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ABSTRACT

Many applications require joint prediction of interdependent behavioral choices,
yet existing models often treat each choice independently (e.g., through parallel
prediction heads), overlooking the influence of one on the other. In this work,
we propose Progressive Dual-Head Transformer (PDHFormer), a novel frame-
work that performs two-step prediction: the model first estimates one choice and
then conditions the second on this upstream estimate through an explicit head-to-
head pathway. A shared encoder captures the common structure of two prediction
tasks, while the dual-head module explicitly reflect cross-choice dependence. A
gated residual mechanism integrated into the embedding layer and the dual-head
modules further improves the training stability and the prediction performance.
Extensive experiments on an urban mobility behavioral choice dataset and a real-
world manufacturing dataset demonstrate that PDHFormer consistently outper-
forms state-of-the-art machine learning models, deep tabular models, as well as
parallel-head Transformer variants across multiple metrics. Moreover, our abla-
tion study confirms that both the proposed progressive dual-head and gated resid-
ual mechanism are key contributors to the observed gains in different prediction
tasks.

1 INTRODUCTION

Many real-world systems require predicting interdependent choices rather than a single target. In
ride-hailing, for example, a driver first decides whether to accept a request under limited informa-
tion and may revisit that decision when additional details (e.g., expected fare or detour) become
available (Ashkrof et al., 2022). Similar directional dependencies arise in manufacturing, where one
production decision conditions the next under evolving constraints (Sharma & Gao, 2002). In these
settings, choices are not merely correlated; one choice is conditionally dependent on the other, and
modeling this interdependency is essential for accurate prediction.

Standard machine learning models, such as gradient-boosted trees (Prokhorenkova et al., 2018;
Chen & Guestrin, 2016) and deep models including Transformers for tabular data (Huang et al.,
2020; Nassar et al., 2022; Gorishniy et al., 2025; Holzmüller et al., 2024; Bonet et al., 2024;
Qu et al., 2025), typically optimize either a single target or multiple targets with parallel heads.
Parallelization captures shared structure but misses directional influence: the second head does not
condition on the realized output or representation of the first. As a result, cross-choice dependencies
remain under-modeled (Gao et al., 2022; Gu et al., 2022; Kumar et al., 2024). Explicitly modeling
and predicting one target conditional on another could better capture real-world behavioral choices.
This gap motivates the need for models that can jointly learn shared representations while explicitly
modeling choice dependencies.

To that end, we propose PDHFormer, a Progressive Dual-Head Transformer to explicitly capture
the dependency between related prediction targets through a head-to-head progressive prediction
mechanism. PDHFormer couples two prediction heads through an explicit head-to-head connection
while a shared encoder captures the common structure behind two predictions. A gated residual
mechanism, applied at the embedding and dual-head module, regulates information flow to im-
prove stability and accuracy. PDHFormer performs progressive prediction by allowing the output
of one head to condition the other, enabling the model to explicitly exploit interdependent decision
patterns. We evaluate PDHFormer on real-world datasets from urban mobility and manufacturing
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and report consistent gains over state-of-the-art machine learning models, deep tabular models, and
parallel-head Transformer variants across multiple metrics. Overall, our main contributions can be
summarized in threefold:

• We propose PDHFormer, a novel Progressive Dual-Head Transformer that explicitly cap-
tures dependencies between related choice predictions through a head-to-head connection,
while leveraging gated residuals to balance shared and task-specific signals.

• We propose a two-step progressive prediction strategy, where the output of one head con-
ditions the prediction of the other, enabling the model to capture interdependent decision
patterns. A composite loss function is designed for the two behavioral choice predictions
with a regularization term of gating residuals.

• Extensive empirical evidence on two domains show that the PDHFormer outperforms
strong machine learning and deep learning baselines. We also ablate on the positive impact
of the head-to-head pathway and the gate residual mechanism, and provide SHAP analyses
for shedding light on the predicted behavioral choices.

2 RELATED WORKS

Choice Prediction Choice prediction refers to forecasting which alternative an individual will
choose from a predefined choice set based on contextual features. Applications span transportation
(Shahriar et al., 2021; Wang et al., 2021; Tamim Kashifi et al., 2022), e-commerce (Chaudhuri et al.,
2021; Wang et al., 2023b), healthcare (Kothinti, 2024). Traditional research typically relies on dis-
crete choice models (Zhao et al., 2020). We note that our task is originally developed from the
discrete choice modeling (DCM) framework in mobility (Ashkrof et al., 2022), and that the pre-
diction task we study follows the data structure commonly used in behavioral choice prediction
(Shahriar et al., 2021; Chaudhuri et al., 2021; Kothinti, 2024; Martı́n-Baos et al., 2023; Wang et al.,
2023b). In our setting, each sample corresponds to one decision instance and is represented by
a single contextual feature vector containing all information relevant to that instance. Our setting
therefore maps the contextual features of each sample directly to a prediction of the choice.

Gradient-boosted decision trees (GBDTs), such as XGBoost (Chen & Guestrin, 2016), Hist-
GBM (Guryanov, 2019), and CatBoost (Prokhorenkova et al., 2018), have widely adopted due to
their strong accuracy and scalability. With the development of deep learning, an increasing number
of works have explored deep learning methods for choice prediction (Wang et al., 2023a). Extend-
ing this direction, a growing number of work has focused on designing architectures specifically for
tabular inputs (Huang et al., 2020; Arik & Pfister, 2021; Gorishniy et al., 2025; Bonet et al., 2024;
Holzmüller et al., 2024; Qu et al., 2025), since many choice prediction tasks are naturally formu-
lated on structured tabular features, these models also provide competitive alternatives for capturing
complex interactions in decision-making data. Some approaches systematically identifying interac-
tion effects, such as DeepHalo (Zhang et al.) for context-dependent choice prediction.

Multi-task Prediction Despite these advances, most existing approaches treat choice prediction
as independent classification problems, overlooking the fact that behavioral decisions are often pro-
gressive and interdependent, with one decision potentially influencing or constraining others. For
example, when choosing a travel mode, an early decision to take the bus instead of the metro will
directly affect the subsequent decision of which route and which transfer stops to select.

In current practice, multi-task choice prediction typically uses a shared-bottom, parallel-head de-
sign (Caruana, 1997; Silver et al., 2016; Lample et al., 2022) such as Deep Task-specific Bottom
Representation Networks for mitigating task interference (Liu et al., 2023) or shared-bottom neu-
ral architectures for constructing prediction intervals (Xue et al., 2024). Attention-based methods
such as the Multi-Task Attention Network (Liu et al., 2019), DenseMTL (Lopes et al., 2022), and
Task Relation Attention Networks (Ma & Tan, 2020) employ task-specific or cross-task attention
modules to highlight relevant shared features and dynamically exchange information across tasks.
Also Graph-based approaches such as GNNs based discrete choice modeling (Tomlinson & Benson,
2024) for joint classification and regression targets predict or multi-task FP-GNN framework
(Ai et al., 2022) for inhibitors prediction. Besides, several studies have explored dual-branch or
dual-transformer architectures in other domains (Yao et al., 2023; Han et al., 2022; Yan et al., 2023;
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Figure 1: Overall Architecture of PDHFormer: A Progressive Dual-Head Transformer

Hu et al., 2022; Samoaa et al., 2024). However, these models mainly focus on multimodal fusion,
3D point clouds, medical imaging, or drug synergy prediction, and do not address within-instance
dependent tabular decision modeling as studied in our work.

Given the shared representation, the outputs are effectively treated as conditionally independent, so
one prediction does not inform the other. Our approach keeps the benefit of a shared encoder but
introduces a progressive dual-head pathway to explicitly pass the upstream output to the downstream
head, enabling the second prediction to leverage information from the first, which further improves
the prediction accuracy.

3 PDHFORMER: A PROGRESSIVE DUAL-HEAD TRANSFORMER

Given the tabular input X ∈ R
n×d with n samples and d features, a sample (or a record)

(xi, c1,i, c2,i) is composed of features xi ∈ R
d, alongside two interdependent classification tar-

gets1 c1,i ∈ {0, . . . , C1 − 1} and c2,i ∈ {0, . . . , C2 − 1}. The proposed PDHFormer maps xi to
a shared representation h using an embedding block followed by an encoder. In the predictor, we
employ one classification head to predict c1,i. Afterward, the other classification head take as input
both the shared representation and the representation of c1,i for predicting c2,i, through an explicit
head-to-head connector. In doing so, the representation learned by the first head serve as an addi-
tional input to the second head, which further incorporates upstream choice information, captures
its impact on the second choice, and thus improves the prediction performance. In contrast to typ-
ical parallel-head design, the PDHFormer benefits progressive predictions in real-world scenarios.
For example, Choice c1,· represents the driver’s acceptance/rejection decision made under limited
information, while Choice c2,· denotes the decision with additional features such as the trip details.
In some manufacturing scenarios, Choice c2,· represents a harder regression target, which can be
facilitated by first predicting a relevant classification target c1,·.

The neural architecture of the proposed PDHFormer is illustrated in Fig. 1, which mainly comprises
five components:

• The input embedding layer processes the original raw features;

1Note that we use two classification targets for presenting our methodology. Our model can also be applied
to the regression target, as shown in the manufacturing case in Section 4.6.
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• The PDHFormer encoder advances the embeddings of features using self-attention-based
layers to interact high-dimensional features and capture their complex dependencies;

• The PDHFormer predictor applies the encoder output as the shared input to the progressive
dual heads, which first predict Choice c1,i, and then predict Choice c2,i. The representation
learned from the first head is passed to second head through a head-to-head connector;

• The Gated residual mechanism is integrated into the input embedding layer and dual heads
for both training stability and prediction performance improvement;

• The composite loss function is proposed to simultaneously optimize two predictions, in-
volving a regularization term of gating residuals.

In the following, we detail the components of PDHFormer and the composite loss for jointly opti-
mizing two predictions.

3.1 INPUT EMBEDDING

To enhance the representation capability of the raw input features, an embedding layer is employed
to map the each feature xj ∈ R into a latent embedding. Specifically, we first apply a two-layer
feedforward network, i.e., a multilayer perceptron (MLP), to project the features to high-dimensional
space, in which the embeddings are regularized by layer normalization, activated by ReLU along
with Dropout, and linearly transformed to dimensionality dhid:

zmain = MLP(xj) ∈ R
dhid (1)

The MLP output is further added with the gated residual mechanism (see Section 3.4 for details of
the gated residual mechanism). A learnable gate function, implemented as a sigmoid (σ) activated
linear layer, is used to compute gate values gemb. These values are used to balance the MLP output
and a residual projection of features x, such that:

z̃ = gemb ⊙ zmain + (1− gemb)⊙ zres (2)

where ⊙ denotes element-wise multiplication; the residual projection zres = Wresx
j ∈ R

dhid is
used to preserve original information in deep neural architecture and facilitate gradient flow.

3.2 PDHFORMER ENCODER

Given input embeddings H0 = {z̃j}dj=1, we feed them into a stack of encoder blocks similar to
the standard architecture in (Vaswani et al., 2017). Each block is structured by a multi-head self-
attention layer and a feedforward layer, to capture contextual dependencies and complex feature
interactions. Specifically, we apply two identical encoder blocks, each consisting of:

Multi-head self-attention (MHSA) layer: Given the input embeddings Hℓ−1 for the ℓ-th block,
MHSA layer is defined as:

MHSA
(

Hℓ−1
)

= softmax(
QℓK

⊤
ℓ√

dhid
) ·Vℓ, (3)

where Qℓ = W
q
ℓH

ℓ−1, Kℓ = Wk
ℓH

ℓ−1, and Vℓ = Wv
ℓH

ℓ−1 are the query, key, and value matrix,
respectively, which are obtained from the input through linear projections.

Feedforward network (FFN) layer: Given the input Zℓ−1 is applied independently to each posi-
tion, consisting of two linear layers with a GELU activation in between:

FFN(Zℓ−1) = W2(GELU(W1Z
ℓ−1 + b1)) + b2 (4)

Residual connections and layer normalization in (Vaswani et al., 2017) are applied after both the
MHSA and FFN layers for training stability. To sum up, the encoder updates the input embeddings
H0 by L (L = 2 in this work) blocks:

H(L) = EncoderBlock(l)(H(l−1)), for l = 1, . . . , L (5)

The output H(L) serves as context-aware representations of the input features, which are further
used as input to the predictor.

4
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3.3 PDHFORMER PREDICTOR

PDHFormer incorporates two classification heads in the predictor for two interdependent behavioral

choices, respectively. Given the context-aware representations H(L) ∈ R
d×dhid from the encoder,

where d is the number of features, dhid is the hidden dimension. We aggregate the contextual
representations for each sample, such that:

h =
1

d

d−1
∑

t=0

H(L)[t, :] ∈ R
dhid (6)

The classification head for the first behavioral choice c1,i is a feedforward network that maps h to
a probability distribution over the categories of c1,i. It comprises two linear layers with layer nor-
malization, ReLU activation, and dropout. Consequently, the output dimension equals the number
of categories. We also apply the gated residual mechanism that projects h directly to the category
logits and add them to the output of the feedforward network, which are processed by Softmax for
calculating categorical probabilities. The classification head for the second behavioral choice c2,i
has the same architecture, except the output dimension equals the number of its own categories.

Head-to-head connector: To explicitly capture the dependency between the two behavioral
choices, the output of the first classification head is incorporated into the second head via a head-to-
head connector. Specifically, let z1 ∈ R

C1 denote the logits produced by the first head for a sample.
We linearly project these logits into a low-dimensional embedding

e1 = z1Wc ∈ R
dhid , (7)

where Wc ∈ R
C1×dhid is a learnable weight matrix. This embedding e1 is then concatenated with

the aggregated contextual representation h ∈ R
dhid from the encoder:

h2 = [h; e1] ∈ R
2dhid . (8)

The concatenated representation h2 serves as the input to the second classification head, allowing the
prediction of the second choice to be explicitly conditioned on the first. In this way, the model cap-
tures interdependencies between the two behavioral choices while preserving the shared contextual
information from the encoder.

3.4 GATED RESIDUAL MECHANISM

Formally, given the intermediate embedding ymain from the main processing pathway (i.e., the
backbone) and a residual projection yres, the gate values g are learned through a linear layer activated
by a sigmoid function (σ):

g = σ(Wg · ymain + bg) (9)

where Wg and bg are trainable gate parameters. The fused output yout is computed as a gate-value-
weighted sum of ymain and yres:

yout = g ⊙ ymain + (1− g)⊙ yres (10)

where ⊙ denotes element-wise multiplication. To ensure training stability, the gate output g is
constrained within a reasonable range, typically clipped between 0.1 and 0.9. In this work, we
further apply a regularization term that encourages the gate values to remain close to 0.5, thereby
promoting a balanced integration of the backbone and residual projection rather than over-reliance
on either, such that:

Lgate = E [|g − 0.5|] (11)

We integrate a gated residual mechanism into both the input embedding layer and the dual heads
in the predictor. In the input embedding layer, it blends the transformed features with a projected
shortcut from the raw inputs; in the heads, it combines the deeper representations learned by the
head with a direct linear projection of the input. In the PDHFormer encoder, the residual connections
inherently exist in the MHSA and FFN layer, without the need for additional gated residuals.

5
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3.5 LOSS FUNCTION

PDHFormer is designed to predict two targets, with one of them conditionally dependent on the
other. To effectively train the two interdependent classification heads while ensuring that the gated
residuals are properly utilized, we employ a composite loss function that integrates the following

three components, 1) L(c1)
class: the prediction loss for target c1,·; 2) L(c2)

class: the prediction loss for target
c2,·; 3) Lgate (in Eq. 11): the regularization loss for the gated residual mechanism that encourages
the gate values remain near 0.5.

L(c1)
class and L(c2)

class are implemented by the cross-entropy loss for classification. Lgate is implemented
by the mean absolute error as defined by Eq. 11. Overall, the composite loss function is defined as:

L = αL(c2)
class + βL(c1)

class + γLgate (12)

where α, β, γ are hyperparameters controlling the relative importance of each component in the loss
function. The joint optimization with the composite loss enables the PDHFormer to exploit the
sequential dependency between first head and second head to improve the prediction performance.

4 EXPERIMENTS

4.1 REAL-WORLD SCENARIOS & DATASETS

We evaluate our model on two datasets: (i) an urban mobility choice dataset collected between
November 2020 and February 2021 from Uber/Lyft drivers in the US and Uber/ViaVan drivers in
the Netherlands using a simulated ride request experiment Ashkrof et al. (2022). The dataset was
designed with two information sharing conditions. Under Baseline Information Provision (BIP),
drivers make accept/reject decisions (Choice 1) based only on limited trip attributes (e.g., request
time, pickup time, rider rating) without fare or destination information. While, under Additional
Information Provision (AIP), drivers first make the same initial decision (Choice 1) under limited
information, and are then shown additional details such as estimated fare, guaranteed tip, and traffic
congestion. After receiving this enriched information, they may revise their accept/reject decision
(Choice 2). and (ii) a manufacturing dataset consisting of high-dimensional process and produc-
tion variables from an industrial environment, providing a complementary testbed to assess model
robustness in complex real-world operational settings. The dataset contains two interrelated decision
targets, denoted as Choice A and Choice B, which correspond to decisions governing different per-
formance aspects of the product. In addition, Choice A is associated with a continuous performance
parameters, referred to as Regression A, enabling evaluation of the model on both classification and
regression objectives for the same decision aspect.

All experiments were conducted in a controlled computational environment to ensure reproducibil-
ity and consistency. The servers’ hardware and software specifications are listed in Apendix E
Table 9. Hyperparameters follow established practices for transformer-based tabular modeling and
were finalized through extensive tuning; Apendix F details the model and training settings.

4.2 BASELINES & METRICS

We benchmark our model against a diverse set of baselines covering three categories: (i)
classical machine learning methods, including Logistic Regression (Ng & Jordan, 2001), Naive
Bayes (Murphy et al., 2006), SVMs (Joachims, 1998), Decision Trees (Song & Lu, 2015), (ii)
ensemble models such as Random Forests (Breiman, 2001) and gradient-boosted decision trees
(XGBoost (Chen & Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018), HistGBM (Guryanov,
2019)), and (iii) recent neural architectures for tabular data, including TabTransformer (Huang et al.,
2020), TabNet (Arik & Pfister, 2021), TabM (Gorishniy et al., 2025), RealMLP (Holzmüller et al.,
2024), HyperFast (Bonet et al., 2024), and TabICL (Qu et al., 2025). These baselines cover both
traditional and state-of-the-art approaches, ensuring a comprehensive comparison. Full implemen-
tation details are provided in Appendix H.

To comprehensively evaluate the performance of the proposed PDHFormer for urban mobility
choice dataset and manufacturing dataset, we report a set of standard classification metrics, includ-

6
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Table 1: Model comparison on the mobility dataset in the AIP scenario: for Choice 2 and Choice 1:
Top 1 results are in red, Top 2 in yellow, and Top 3 in blue.

Model
Choice 2 Choice 1

ACC↑ AUC↑ AUCPR↑ Prec↑ Recall↑ F1↑ ACC↑ AUC↑ AUCPR↑ Prec↑ Recall↑ F1↑

Random Forest 0.8382 0.7996 0.5212 0.7099 0.5995 0.6206 0.7110 0.7722 0.6329 0.6985 0.5989 0.5935
Xgboost 0.8353 0.7882 0.5235 0.7018 0.6583 0.6749 0.6879 0.7459 0.6043 0.6392 0.6050 0.6082
Naive Bayes 0.6676 0.6227 0.2574 0.5471 0.5707 0.4365 0.6214 0.6291 0.4546 0.5850 0.5892 0.5861
Logistic Regression 0.8179 0.6672 0.2711 0.5407 0.5065 0.4795 0.6821 0.6649 0.4901 0.6314 0.5729 0.5641
HistGBM 0.8295 0.7554 0.5006 0.6926 0.6683 0.6788 0.7139 0.7749 0.6298 0.6782 0.6331 0.6397
Decision Tree 0.7399 0.6278 0.2378 0.5975 0.6278 0.6054 0.6734 0.6304 0.4243 0.6322 0.6304 0.6312
TabNet 0.8179 0.6299 0.2230 0.4980 0.4998 0.4651 0.6532 0.5893 0.4134 0.5537 0.5191 0.4792
SVM 0.8266 0.7651 0.4369 0.6686 0.5858 0.6017 0.6965 0.6916 0.5297 0.6613 0.5880 0.5822
TabTransformer 0.8295 0.6070 0.2453 0.6880 0.8295 0.7522 0.6647 0.5054 0.3314 0.4419 0.6647 0.5309
CatBoost 0.8382 0.7886 0.5026 0.8194 0.5322 0.5179 0.7023 0.7311 0.5743 0.6999 0.5774 0.5595
TabM 0.8237 0.7848 0.4798 0.8065 0.8237 0.8131 0.6965 0.7175 0.5449 0.6784 0.6965 0.6777
RealMLP 0.8295 0.6131 0.2211 0.8586 0.8295 0.7522 0.6647 0.6349 0.4452 0.7771 0.6647 0.5309
HyperFast 0.8150 0.7833 0.4747 0.6622 0.6394 0.6489 0.7168 0.7336 0.5748 0.6788 0.6588 0.6650
TabICL 0.8410 0.7889 0.4612 0.7181 0.6147 0.6385 0.7283 0.7377 0.5793 0.7065 0.6397 0.6471

PDHFormer 0.8439 0.8015 0.5257 0.8205 0.8439 0.8233 0.7341 0.7579 0.6261 0.7242 0.7341 0.7120

ing Accuracy (ACC), Area Under the ROC Curve (AUC), Area Under the Precision–Recall Curve
(AUCPR), Precision, Recall, and F1 Score. All metrics are computed on the held-out test set. For
above mentioned baseline models, both Choice 2/ Choice 1 and Choice A/ Choice B predictions
are evaluated separately, and results are reported individually for each task. Detailed definitions and
formulae for these metrics are provided in Appendix I.

4.3 RESULTS FOR AIP SCENARIO: JOINT CHOICE PREDICTION

We first evaluate PDHFormer using the AIP dataset, which includes both initial driver decision
(Choice 1) and the revised decision (Choice 2) made after receiving additional information. This
setting allows us to assess the model’s ability not only to make accurate predictions for each decision,
but also to capture the dependency between them which standard parallel-head architectures are not
designed to handle.

The training and validation loss curves (see Appendix A fig 3) show that the training loss steadily
decreases, while the validation loss reaches its minimum around the 19th epoch. Predicted versus
true labels for both Choice 2 and Choice 1 demonstrate strong alignment with ground truth, with
only minor deviations for underrepresented classes (see Appendix A fig 4). This is consistent with
the observed trends in Recall and F1 metrics.

Table 1 reports comparisons against baseline models. PDHFormer consistently achieves the best
performance across all metrics, with substantial gains in Recall and F1, demonstrating robustness
under class imbalance. To interpret model decisions, we apply SHAP analysis. Figs. 2a and 2b
display the top 10 influential features for Choice 2 and Choice 1, respectively. The results show
that the model captures a subset of meaningful features consistent with domain knowledge. Overall,
these results demonstrate that in the AIP scenario, the proposed PDHFormer effectively predicts
both Choice 2 and Choice 1.

0.00 0.01 0.02 0.03 0.04 0.05
Mean |SHAP value| (Head 1)

Long
ID

Gender
Tip
Sat

Weekend
Cong

Pickup
Fare

Degree
Global Feature Importance - Head 1 (Choice2)

(a) Choice 2 (AIP)

0.00 0.01 0.02 0.03 0.04 0.05
Mean |SHAP value| (Head 2)

Surge
Workhr

Fac2000
Part

Pickup
Degree

Satisfied
ID

Full
Taxi

Global SHAP Importance - Head 2 (Choice1)

(b) Choice 1 (AIP)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Mean |SHAP value| (Head 1)

Surge
Wait

Time1
Fac2000
Gender

Satisfied
Full

ID
Pickup

Taxi
Global Feature Importance - Head 1 (Choice1)

(c) Choice 1 (BIP)

Figure 2: Global SHAP feature importance results. Subfigures (a) and (b) correspond to the AIP
scenario, while subfigure (c) shows the BIP scenario.
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Table 2: Model compare for Choice 1 classification prediction in the BIP scenario: Top 1 results are
in red, Top 2 in yellow, and Top 3 in blue. Choice 2 is not applicable here.

Model
Choice 1

ACC↑ AUC↑ AUCPR↑ Prec↑ Recall↑ F1↑

Random Forest 0.7052 0.7486 0.5862 0.7256 0.5753 0.5528
Xgboost 0.6965 0.7512 0.6124 0.6523 0.6286 0.6340
Naive Bayes 0.6214 0.6328 0.4563 0.5865 0.5913 0.5876
Logistic Regression 0.6792 0.6654 0.4876 0.6254 0.5707 0.5620
HistGBM 0.7110 0.7684 0.6134 0.6767 0.6224 0.6272
Decision Tree 0.6792 0.6348 0.4289 0.6379 0.6348 0.6362
TabNet 0.6618 0.5975 0.4134 0.5816 0.5299 0.4947
SVM 0.7023 0.7018 0.5451 0.6753 0.5924 0.5867
TabTransformer 0.6647 0.5132 0.3544 0.4419 0.6647 0.5309
CatBoost 0.7023 0.7445 0.5971 0.6906 0.5817 0.5679
TabM 0.7052 0.7124 0.5391 0.6898 0.7052 0.6900
RealMLP 0.6647 0.6407 0.4805 0.7771 0.6647 0.5309
HyperFast 0.7139 0.7425 0.5897 0.6752 0.6502 0.6569
TabICL 0.7197 0.7196 0.5451 0.6860 0.6417 0.6493

PDHFormer 0.7225 0.6979 0.5465 0.7093 0.7225 0.7071

4.4 RESULTS FOR BIP SCENARIO: SINGLE CHOICE PREDICTION

We further evaluate the PDHFormer in the BIP scenario, where only Choice 1 prediction is required,
so the second classification head is completely disabled. This experiment serves two main purposes:
(i) to isolate and evaluate the impact of disabling the second head, demonstrating that the shared
encoder and first classification head can still perform effectively without relying on cross-choice
information; and (ii) to assess the performance of the shared encoder and the first head when the
model is trained in a purely single–target setting, thereby verifying that the progressive dual–head
design does not degrade performance on simpler tasks. Training and validation loss curves clearly
confirm effective optimization and stable convergence throughout training (see Appendix B fig 5a).
Predicted versus true labels for Choice 1 demonstrate strong alignment with the ground truth, with
only minor deviations for underrepresented classes (see Appendix B fig 5b).

Table 2 compares PDHFormer with the same baseline models. Only one classification target Choice
1 is needed in the BIP scenario, and PDHFormer again achieves the best results across all metrics,
with clear improvements in Recall and F1. Finally, SHAP analysis provides interpretability. Fig. 2c
highlights the top 10 influential features for Choice 1. The results show that the model relies on a
subset of meaningful features consistent with domain knowledge.

4.5 RESULTS FOR MANUFACTURING SCENARIO: JOINT CHOICE PREDICTION

To further validate the practical applicability of the proposed PDHFormer model, we conducted an
exploratory evaluation on a real-world manufacturing dataset. Unlike the AIP and BIP scenarios
which focus on simulated decision prediction tasks (Choice 2 and Choice 1), this dataset represents
actual production-line measurements with highly imbalanced class distributions and complex fea-
ture dependencies. In this setting, we consider two categorical prediction tasks, denoted as Choice A
and Choice B, which together reflect critical decision variables in the manufacturing flow. Training
and validation loss curves confirm stable and effective optimization (see Appendix C fig 6). Pre-
dicted versus true labels demonstrate strong alignment with ground truth for both tasks, with minor
deviations for underrepresented classes (see Appendix C fig 7 ). We follow the same experimental
setup as described before. Also compared the model performance with the same baselines as before.

Due to the substantially larger size of this dataset compared to the AIP and BIP datasets, the Tab-
Transformer model encountered GPU out-of-memory errors even on a device with 24 GB of mem-
ory. Its results are therefore not reported here. This observation highlights the scalability challenges
faced by some Transformer-based tabular models when applied to large-scale industrial data, and
further underscores the computational efficiency of our proposed Dual-Head Transformer.

Table 3 summarizes the classification performance across all models for Choice A and Choice B,
respectively. Our PDHFormer consistently outperforms baselines in terms of Accuracy, Recall, and
F1 score on both tasks, highlighting its ability to effectively capture complex non-linear patterns in
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Table 3: Model comparison on the manufacturing dataset for Choice A and Choice B: Top 1 results
are in red, Top 2 in yellow, and Top 3 in blue.

Model
Choice A Choice B

ACC↑ AUC↑ AUCPR↑ Prec↑ Recall↑ F1↑ ACC↑ AUC↑ AUCPR↑ Prec↑ Recall↑ F1↑

Random Forest 0.8578 0.9593 0.9492 0.8904 0.5805 0.6067 0.7454 0.8772 0.8154 0.6984 0.3233 0.3099
XGBoost 0.8699 0.9566 0.9457 0.8925 0.6217 0.6312 0.7797 0.9031 0.8606 0.7768 0.4639 0.4997
Naive Bayes 0.3959 0.7287 0.6670 0.3619 0.7004 0.2846 0.0781 0.5829 0.4917 0.2348 0.2976 0.0650
Logistic Regression 0.8690 0.9585 0.9422 0.6284 0.6368 0.6318 0.7528 0.8748 0.8054 0.6029 0.5620 0.4113
HistGBM 0.8151 0.8377 0.7621 0.5771 0.5793 0.5776 0.6413 0.7041 0.5984 0.3507 0.3600 0.3540
Decision Tree 0.8383 0.8466 0.7745 0.6085 0.6074 0.6080 0.7128 0.7514 0.6317 0.6573 0.4722 0.4641
TabNet 0.8652 0.9601 0.9442 0.8684 0.6159 0.6171 0.7723 0.8986 0.8487 0.8308 0.4653 0.4964
SVM 0.8299 0.9406 0.9196 0.8634 0.5735 0.5835 0.7221 0.8497 0.7697 0.8889 0.3133 0.3001
TabTransformer - - - - - - - - - - - -
CatBoost 0.8699 0.9632 0.9540 0.9049 0.5969 0.6207 0.7556 0.8866 0.8317 0.9024 0.3279 0.3140
TabM 0.7528 0.8713 0.8055 0.7507 0.7528 0.7456 0.7052 0.7124 0.5391 0.6898 0.7052 0.6900
RealMLP 0.5743 0.7889 0.7139 0.7555 0.5743 0.4191 0.4981 0.6171 0.5469 0.7500 0.4981 0.3313
HyperFast 0.8559 0.9424 0.9174 0.8635 0.5976 0.6042 0.7379 0.8568 0.7761 0.7430 0.3568 0.3750
TabICL 0.8225 0.9197 0.8988 0.8464 0.5202 0.5468 0.7314 0.8486 0.7789 0.8257 0.3328 0.3252

PDHFormer 0.8745 0.9593 0.9477 0.8758 0.8745 0.8746 0.8374 0.9322 0.8822 0.8342 0.8374 0.8307

real-world manufacturing data. These results demonstrate the model’s potential for deployment in
production settings to assist in decision optimization.

4.6 RESULTS FOR MANUFACTURING SCENARIO: CHOICE-LINKED REGRESSION

To further evaluate model performance on the manufacturing dataset, we adapt the second classifi-
cation head of PDHFormer for regression prediction. Specifically, the output layer and loss function
are modified to predict the continuous target Regression A, corresponding to Choice B in the origi-
nal setup, while keeping the remaining network architecture unchanged, including the gated residual
mechanism. The first classification target remains Choice A, the baseline models prediction results
here are same as the table 3. The Regression A is the Choice A’s associated performance param-
eters. To evaluate the regression prediction performance, we use Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R2 Score, and Pearson Correla-
tion Coefficient (PCC). Besides, we noticed that GradientBoostingRegressor model is only support
the regression prediction for target Regression A; TabTransformer model encountered GPU out-of-
memory errors even on a device with 24 GB of memory; HyperFast model and TabICL model are
only support the classification prediction for target Choice A.

Table 4 reports the regression performance of PDHFormer and baseline models on the manufac-
turing dataset. Across all metrics, PDHFormer consistently achieves the lowest MAE and RMSE,
while attaining the highest R2, demonstrating its superior capability to capture the relationship be-
tween Choice A and the associated continuous target Regression A. These results highlight that the
progressive dual-head design, together with the gated residual mechanism, not only benefits classi-
fication performance but also effectively extends to regression tasks, confirming the versatility and
robustness of PDHFormer in multi-target prediction scenarios.

Table 4: Model compare for regression prediction on manufacturing dataset : Top 1 results are in
red, Top 2 in yellow, and Top 3 in blue

Model
Choice A Regression A

ACC↑ AUC↑ AUCPR↑ Prec↑ Recall↑ F1↑ MAE↓ MSE↓ RMSE↓ R2↑ PCC↑

Random Forest 0.8578 0.9593 0.9492 0.8904 0.5805 0.6067 0.0061 0.0001 0.0075 0.7332 0.8699
XGboost 0.8699 0.9566 0.9457 0.8925 0.6217 0.6312 0.0059 0.0001 0.0072 0.7560 0.8890
GradientBoostingRegressor - - - - - - 0.0059 0.0001 0.0072 0.7501 0.8780
HistGBM 0.8151 0.8377 0.7621 0.5771 0.5793 0.5776 0.0059 0.0001 0.0072 0.7497 0.8780
Decision Tree 0.8383 0.8466 0.7745 0.6085 0.6074 0.6080 0.0056 0.0001 0.0072 0.7543 0.8691
TabNet 0.8652 0.9601 0.9442 0.8684 0.6159 0.6171 0.0060 0.0001 0.0079 0.7015 0.8378
SVM/SVR 0.8299 0.9406 0.9196 0.8634 0.5735 0.5835 0.0057 0.0001 0.0071 0.7565 0.8701
TabTransformer - - - - - - - - - - -
CatBoost 0.8699 0.9632 0.9540 0.9049 0.5969 0.6207 0.0059 0.0001 0.0072 0.7512 0.8836
TabM 0.7528 0.8713 0.8055 0.7507 0.7528 0.7456 0.0061 0.0001 0.0078 0.7136 0.8456
RealMLP 0.5743 0.7889 0.7139 0.7555 0.5743 0.4191 0.0105 0.0002 0.0125 0.2540 0.5145
HyperFast 0.8559 0.9424 0.9174 0.8635 0.5976 0.6042 - - - - -
TabICL 0.8225 0.9197 0.8988 0.8464 0.5202 0.5468 - - - - -

PDHFormer 0.8745 0.9639 0.9536 0.8786 0.8745 0.8752 0.0055 0.0001 0.0071 0.7578 0.8751
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4.7 ABLATION STUDY

Table 5 summarizes the impact of two core designs in PDHFormer: the gated residual (GR) mecha-
nism and the progressive prediction structure. Our default model, PDHFormer (Choice 2 → Choice
1), conditions the Choice 1 head on the hidden representation produced by the Choice 2 head. We
compare it against three ablation variants: (i) No-GR, which removes the GR mechanism; (ii) Par-
allel, where both heads predict independently; and (iii) Choice 1 → Choice 2, which reverses the
prediction direction.

Removing the GR mechanism consistently reduces performance. For example, in the BIP scenario,
disabling GR lowers ACC from 0.7225 to 0.6994, F1 from 0.7071 to 0.6774 and Recall from 0.7225
to 0.6994, despite using the same single-head architecture. The similar drops are observed in AIP
and manufacturing scenarios, indicating that GR mechanism improves learning stability and en-
hances feature representation across tasks, leading to more accurate predictive performance across
both classification heads.

Comparing prediction structures, the progressive design (either Choice 1 → Choice 2 or Choice 2 →
Choice 1) outperforms the parallel variant across all datasets. This confirms that explicitly modeling
interdependence between decisions is beneficial. The direction matters: the decision predicted sec-
ond consistently achieves the strongest results. In AIP, conditioning Choice 1 on Choice 2 (Choice
2 → Choice 1) gives the best Choice 1 performance, for example, Recall 0.7341 and F1 0.7120,
exceeding the reversed direction. When predicting Choice 2, conditioning on Choice 1 (Choice 1
→ Choice 2) gives higher scores on five of six metrics; the only exception is AUC, which is slightly
higher under Choice 2 → Choice 1. The manufacturing dataset shows the same rule: predicting
Choice A is best with Choice B → Choice A, and predicting Choice B is best with Choice A →
Choice B; reversing the latter lowers Choice B F1 from 0.8307 to 0.7639. This pattern is expected:
the second head receives an additional informative representation from the first head, thus enhancing
its predictive accuracy. For the first head, its improvement (over parallel variant) might be because
the shared common representation enhanced by training the second head under richer interdependent
supervised signals. These comparisons demonstrate that both the gated residual mechanism and the
progressive dual-head contribute substantially to the performance of PDHFormer.

Table 5: Ablation study for PDHFormer under different scenarios. Choice 1/ Choice 2 and Choice
A/ Choice B corresponds to the specified input settings in each scenario. Top 1 results are in red.

Model ACC↑ AUC↑ AUCPR↑ Prec↑ Recall↑ F1↑ ACC↑ AUC↑ AUCPR↑ Prec↑ Recall↑ F1↑
AIP Scenario Choice 2 AIP Scenario Choice 1

PDHFormer (No-GR) 0.8410 0.7895 0.5182 0.8138 0.8410 0.8145 0.7168 0.7541 0.6143 0.7021 0.7168 0.6946
PDHFormer (Parallel) 0.8353 0.7867 0.5042 0.8076 0.8353 0.8124 0.7023 0.7452 0.5950 0.6852 0.7023 0.6839
PDHFormer (Choice1→Choice2) 0.8497 0.7953 0.5301 0.8276 0.8497 0.8257 0.7052 0.7312 0.5972 0.6907 0.7052 0.6651
PDHFormer (Choice2→Choice1) 0.8439 0.8015 0.5257 0.8205 0.8439 0.8233 0.7341 0.7579 0.6261 0.7242 0.7341 0.7120

BIP Scenario Choice 2 (N/A) BIP Scenario Choice 1
PDHFormer (No-GR) - - - - - - 0.6994 0.6939 0.5643 0.6808 0.6994 0.6774
PDHFormer (Ours) - - - - - - 0.7225 0.6979 0.5465 0.7093 0.7225 0.7071

Manufacturing Scenario Choice A Manufacturing Scenario Choice B
PDHFormer (No-GR) 0.8606 0.9519 0.9362 0.8605 0.8606 0.8604 0.8355 0.9311 0.8792 0.8328 0.8355 0.8286
PDHFormer (Parallel) 0.8652 0.9547 0.9383 0.8675 0.8652 0.8646 0.7481 0.8784 0.8171 0.7413 0.7481 0.7353
PDHFormer (ChoiceB→ChoiceA) 0.9266 0.9851 0.9803 0.9282 0.9266 0.9267 0.7658 0.8942 0.8382 0.7627 0.7658 0.7639
PDHFormer (ChoiceA→ChoiceB) 0.8745 0.9593 0.9477 0.8758 0.8745 0.8746 0.8374 0.9322 0.8822 0.8342 0.8374 0.8307

5 CONCLUSION

In this work, we proposed the PDHFormer for progressive behavioral choice prediction, designed
to jointly predict two correlated categorical decision variables. The model incorporates a dual-head
output structure along with gated residual mechanism. Extensive experiments on simulated be-
havioral choice scenarios using an urban mobility choice dataset and a real-world manufacturing
dataset demonstrate that the proposed model consistently outperforms state-of-the-art baselines, in-
cluding GBDT variants and recent deep tabular models, across multiple evaluation metrics. The
results confirm the effectiveness of the progressive dual-head design and gated residual mechanism
in improving predictive performance, which enhance the capacity to capture complex dependencies
among high-dimensional input features to improve the prediction performance, particularly for the
second prediction head. Overall, the PDHFormer provides a reliable and generalizable framework
for behavioral choice prediction. We will extend it to more interdependent choices in future work.
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REPRODUCIBILITY STATEMENT

We have taken extensive steps to ensure the reproducibility of our results. The main paper provides
a complete description of the model architecture in Sec. 3, the training objectives and composite loss
in Sec. 3.5, the experimental setup in Sec. 4, and the ablation studies in Sec. 4.7. Additional training
figures are provided in Appendix A, B, and C, hyperparameter configurations in Appendix F, data
preprocessing details in Appendix G, baselines descriptions in Appendix H and evaluation metrics
in Appendix I.

To support reproducibility, we will release the code, preprocessing scripts, configuration files, and
trained checkpoints, along with instructions to regenerate the curated datasets, upon publication.
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A TRAINING AND PREDICTION FIGURES FOR AIP SCENARIO

The training and validation loss curves (Fig. 3) for the AIP scenario indicate a steady decrease in
training loss, while the validation loss attains its minimum at approximately the 19th epoch. In
Fig. 4a and 4b The comparison between predicted and true labels for both Choice 2 and Choice 1
exhibits strong concordance with the ground truth. These observations align with the trends reported
in the Recall and F1 metrics.
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Figure 3: Training and validation loss curves of the PDHFormer model in the AIP scenario.
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(a) Predicted vs True Labels for Choice 2 in the AIP
scenario
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(b) Predicted vs True Labels for Choice 1 in the AIP
scenario

Figure 4: Scatter plots of predicted vs true labels on the test set.
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B TRAINING AND PREDICTION FIGURES FOR BIP SCENARIO

The training and validation loss curves for the BIP scenario (Fig. 5a) indicate that the training loss
consistently decreases, while the validation loss reaches its minimum at the 9th epoch. A slight
overfitting is observed beyond this point; nevertheless, the model corresponding to the lowest vali-
dation loss is retained for evaluation. In Fig. 5b, the predicted versus true labels demonstrate good
agreement with the ground truth, which is consistent with trends observed in the Recall and F1
metrics.
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(a) Training and validation loss curves
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(b) Predicted vs true labels for Choice 1 in the BIP
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Figure 5: BIP scenario: (a) training and validation loss curves; (b) predicted and true labels for
Choice 1.
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C TRAINING AND PREDICTION FIGURES FOR MANUFACTURING DATASET

The training and validation loss curves for the PDHFormer model on the manufacturing dataset
(Fig. 6) show that the training loss steadily decreases, while the validation loss reaches its minimum
at the 13th epoch. Slight overfitting occurs beyond this point; however, the model corresponding to
the lowest validation loss is preserved for evaluation. In Fig. 7a and Fig. 7b, the predicted versus
true labels align well with the ground truth, with minor deviations observed for underrepresented
classes, consistent with trends in the Recall and F1 metrics.
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Figure 6: Training and validation loss curves of the PDHFormer model on the Manufacturing
dataset.
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(a) Predicted vs True Labels for Choice A
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(b) Predicted vs True Labels for Choice B

Figure 7: Scatter plots of predicted versus true labels for the Manufacturing dataset.
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D EXTENDED EXPERIMENTS ON AN ADDITIONAL DELIVERY DATASET

To address reviewers’ concerns regarding dataset diversity and model generalizability,
we conduct additional experiments on an operational dataset derived from online deliv-
ery platform Meituan, which we refer to as the Delivery Dataset. The dataset was
obtained from the Meituan INFORMS TSL Research Challenge, publicly available at:
https://github.com/meituan/Meituan-INFORMS-TSL-Research-Challenge .
We gratefully acknowledge that the experiment was supported by data provided by Meituan. This
dataset contains three sequential decision targets, allowing us to evaluate PDHFormer under a com-
plex multi-choice prediction setting beyond the two-choice structure presented in the main paper.

D.1 DATASET DESCRIPTION

The dataset contains rich information describing the order dispatching and courier assignment pro-
cess. Each record consists of 24 features, including:

• Binary operational indicators: is courier grabbed, is weekend, is prebook;

• Geolocation coordinates: sender and recipient locations (sender lng, sender lat,
recipient lng, recipient lat) and courier location (grab lng, grab lat);

• Time-related variables: estimated arrival times, dispatching times, meal preparation
times, and order push timestamps in hour–weekday–minute format.

In this dataset, we define the following three binary decision targets:

• Head 1: is courier grabbed, indicating whether a courier accepted the order;

• Head 2: is weekend, reflecting whether the order occurred on a weekend day;

• Head 3: is prebook, identifying whether the user requested a prebooked delivery ser-
vice.

The full dataset contains 654,343 instances. To ensure efficient experimentation and fair runtime
comparison against multiple baseline models, we randomly sample 10% of the data (65,434 records)
while preserving the original distribution of all three decision targets.

D.2 MODEL EXTENSION TO THE THIRD HEAD

We use the same encoder, gated residual mechanism as described in Section 3 of the main paper, and
training hyperparameters as described in Appendix F, considering the instances number increase, we
slightly increase the epoch number to 30.

To incorporate a third sequential decision while maintaining architectural consistency, we replicate
the head-to-head connector mechanism used between the first and second heads. The replicate
follows the same architectural pattern used in the two-head version as Section 3.3 of the main paper.
So we refer this model as 3Head-PDHformer. Let z2 ∈ R

C2 denote the logits produced by the
second head. We first map these logits into a low-dimensional embedding via a learnable projection:

e2 = z2W
(2)
c ∈ R

dhid , (13)

where W
(2)
c ∈ R

C2×dhid is the projection matrix for the second head.

Next, this embedding is concatenated with the shared contextual representation h ∈ R
dhid from the

encoder:
h3 = [h; e2] ∈ R

2dhid . (14)

The resulting vector h3 serves as the input to the third prediction head, enabling the model to repre-
sent the dependency

Choice A → Choice B → Choice C.

This design is modular and compositional: the head-to-head connector directly mirrors the structure
used in the two-head case and can be repeatedly applied, enabling PDHFormer to scale naturally
to decision sequences of arbitrary length (e.g., three, four, or more interdependent choices) while
preserving directional-dependency modeling and maintaining computational simplicity.
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D.3 TRAINING AND PREDICTION FIGURES

The training and validation loss curves as Fig. 8 for the delivery dataset indicate a steady decrease
in training loss, while the validation loss attains its minimum at approximately the 30th epoch. In
Fig. 9a,9b and 9c The comparison between predicted and true labels for Head 1, Head 2 and Head 3
exhibits strong concordance with the ground truth.
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Figure 8: Training and validation loss curves of the 3Head-PDHFormer model on the Delivery
dataset.
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(a) Predicted vs True Labels for Head 1
(is courier grabbed) on the Delivery dataset
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(b) Predicted vs True Labels for Head 2
(is weekend) on the Delivery dataset
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(c) Predicted vs True Labels for Head 3
(is prebook) on the Delivery dataset

Figure 9: Scatter plots of predicted vs true labels on the test set.

To interpret model decisions, we apply SHAP analysis. Figs. 10a, 10b and 10c display the top 10
influential features for for Head 1, Head 2 and Head 3 respectively. The results show that the model
captures a subset of meaningful features consistent with domain knowledge. Overall, these results
demonstrate that for delivery dataset, the proposed model effectively predicts multiple choice.
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Figure 10: Global SHAP feature importance results for the delivery dataset. Subfigures (a), (b),
and (c) correspond to the three prediction targets: is courier grabbed, is weekend, and
is prebook, respectively.

D.4 BASELINES COMPARE

All baseline models were extended to output three predictions accordingly. Due to time and compu-
tational constraints, we selected a subset of baselines of main paper that either performed strongly
in the previous experiments or represent recent state-of-the-art approaches, and adapted them for
three-choice prediction.

For evaluation, we report a set of standard classification metrics, including Accuracy (ACC), Area
Under the ROC Curve (AUC), Area Under the Precision–Recall Curve (AUCPR), Precision, Recall,
and F1 Score for each decision target.

Table 6, Table 7 and Table 8 summarizes the classification performance across all models for the
three prediction targets: is courier grabbed, is weekend, and is prebook, respectively.
Our 3Head-PDHFormer consistently outperforms baselines in terms of Accuracy, Recall, and F1
score on different tasks, highlighting its ability to effectively capture complex non-linear patterns in
real-world delivery data.

Table 6: Model comparison on the delivery dataset for is courier grabbed: Top 1 results are
in red, Top 2 in yellow, and Top 3 in blue.

Model ACC ↑ AUC ↑ AUCPR ↑ Precision ↑ Recall ↑ F1 ↑

Random Forest 0.8710 0.7059 0.9368 0.9353 0.5149 0.4944
Xgboost 0.8671 0.7404 0.9475 0.9335 0.5000 0.4644
CatBoost 0.8671 0.7090 0.9394 0.9335 0.5000 0.4644
RealMLP 0.8671 0.5529 0.8943 0.8847 0.8671 0.8053
HyperFast 0.8703 0.7023 0.9391 0.8444 0.5150 0.4951
TabICL 0.8721 0.5427 0.8770 0.7969 0.5292 0.5227

3Head-PDHFormer 0.8710 0.7471 0.9504 0.8877 0.8710 0.8147
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Table 7: Model comparison on the delivery dataset for is weekend: Top 1 results are in red, Top
2 in yellow, and Top 3 in blue.

Model ACC ↑ AUC ↑ AUCPR ↑ Precision ↑ Recall ↑ F1 ↑

Random Forest 0.9957 0.9999 0.9996 0.9965 0.9926 0.9945
Xgboost 0.9986 1.0000 1.0000 0.9991 0.9974 0.9982
CatBoost 0.9985 1.0000 0.999 0.9984 0.9977 0.9981
RealMLP 0.9833 0.9923 0.9769 0.9833 0.9833 0.9833
HyperFast 0.9956 0.9999 0.9997 0.9941 0.9946 0.9944
TabICL 0.9995 0.9997 0.9996 0.9997 0.9991 0.9994

3Head-PDHFormer 0.9989 1.0000 1.0000 0.9989 0.9989 0.9989

Table 8: Model comparison on the delivery dataset for is prebook: Top 1 results are in red, Top
2 in yellow, and Top 3 in blue.

Model ACC ↑ AUC ↑ AUCPR ↑ Precision ↑ Recall ↑ F1 ↑

Random Forest 0.9645 0.8613 0.5032 0.9822 0.5304 0.5482
Xgboost 0.9623 0.9434 0.7242 0.9811 0.5000 0.4904
CatBoost 0.9623 0.9058 0.5017 0.9811 0.5000 0.4904
RealMLP 0.9623 0.6377 0.0644 0.9637 0.9623 0.9437
HyperFast 0.9705 0.9609 0.7173 0.9763 0.6113 0.6740
TabICL 0.9914 0.9561 0.8611 0.9573 0.9216 0.9387

3Head-PDHFormer 0.9861 0.9874 0.8988 0.9854 0.9861 0.9853

E HARDWARE INFORMATION

Table 9: Experimental Environment Specifications

Category Details

Hardware Configuration

CPU AMD Ryzen™ 9 5950X
GPU NVIDIA RTX 3090
RAM 128 GB
Storage NVMe SSD

Software Environment

Operating System Windows 10
Python Version 3.10.18
PyTorch-GPU Version 2.4.1
CUDA Version 12.4
Scikit-learn Version 1.26.4
Pandas Version 2.3.2
Numpy Version 1.7.1
XGBoost Version 3.0.5
Matplotlib Version 3.10.5
Seaborn Version 0.13.2
SciPy Version 1.15.3
SHAP Version 0.48.0
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F HYPERPARAMETERS SETTINGS

Table 10: Hyperparameters

Category Details

Model Hyperparameters

Input Embedding’s Input Dimension Features Nums
Input Embedding Hidden Size 256
Input Embedding’s Output Dimension 128
PDHFormer Encoder Input Dimension 128
PDHFormer Encoder Hidden Dimension 512
PDHFormer Encoder Output Dimension 128
Encoder Block 2
Number of Attention Heads 8
Head 1 Input Dimension 128
Head 1 Hidden Dimension 32
Head 1 output Dimension Class Nums (Choice 2)
Projected Embedding Dimension 8
Head to Head Connector Dimension Operation 128(Head 1 Input) + 8 (Projected Embedding)
Head 2 Input Dimension 136
Head 2 Hidden Dimension 32
Head 2 output Dimension Class Nums (Choice 1)

Training Hyperparameters

Dropout Rate 0.4
Optimizer AdamW

Learning Rate 1× 10−4

LR Weight Decay 1× 10−2

Batch Size 32
Epochs 20
Classification Loss Functions CrossEntropyLoss
Classification Loss Weight α 2 (Choice 2)
Classification Loss Weight β 1.2 (Choice 1)
Gate Regularization Loss Weight γ 0.01
Gate Weight (Embed Stage 1) 1
Gate Weight (Classifier) 1
Gate Weight (Regressor) 1
Gate Initial Bias 0
Gate Initial Weight Xavier uniform
Gate Initial Gain 1
Random Seed 42
PyTorch Deterministic Mode True
PyTorch Benchmarking False
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G DATA PREPROCESSING

In this paper, we evaluate on two datasets:

(i) the Urban Mobility Choice dataset, which can be used directly without any preprocessing.

(ii) the Manufacturing dataset that requires several preprocessing steps, so we implement the follow-
ing steps to prepare the dataset: Empirical tests showed this threshold effectively eliminates samples
with missing values; Duplicate columns and columns with near-zero variance are excluded, unless
marked as important for the task; Highly correlated features (absolute Pearson correlation coeffi-
cient greater than 0.99) are removed to reduce redundancy and multicellularity; Categorical features
are encoded with one-hot encoding if they have fewer than 10 unique categories; otherwise, label
encoding is applied; String-type columns with constant values are dropped since they do not provide
discriminative information; Boolean-type features are converted to integer format to maintain nu-
merical consistency; All remaining features are standardized using Z-score normalization (mean =
0, standard deviation = 1), which is essential for stable convergence in neural network-based models;
The calibration code as classification target is mapped linearly to integer classes starting from 0 up
to the total number of unique codes, facilitating classification; The calibration value as regression
target is independently normalized using a separate Z-score scaler; After feature standardization, any
samples containing NaN values are removed to ensure clean inputs; The cleaned dataset is randomly
split into training (80%), validation (10%), and test (10%) subsets. Stratified sampling is used based
on the classification target to preserve class distribution balance; Finally, all subsets are converted to
PyTorch tensors and packaged into DataLoaders for efficient batch-wise training and evaluation.
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H BASELINES DETAILS

H.1 CLASSICAL MACHINE LEARNING METHODS

• Logistic Regression (Ng & Jordan, 2001): A linear classifier modeling the log-odds of
class probabilities, widely used for interpretable classification tasks.

• Naive Bayes (Murphy et al., 2006): A probabilistic model assuming conditional indepen-
dence among features given the class, efficient for text and tabular classification.

• Support Vector Machines (SVMs) (Joachims, 1998): A margin-based classifier that
learns separating hyperplanes in feature space, often effective with kernel methods.

• Decision Trees (Song & Lu, 2015): A non-parametric model that partitions the input space
into regions using recursive feature splits.

H.2 ENSEMBLE MODELS

• Random Forests Breiman (2001): An ensemble of decision trees trained on bootstrapped
samples with feature randomness, reducing variance and improving generalization.

• XGBoost (Chen & Guestrin, 2016): A gradient-boosted decision tree algorithm optimized
for speed and regularization.

• CatBoost (Prokhorenkova et al., 2018): A boosting method designed to handle categorical
variables efficiently with ordered boosting to avoid target leakage.

• HistGBM (Guryanov, 2019): A histogram-based gradient boosting method improving
training efficiency on large datasets.

H.3 NEURAL ARCHITECTURES FOR TABULAR DATA

• TabTransformer (Huang et al., 2020): An attention-based architecture that models depen-
dencies among categorical features via Transformer layers, enabling improved representa-
tion learning for tabular data.

• TabNet (Arik & Pfister, 2021): A deep tabular architecture that employs sequential at-
tention to select salient features at each decision step, enabling both interpretability and
efficient representation learning, with support for self-supervised pretraining.

• TabM (Gorishniy et al., 2025): A parameter-efficient ensembling approach where a single
MLP imitates an ensemble of multiple MLPs by sharing most parameters, achieving strong
performance and efficiency on tabular learning benchmarks.

• RealMLP (Holzmüller et al., 2024): Proposes optimized MLP-based architectures and
training strategies for competitive performance on tabular data.

• HyperFast (Bonet et al., 2024): A meta-trained hypernetwork that generates dataset-
specific neural networks for tabular classification in a single forward pass.

• TabICL (Qu et al., 2025): A tabular foundation model leveraging in-context learning, pre-
trained on synthetic datasets up to 60K samples; it introduces a column-then-row attention
mechanism to scale ICL to large tables.
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I EVALUATION METRIC DETAILS

Here are the classification evaluation metrics which used in our Table 1, Table 2 and Table 3. Let yi
and ŷi denote the true and predicted class labels, and let C be the total number of classes. Here, TPc

(true positives) is the number of correctly predicted samples for class c; FPc (false positives) is the
number of samples incorrectly predicted as class c; FNc (false negatives) is the number of samples
of class c incorrectly predicted as other classes; Nc is the number of true samples belonging to class

c; and N =
∑C

c=1 Nc is the total number of samples.

• Accuracy (ACC) measures the proportion of correctly predicted labels:

ACC =

∑C

c=1 TPc

N
(15)

• Area Under the Receiver Operating Characteristic Curve (AUC): Let TPR(t) and
FPR(t) denote the true positive rate and false positive rate at threshold t, respectively.
Then the AUC is computed as the integral over all thresholds:

AUC =

∫ 1

0

TPR(FPR) d(FPR) (16)

• Area Under the Precision-Recall Curve (AUCPR): Let Precision(r) denote precision as
a function of recall r. Then the AUCPR is:

AUCPR =

∫ 1

0

Precision(r) dr (17)

• Precision is the average precision across classes, weighted by support:

Precision =
C
∑

c=1

Nc

N
· TPc

TPc + FPc

(18)

• Recall is the average recall across classes, also weighted:

Recall =

C
∑

c=1

Nc

N
· TPc

TPc + FNc

(19)

• F1 Score is the harmonic mean of precision and recall:

F1 =

C
∑

c=1

Nc

N
· 2 · Precisionc · Recallc

Precisionc + Recallc
(20)

Except for the common classification metrics, we use Mean Absolute Error (MAE), Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), R2 Score, and Pearson Correlation Coefficient
(PCC) to evaluate the regression prediction performance in Appendix ?? Table 4. Let yi and ŷi
denote the true and predicted regression values.

• Mean Absolute Error (MAE):

MAE =
1

N

N
∑

i=1

|ŷi − yi| (21)

• Mean Squared Error (MSE):

MSE =
1

N

N
∑

i=1

(ŷi − yi)
2 (22)

• Root Mean Squared Error (RMSE):

RMSE =
√

MSE (23)
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• R2 Score:

R2 = 1−
∑N

i=1(ŷi − yi)
2

∑N

i=1(yi − ȳ)2
(24)

where ȳ denotes the mean of the true values.

• Pearson Correlation Coefficient (PCC):

PCC =

∑N

i=1(ŷi − ¯̂y)(yi − ȳ)
√

∑N

i=1(ŷi − ¯̂y)2 ·
√

∑N

i=1(yi − ȳ)2
(25)

All metrics are computed on the held-out test set. Weighted classification metrics are used to account
for class imbalance, and inverse scaling is applied to regression outputs for correct unit interpreta-
tion.
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J DATASET FEATURE LISTS

This appendix provides the complete feature lists for the two publicly describable datasets used in
our experiments: (1) the Urban Mobility Choice Dataset under AIP and BIP scenarios, and (2) the
Delivery Dataset derived from an online delivery platform. For reproducibility and clarity, we list
all features for these two datasets in Tables 11 and 12, respectively.

The Urban Mobility Choice Dataset contains behavioral, temporal, demographic, and contextual
features used in the AIP/BIP choice prediction tasks. The complete list of features is summarized in
Table 11.

Table 11: Complete feature list of the Urban Mobility Choice Dataset used in AIP/BIP scenarios.

Category Features

All Features ID, Choice1, Choice2, Req, Time, Time1, Time2, Wait, Dec, Rate, Pickup, Loc,
Surge, Long, Cong, Tip, Fare, Block, Workhr, Part, Full, Age, Beginners, Experi-
enced, Acceptance, EarnInc, ExpInc, Satisfied, Taxi, Gender, Partner, Degree, NY,
CA, NY CA, Morning, Midday, Afternoon, Evening, Night, Fac1000, Fac2000,
Weekend, Weekend Friday, Sat Fri, Sat, Thu Fri Sat, Peak evening, Peak morning,
Peak

The delivery dataset includes temporal, spatial, and operational features from an online delivery
platform. These variables relate to three sequential decision targets: is courier grabbed,
is weekend, and is prebook. All features are listed in Table 12.

Table 12: Complete feature list for the Delivery Dataset.

Category Features

All Features is courier grabbed, is weekend, is prebook, sender lng, sender lat, recip-
ient lng, recipient lat, grab lng, grab lat, estimate arrived time hour, esti-
mate arrived time weekday, estimate arrived time minute, dispatch time hour,
dispatch time weekday, dispatch time minute, estimate meal prepare time hour,
estimate meal prepare time weekday, estimate meal prepare time minute, or-
der push time hour, order push time weekday, order push time minute, plat-
form order time hour, platform order time weekday, platform order time minute

Another dataset used in the main paper, the manufacturing scenario dataset is derived from an
industrial production line. Due to confidential, we are unable to disclose the full list of feature names.
However, all experimental procedures, model configurations, and evaluation protocols remain fully
documented to ensure scientific transparency.
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K COMPUTATIONAL COST COMPARISON

Following the reviewer’s suggestion to report computational cost, we extend our architecture
by introducing a parallel dual-encoder variant, consistent with prior dual-path Transformer de-
signs (Yao et al., 2023; Han et al., 2022; Yan et al., 2023; Hu et al., 2022; Samoaa et al., 2024). Un-
like “parallel-head” designs, these works process the same input through two separate Transformer
encoders and merge the representations at the latent level. To compare with this line of work, we
modify PDHFormer as follows:

• The first encoder processes the embedded input:

xenc1 = TransformerEncoder1(xembed)

• The second encoder processes the same embedded input independently:

xenc2 = TransformerEncoder2(xembed)

• The outputs are averaged:
xenc = 0.5 · (xenc1 + xenc2)

The aggregated representation is then fed into the PDHFormer predictor. We compare the compu-
tational cost and predictive performance of the original single-encoder PDHFormer and the new
parallel-encoder PDHFormer. Experiments are conducted on the Delivery Dataset under the 3-
choice setting for 30 epochs. Table 13 compared the training and inference cost, and Table 14
compared the single-encoder and parallel-encoder performance.

Table 13: Single-Encoder and Parallel-Encoder Computational Cost Comparison

Metric / Model Variant Single-Encoder PDFormer Parallel-Encoder PDFormer

Training Time (s) 394.85 460.77
Inference Time (per batch, ms) 1.67 2.42
Inference Time (per sample, ms) 0.0260 0.0378

Table 14: Single-Encoder and Parallel-Encoder Performance Comparison Across All Heads

Head Metric Single-Encoder Parallel-Encoder

Head 1: is courier grabbed

ACC ↑ 87.10% 87.09%
AUC ↑ 0.7471 0.7429

AUCPR ↑ 0.9504 0.9498
Precision ↑ 0.8877 0.8786

Recall ↑ 0.8710 0.8709
F1 ↑ 0.8147 0.8149

Head 2: is weekend

ACC ↑ 99.89% 99.94%
AUC ↑ 1.0000 1.0000

AUCPR ↑ 1.0000 1.0000
Precision ↑ 0.9989 0.9994

Recall ↑ 0.9989 0.9994
F1 ↑ 0.9989 0.9994

Head 3: is prebook

ACC ↑ 98.61% 98.52%
AUC ↑ 0.9874 0.9867

AUCPR ↑ 0.8988 0.8826
Precision ↑ 0.9854 0.9844

Recall ↑ 0.9861 0.9852
F1 ↑ 0.9853 0.9842

The parallel dual-encoder design substantially increases computational cost while offering negligible
performance improvement. Training and inference times increase by roughly 45%, while accuracy,
AUC, and F1 vary by less than 0.1%. This confirms that the single-encoder PDHFormer is more
efficient, justifying the use of the single-encoder architecture in the main paper.
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L THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models were leveraged to assist in refining and formatting LaTeX
content, including tables, figures, and equations. The LLMs provided suggestions for improving
clarity, consistency, and alignment of visual elements, ensuring that all figures and tables adhered to
publication-quality standards while reducing manual editing effort.
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