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Summary
Reward design remains a significant bottleneck in applying reinforcement learning (RL) to

real-world problems. A popular alternative is reward learning, where reward functions are
inferred from human feedback rather than manually specified. Recent work has proposed
learning reward functions from human feedback in the form of ratings, rather than traditional
binary preferences, enabling richer and potentially less cognitively demanding supervision.
Building on this paradigm, we introduce rMSE, a new rating-based RL method that treats
human-provided ratings as ordinal targets. Our approach learns from an offline dataset of tra-
jectory–rating pairs, where each trajectory is labeled with a discrete rating (e.g., “bad”, “neu-
tral”, “good”). At each training step, we sample one trajectory per rating class, compute their
predicted returns under the learned reward model, and rank them using a differentiable sorting
operator (i.e., soft ranks). We then optimize a mean squared error loss between the resulting
soft ranks and the human ratings. Additionally, we incorporate a conservative regularization
term to reduce overestimation on out-of-training-distribution actions. Through experiments
with simulated human feedback, we demonstrate that rMSE can outperform another rating-
based RL algorithm in Hungry-Thirsty and Lunar Lander. We also found that rMSE can learn
reward functions that are more aligned to the simulated preferences than the baseline method.
Through experiments with simulated feedback, we show that rMSE outperforms a recently
proposed rating-based RL method in the Hungry-Thirsty and Lunar Lander domains. Addi-
tionally, rMSE learns reward functions that are better aligned with the simulated ratings.

Contribution(s)
1. We introduce rMSE, a novel rating-based RL method that treats human-provided ratings as

ordinal targets and optimizes a ranking-based mean squared error loss.
Context: None

2. In the Hungry-Thirsty and Lunar Lander environments, we demonstrate that rMSE can
outperform RbRL, producing reward functions that result in better RL policies (i.e., policies
that yield greater return under the environment reward). We also find that rMSE reward
functions are slightly more aligned with the simulated ratings compared to RbRL.
Context: We only compare our method to RbRL (White et al., 2024), as this is the only
existing rating-based reinforcement learning approach.
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Abstract

Reward design remains a significant bottleneck in applying reinforcement learning (RL)1
to real-world problems. A popular alternative is reward learning, where reward func-2
tions are inferred from human feedback rather than manually specified. Recent work3
has proposed learning reward functions from human feedback in the form of ratings,4
rather than traditional binary preferences, enabling richer and potentially less cogni-5
tively demanding supervision. Building on this paradigm, we introduce rMSE, a new6
rating-based RL method that treats human-provided ratings as ordinal targets. Our ap-7
proach learns from an offline dataset of trajectory–rating pairs, where each trajectory8
is labeled with a discrete rating (e.g., “bad”, “neutral”, “good”). At each training step,9
we sample one trajectory per rating class, compute their predicted returns under the10
learned reward model, and rank them using a differentiable sorting operator (i.e., soft11
ranks). We then optimize a mean squared error loss between the resulting soft ranks12
and the human ratings. Additionally, we incorporate a conservative regularization term13
to reduce overestimation on out-of-training-distribution actions. Through experiments14
with simulated human feedback, we demonstrate that rMSE can outperform another15
rating-based RL algorithm in Hungry-Thirsty and Lunar Lander. We also found that16
rMSE can learn reward functions that are more aligned to the simulated preferences17
than the baseline method. Through experiments with simulated feedback, we show that18
rMSE outperforms a recently proposed rating-based RL method in the Hungry-Thirsty19
and Lunar Lander domains. Additionally, rMSE learns reward functions that are better20
aligned with the simulated ratings.21

1 Introduction22

Deep reinforcement learning (RL) has achieved remarkable success in games like Go, Chess, and23
Atari. However, a key feature of these environments is the presence of a well-defined reward func-24
tion. In contrast, real-world environments often lack clean specifications, making reward design a25
significant bottleneck to deploying RL in complex, practical applications (Knox et al., 2023; Knox26
& MacGlashan, 2024). In practice, reward design is often an informal trial-and-error process where27
RL practitioners iteratively adjust a reward function until the RL agent exhibits acceptable behav-28
ior (Booth et al., 2023). This procedure can be error-prone, resulting in reward misspecification or29
reward overfitting. Reward misspecification arises when practitioners inadvertently define a reward30
function that does not align with the true task objective, leading the agent to learn undesirable or31
unintended behaviors (Skalse et al., 2022; Pan et al., 2022). Reward overfitting, on the other hand,32
occurs when reward functions are unintentionally over-engineered for a specific algorithm or envi-33
ronment setup, resulting in poor generalization to other RL algorithms or even slight variations of34
the environment (Booth et al., 2023). Notably, these challenges have been observed even in tabular35
grid worlds, illustrating that reward design remains a core challenge, even in simple settings (Booth36
et al., 2023; Muslimani et al., 2025b).37
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A popular alternative to manual reward engineering is reward learning, where reward functions are38
inferred from human feedback rather than explicitly designed. This feedback can take various forms,39
including scalar evaluations (Knox & Stone, 2009; Warnell et al., 2018), demonstrations (Arora &40
Doshi, 2021), or pairwise preferences over agent behaviors (Christiano et al., 2017b; Lee et al.,41
2021). In particular, learning from pairwise preferences known as, preference-based reinforcement42
learning has become widely used, as it may require less human effort and has been integral in the43
success of large language models (OpenAI, 2023).44

Despite its success, learning from binary preferences can be limiting. For one, each binary compar-45
ison conveys only a single bit of information, which can lead to sample inefficiency. As a result,46
more human time may be required to collect a higher number of preferences, increasing the overall47
feedback burden. Moreover, such feedback is inherently relative. It indicates which behavior is48
preferred, but not by how much, nor whether either option is good in an absolute sense. For exam-49
ple, if both behaviors under comparison are poor, a human can at best indicate that they are equally50
preferable, but cannot express that both are low-quality overall.51

Recent work has introduced a new paradigm known as rating-based reinforcement learning (RbRL)52
(White et al., 2024), in which humans provide discrete, multi-class ratings rather than binary pref-53
erences to guide reward learning. Instead of comparing two behaviors and selecting the preferred54
one, the human observes a single behavior at a time and assigns it a rating, typically on a fixed scale.55
This shift enables the collection of richer feedback, as ratings can capture both relative and abso-56
lute assessments of trajectory quality. Moreover, user studies have found that participants perceive57
rating-based feedback as less cognitively demanding than preference-based feedback, and report58
feeling more successful when completing tasks using ratings (White et al., 2024).59

The advantages of RbRL motivate the development of more effective algorithms for learning from60
ratings. To this end, we propose a new rating-based reinforcement learning method, rMSE, which61
learns a reward function from an offline dataset of trajectories labeled with ordinal ratings (e.g.,62
“bad”, “neutral”, or “good”). At each training step, we sample one trajectory per rating class, com-63
pute their predicted returns under the reward model, and rank them using a differentiable sorting64
operator (Blondel et al., 2020) (i.e., soft ranks). We then minimize a mean squared error loss be-65
tween the resulting soft ranks and the human ratings. Additionally, we incorporate a conservative66
regularization term that penalizes high predicted rewards for state-action pairs not seen in the train-67
ing data.68

We evaluate rMSE on two environments: Hungry-Thirsty (Barto et al., 2009) and Lunar Lander69
(Brockman et al., 2016a). Our results show that rMSE learns reward models that lead to more70
performant RL policies than the RbRL baseline. Additionally, the reward models learned by rMSE71
are more closely aligned with the simulated feedback compared to those learned by RbRL. Overall,72
our work aims to advance research in rating-based RL by demonstrating how ordinal ratings can be73
used effectively to train reward models.74

2 Related Work75

Reward learning is a broad field in which reward functions are inferred from various forms of hu-76
man feedback, including demonstrations, preferences, scalar evaluations, ratings, or combinations77
thereof. One common approach is inverse reinforcement learning (IRL), which learns a reward func-78
tion such that the resulting policy produces behaviors similar to those in the provided demonstrations79
(Ng & Russell, 2000). Despite recent advances showing that reward functions can be recovered from80
suboptimal demonstrations (Shiarlis et al., 2016; Brown et al., 2019), it is still argued that providing81
demonstrations can be time-consuming and difficult in many settings.82

As an alternative to demonstrations, other approaches rely on preference-based feedback (e.g.,83
preference-based reinforcement learning). In this setting, human users typically provide binary84
preferences over pairs of agent behaviors (Christiano et al., 2017a; Lee et al., 2021; Park et al.,85
2022; Liang et al., 2022; Hu et al., 2024; Muslimani et al., 2025a; Muslimani & Taylor, 2025). This86
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form of supervision has gained recent popularity, as it is often considered more intuitive and less87
demanding than providing full demonstrations. However, binary preferences can be limited in the88
richness of information they convey. To address this, recent work has explored scaled preferences,89
where users indicate not just which behavior they prefer, but also the strength of that preference90
(e.g., on a scale from “strongly prefer A” to “strongly prefer B”) (Wilde et al., 2021). These graded91
comparisons have been shown to outperform strict binary preferences, offering more informative92
supervision for reward learning.93

Similarly, scalar feedback methods provide rich signals by allowing humans to rate behaviors di-94
rectly. For example, the TAMER framework allowed humans to provide binary signals indicating95
whether a behavior was judged to be optimal (Knox & Stone, 2009; Warnell et al., 2018). Later work96
introduced reward sketching, where, for a given behavior, humans continuously provide a scalar sig-97
nal indicating the agent’s progress toward a goal (Cabi et al., 2020). Most similar to our approach is98
a recently proposed framework, rating-based reinforcement learning. It handles multi-class discrete99
ratings by using a novel cross-entropy loss formulation (White et al., 2024). In this setup, humans100
assign class labels such as "very good," "good," "bad," or "very bad" to entire trajectories, and these101
labels are then used to train a reward function.102

3 Problem Formulation103

We consider a Markov decision process without rewards (MDP\R), where feedback is provided104
in the form of human ratings (White et al., 2024). Formally, MDP\R is defined as: M =105
(S,A, T, ρ, γ, n,D), where S and A are the state and action spaces, respectively, T : S ×A×S →106
[0, 1] is the transition probability function, ρ is the initial state distribution, and γ is the discount107
factor. The parameter n denotes the number of discrete rating classes, and D is an offline dataset of108
trajectories τi and their associated human ratings ci. Specifically, a human observer watches each109
trajectory τi, where τi = (si1, a

i
1, s

i
2, a

i
2, . . . ), and assigns it a rating ci ∈ 0, 1, . . . , n− 1, where ci110

indicates the perceived quality of the trajectory. A rating of 0 represents the lowest quality, while111
n − 1 represents the highest. Note that the rating classes can also be assigned descriptive labels to112
aid interpretation. For instance, with n = 3 rating classes, the labels might be: 0 — “bad”, 1 —113
“neutral”, and 2 — “good”. This process is repeated for all offline trajectories, and the resulting114
data is grouped by rating class. Specifically, for each rating class k ∈ {0, 1, . . . , n − 1}, we define115
a subset Dk = {τi | (τi, ci) ∈ D, ci = k} containing all trajectories assigned to rating class k. The116
full dataset is then D =

⋃n−1
k=0 Dk.117

In the standard reinforcement learning setting, the key difference is that the MDP includes a reward118
function r : S × A → R, which provides a numerical reward for each state-action pair. This119
replaces the human ratings component (e.g., n, D) used in our setting. The objective is then to find120
an optimal policy π∗ that maximizes the expected discounted return, Gr, defined as:

∑
t γ

tr(st, at).121
In contrast, our MDP\R setting lacks an engineered reward function, and thus the goal becomes122
two-fold: (1) to learn a parameterized reward function r̂θ, with parameters θ, from human-provided123
ratings, and (2) to learn a policy that maximizes the expected discounted return with respect to r̂θ.124

4 Method125

Given a set of rating classes c0, . . . , cn−1, where i < j implies that trajectories in class ci are126
rated lower than those in class cj , we assume that for any τa ∈ ci and τb ∈ cj , the (un-127
observed) return under the human’s implicit reward function satisfies G(τa) < G(τb). Here,128
G(τ) =

∑
t:(st,at)∈τ γ

tr(st, at) denotes the discounted return of trajectory τ . Consequently, by129
sampling one trajectory from each class, we obtain a perfectly ordered ranking over n trajectories130
(where n is the number of rating classes).131

We leverage this observation to define a novel ranking mean squared error (rMSE) objective over a132
set of trajectories, enabling us to learn a reward function r̂θ that estimates the reward function based133
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on trajectory ratings. Finally, we use this learned reward function, in place of an engineered reward,134
to train an RL policy π(a|s) to maximize the expected return, Ĝθ denoted as E [

∑
t γ

tr̂θ(st, at)].135

4.1 Reward Learning with the Ranking Mean Squared Error Objective136

To learn the reward function r̂θ from the dataset D, we sample one trajectory τi from each class137
dataset Dk. The return for each sampled trajectory is estimated as:138

Ĝi
θ =

∑
t, (st,at)∈τ(i)

γtr̂θ(st, at) (1)

We then rank these returns using a differentiable sorting algorithm (Blondel et al., 2020), yielding139
a soft rank R̂i

θ for each Ĝi
θ. For example, suppose we have predicted returns Ĝθ = [3.2, 1.0, 4.5].140

The corresponding soft ranks might be R̂θ ≈ [1.5, 3.0, 1.0], indicating that the third return (4.5) is141
ranked highest, the second return (1.0) is ranked lowest, and the first return (3.2) lies in between.142
Unlike hard sorting, the differentiable sort provides continuous (and potentially non-integer) ranks143
that allow gradients to flow through the ranking operation during optimization.144

The rMSE loss is computed as the mean squared error between the soft rank and the rating class145
provided by the human:146

LrMSE =
1

n

n∑
i=0

(
R̂i

θ − ci

)2

(2)

Continuing the example, suppose the human-provided rating classes for the sampled trajectories are147
c = [2.0, 3.0, 1.0]. We compute the rMSE loss as:148

LrMSE =
1

3

[
(1.5− 2.0)2 + (3.0− 3.0)2 + (1.0− 1.0)2

]
(3)

In this example, only the predicted rank for the first trajectory deviates slightly from the correspond-149
ing human rating, resulting in a relatively low loss. Since the soft ranks are differentiable with150
respect to the reward parameters θ, minimizing this loss allows the model to adjust r̂θ to better align151
with the human-provided ratings.152

See Figure 1 for an overview of the rMSE training process. Furthermore, inspired by offline RL153
approaches (Kumar et al., 2020; Li et al., 2021), we penalize high predicted rewards (under rθ) for154
state-action pairs not present in the offline dataset, D:155

LOOD = Es,a∼p [r̂θ(s, a)]− Es,a∼D [r̂θ(s, a)] (4)

Here, p is a distribution used to sample out-of-distribution state-action pairs. In our experiments,156
we use a uniform distribution over the state-action space (S × A) as p. The first term in LOOD157
penalizes high predicted reward values for out-of-distribution pairs, while the second term prevents158
the learned reward function from collapsing to large negative values. Without the second term,159
the learned reward function could trivially assign large negative values to all the state-action pairs,160
including those in the dataset. Finally, the overall loss function is defined as:161

L = LrMSE + β LOOD (5)

The advantage of using rMSE objective over the RbRL objective is multifold:162

1. Richer feedback for reward learning: The rMSE objective provides more informative feedback163
during training. For instance, if a trajectory from rating class 0 (e.g., “very bad”) is misclassified164
by the learned reward function as belonging to class 3 (e.g., “very good”), the associated error165
should be larger than if it were misclassified as class 1 (e.g., “bad”). The rMSE loss captures this166
magnitude of error, while the multi-class cross-entropy loss used in RbRL does not since it treats167
every misclassification equally.168
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2. Eliminating hyperparameters: The RbRL objective requires specifying rating class boundaries169
b. A trajectory is assigned to class k only if its return lies between b[k] and b[k+1]. Our approach170
avoids the need for such explicitly defined boundaries, thereby removing these hyperparameters.171
Instead, we introduce a single hyperparameter β to balance the loss terms in L.172

3. Preserving within-class diversity: The RbRL objective encourages all trajectories in a class to173
have predicted returns close to the midpoint b[k]+b[k+1]

2 , thereby ignoring intra-class diversity. In174
contrast, the rMSE objective does not enforce such a constraint, allowing greater flexibility in175
modeling varied returns within the same class.176

Forward Pass:          

Predicted Returns

Soft Rank

Backprop

Ratings

Sample one trajectory per class:                                

  Trajectories   

...

Figure 1: This figure illustrates the learning process of our proposed rMSE method. Given an offline
dataset of trajectory–rating pairs, we sample one trajectory from each rating class. Using the current
reward model r̂θ, we compute the predicted return for each trajectory and apply a differentiable
sorting algorithm to obtain soft ranks. Finally, we minimize the mean squared error between the soft
ranks and the original human-provided ratings.

4.2 Batch Updates177

While computing the loss using a single sampled trajectory per class dataset Dk provides a valid178
training signal, it can lead to a biased gradient estimate and hinder learning. To improve stability,179
we perform the soft ranking procedure B times per update step. In each iteration, we sample one180
trajectory per class dataset, compute predicted returns using r̂θ, and apply the differentiable sorting181
algorithm (Blondel et al., 2020) to obtain soft ranks. The resulting B soft rank vectors (of size n)182
are then stacked to form a stacked soft ranks matrix. Correspondingly, we stack the human-provided183
class labels associated with each sampled trajectory into a ratings matrix. We compute the rMSE184
loss as the mean squared error between the stacked soft ranks and the stacked ratings.185

5 Experimental Details186

In this section, we describe our experimental setup, including the environments used for evaluation,187
the procedure for collecting trajectories, and the method for generating simulated ratings. We then188
outline the training and evaluation procedures.189
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5.1 Environments190

To evaluate the effectiveness of rMSE, we consider two environments: the Hungry-Thirsty domain191
(Barto et al., 2009) and OpenAI Gym’s Lunar Lander (Brockman et al., 2016b).192

Hungry-Thirsty. This environment consists of a 4× 4 grid with food and water randomly placed in193
the corners. The state space includes the agent’s position and two binary indicators for hunger and194
thirst. The action space comprises six discrete actions: moving in four cardinal directions, eating,195
and drinking. Hunger occurs if the agent has not eaten in the previous timestep, and thirst arises196
with 10% probability at each step. The eat action only succeeds if the agent is on the food location197
and is not thirsty, while the drink action succeeds only at the water location. The agent receives a198
reward of +1 every timestep it is not hungry. Each episode lasts for 200 timesteps.199

Lunar Lander. This classic control task involves landing a spacecraft between two designated flags.200
The 8-dimensional state space includes the lander’s position, velocity, angle, angular velocity, and201
two ground contact indicators. The action space includes four discrete actions: firing the left, right,202
or main engine, or taking no action. The environment features a highly engineered reward function203
composed of multiple handcrafted terms. An episode is considered successful if the total return204
exceeds 200.205

5.2 Offline Trajectories and Ratings206

To obtain the offline trajectory dataset for each environment, we train RL agents using the environ-207
ment’s native reward function for 3 seeds. For the Hungry-Thirsty domain, we train a Q-learning208
agent (Watkins & Dayan, 1992) for 10,000 episodes, storing every 10th episode trajectory. For Lu-209
nar Lander, we train a D3QN agent (Wang et al., 2016) with prioritized experience replay (PER)210
(Schaul et al., 2015) for 1,000 episodes, storing all trajectories. In both cases, we also record the211
ground-truth return for each trajectory computed using the environment’s reward function.212

To systematically evaluate performance, we use a simulated teacher that assigns scalar ratings to213
each trajectory based on its ground-truth return. Specifically, we define a set of return thresholds214
(or bin boundaries), and each trajectory is labeled according to the return bin it falls into. For215
the Hungry-Thirsty domain, we use four bins with boundaries defined as b = [0, 1, 19, 49, 200],216
such that any trajectory τ with return b[k] ≤ G(τ) < b[k + 1] is assigned to rating class ci = k.217
Similarly, trajectories from the Lunar Lander environment are divided into six bins with boundaries:218
b = [−300,−200,−100, 0, 100, 200, 300]. These trajectories, along with their ground-truth rating219
classes ci form our data-collection C. From this collection, we construct the dataset used for reward220
learning. Specifically, we sample N/n trajectories from each rating class and store them in Dk, the221
subset corresponding to class k. The final dataset is then defined as D =

⋃n−1
k=0 Dk, resulting in a222

total of N trajectories.223

5.3 Training and Evaluation224

We begin by training the reward models using the offline dataset D. For both environments, we225
evaluate performance at two dataset sizes: 60 and 120 trajectories (and ratings) for Hungry-Thirsty226
and 96 and 498 for Lunar Lander. The reward function is approximated using a small neural network,227
which is updated for U steps using a batch size of B. Details of the network architecture and228
training hyperparameters are provided in the supplementary material (Section A). To evaluate the229
effectiveness of rMSE, we compare it against RbRL (White et al., 2024), using the same training230
procedure for both approaches. Note that for rMSE, batch size B involves sampling B trajectories231
from each of the n rating classes, resulting in a total of B · n trajectories per batch. To allow for a232
fair comparison, we also use a batch size of B · n for the baseline from the same dataset D. Lastly,233
as an oracle, we consider the environment reward function.234

After training the reward model r̂θ, we train an RL agent on an unseen environment seed using r̂θ235
as the reward (i.e., the evaluation environment seed is held out from reward model training). For236
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the Hungry-Thirsty and Lunar Lander domains, we train a Q-learning agent and a D3QN agent with237
PER for 10,000 and 4,500 episodes, respectively. However, any discrete action RL algorithm can be238
used. We repeat this two-stage process — training a new reward model on a freshly sampled dataset239
D, followed by training a new RL agent using the learned reward — for 10 random seeds to account240
for variability in both reward learning and policy optimization.241

We evaluate the learned reward functions in two ways. First, we assess how well an RL agent can242
learn from the reward model. The agent’s performance is measured using the environment’s ground-243
truth reward function. A learned reward is considered successful if the fully trained agent achieves244
an average return (computed over 100 evaluation episodes) greater than a predefined threshold. The245
threshold is set to 50 for Hungry-Thirsty and 200 for Lunar Lander. For each method, we report the246
average success rate across the 10 runs. We also plot the learning curves, showing individual runs in247
a light color and the median (Lunar Lander) or mean (Hungry-Thirsty) in a darker color. We report248
the median for Lunar Lander, as there was high variance in the baseline results. The plot for mean249
performance can be found in the supplementary material, Section B, Figure 5. Second, we evaluate250
the alignment between the learned reward functions and the environment reward function using the251
Trajectory Alignment Coefficient (Muslimani et al., 2025b). This metric quantifies the similarity252
in trajectory rankings induced by two reward functions. Specifically, we use the trajectories from253
the data collection C, comparing the simulated rankings derived from environment returns to the254
rankings induced by the learned reward model. A higher Trajectory Alignment Coefficient indicates255
closer alignment between the learned reward model and the simulated human feedback. We report256
the average Trajectory Alignment Coefficient (across the 10 runs) along with the standard error.257

6 Results258

Now that we have described the experimental setup, we will present the results and show that our259
rMSE objective optimization can outperform the RbRL baseline.260

RL Performance: We report the performance of our algorithm compared to the RbRL baseline in261
Figures 2 and 3. As shown in Figures 2a and 3a, rMSE achieves significantly higher success rates262
than RbRL, even with substantially fewer trajectories. For example, in the Hungry-Thirsty domain,263
rMSE trained with only 60 trajectories outperforms RbRL trained with 120. Similarly, in the Lunar264
Lander environment, rMSE using only 96 trajectories performs on par with RbRL trained on 498.265
Finally, Figures 2b and 3b illustrate that RL agents trained using reward functions learned via rMSE266
exhibit faster learning compared to those trained with RbRL.267

(a) Average success rate for rMSE objective ver-
sus RbRL baseline for 60 and 120 trajectories.

(b) Mean return computed using the environ-
ment’s reward function versus number of episodes
while training a Q-learning agent using: (1) en-
vironment reward, (2) rMSE objective, and (3)
RbRL baseline for N = 120 trajectories.

Figure 2: Results for the Hungry Thirsty domain.
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(a) Success rate for rMSE objective versus RbRL
baseline for 96 and 498 trajectories.

(b) Median return computed using the environ-
ment’s reward function versus number of episodes
while training a D3QN agent using: (1) environ-
ment reward, (2) rMSE objective, and (3) RbRL
baseline for N = 498 trajectories.

Figure 3: Results for the Lunar Lander environment.

Reward Alignment: Figure 4 shows that in both domains, our rMSE objective leads to a slight268
improvement in the Trajectory Alignment Coefficient of the resulting reward functions compared269
to the RbRL objective. This indicates that, even with a small number of trajectories, rMSE aligns270
slightly better with the preferences captured in the data collection C.271

(a) Hungry Thirsty. (b) Lunar Lander.

Figure 4: Mean Trajectory Alignment Coefficient ± standard error for reward functions learned
using RbRL and rMSE objectives.

7 Conclusion272

In this work, we proposed rMSE, a new method for reward learning from multi-class human rat-273
ings. Unlike traditional preference-based approaches, rMSE treats ratings as ordinal feedback and274
optimizes a rank-based mean squared error loss. This enables the reward model to make better use275
of the rating structure while learning from offline trajectory data. This approach builds on the grow-276
ing appeal of rating-based reinforcement learning, which offers a promising alternative to pairwise277
preferences by possibly reducing cognitive load and enabling richer supervision. Ratings allow hu-278
mans to evaluate behaviors individually and express both relative and absolute judgments of quality.279
Through experiments on the Hungry-Thirsty and Lunar Lander environments, we showed that rMSE280
outperforms the existing rating-based RL baseline, producing reward models that lead to more per-281
formant policies and better alignment with the underlying feedback. In future work, we plan to282
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extend our method to an online setting, where human ratings are collected in real time and used to283
iteratively improve both the reward model and the RL policy. Additionally, we aim to conduct a284
human subject study to evaluate the effectiveness of our approach using real human feedback.285
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Supplementary Materials380

The following content was not necessarily subject to peer review.381
382

A Neural Network Architecture and Hyperparameters383

We use two neural network architectures for learning the reward functions. The Mini model consists384
of one hidden layer with 5 neurons and ReLU activation Agarap (2018). The output layer uses a Tanh385
activation. The Medium model has two hidden layers with 10 neurons each, with ReLU activation386
applied after each layer.387

Hyperparameter Hungry Thirsty
N = 60

Hungry Thirsty
N = 120

Lunar Lander
N = 96

Lunar Lander
N = 498

Reward Training Hyperparameters
β 0.1

Model Mini Mini Medium Medium
B 15 30 16 64
U 10000 10000 3000 10000

D3QN Training Hyperparameters
lr 0.0001
γ 0.99

Replay size 10,000
Batch size 128

τ 0.01
priority α 0.6
priority β 0.4
priority ϵ 0.01

priority increment 0.00001

Table 1: Hyperparameters

B Supplementary Figures388

Figure 5: Average return computed using the environment’s reward function versus number of
episodes while training a D3QN agent using: (1) environment reward, (2) rMSE objective, and
(3) RbRL baseline for N = 498 trajectories.
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