervised Learning Semi-supervised learning (SSL) has been applied in various machine
learning tasks to leverage the unlabeled data to solve the labeling cost issue. The semi-supervised
setting considers the scenario where the system holds both unlabeled data and labeled data Zhu
& Goldberg (2009). Pseudo labeling [Lee et al.| (2013) has become one of the popular trends in
SSL, which generates the pseudo label for unlabeled dataset and compute the loss function based
on the loss of original labels and pseudo labels. The combination of pseudo-label and consistency
regularization has been widely applied in SSL with many state-of-the-art methods, such as UDA Xie
et al.| (2020), FixMatchSohn et al.| (2020), and MixMatchBerthelot et al.| (2019). In our work, we
consider the semi-supervised setting scenario in the decentralized setting where private unlabeled
data are provided by users, and labeled data is utilized in training classifiers to perform supervised
tasks.

Federated Learning based Knowledge Distillation Knowledge distillation (KD) Bucilua et al.
(2006); Ba & Caruanal (2014) has become a promising technique that enables FL to solve hetero-
geneity issues. KD generally provides communication methods between global and local models
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Figure 1: The Embedding Knowledge Transfer in Multimodal Federated Learning.

instead of exchanging model parameters. The authors in Jeong et al| (2018) applied KD in FL
to minimize the communication overhead by using the distillation regularizer between student and
teacher logits. The clients update the local model to achieve the averaged global predictions on the
server. Another approach FedDF [Lin et al.| (2020), first uses the model parameters aggregation to
obtain a global model and then updates the averaged global model again by performing ensemble
distillation from all student client models. Unlike FedDF, which still uses the model parameters ex-
change between the clients and the server, KT-pFL [Zhang et al.|(2021) formulates the personalized
knowledge transfer for personalized FL leveraging the proxy data to update the local soft predic-
tions. Most of these schemes apply KD in traditional FL. with single-modal labeled data. In our
framework, we first propose the knowledge transfer scheme in multimodal FL.

Multimodal Learning Multimodal learning has attracted lots of attention in recent years. The mul-
timodal deep learning systems enable leveraging data from multiple modalities such as image, video,
sensors, etc., hence provide better performance than unimodal data. There have been many emerg-
ing techniques to study multimodal learning implementation. One of the first designs in multimodal
deep learning was fusion |Baltrusaitis et al.|(2018)) that fuses representations of different layers from
multiple modalities using various methods such as concatenation, multiplication, or weighted sum.
However, this method still faces misalignment in different fusion levels. In later years, researchers
propose different model architectures for other multimodal applications such as co-attention |Lu
et al.| (2016) for VQA tasks [Kumar et al.| (2020)), various types of transformers for language-video
tasksSun et al.| (2019). In terms of the encoder-decoder framework, Ngiam et al.| (2011) proposed
the autoencoders for audio and visual data. Another popular approach is CCA [Andrew et al|(2013)
combination of canonical correlation analysis and autoencoders to fuse multimodal representations
in the feature subspace.

Emerging multimodal FL works Xiong et al.| (2022); |Zhao et al.| (2022)) motivate us to initiate the
novel design of a knowledge transfer scheme in multimodal FL. In this work, the generalized en-
coders could alternatively build from personalized encoders and drive the personalized encoders to
improve both personalized and generalized encoder performance. As a result, the better encoder
helps to strengthen the supervised tasks’ performance. In the following section, we presented the
proposed Split Multimodal Embedding Knowledge Transfer scheme and algorithm.
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3  SPLIT MULTIMODAL EMBEDDING KNOWLEDGE TRANSFER

Recent multimodal FedAvg scheme |Zhao et al.| (2022) enables exploiting multimodal data with FL.
framework using the averaging parameter aggregation mechanism. The global autoencoder model
is aggregated based on the model parameters from unimodal and multimodal client models after
the local training process with a private unlabeled dataset Dy = {X{C”} in client k. The multi-
modal client models are given more weights than unimodal client models to align the representation
from different modalities. Regarding two modalities such as A and B, the goal of MM-FedAvg
is to learn the split global autoencoder model that minimizes the total loss function over the en-
tire unlabeled dataset from K number of clients. Using the similar setting in this work, we denote
NA =D hemamap M B = D kemp.map "W are the total number data samples of the modality
A and B, respectively and m denotes the set of clients in each modality (i.e., client with modality
m 4 p holds both data from modality A and B). In this work, we consider all clients have multimodal
data such as clients own different types of sensory data (e.g., accelerometer data, gyroscope data).
We first define the split autoencoder model with the embedding knowledge (i.e., eM = f(2M)),
where f and g are the encoder and decoder for the modality M of the autoencoder model, respec-
tively. The embedding knowledge could be extracted from different hidden layers of the encoder
(i.e., eMr), where h is the number of hidden layers of the encoder for the modality M. In particular,
the learning objective functions for the global autoencoders A and B are denoted as:
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min £(f4, = —/ , + —/ , 1
poin s(fa,94) kGEmA e k(fa,94) + kGEmAB o k(fa,94) )]
. nk N
min ¢,(fz, = —/ , + —/ , 2
in (fB,98) keEmB o k(fB,9B) k;mAB ([, 95) 2)

where ¢, (fa,94), £,.(fB,gp) are the loss functions for the split autoencoder for each modality A
and B. Specifically, the loss functions at client & with two modalities can be defined as:
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where 24" and 2B are the reconstructed outputs of two modalities, £4 and ¢p are reconstruction
loss functions [Zhao et al.| (2022) (e.g., MSE loss) for modalities A and B, respectively. Different
from existing multimodal FL methods, instead of aggregating the parameters from clients in each
global round to train the global model, we deploy the multimodal embedding knowledge transfer
mechanism to transfer the local embedding knowledge from all multimodal clients to collectively
build the generalized global encoder model which can generate more generalized representations.

Hence, we leverage the small unlabeled proxy data D, = {x,x2} that all clients can access and

provide their embedding knowledge, as shown in Fig. [l Moreover, the global encoder model
can transfer back the generalized multimodal embedding knowledge to all clients. Thereby, the
generalization capability of personalized autoencoder models could be enhanced by mimicking the
received global representations of proxy data. In this design, the FL framework could guarantee
the model parameters and data privacy compared to parameters exchange between the server and

clients.

Turn this multimodal FL scheme into reality, we develop the FedMEKT algorithm (Alg. [I)) to per-
form the embedding knowledge transfer mechanism between multimodal clients and the server. At
the beginning of each communication round, the server randomly selects a subset of clients from the
total of K multimodal clients to participate in the local training, and the global autoencoder model
broadcasts the generalized embedding knowledge to all selected clients. Each client performs P
local training steps with its private multimodal data and proxy dataset in the personalized knowl-
edge transfer problem (TI)), (IZ) and outputs the local embedding knowledge using proxy data D,.,
then sends it to the server. At the same time, we attach a local classifier to each client and perform
the personalized classifier training on labeled dataset D = {Xf7 xf ,¥ 1} to solve the personalized
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classifier learning (I4) problem. The generalized autoencoder model is constructed on the server
side by solving the generalized multimodal learning problem (), (6). Then the server uses the up-
dated global encoder to extract the multimodal representations of input data in the labeled dataset
Dy, to train the classifier for the supervised learning task (I3). Primarily, we design the embed-
ding knowledge transfer in multimodal FL for FedMEKT with four general problems: generalized
multimodal autoencoder construction, personalized multimodal autoencoder learning, generalized
classifier learning, and personalized classifier learning in the following subsections.

3.1 GENERALIZED MULTIMODAL AUTOENCODER CONSTRUCTION

To solve the generalized multimodal autoencoder construction problem, we utilize the proxy data
D, to collect the embedding knowledge from all multimodal devices to build the global autoen-
coder model. On the server, we conduct the modality-averaging mechanism of the local embedding
knowledge based on the modality label. Accordingly, we gather the embedding knowledge from
same modality of all clients and then perform the averaging operation to obtain the collective knowl-
edge of each modality for the global model. Subsequently, we design the generalized multimodal
autoencoder construction problem for the split autoencoder with two modalities using embedding
knowledge distillation (EKD) method as follow:

’ ' 1
ls(fa,94|Dy) = éA(a:f,xf |Dy) + KB(vaif |D;) + BLExD <6fhv Z Ke,?"|D7,) (5
keK

’ / 1
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where 3 is the parameter to control the trade-off between reconstruction loss of proxy data and EKD
regularizer. The personalized knowledge is obtained from each layer h in the personalized encoders.
The collaborative embedding knowledge from clients is aggregated sequentially for modalities A
and B by averaging representations according to their modality. The EKD regularizer attempts to
close the gap between the embedding knowledge of the server and collaborative embedding knowl-
edge from multimodal clients.

3.2 PERSONALIZED MULTIMODAL AUTOENCODER LEARNING

At the client side, we design the similar mechanism for personalized multimodal autoencoder learn-
ing that encourage the local models to improve the generalization capabilities by mimicking the
generalized embedding knowledge from the global encoder model. In the personalized learning
problem, the client models update depends on private unlabeled data Dy, and proxy data D,., which
is accessible for all clients. In particular, we propose the personalized multimodal loss function for
each device k£ on both modalities A and B as follows:

C5(fa, 94| Di, Dr) = O (2t il | Dy) + (@ 2 | D) + alprp(ep el (D) (D)

S

5 (fB,98|Dx, Dy) = Lh(ai 2 |Di) + L5 (af @ |1 D) + alexp(ey, e Dy)  (12)
where « is the parameter to manipulate the trade-off between the local reconstruction loss and the
embedding knowledge transfer regularizer. The local regularization term helps to enhance the gen-
eralization of local multimodal encoder models and avoid the biasness issue when training on the
skewed private dataset.

3.3 GENERALIZED CLASSIFIER LEARNING

On the server, we attach the global classifier ¢4. to generalized encoder part of the global autoen-
coder model to perform the supervised learning task by using multimodal spare labeled dataset
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Algorithm 1 FedMEKT Algorithm

1: Input: T, K, R, N, L, P, n1, n2, 13, N4

2: for t=0,...,7—1do

3: — Client Execution —

4: Personalized Multimodal Autoencoder Learning: Each device k receives the global em-
bedding knowledge e* from the server and updates local autoencoder model for each modality
M sequentially with Dy, D,;

5: for n=0,...,N —1do
6: We loop for each batch of private and proxy data (i.e., Si, and .S,):
wi =wp™ = VO (far, gu| Sk Sr), VM € {A, BY; (7
7: end for

8: Personalized Classifier Learning: Each device k£ updates their private classifier with Dy ;

9: for p=0,...,P—1do

10: We loop through batches of labeled data (i.e., S1.):

wiy! =wit — Ve (2SL), VM € {A, B}; (8)

11: end for

12: Device k generates the local embedding knowledge from multiple hidden layers 62/[ " of all
modalities by using proxy data D,. and send to the server;

13: — Server Execution —

14: Generalized Multimodal Autoencoder Construction: Server updates the global model
with the collaborative embedding knowledge from the selected clients for each modality M
sequentially

15: for r=0,...,R—1do

16: We loop through batches of proxy data (i.e., S,):

wg™ =wg™ — 03 Ve (far, gu|Sy), YM € {A, B} ©)

17: end for

18: Generalized Classifier Learning: Server updates the generalized classifier with the repre-
sentation from the aggregated generalized encoder using spare multimodal labeled dataset D,

19: for | =0,...,L—1do

20: We loop through batches of labeled data (i.e., Sp):

wey' =wiy' —maVle(z)[S1), VM € {A, B}; (10)
21: end for
22: end for

Dy . The classifier training process helps to update solely the generalized classifier for classification
downstream tasks. Hence, we use cross-entropy loss to learn the generalized multimodal classifier:

loe(Dy) = Lep(z)'|Dy), VM € {A, B}; (13)

where €M = fa(z}), 2M = ¢g.(el) are the representations from the global encoder and the
outcome of the global classifier, respectively.

3.4 PERSONALIZED CLASSIFIER LEARNING

To solve the personalized supervised problem, we design the private classifier ¥, for each client
k from personalized encoder on different modalities. By using labeled data Dy, we freeze the pa-
rameters in the updated personalized encoder and train the private classifier using the cross-entropy
loss:

(r(Dr) =l p(2"|DL), VM € {A, B}; (14)
M

where ef! = [ (z2"), 2} = ¢f.(ep!) are the private representations of each client and the out-
come of the personalized classifier, respectively.
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4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Datasets In this section, we evaluate the efficiency of FedMEKT algorithm with Opportunity (Opp)
Chavarriaga et al.| (2013), mHealth Banos et al.|(2014), UR Fall Detection [Kwolek & Kepski| (2014
datasets which are three multimodal human activity recognition (HAR) tasks. We conducted the
experiments with 10 selected clients in each round from 30 clients. For the data generation in
three multimodal datasets, we follow the experimental setup from Zhao et al.| (2022) to generate
training and testing data for federated systems. In terms of the proxy dataset in each dataset, we
generate from the subset of data that are separated from training data and testing data, and the size is
approximate to the testing data. For the labeled data for supervised training, we randomly sampled
from the training dataset. We provide the dataset details in the Appendix.

Baselines For comparison, we evaluate different settings of our FedMEKT algorithm and compared
them with MM-FedAvg [Zhao et al.[ (2022) algorithm. Regarding the global performance in our
method, the setting h1, and h2 stand for using the knowledge from one hidden layer, and two hidden
layers, respectively. For the local evaluation, we compare our method with a personalized classifier
for each client and the global classifier the same as MM-FedAvg. In particular, pc and gc stand for
personalized classifier and global classifier, respectively.

Implementation Details We develop our FedMEKT algorithm on Pytorch library [Paszke et al.
(2019). We simulate the experiments on our server with one NVIDIA GeForce GTX-1080 Ti GPU
using CUDA version 11.2 and Intel Core 17-7700K 4.20GHz CPU with sufficient memory for model
training. We use the LSTM Hochreiter & Schmidhuber| (1997) autoencoders with 2 LSTM layers,
and extract the knowledge from 2 hidden layers for the knowledge transfer, scheme. Both global
and local classifiers are implemented as two-layer perceptrons for supervised tasks using ReL.U
activation function.

Evaluation metrics We evaluate the global and local encoders by extracting the representations for
the supervised training tasks. We train a linear classifier on the frozen representations from global
and local encoders and report the F score as the results. For the global performance, we report the
I score from the global classifier, and for the local models’ performance, we report the mean of all
local classifiers’ Fy results.

4.2 EXPERIMENTAL RESULTS
4.2.1 PERFORMANCE COMPARISON

In summary, we summarize the experimental results of global and local performance on three multi-
modal human activity recognition datasets with the mean accuracy from round 90 to 100 in Table[T}
Table[2} and Table[3] In the case of global performance, FedMEKT obtains the comparable or better
accuracy performance MM-FedAvg method. Compared to the Mm-FedAvg algorithm, FedMEKT
outperforms in most modalities combination cases in mHealth and UR Fall Detection datasets and
achieves a slightly better performance in the Opp dataset. The results illustrate the effectiveness
when transferring embedding knowledge from more hidden layers. In terms of local linear evalua-
tion, we obtain comparable performance in most cases in all datasets. For some combination cases,
although our method cannot outperform the MM-FedAvg, we still obtain competitive results. More-
over, FedMEKT can improve personalized performance by utilizing the personalized classifier for
each client as depicted in problem|14] We also show the curve of global performance on the UR Fall
Detection dataset in Fig. [2|. These figures demonstrate that our proposed scheme achieves a more
stable and better convergence in terms of global performance in most scenarios. For other datasets,
we provide the figures in the Appendix.

4.2.2 ABLATION STUDIES

Effect of Embedding Knowledge Transfer Steps R In this experiment, we compare the perfor-
mance of FedMEKT under the different settings of embedding knowledge transfer (EKT) steps on
the UR Fall Detection dataset. As shown in Table[d] in most scenarios, the value R = 2 achieves the
highest performance compared to other values. For the Rgb modality in the Rgb-Depth combina-
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Table 1: The comparison of global peformance on mHealth and UR Fall Detection datasets from 90

to 100 rounds

mHealth UR Fall Detection
Methods Acce-Gyro Acce-Mage Gyro-Mage Acce-Rgb Acce-Depth Rgb-Depth
Acce | Gyro | Acce | Mage | Gyro | Mage | Acce | Rgb | Acce | Depth | Rgb | Depth
MM-FedAvg | 64.53 | 62.41 | 68.84 | 71.82 | 61.24 | 66.76 | 61.70 | 57.88 | 60.63 | 60.76 | 69.88 | 67.61
FedMEKT(h1) | 66.70 | 61.28 | 70.28 | 70.36 | 64.34 | 67.96 | 65.81 | 59.02 | 66.28 | 61.00 | 71.93 | 68.93
FedMEKT(h2) | 68.44 | 65.04 | 70.62 | 71.48 | 65.14 | 67.14 | 69.32 | 60.21 | 69.25 | 65.85 | 73.81 | 70.33
Table 2: The comparison of local peformance on mHealth and UR Fall Detection datasets from 90
to 100 rounds
mHealth UR Fall Detection
Methods Acce-Gyro Acce-Mage Gyro-Mage Acce-Rgb Acce-Depth Rgb-Depth
Acce | Gyro | Acce | Mage | Gyro | Mage | Acce | Rgb | Acce | Depth | Rgb | Depth
MM-FedAvg | 64.24 | 63.02 | 68.77 | 71.39 | 61.22 | 66.78 | 60.75 | 57.93 | 60.83 | 60.04 | 68.52 | 67.20
FedMEKT(gc) | 58.80 | 61.63 | 64.34 | 65.51 | 60.35 | 65.32 | 61.36 | 57.28 | 53.10 | 60.42 | 65.61 | 63.68
FedMEKT(pc) | 63.57 | 63.04 | 67.26 | 67.28 | 63.48 | 67.62 | 61.85 | 61.52 | 62.27 | 63.06 | 69.11 | 66.36

Table 3: The comparison of performance on Opp dataset from 90 to 100 rounds

Table 3a:Global performance

Table 3b:Local Performance

Opp Opp
Methods Acce-Gyro Methods Acce-Gyro
Acce | Gyro Acce | Gyro
MM-FedAvg | 71.51 | 72.12 MM-FedAvg | 71.40 | 72.11
FedMEKT(h1) | 71.47 | 71.58 FedMEKT(gc) | 70.24 | 70.89
FedMEKT(h2) | 72.12 | 72.20 FedMEKT(pc) | 71.83 | 72.17

Table 4: The comparison of global performance of FedMEKT under different number of EKT steps
on UR Fall Detection Dataset

‘ # of EKT Steps R

|1 2 3
AcceRed | i’ | 3735 q0a1 829
AcceDepth | p0G | 0Ty sas 3690
o | 18, 83 T
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Figure 2: Global Performance of URFall dataset.

Table 5: The comparison of global performance of FedMEKT under different proxy data size on UR
Fall Detection Dataset

| Size of Proxy Data D,
| 100 500 1000
e | 25 00 83
AcceDeph | pOG | 555 Soss 6sas
RebDepth | bt | 6417 950 703

tion, R = 3 achieves the best performance, which means that the R steps may depend on different
scenarios. Hence, we may have different EKT steps 2 numbers on other datasets.

FedMEKT with Different Proxy Data Size Since our proposed method leverage the proxy data
to exchange knowledge between server, in this experiment, we validate our proposed method on
different sizes of proxy dataset D,.. Table[3]illustrates the effect of proxy data size in the FedMEKT
algorithm. As the results show, in most scenarios, we can increase the performance by increasing
the size of proxy data D,.. In our experiment in UR Fall Dataset, we utilize 1000 samples for the
proxy dataset, which is 1/10 of the total data, and achieve the best performance.

5 CONCLUSION

In this work, we proposed a novel multimodal federated learning framework under the semi-
supervised setting by developing the multimodal embedding knowledge transfer scheme. Through
extensive simulations, our method FedMEKT obtains a more stable and better performance in local
and global linear evaluation than the MM-FedAvg algorithm without exchanging model parame-
ters, thus could save more communication costs when the model is large (million of parameters)
and guaranteeing better privacy protection. Moreover, ablation studies show the effectiveness of our
proposed method. In future work, we will continue extending this research with multimodal fusion
design and extend to more number of modalities which can bridge the gap of FL deployment in
future personalized applications.
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