

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PDHFORMER: PROGRESSIVE DUAL-HEAD TRANS- FORMER FOR BEHAVIORAL CHOICE PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Many applications require joint prediction of interdependent behavioral choices, yet existing models often treat each choice independently (e.g., through parallel prediction heads), overlooking the influence of one on the other. In this work, we propose Progressive Dual-Head Transformer (PDHFormer), a novel framework that performs two-step prediction: the model first estimates one choice and then conditions the second on this upstream estimate through an explicit head-to-head pathway. A shared encoder captures the common structure of two prediction tasks, while the dual-head module explicitly reflect cross-choice dependence. A gated residual mechanism integrated into the embedding layer and the dual-head modules further improves the training stability and the prediction performance. Extensive experiments on an urban mobility behavioral choice dataset and a real-world manufacturing dataset demonstrate that PDHFormer consistently outperforms state-of-the-art machine learning models, deep tabular models, as well as parallel-head Transformer variants across multiple metrics. Moreover, our ablation study confirms that both the proposed progressive dual-head and gated residual mechanism are key contributors to the observed gains in different prediction tasks.

1 INTRODUCTION

Many real-world systems require predicting interdependent choices rather than a single target. In ride-hailing, for example, a driver first decides whether to accept a request under limited information and may revisit that decision when additional details (e.g., expected fare or detour) become available (Ashkrof et al., 2022). Similar directional dependencies arise in manufacturing, where one production decision conditions the next under evolving constraints (Sharma & Gao, 2002). In these settings, choices are not merely correlated; one choice is conditionally dependent on the other, and modeling this interdependency is essential for accurate prediction.

Standard machine learning models, such as gradient-boosted trees (Prokhorenkova et al., 2018; Chen & Guestrin, 2016) and deep models including Transformers for tabular data (Huang et al., 2020; Nassar et al., 2022; Gorishnyi et al., 2025; Holzmüller et al., 2024; Bonet et al., 2024; Qu et al., 2025), typically optimize either a single target or multiple targets with parallel heads. Parallelization captures shared structure but misses directional influence: the second head does not condition on the realized output or representation of the first. As a result, cross-choice dependencies remain under-modeled (Gao et al., 2022; Gu et al., 2022; Kumar et al., 2024). Explicitly modeling and predicting one target conditional on another could better capture real-world behavioral choices. This gap motivates the need for models that can jointly learn shared representations while explicitly modeling choice dependencies.

To that end, we propose PDHFormer, a Progressive Dual-Head Transformer to explicitly capture the dependency between related prediction targets through a head-to-head progressive prediction mechanism. PDHFormer couples two prediction heads through an explicit head-to-head connection while a shared encoder captures the common structure behind two predictions. A gated residual mechanism, applied at the embedding and dual-head module, regulates information flow to improve stability and accuracy. PDHFormer performs progressive prediction by allowing the output of one head to condition the other, enabling the model to explicitly exploit interdependent decision patterns. We evaluate PDHFormer on real-world datasets from urban mobility and manufacturing

054 and report consistent gains over state-of-the-art machine learning models, deep tabular models, and
 055 parallel-head Transformer variants across multiple metrics. Overall, our main contributions can be
 056 summarized in threefold:

- 058 • We propose PDHFormer, a novel Progressive Dual-Head Transformer that explicitly captures
 059 dependencies between related choice predictions through a head-to-head connection, while
 060 leveraging gated residuals to balance shared and task-specific signals.
- 061 • We propose a two-step progressive prediction strategy, where the output of one head conditions
 062 the prediction of the other, enabling the model to capture interdependent decision
 063 patterns. A composite loss function is designed for the two behavioral choice predictions
 064 with a regularization term of gating residuals.
- 065 • Extensive empirical evidence on two domains show that the PDHFormer outperforms
 066 strong machine learning and deep learning baselines. We also ablate on the positive impact
 067 of the head-to-head pathway and the gate residual mechanism, and provide SHAP analyses
 068 for shedding light on the predicted behavioral choices.

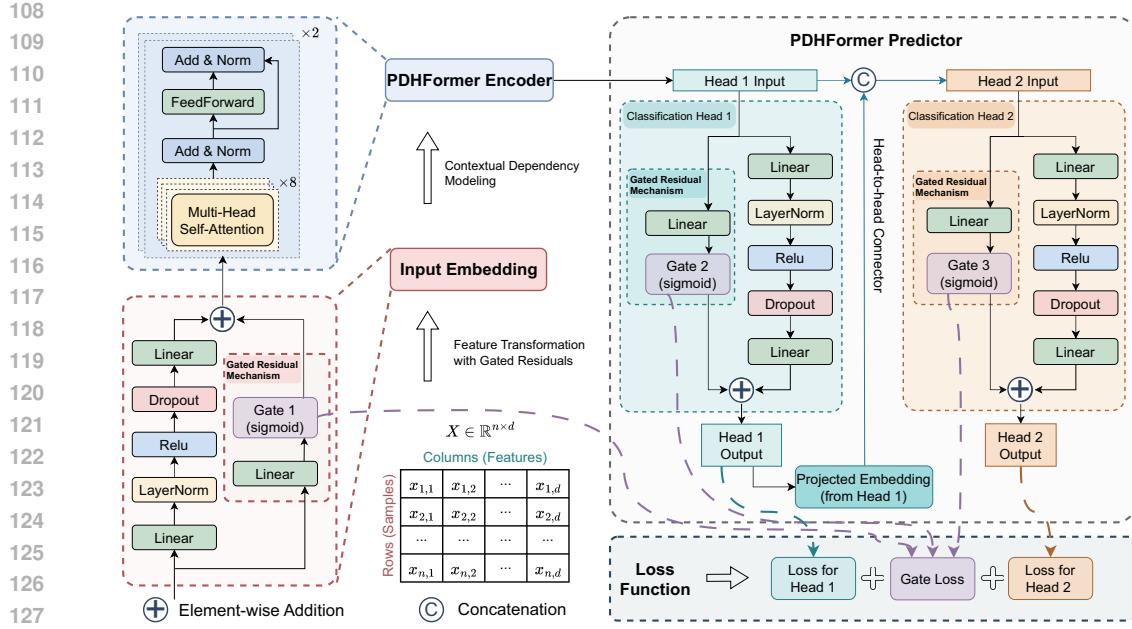
070 2 RELATED WORKS

071 **Choice Prediction** Choice prediction refers to forecasting which alternative an individual will
 072 choose from a predefined choice set based on contextual features. Applications span transportation
 073 (Shahriar et al., 2021; Wang et al., 2021; Tamim Kashifi et al., 2022), e-commerce (Chaudhuri et al.,
 074 2021; Wang et al., 2023b), healthcare (Kothinti, 2024). Traditional research typically relies on discrete
 075 choice models (Zhao et al., 2020). We note that our task is originally developed from the discrete
 076 choice modeling (DCM) framework in mobility (Ashkrof et al., 2022), and that the prediction task we study follows the data structure commonly used in behavioral choice prediction
 077 (Shahriar et al., 2021; Chaudhuri et al., 2021; Kothinti, 2024; Martín-Baos et al., 2023; Wang et al.,
 078 2023b). In our setting, each sample corresponds to one decision instance and is represented by
 079 a single contextual feature vector containing all information relevant to that instance. Our setting
 080 therefore maps the contextual features of each sample directly to a prediction of the choice.

081 Gradient-boosted decision trees (GBDTs), such as XGBoost (Chen & Guestrin, 2016), Hist-
 082 GBM (Guryanov, 2019), and CatBoost (Prokhorenkova et al., 2018), have widely adopted due to
 083 their strong accuracy and scalability. With the development of deep learning, an increasing number
 084 of works have explored deep learning methods for choice prediction (Wang et al., 2023a). Extending
 085 this direction, a growing number of work has focused on designing architectures specifically for
 086 tabular inputs (Huang et al., 2020; Arik & Pfister, 2021; Gorishniy et al., 2025; Bonet et al., 2024;
 087 Holzmüller et al., 2024; Qu et al., 2025), since many choice prediction tasks are naturally formulated
 088 on structured tabular features, these models also provide competitive alternatives for capturing
 089 complex interactions in decision-making data. Some approaches systematically identifying interaction
 090 effects, such as DeepHalo (Zhang et al.) for context-dependent choice prediction.

091 **Multi-task Prediction** Despite these advances, most existing approaches treat choice prediction
 092 as independent classification problems, overlooking the fact that behavioral decisions are often pro-
 093 gressive and interdependent, with one decision potentially influencing or constraining others. For
 094 example, when choosing a travel mode, an early decision to take the bus instead of the metro will
 095 directly affect the subsequent decision of which route and which transfer stops to select.

096 In current practice, multi-task choice prediction typically uses a shared-bottom, parallel-head de-
 097 sign (Caruana, 1997; Silver et al., 2016; Lample et al., 2022) such as Deep Task-specific Bottom
 098 Representation Networks for mitigating task interference (Liu et al., 2023) or shared-bottom neural
 099 architectures for constructing prediction intervals (Xue et al., 2024). Attention-based methods
 100 such as the Multi-Task Attention Network (Liu et al., 2019), DenseMTL (Lopes et al., 2022), and
 101 Task Relation Attention Networks (Ma & Tan, 2020) employ task-specific or cross-task attention
 102 modules to highlight relevant shared features and dynamically exchange information across tasks.
 103 Also Graph-based approaches such as GNNs based discrete choice modeling (Tomlinson & Benson,
 104 2024) for joint classification and regression targets predict or multi-task FP-GNN framework
 105 (Ai et al., 2022) for inhibitors prediction. Besides, several studies have explored dual-branch or
 106 dual-transformer architectures in other domains (Yao et al., 2023; Han et al., 2022; Yan et al., 2023;

Figure 1: Overall Architecture of **PDHFormer**: A Progressive Dual-Head Transformer

Hu et al., 2022; Samoaa et al., 2024). However, these models mainly focus on multimodal fusion, 3D point clouds, medical imaging, or drug synergy prediction, and do not address within-instance dependent tabular decision modeling as studied in our work.

Given the shared representation, the outputs are effectively treated as conditionally independent, so one prediction does not inform the other. Our approach keeps the benefit of a shared encoder but introduces a progressive dual-head pathway to explicitly pass the upstream output to the downstream head, enabling the second prediction to leverage information from the first, which further improves the prediction accuracy.

3 PDHFORMER: A PROGRESSIVE DUAL-HEAD TRANSFORMER

Given the tabular input $X \in \mathbb{R}^{n \times d}$ with n samples and d features, a sample (or a record) $(\mathbf{x}_i, c_{1,i}, c_{2,i})$ is composed of features $\mathbf{x}_i \in \mathbb{R}^d$, alongside two interdependent classification targets¹ $c_{1,i} \in \{0, \dots, C_1 - 1\}$ and $c_{2,i} \in \{0, \dots, C_2 - 1\}$. The proposed PDHFormer maps \mathbf{x}_i to a shared representation \mathbf{h} using an embedding block followed by an encoder. In the predictor, we employ one classification head to predict $c_{1,i}$. Afterward, the other classification head take as input both the shared representation and the representation of $c_{1,i}$ for predicting $c_{2,i}$, through an explicit *head-to-head* connector. In doing so, the representation learned by the first head serve as an additional input to the second head, which further incorporates upstream choice information, captures its impact on the second choice, and thus improves the prediction performance. In contrast to typical parallel-head design, the PDHFormer benefits progressive predictions in real-world scenarios. For example, Choice $c_{1,..}$ represents the driver's acceptance/rejection decision made under limited information, while Choice $c_{2,..}$ denotes the decision with additional features such as the trip details. In some manufacturing scenarios, Choice $c_{2,..}$ represents a harder regression target, which can be facilitated by first predicting a relevant classification target $c_{1,..}$.

The neural architecture of the proposed PDHFormer is illustrated in Fig. 1, which mainly comprises five components:

- The input embedding layer processes the original raw features;

¹Note that we use two classification targets for presenting our methodology. Our model can also be applied to the regression target, as shown in the manufacturing case in Section 4.6.

- 162 The PDHFormer encoder advances the embeddings of features using self-attention-based
163 layers to interact high-dimensional features and capture their complex dependencies;
- 164 The PDHFormer predictor applies the encoder output as the shared input to the progressive
165 dual heads, which first predict Choice $c_{1,i}$, and then predict Choice $c_{2,i}$. The representation
166 learned from the first head is passed to second head through a head-to-head connector;
- 167 The Gated residual mechanism is integrated into the input embedding layer and dual heads
168 for both training stability and prediction performance improvement;
- 169 The composite loss function is proposed to simultaneously optimize two predictions, in-
170 volving a regularization term of gating residuals.

172 In the following, we detail the components of PDHFormer and the composite loss for jointly opti-
173 mizing two predictions.

175 3.1 INPUT EMBEDDING

177 To enhance the representation capability of the raw input features, an embedding layer is employed
178 to map the each feature $\mathbf{x}^j \in \mathbb{R}$ into a latent embedding. Specifically, we first apply a two-layer
179 feedforward network, i.e., a multilayer perceptron (MLP), to project the features to high-dimensional
180 space, in which the embeddings are regularized by layer normalization, activated by ReLU along
181 with Dropout, and linearly transformed to dimensionality d_{hid} :

$$182 \mathbf{z}_{main} = \text{MLP}(\mathbf{x}^j) \in \mathbb{R}^{d_{hid}} \quad (1)$$

184 The MLP output is further added with the gated residual mechanism (see Section 3.4 for details of
185 the gated residual mechanism). A learnable gate function, implemented as a sigmoid (σ) activated
186 linear layer, is used to compute gate values \mathbf{g}_{emb} . These values are used to balance the MLP output
187 and a residual projection of features \mathbf{x} , such that:

$$188 \tilde{\mathbf{z}} = \mathbf{g}_{emb} \odot \mathbf{z}_{main} + (1 - \mathbf{g}_{emb}) \odot \mathbf{z}_{res} \quad (2)$$

189 where \odot denotes element-wise multiplication; the residual projection $\mathbf{z}_{res} = \mathbf{W}_{res}\mathbf{x}^j \in \mathbb{R}^{d_{hid}}$ is
190 used to preserve original information in deep neural architecture and facilitate gradient flow.

192 3.2 PDHFORMER ENCODER

194 Given input embeddings $\mathbf{H}^0 = \{\tilde{\mathbf{z}}^j\}_{j=1}^d$, we feed them into a stack of encoder blocks similar to
195 the standard architecture in (Vaswani et al., 2017). Each block is structured by a multi-head self-
196 attention layer and a feedforward layer, to capture contextual dependencies and complex feature
197 interactions. Specifically, we apply two identical encoder blocks, each consisting of:

198 **Multi-head self-attention (MHSA) layer:** Given the input embeddings $\mathbf{H}^{\ell-1}$ for the ℓ -th block,
199 MHSA layer is defined as:

$$200 \text{MHSA}(\mathbf{H}^{\ell-1}) = \text{softmax}\left(\frac{\mathbf{Q}_\ell \mathbf{K}_\ell^\top}{\sqrt{d_{hid}}}\right) \cdot \mathbf{V}_\ell, \quad (3)$$

203 where $\mathbf{Q}_\ell = \mathbf{W}_\ell^q \mathbf{H}^{\ell-1}$, $\mathbf{K}_\ell = \mathbf{W}_\ell^k \mathbf{H}^{\ell-1}$, and $\mathbf{V}_\ell = \mathbf{W}_\ell^v \mathbf{H}^{\ell-1}$ are the query, key, and value matrix,
204 respectively, which are obtained from the input through linear projections.

205 **Feedforward network (FFN) layer:** Given the input $\mathbf{Z}^{\ell-1}$ is applied independently to each position,
206 consisting of two linear layers with a GELU activation in between:

$$208 \text{FFN}(\mathbf{Z}^{\ell-1}) = \mathbf{W}_2(\text{GELU}(\mathbf{W}_1 \mathbf{Z}^{\ell-1} + \mathbf{b}_1)) + \mathbf{b}_2 \quad (4)$$

209 Residual connections and layer normalization in (Vaswani et al., 2017) are applied after both the
210 MHSA and FFN layers for training stability. To sum up, the encoder updates the input embeddings
211 \mathbf{H}^0 by L ($L = 2$ in this work) blocks:

$$213 \mathbf{H}^{(L)} = \text{EncoderBlock}^{(l)}(\mathbf{H}^{(l-1)}), \quad \text{for } l = 1, \dots, L \quad (5)$$

215 The output $\mathbf{H}^{(L)}$ serves as context-aware representations of the input features, which are further
216 used as input to the predictor.

216 3.3 PDHFORMER PREDICTOR
217

218 PDHFormer incorporates two classification heads in the predictor for two interdependent behavioral
219 choices, respectively. Given the context-aware representations $\mathbf{H}^{(L)} \in \mathbb{R}^{d \times d_{hid}}$ from the encoder,
220 where d is the number of features, d_{hid} is the hidden dimension. We aggregate the contextual
221 representations for each sample, such that:

$$223 \quad \mathbf{h} = \frac{1}{d} \sum_{t=0}^{d-1} \mathbf{H}^{(L)}[t, :] \in \mathbb{R}^{d_{hid}} \quad (6)$$

226 The classification head for the first behavioral choice $c_{1,i}$ is a feedforward network that maps \mathbf{h} to
227 a probability distribution over the categories of $c_{1,i}$. It comprises two linear layers with layer
228 normalization, ReLU activation, and dropout. Consequently, the output dimension equals the number
229 of categories. We also apply the gated residual mechanism that projects \mathbf{h} directly to the category
230 logits and add them to the output of the feedforward network, which are processed by Softmax for
231 calculating categorical probabilities. The classification head for the second behavioral choice $c_{2,i}$
232 has the same architecture, except the output dimension equals the number of its own categories.

233 **Head-to-head connector:** To explicitly capture the dependency between the two behavioral
234 choices, the output of the first classification head is incorporated into the second head via a head-to-
235 head connector. Specifically, let $\mathbf{z}_1 \in \mathbb{R}^{C_1}$ denote the logits produced by the first head for a sample.
236 We linearly project these logits into a low-dimensional embedding

$$237 \quad \mathbf{e}_1 = \mathbf{z}_1 \mathbf{W}_c \in \mathbb{R}^{d_{hid}}, \quad (7)$$

239 where $\mathbf{W}_c \in \mathbb{R}^{C_1 \times d_{hid}}$ is a learnable weight matrix. This embedding \mathbf{e}_1 is then concatenated with
240 the aggregated contextual representation $\mathbf{h} \in \mathbb{R}^{d_{hid}}$ from the encoder:

$$242 \quad \mathbf{h}_2 = [\mathbf{h}; \mathbf{e}_1] \in \mathbb{R}^{2d_{hid}}. \quad (8)$$

243 The concatenated representation \mathbf{h}_2 serves as the input to the second classification head, allowing the
244 prediction of the second choice to be explicitly conditioned on the first. In this way, the model cap-
245 tures interdependencies between the two behavioral choices while preserving the shared contextual
246 information from the encoder.

248 3.4 GATED RESIDUAL MECHANISM
249

250 Formally, given the intermediate embedding \mathbf{y}_{main} from the main processing pathway (i.e., the
251 backbone) and a residual projection \mathbf{y}_{res} , the gate values g are learned through a linear layer activated
252 by a sigmoid function (σ):

$$253 \quad g = \sigma(\mathbf{W}_g \cdot \mathbf{y}_{\text{main}} + \mathbf{b}_g) \quad (9)$$

254 where \mathbf{W}_g and \mathbf{b}_g are trainable gate parameters. The fused output \mathbf{y}_{out} is computed as a gate-value-
255 weighted sum of \mathbf{y}_{main} and \mathbf{y}_{res} :

$$257 \quad \mathbf{y}_{\text{out}} = g \odot \mathbf{y}_{\text{main}} + (1 - g) \odot \mathbf{y}_{\text{res}} \quad (10)$$

259 where \odot denotes element-wise multiplication. To ensure training stability, the gate output g is
260 constrained within a reasonable range, typically clipped between 0.1 and 0.9. In this work, we
261 further apply a regularization term that encourages the gate values to remain close to 0.5, thereby
262 promoting a balanced integration of the backbone and residual projection rather than over-reliance
263 on either, such that:

$$264 \quad \mathcal{L}_{\text{gate}} = \mathbb{E} [|g - 0.5|] \quad (11)$$

266 We integrate a gated residual mechanism into both the input embedding layer and the dual heads
267 in the predictor. In the input embedding layer, it blends the transformed features with a projected
268 shortcut from the raw inputs; in the heads, it combines the deeper representations learned by the
269 head with a direct linear projection of the input. In the PDHFormer encoder, the residual connections
inherently exist in the MHSA and FFN layer, without the need for additional gated residuals.

270
271

3.5 LOSS FUNCTION

272
273
274
275
276
277

PDHFormer is designed to predict two targets, with one of them conditionally dependent on the other. To effectively train the two interdependent classification heads while ensuring that the gated residuals are properly utilized, we employ a composite loss function that integrates the following three components, 1) $\mathcal{L}_{\text{class}}^{(c1)}$: the prediction loss for target $c_{1,:}$; 2) $\mathcal{L}_{\text{class}}^{(c2)}$: the prediction loss for target $c_{2,:}$; 3) $\mathcal{L}_{\text{gate}}$ (in Eq. 11): the regularization loss for the gated residual mechanism that encourages the gate values remain near 0.5.

278
279
280

$\mathcal{L}_{\text{class}}^{(c1)}$ and $\mathcal{L}_{\text{class}}^{(c2)}$ are implemented by the cross-entropy loss for classification. $\mathcal{L}_{\text{gate}}$ is implemented by the mean absolute error as defined by Eq. 11. Overall, the composite loss function is defined as:

281
282

$$\mathcal{L} = \alpha \mathcal{L}_{\text{class}}^{(c2)} + \beta \mathcal{L}_{\text{class}}^{(c1)} + \gamma \mathcal{L}_{\text{gate}} \quad (12)$$

283
284
285
286

where α, β, γ are hyperparameters controlling the relative importance of each component in the loss function. The joint optimization with the composite loss enables the PDHFormer to exploit the sequential dependency between first head and second head to improve the prediction performance.

287
288

4 EXPERIMENTS

289
290

4.1 REAL-WORLD SCENARIOS & DATASETS

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

We evaluate our model on two datasets: (i) an **urban mobility choice dataset** collected between November 2020 and February 2021 from Uber/Lyft drivers in the US and Uber/ViaVan drivers in the Netherlands using a simulated ride request experiment Ashkrof et al. (2022). The dataset was designed with two information sharing conditions. Under **Baseline Information Provision (BIP)**, drivers make accept/reject decisions (Choice 1) based only on limited trip attributes (e.g., request time, pickup time, rider rating) without fare or destination information. While, under **Additional Information Provision (AIP)**, drivers first make the same initial decision (Choice 1) under limited information, and are then shown additional details such as estimated fare, guaranteed tip, and traffic congestion. After receiving this enriched information, they may revise their accept/reject decision (Choice 2). and (ii) a **manufacturing dataset** consisting of high-dimensional process and production variables from an industrial environment, providing a complementary testbed to assess model robustness in complex real-world operational settings. The dataset contains two interrelated decision targets, denoted as Choice A and Choice B, which correspond to decisions governing different performance aspects of the product. **In addition, Choice A is associated with a continuous performance parameters, referred to as Regression A, enabling evaluation of the model on both classification and regression objectives for the same decision aspect.**

306
307
308
309
310

All experiments were conducted in a controlled computational environment to ensure reproducibility and consistency. The servers' hardware and software specifications are listed in Appendix E Table 9. Hyperparameters follow established practices for transformer-based tabular modeling and were finalized through extensive tuning; Appendix F details the model and training settings.

311
312

4.2 BASELINES & METRICS

313
314
315
316
317
318
319
320
321
322

We benchmark our model against a diverse set of baselines covering three categories: (i) classical machine learning methods, including Logistic Regression (Ng & Jordan, 2001), Naive Bayes (Murphy et al., 2006), SVMs (Joachims, 1998), Decision Trees (Song & Lu, 2015), (ii) ensemble models such as Random Forests (Breiman, 2001) and gradient-boosted decision trees (XGBoost (Chen & Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018), HistGBM (Guryanov, 2019)), and (iii) recent neural architectures for tabular data, including TabTransformer (Huang et al., 2020), TabNet (Arik & Pfister, 2021), TabM (Gorishniy et al., 2025), RealMLP (Holzmüller et al., 2024), HyperFast (Bonet et al., 2024), and TabICL (Qu et al., 2025). These baselines cover both traditional and state-of-the-art approaches, ensuring a comprehensive comparison. Full implementation details are provided in Appendix H.

323

To comprehensively evaluate the performance of the proposed PDHFormer for urban mobility choice dataset and manufacturing dataset, we report a set of standard classification metrics, includ-

324 Table 1: Model comparison on the mobility dataset in the AIP scenario: for Choice 2 and Choice 1:
 325 Top 1 results are in **red**, Top 2 in **yellow**, and Top 3 in **blue**.

Model	Choice 2						Choice 1					
	ACC↑	AUC↑	AUCPR↑	Prec↑	Recall↑	F1↑	ACC↑	AUC↑	AUCPR↑	Prec↑	Recall↑	F1↑
Random Forest	0.8382	0.7996	0.5212	0.7099	0.5995	0.6206	0.7110	0.7722	0.6329	0.6985	0.5989	0.5935
Xgboost	0.8353	0.7882	0.5235	0.7018	0.6583	0.6749	0.6879	0.7459	0.6043	0.6392	0.6050	0.6082
Naive Bayes	0.6676	0.6227	0.2574	0.5471	0.5707	0.4365	0.6214	0.6291	0.4546	0.5850	0.5892	0.5861
Logistic Regression	0.8179	0.6672	0.2711	0.5407	0.5065	0.4795	0.6821	0.6649	0.4901	0.6314	0.5729	0.5641
HistGBM	0.8295	0.7554	0.5006	0.6926	0.6683	0.6788	0.7139	0.7749	0.6298	0.6782	0.6331	0.6397
Decision Tree	0.7399	0.6278	0.2378	0.5975	0.6278	0.6054	0.6734	0.6304	0.4243	0.6322	0.6304	0.6312
TabNet	0.8179	0.6299	0.2230	0.4980	0.4998	0.4651	0.6532	0.5893	0.4134	0.5537	0.5191	0.4792
SVM	0.8266	0.7651	0.4369	0.6686	0.5858	0.6017	0.6965	0.6916	0.5297	0.6613	0.5880	0.5822
TabTransformer	0.8295	0.6070	0.2453	0.6880	0.8295	0.7522	0.6647	0.5054	0.3314	0.4419	0.6647	0.5309
CatBoost	0.8382	0.7886	0.5026	0.8194	0.5322	0.5179	0.7023	0.7311	0.5743	0.6999	0.5774	0.5595
TabM	0.8237	0.7848	0.4798	0.8065	0.8237	0.8131	0.6965	0.7175	0.5449	0.6784	0.6965	0.6777
RealMLP	0.8295	0.6131	0.2211	0.8586	0.8295	0.7522	0.6647	0.6349	0.4452	0.7771	0.6647	0.5309
HyperFast	0.8150	0.7833	0.4747	0.6622	0.6394	0.6489	0.7168	0.7336	0.5748	0.6788	0.6588	0.6650
TabICL	0.8410	0.7889	0.4612	0.7181	0.6147	0.6385	0.7283	0.7377	0.5793	0.7065	0.6397	0.6471
PDHFormer	0.8439	0.8015	0.5257	0.8205	0.8439	0.8233	0.7341	0.7579	0.6261	0.7242	0.7341	0.7120

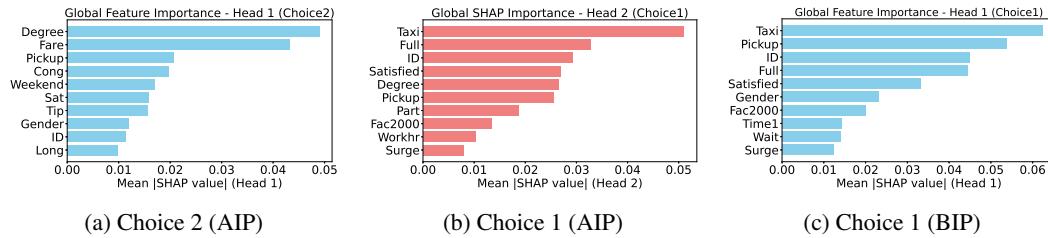
342 ing Accuracy (ACC), Area Under the ROC Curve (AUC), Area Under the Precision–Recall Curve
 343 (AUCPR), Precision, Recall, and F1 Score. All metrics are computed on the held-out test set. For
 344 above mentioned baseline models, both Choice 2/ Choice 1 and Choice A/ Choice B predictions
 345 are evaluated separately, and results are reported individually for each task. Detailed definitions and
 346 formulae for these metrics are provided in Appendix I.

349 4.3 RESULTS FOR AIP SCENARIO: JOINT CHOICE PREDICTION

351 We first evaluate PDHFormer using the AIP dataset, which includes both initial driver decision
 352 (Choice 1) and the revised decision (Choice 2) made after receiving additional information. This
 353 setting allows us to assess the model’s ability not only to make accurate predictions for each decision,
 354 but also to capture the dependency between them which standard parallel-head architectures are not
 355 designed to handle.

356 The training and validation loss curves (see Appendix A fig 3) show that the training loss steadily
 357 decreases, while the validation loss reaches its minimum around the 19th epoch. Predicted versus
 358 true labels for both Choice 2 and Choice 1 demonstrate strong alignment with ground truth, with
 359 only minor deviations for underrepresented classes (see Appendix A fig 4). This is consistent with
 360 the observed trends in Recall and F1 metrics.

361 Table 1 reports comparisons against baseline models. PDHFormer consistently achieves the best
 362 performance across all metrics, with substantial gains in Recall and F1, demonstrating robustness
 363 under class imbalance. To interpret model decisions, we apply SHAP analysis. Figs. 2a and 2b
 364 display the top 10 influential features for Choice 2 and Choice 1, respectively. The results show
 365 that the model captures a subset of meaningful features consistent with domain knowledge. Overall,
 366 these results demonstrate that in the AIP scenario, the proposed PDHFormer effectively predicts
 367 both Choice 2 and Choice 1.



375 Figure 2: Global SHAP feature importance results. Subfigures (a) and (b) correspond to the AIP
 376 scenario, while subfigure (c) shows the BIP scenario.

378 Table 2: Model compare for Choice 1 classification prediction in the BIP scenario: Top 1 results are
 379 in **red**, Top 2 in **yellow**, and Top 3 in **blue**. Choice 2 is **not applicable** here.
 380

Model	Choice 1					
	ACC↑	AUC↑	AUCPR↑	Prec↑	Recall↑	F1↑
Random Forest	0.7052	0.7486	0.5862	0.7256	0.5753	0.5528
Xgboost	0.6965	0.7512	0.6124	0.6523	0.6286	0.6340
Naive Bayes	0.6214	0.6328	0.4563	0.5865	0.5913	0.5876
Logistic Regression	0.6792	0.6654	0.4876	0.6254	0.5707	0.5620
HistGBM	0.7110	0.7684	0.6134	0.6767	0.6224	0.6272
Decision Tree	0.6792	0.6348	0.4289	0.6379	0.6348	0.6362
TabNet	0.6618	0.5975	0.4134	0.5816	0.5299	0.4947
SVM	0.7023	0.7018	0.5451	0.6753	0.5924	0.5867
TabTransformer	0.6647	0.5132	0.3544	0.4419	0.6647	0.5309
CatBoost	0.7023	0.7445	0.5971	0.6906	0.5817	0.5679
TabM	0.7052	0.7124	0.5391	0.6898	0.7052	0.6900
RealMLP	0.6647	0.6407	0.4805	0.7771	0.6647	0.5309
HyperFast	0.7139	0.7425	0.5897	0.6752	0.6502	0.6569
TabICL	0.7197	0.7196	0.5451	0.6860	0.6417	0.6493
PDHFormer	0.7225	0.6979	0.5465	0.7093	0.7225	0.7071

395 4.4 RESULTS FOR BIP SCENARIO: SINGLE CHOICE PREDICTION

396
 397 We further evaluate the PDHFormer in the BIP scenario, where only Choice 1 prediction is required,
 398 so the second classification head is completely disabled. This experiment serves two main purposes:
 399 (i) to isolate and evaluate the impact of disabling the second head, demonstrating that the shared
 400 encoder and first classification head can still perform effectively without relying on cross-choice
 401 information; and (ii) to assess the performance of the shared encoder and the first head when the
 402 model is trained in a purely single-target setting, thereby verifying that the progressive dual-head
 403 design does not degrade performance on simpler tasks. Training and validation loss curves clearly
 404 confirm effective optimization and stable convergence throughout training (see Appendix B fig 5a).
 405 Predicted versus true labels for Choice 1 demonstrate strong alignment with the ground truth, with
 406 only minor deviations for underrepresented classes (see Appendix B fig 5b).
 407

408 Table 2 compares PDHFormer with the same baseline models. Only one classification target Choice
 409 1 is needed in the BIP scenario, and PDHFormer again achieves the best results across all metrics,
 410 with clear improvements in Recall and F1. Finally, SHAP analysis provides interpretability. Fig. 2c
 411 highlights the top 10 influential features for Choice 1. The results show that the model relies on a
 412 subset of meaningful features consistent with domain knowledge.
 413

414 4.5 RESULTS FOR MANUFACTURING SCENARIO: JOINT CHOICE PREDICTION

415 To further validate the practical applicability of the proposed PDHFormer model, we conducted an
 416 exploratory evaluation on a real-world manufacturing dataset. Unlike the AIP and BIP scenarios
 417 which focus on simulated decision prediction tasks (Choice 2 and Choice 1), this dataset represents
 418 actual production-line measurements with highly imbalanced class distributions and complex feature
 419 dependencies. In this setting, we consider two categorical prediction tasks, denoted as Choice A
 420 and Choice B, which together reflect critical decision variables in the manufacturing flow. Training
 421 and validation loss curves confirm stable and effective optimization (see Appendix C fig 6). Pre-
 422 dicted versus true labels demonstrate strong alignment with ground truth for both tasks, with minor
 423 deviations for underrepresented classes (see Appendix C fig 7). We follow the same experimental
 424 setup as described before. Also compared the model performance with the same baselines as before.
 425

426 Due to the substantially larger size of this dataset compared to the AIP and BIP datasets, the Tab-
 427 Transformer model encountered GPU out-of-memory errors even on a device with 24 GB of memory.
 428 Its results are therefore not reported here. This observation highlights the scalability challenges
 429 faced by some Transformer-based tabular models when applied to large-scale industrial data, and
 430 further underscores the computational efficiency of our proposed Dual-Head Transformer.
 431

432 Table 3 summarizes the classification performance across all models for Choice A and Choice B,
 433 respectively. Our PDHFormer consistently outperforms baselines in terms of Accuracy, Recall, and
 434 F1 score on both tasks, highlighting its ability to effectively capture complex non-linear patterns in

432 Table 3: Model comparison on the manufacturing dataset for Choice A and Choice B: Top 1 results
 433 are in **red**, Top 2 in **yellow**, and Top 3 in **blue**.

434

435 Model	436 Choice A						437 Choice B					
	438 ACC↑	439 AUC↑	440 AUCPR↑	441 Prec↑	442 Recall↑	443 F1↑	444 ACC↑	445 AUC↑	446 AUCPR↑	447 Prec↑	448 Recall↑	449 F1↑
450 Random Forest	451 0.8578	452 0.9593	453 0.9492	454 0.8904	455 0.5805	456 0.6067	457 0.7454	458 0.8772	459 0.8154	460 0.6984	461 0.3233	462 0.3099
463 XGBoost	464 0.8699	465 0.9566	466 0.9457	467 0.8925	468 0.6217	469 0.6312	470 0.7797	471 0.9031	472 0.8606	473 0.7768	474 0.4639	475 0.4997
476 Naive Bayes	477 0.3959	478 0.7287	479 0.6670	480 0.3619	481 0.7004	482 0.2846	483 0.0781	484 0.5829	485 0.4917	486 0.2348	487 0.2976	488 0.0650
489 Logistic Regression	490 0.8690	491 0.9585	492 0.9422	493 0.6284	494 0.6368	495 0.6318	496 0.7528	497 0.8748	498 0.8054	499 0.6029	500 0.5620	501 0.4113
502 HistGBM	503 0.8151	504 0.8377	505 0.7621	506 0.5771	507 0.5793	508 0.5776	509 0.6413	510 0.7041	511 0.5984	512 0.3507	513 0.3600	514 0.3540
515 Decision Tree	516 0.8383	517 0.8466	518 0.7745	519 0.6085	520 0.6074	521 0.6080	522 0.7128	523 0.7514	524 0.6317	525 0.6573	526 0.4722	527 0.4641
529 TabNet	530 0.8652	531 0.9601	532 0.9442	533 0.8684	534 0.6159	535 0.6171	536 0.7723	537 0.8986	538 0.8487	539 0.8308	540 0.4653	541 0.4964
543 SVM	544 0.8299	545 0.9406	546 0.9196	547 0.8634	548 0.5735	549 0.5835	550 0.7221	551 0.8497	552 0.7697	553 0.8889	554 0.3133	555 0.3001
557 TabTransformer	558 -	559 -	560 -	561 -	562 -	563 -	564 -	565 -	566 -	567 -	568 -	569 -
571 CatBoost	572 0.8699	573 0.9632	574 0.9540	575 0.9049	576 0.5969	577 0.6207	578 0.7556	579 0.8866	580 0.8317	581 0.9024	582 0.3279	583 0.3140
586 TabM	587 0.7528	588 0.8713	589 0.8055	590 0.7507	591 0.7528	592 0.7456	593 0.7052	594 0.7124	595 0.5391	596 0.6898	597 0.7052	598 0.6900
601 RealMLP	602 0.5743	603 0.7889	604 0.7139	605 0.7555	606 0.5743	607 0.4191	608 0.4981	609 0.6171	610 0.5469	611 0.7500	612 0.4981	613 0.3313
616 HyperFast	617 0.8559	618 0.9424	619 0.9174	620 0.8635	621 0.5976	622 0.6042	623 0.7379	624 0.8568	625 0.7761	626 0.7430	627 0.3568	628 0.3750
631 TabICL	632 0.8225	633 0.9197	634 0.8988	635 0.8464	636 0.5202	637 0.5468	638 0.7314	639 0.8486	640 0.7789	641 0.8257	642 0.3328	643 0.3252
646 PDHFormer	647 0.8745	648 0.9593	649 0.9477	650 0.8758	651 0.8745	652 0.8746	653 0.8374	654 0.9322	655 0.8822	656 0.8342	657 0.8374	658 0.8307

447

448

449 real-world manufacturing data. These results demonstrate the model’s potential for deployment in
 450 production settings to assist in decision optimization.

451

452 4.6 RESULTS FOR MANUFACTURING SCENARIO: CHOICE-LINKED REGRESSION

453

454 To further evaluate model performance on the manufacturing dataset, we adapt the second classi-
 455 fication head of PDHFormer for regression prediction. Specifically, the output layer and loss function
 456 are modified to predict the continuous target *Regression A*, corresponding to Choice B in the origi-
 457 nal setup, while keeping the remaining network architecture unchanged, including the gated residual
 458 mechanism. The first classification target remains Choice A, the baseline models prediction results
 459 here are same as the table 3. The Regression A is the Choice A’s associated performance par-
 460 ameters. To evaluate the regression prediction performance, we use Mean Absolute Error (MAE),
 461 Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R^2 Score, and Pearson Correla-
 462 tion Coefficient (PCC). Besides, we noticed that GradientBoostingRegressor model is only support
 463 the regression prediction for target Regression A; TabTransformer model encountered GPU out-of-
 464 memory errors even on a device with 24 GB of memory; HyperFast model and TabICL model are
 465 only support the classification prediction for target Choice A.

466

467 Table 4 reports the regression performance of PDHFormer and baseline models on the manufac-
 468 turing dataset. Across all metrics, PDHFormer consistently achieves the lowest MAE and RMSE,
 469 while attaining the highest R^2 , demonstrating its superior capability to capture the relationship be-
 470 tween Choice A and the associated continuous target Regression A. These results highlight that the
 471 progressive dual-head design, together with the gated residual mechanism, not only benefits classi-
 472 fication performance but also effectively extends to regression tasks, confirming the versatility and
 473 robustness of PDHFormer in multi-target prediction scenarios.

474

475 Table 4: Model compare for regression prediction on manufacturing dataset : Top 1 results are in
 476 **red**, Top 2 in **yellow**, and Top 3 in **blue**

477

478 Model	479 Choice A						480 Regression A					
	481 ACC↑	482 AUC↑	483 AUCPR↑	484 Prec↑	485 Recall↑	486 F1↑	487 MAE↓	488 MSE↓	489 RMSE↓	490 R^2 ↑	491 PCC↑	
492 Random Forest	493 0.8578	494 0.9593	495 0.9492	496 0.8904	497 0.5805	498 0.6067	499 0.0061	500 0.0001	501 0.0075	502 0.7332	503 0.8699	
505 XGboost	506 0.8699	507 0.9566	508 0.9457	509 0.8925	510 0.6217	511 0.6312	512 0.0059	513 0.0001	514 0.0072	515 0.7560	516 0.8890	
518 GradientBoostingRegressor	519 -	520 -	521 -	522 -	523 -	524 -	525 0.0059	526 0.0001	527 0.0072	528 0.7501	529 0.8780	
532 HistGBM	533 0.8151	534 0.8377	535 0.7621	536 0.5771	537 0.5793	538 0.5776	539 0.0059	540 0.0001	541 0.0072	542 0.7497	543 0.8780	
546 Decision Tree	547 0.8383	548 0.8466	549 0.7745	550 0.6085	551 0.6074	552 0.6080	553 0.0056	554 0.0001	555 0.0072	556 0.7543	557 0.8691	
560 TabNet	561 0.8652	562 0.9601	563 0.9442	564 0.8684	565 0.6159	566 0.6171	567 0.0060	568 0.0001	569 0.0079	570 0.7015	571 0.8378	
574 SVM/SVR	575 0.8299	576 0.9406	577 0.9196	578 0.8634	579 0.5735	580 0.5835	581 0.0057	582 0.0001	583 0.0071	584 0.7565	585 0.8701	
588 TabTransformer	589 -	590 -	591 -	592 -	593 -	594 -	595 -	596 -	597 -	598 -	599 -	
602 CatBoost	603 0.8699	604 0.9632	605 0.9540	606 0.9049	607 0.5969	608 0.6207	609 0.0059	610 0.0001	611 0.0072	612 0.7512	613 0.8836	
616 TabM	617 0.7528	618 0.8713	619 0.8055	620 0.7507	621 0.7528	622 0.7456	623 0.0061	624 0.0001	625 0.0078	626 0.7136	627 0.8456	
629 RealMLP	630 0.5743	631 0.7889	632 0.7139	633 0.7555	634 0.5743	635 0.4191	636 0.0105	637 0.0002	638 0.0125	639 0.2540	640 0.5145	
643 HyperFast	644 0.8559	645 0.9424	646 0.9174	647 0.8635	648 0.5976	649 0.6042	650 -	651 -	652 -	653 -	654 -	
657 TabICL	658 0.8225	659 0.9197	660 0.8988	661 0.8464	662 0.5202	663 0.5468	664 -	665 -	666 -	667 -	668 -	
669 PDHFormer	670 0.8745	671 0.9639	672 0.9536	673 0.8786	674 0.8745	675 0.8752	676 0.0055	677 0.0001	678 0.0071	679 0.7578	680 0.8751	

486
487

4.7 ABLATION STUDY

488
489
490
491
492
493

Table 5 summarizes the impact of two core designs in PDHFormer: the gated residual (GR) mechanism and the progressive prediction structure. Our default model, **PDHFormer (Choice 2 → Choice 1)**, conditions the Choice 1 head on the hidden representation produced by the Choice 2 head. We compare it against three ablation variants: (i) **No-GR**, which removes the GR mechanism; (ii) **Parallel**, where both heads predict independently; and (iii) **Choice 1 → Choice 2**, which reverses the prediction direction.

494
495
496
497
498
499

Removing the GR mechanism consistently reduces performance. For example, in the BIP scenario, disabling GR lowers ACC from 0.7225 to 0.6994, F1 from 0.7071 to 0.6774 and Recall from 0.7225 to 0.6994, despite using the same single-head architecture. The similar drops are observed in AIP and manufacturing scenarios, indicating that GR mechanism improves learning stability and enhances feature representation across tasks, leading to more accurate predictive performance across both classification heads.

500
501
502
503
504
505
506
507
508
509
510
511
512
513

Comparing prediction structures, the progressive design (either Choice 1 → Choice 2 or Choice 2 → Choice 1) outperforms the parallel variant across all datasets. This confirms that explicitly modeling interdependence between decisions is beneficial. The direction matters: the decision predicted second consistently achieves the strongest results. In AIP, conditioning Choice 1 on Choice 2 (Choice 2 → Choice 1) gives the best Choice 1 performance, for example, Recall 0.7341 and F1 0.7120, exceeding the reversed direction. When predicting Choice 2, conditioning on Choice 1 (Choice 1 → Choice 2) gives higher scores on five of six metrics; the only exception is AUC, which is slightly higher under Choice 2 → Choice 1. The manufacturing dataset shows the same rule: predicting Choice A is best with Choice B → Choice A, and predicting Choice B is best with Choice A → Choice B; reversing the latter lowers Choice B F1 from 0.8307 to 0.7639. This pattern is expected: the second head receives an additional informative representation from the first head, thus enhancing its predictive accuracy. For the first head, its improvement (over parallel variant) might be because the shared common representation enhanced by training the second head under richer interdependent supervised signals. These comparisons demonstrate that both the gated residual mechanism and the progressive dual-head contribute substantially to the performance of PDHFormer.

514
515
516

Table 5: Ablation study for PDHFormer under different scenarios. Choice 1/ Choice 2 and Choice A/ Choice B corresponds to the specified input settings in each scenario. Top 1 results are in **red**.

Model	ACC↑	AUC↑	AUCPR↑	Prec↑	Recall↑	F1↑	ACC↑	AUC↑	AUCPR↑	Prec↑	Recall↑	F1↑
AIP Scenario Choice 2												
PDHFormer (No-GR)	0.8410	0.7895	0.5182	0.8138	0.8410	0.8145	0.7168	0.7541	0.6143	0.7021	0.7168	0.6946
PDHFormer (Parallel)	0.8353	0.7867	0.5042	0.8076	0.8353	0.8124	0.7023	0.7452	0.5950	0.6852	0.7023	0.6839
PDHFormer (Choice1→Choice2)	0.8497	0.7953	0.5301	0.8276	0.8497	0.8257	0.7052	0.7312	0.5972	0.6907	0.7052	0.6651
PDHFormer (Choice2→Choice1)	0.8439	0.8015	0.5257	0.8205	0.8439	0.8233	0.7341	0.7579	0.6261	0.7242	0.7341	0.7120
BIP Scenario Choice 2 (N/A)												
PDHFormer (No-GR)	-	-	-	-	-	-	0.6994	0.6939	0.5643	0.6808	0.6994	0.6774
PDHFormer (Ours)	-	-	-	-	-	-	0.7225	0.6979	0.5465	0.7093	0.7225	0.7071
Manufacturing Scenario Choice A												
PDHFormer (No-GR)	0.8606	0.9519	0.9362	0.8605	0.8606	0.8604	0.8355	0.9311	0.8792	0.8328	0.8355	0.8286
PDHFormer (Parallel)	0.8652	0.9547	0.9383	0.8675	0.8652	0.8646	0.7481	0.8784	0.8171	0.7413	0.7481	0.7353
PDHFormer (ChoiceB→ChoiceA)	0.9266	0.9851	0.9803	0.9282	0.9266	0.9267	0.7658	0.8942	0.8382	0.7627	0.7658	0.7639
PDHFormer (ChoiceA→ChoiceB)	0.8745	0.9593	0.9477	0.8758	0.8745	0.8746	0.8374	0.9322	0.8822	0.8342	0.8374	0.8307

527

5 CONCLUSION

529

In this work, we proposed the PDHFormer for progressive behavioral choice prediction, designed to jointly predict two correlated categorical decision variables. The model incorporates a dual-head output structure along with gated residual mechanism. Extensive experiments on simulated behavioral choice scenarios using an urban mobility choice dataset and a real-world manufacturing dataset demonstrate that the proposed model consistently outperforms state-of-the-art baselines, including GBDT variants and recent deep tabular models, across multiple evaluation metrics. The results confirm the effectiveness of the progressive dual-head design and gated residual mechanism in improving predictive performance, which enhance the capacity to capture complex dependencies among high-dimensional input features to improve the prediction performance, particularly for the second prediction head. Overall, the PDHFormer provides a reliable and generalizable framework for behavioral choice prediction. We will extend it to more interdependent choices in future work.

540 **REPRODUCIBILITY STATEMENT**
541542 We have taken extensive steps to ensure the reproducibility of our results. The main paper provides
543 a complete description of the model architecture in Sec. 3, the training objectives and composite loss
544 in Sec. 3.5, the experimental setup in Sec. 4, and the ablation studies in Sec. 4.7. Additional training
545 figures are provided in Appendix A, B, and C, hyperparameter configurations in Appendix F, data
546 preprocessing details in Appendix G, baselines descriptions in Appendix H and evaluation metrics
547 in Appendix I.548 To support reproducibility, we will release the code, preprocessing scripts, configuration files, and
549 trained checkpoints, along with instructions to regenerate the curated datasets, upon publication.
550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 REFERENCES
595

596 Daiqiao Ai, Jingxing Wu, Hanxuan Cai, Duancheng Zhao, Yihao Chen, Jiajia Wei, Jianrong Xu,
597 Jiquan Zhang, and Ling Wang. A multi-task fp-gnn framework enables accurate prediction of
598 selective parp inhibitors. *Frontiers in Pharmacology*, 13:971369, 2022.

599 Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In *Proceedings
600 of the AAAI conference on artificial intelligence*, volume 35, pp. 6679–6687, 2021.
601

602 Peyman Ashkrof, Gonçalo Homem de Almeida Correia, Oded Cats, and Bart Van Arem. Ride
603 acceptance behaviour of ride-sourcing drivers. *Transportation Research Part C: Emerging Tech-
604 nologies*, 142:103783, 2022.

605 David Bonet, Daniel Mas Montserrat, Xavier Giró-i Nieto, and Alexander G Ioannidis. Hyper-
606 fast: Instant classification for tabular data. In *Proceedings of the AAAI Conference on Artificial
607 Intelligence*, volume 38, pp. 11114–11123, 2024.

608 Leo Breiman. Random forests. *Machine learning*, 45(1):5–32, 2001.
609

610 Rich Caruana. Multitask learning. *Machine learning*, 28(1):41–75, 1997.
611

612 Neha Chaudhuri, Gaurav Gupta, Vallurupalli Vamsi, and Indranil Bose. On the platform but will they
613 buy? predicting customers’ purchase behavior using deep learning. *Decision Support Systems*,
614 149:113622, 2021.

615 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the
616 22nd acm sigkdd international conference on knowledge discovery and data mining*, pp. 785–794,
617 2016.

618 Zhifu Gao, Shiliang Zhang, Ian McLoughlin, and Zhijie Yan. Paraformer: Fast and accu-
619 rate parallel transformer for non-autoregressive end-to-end speech recognition. *arXiv preprint
620 arXiv:2206.08317*, 2022.
621

622 Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning
623 with parameter-efficient ensembling. In *The Thirteenth International Conference on Learning
624 Representations*, 2025. URL <https://openreview.net/forum?id=Sd4wYYOhmY>.
625

626 Fengwei Gu, Jun Lu, and Chengtao Cai. Rpformer: A robust parallel transformer for visual tracking
627 in complex scenes. *IEEE transactions on instrumentation and measurement*, 71:1–14, 2022.
628

629 Aleksei Guryanov. Histogram-based algorithm for building gradient boosting ensembles of piece-
630 wise linear decision trees. In *International Conference on Analysis of Images, Social Networks
631 and Texts*, pp. 39–50. Springer, 2019.

632 Xian-Feng Han, Yi-Fei Jin, Hui-Xian Cheng, and Guo-Qiang Xiao. Dual transformer for point cloud
633 analysis. *IEEE Transactions on Multimedia*, 25:5638–5648, 2022.
634

635 David Holzmüller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps and
636 boosted trees on tabular data. *Advances in Neural Information Processing Systems*, 37:26577–
26658, 2024.

637 Jing Hu, Jie Gao, Xiaomin Fang, Zijing Liu, Fan Wang, Weili Huang, Hua Wu, and Guodong
638 Zhao. Dtsyn: a dual-transformer-based neural network to predict synergistic drug combinations.
639 *Briefings in Bioinformatics*, 23(5):bbac302, 2022.
640

641 Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
642 modeling using contextual embeddings. *arXiv preprint arXiv:2012.06678*, 2020.

643 Thorsten Joachims. Making large-scale svm learning practical. Technical report, Technical report,
644 1998.
645

646 Rishi Reddy Kothinti. Deep learning in healthcare: Transforming disease diagnosis, personalized
647 treatment, and clinical decision-making through ai-driven innovations. *World Journal of Ad-
vanced Research and Reviews*, 24(2):2841–2856, 2024.

648 Rahul Kumar, João Mendes-Moreira, and Joydeep Chandra. Spatio-temporal parallel transformer
 649 based model for traffic prediction. *ACM Transactions on Knowledge Discovery from Data*, 18(9):
 650 1–25, 2024.

651 Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
 652 Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
 653 proving. *Advances in neural information processing systems*, 35:26337–26349, 2022.

654 Qi Liu, Zhilong Zhou, Gangwei Jiang, Tiezheng Ge, and Defu Lian. Deep task-specific bottom
 655 representation network for multi-task recommendation. In *Proceedings of the 32nd ACM Inter-*
 656 *national Conference on Information and Knowledge Management*, pp. 1637–1646, 2023.

657 Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
 658 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 659 1871–1880, 2019.

660 Ivan Lopes, Tuan-Hung Vu, and Raoul de Charette. Densemtl: Cross-task attention mechanism for
 661 dense multi-task learning. *arXiv preprint arXiv:2206.08927*, 2022.

662 Tao Ma and Ying Tan. Adaptive and dynamic knowledge transfer in multi-task learning with atten-
 663 tion networks. In *International Conference on Data Mining and Big Data*, pp. 1–13. Springer,
 664 2020.

665 José Ángel Martín-Baos, Julio Alberto López-Gómez, Luis Rodriguez-Benitez, Tim Hillel, and
 666 Ricardo García-Ródenas. A prediction and behavioural analysis of machine learning methods
 667 for modelling travel mode choice. *Transportation research part C: emerging technologies*, 156:
 668 104318, 2023.

669 Kevin P Murphy et al. Naive bayes classifiers. *University of British Columbia*, 18(60):1–8, 2006.

670 Ahmed Nassar, Nikolaos Livathinos, Maksym Lysak, and Peter Staar. Tableformer: Table structure
 671 understanding with transformers. In *Proceedings of the IEEE/CVF Conference on Computer
 672 Vision and Pattern Recognition*, pp. 4614–4623, 2022.

673 Andrew Ng and Michael Jordan. On discriminative vs. generative classifiers: A comparison of
 674 logistic regression and naive bayes. *Advances in neural information processing systems*, 14,
 675 2001.

676 Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
 677 Gulin. Catboost: unbiased boosting with categorical features. *Advances in neural information
 678 processing systems*, 31, 2018.

679 Jingang Qu, David Holzmažller, Gašper Varoquaux, and Marine Le Morvan. Tabicl: A tabular
 680 foundation model for in-context learning on large data. *arXiv preprint arXiv:2502.05564*, 2025.

681 Peter Samoaa, Mehrdad Farahani, Antonio Longa, Philipp Leitner, and Morteza Haghir
 682 Chehreghani. Analysing the behaviour of tree-based neural networks in regression tasks. *arXiv
 683 preprint arXiv:2406.11437*, 2024.

684 Sakib Shahriar, Abdul-Rahman Al-Ali, Ahmed H Osman, Salam Dhou, and Mais Nijim. Prediction
 685 of ev charging behavior using machine learning. *Ieee Access*, 9:111576–111586, 2021.

686 Rohit Sharma and James Xiaoyu Gao. A progressive design and manufacturing evaluation system
 687 incorporating step ap224. *Computers in Industry*, 47(2):155–167, 2002.

688 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 689 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 690 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

691 Yan-Yan Song and Ying Lu. Decision tree methods: applications for classification and prediction.
 692 *Shanghai archives of psychiatry*, 2015.

702 Mohammad Tamim Kashifi, Arshad Jamal, Mohammad Samim Kashefi, Meshal Almoshaogeh, and
 703 Syed Masiur Rahman. Predicting the travel mode choice with interpretable machine learning
 704 techniques: A comparative study. *Travel Behaviour and Society*, 29:279–296, 2022. ISSN 2214-
 705 367X. doi: <https://doi.org/10.1016/j.tbs.2022.07.003>.

706 Kiran Tomlinson and Austin R Benson. Graph-based methods for discrete choice. *Network Science*,
 707 12(1):21–40, 2024.

709 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 710 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 711 *tion processing systems*, 30, 2017.

712 Hanzhao Wang, Xiaocheng Li, and Kalyan Talluri. Transformer choice net: A transformer neural
 713 network for choice prediction. *arXiv preprint arXiv:2310.08716*, 2023a.

715 Shenhao Wang, Baichuan Mo, Stephane Hess, and Jinhuan Zhao. Comparing hun-
 716 dreds of machine learning classifiers and discrete choice models in predicting
 717 travel behavior: an empirical benchmark. *ArXiv*, abs/2102.01130, 2021. URL
 718 <https://api.semanticscholar.org/CorpusID:231750028>.

719 Wenle Wang, Wentao Xiong, Jing Wang, Lei Tao, Shan Li, Yugen Yi, Xiang Zou, and Cui Li. A
 720 user purchase behavior prediction method based on xgboost. *Electronics*, 12(9):2047, 2023b.

721 Long Xue, Kai Zhou, and Xiaoge Zhang. Continuous optimization for construction of neural
 722 network-based prediction intervals. *Knowledge-Based Systems*, 293:111669, 2024.

724 Fangyuan Yan, Bin Yan, and Mingtao Pei. Dual transformer encoder model for medical image
 725 classification. In *2023 IEEE International Conference on Image Processing (ICIP)*, pp. 690–694.
 726 IEEE, 2023.

728 Ting Yao, Yehao Li, Yingwei Pan, Yu Wang, Xiao-Ping Zhang, and Tao Mei. Dual vision trans-
 729 former. *IEEE transactions on pattern analysis and machine intelligence*, 45(9):10870–10882,
 730 2023.

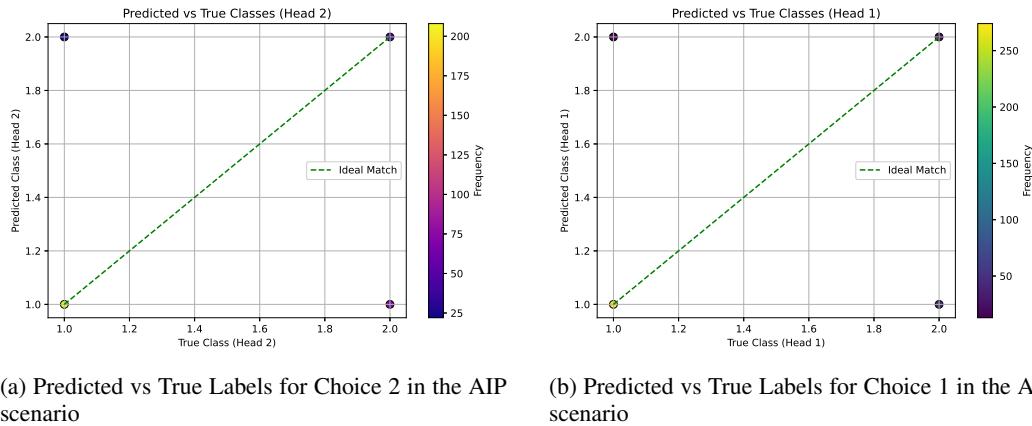
731 Shuhang Zhang, Zhi Wang, Rui Gao, and Shuang Li. Deep context-dependent choice model. In *2nd*
 732 *Workshop on Models of Human Feedback for AI Alignment*.

733 Xilei Zhao, Xiang Yan, Alan Yu, and Pascal Van Hentenryck. Prediction and behavioral analysis of
 734 travel mode choice: A comparison of machine learning and logit models. *Travel Behaviour and*
 735 *Society*, 20:22–35, 2020. ISSN 2214-367X.

737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

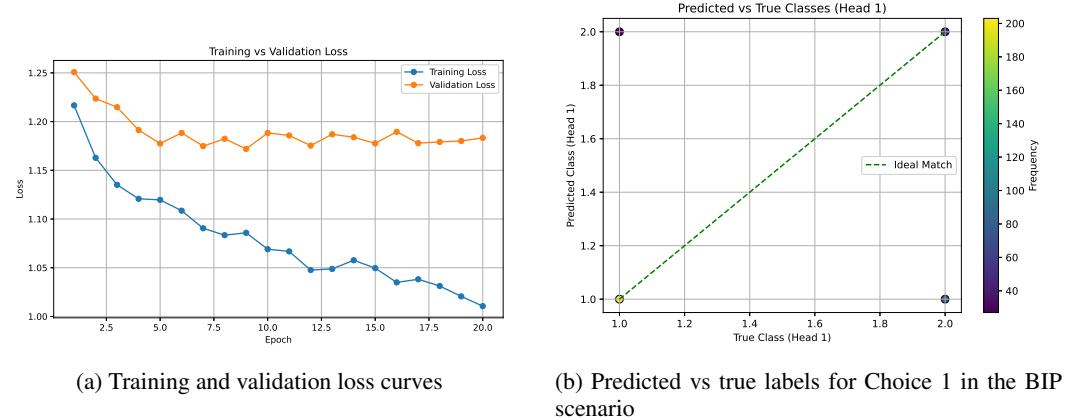
756 A TRAINING AND PREDICTION FIGURES FOR AIP SCENARIO
757

758 The training and validation loss curves (Fig. 3) for the AIP scenario indicate a steady decrease in
759 training loss, while the validation loss attains its minimum at approximately the 19th epoch. In
760 Fig. 4a and 4b The comparison between predicted and true labels for both Choice 2 and Choice 1
761 exhibits strong concordance with the ground truth. These observations align with the trends reported
762 in the Recall and F1 metrics.

775 Figure 3: Training and validation loss curves of the PDHFormer model in the AIP scenario.
776788 (a) Predicted vs True Labels for Choice 2 in the AIP
789 scenario790 (b) Predicted vs True Labels for Choice 1 in the AIP
scenario791 Figure 4: Scatter plots of predicted vs true labels on the test set.
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 B TRAINING AND PREDICTION FIGURES FOR BIP SCENARIO 811

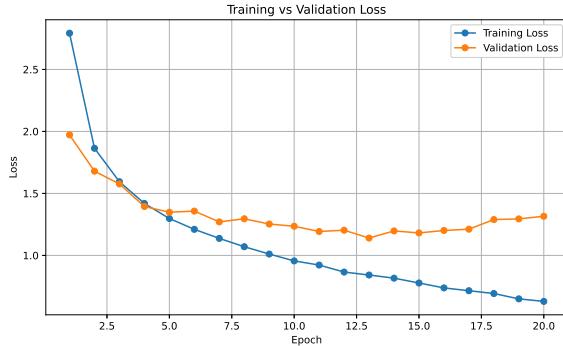
812 The training and validation loss curves for the BIP scenario (Fig. 5a) indicate that the training loss
813 consistently decreases, while the validation loss reaches its minimum at the 9th epoch. A slight
814 overfitting is observed beyond this point; nevertheless, the model corresponding to the lowest vali-
815 dation loss is retained for evaluation. In Fig. 5b, the predicted versus true labels demonstrate good
816 agreement with the ground truth, which is consistent with trends observed in the Recall and F1
817 metrics.



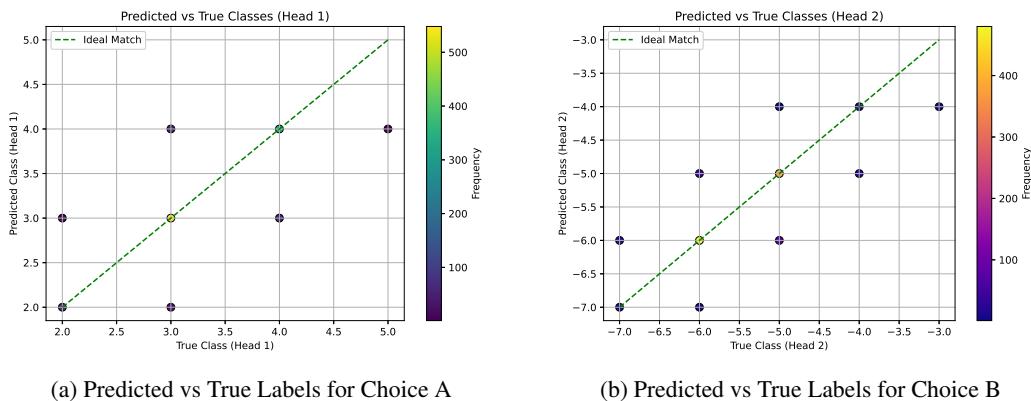
830 Figure 5: BIP scenario: (a) training and validation loss curves; (b) predicted and true labels for
831 Choice 1.
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 C TRAINING AND PREDICTION FIGURES FOR MANUFACTURING DATASET
865

866 The training and validation loss curves for the PDHFormer model on the manufacturing dataset
867 (Fig. 6) show that the training loss steadily decreases, while the validation loss reaches its minimum
868 at the 13th epoch. Slight overfitting occurs beyond this point; however, the model corresponding to
869 the lowest validation loss is preserved for evaluation. In Fig. 7a and Fig. 7b, the predicted versus
870 true labels align well with the ground truth, with minor deviations observed for underrepresented
871 classes, consistent with trends in the Recall and F1 metrics.



884 Figure 6: Training and validation loss curves of the PDHFormer model on the Manufacturing
885 dataset.



886 (a) Predicted vs True Labels for Choice A

887 (b) Predicted vs True Labels for Choice B

888 Figure 7: Scatter plots of predicted versus true labels for the Manufacturing dataset.

918 **D EXTENDED EXPERIMENTS ON AN ADDITIONAL DELIVERY DATASET**
919

920 To address reviewers' concerns regarding dataset diversity and model generalizability,
921 we conduct additional experiments on an operational dataset derived from online deliv-
922 ery platform Meituan, which we refer to as the Delivery Dataset. The dataset was
923 obtained from the Meituan INFORMS TSL Research Challenge, publicly available at:
924 <https://github.com/meituan/Meituan-INFORMS-TSL-Research-Challenge>.
925 We gratefully acknowledge that the experiment was supported by data provided by Meituan. This
926 dataset contains three sequential decision targets, allowing us to evaluate PDHFormer under a com-
927 plex multi-choice prediction setting beyond the two-choice structure presented in the main paper.
928

929 **D.1 DATASET DESCRIPTION**
930

931 The dataset contains rich information describing the order dispatching and courier assignment pro-
932 cess. Each record consists of 24 features, including:
933

934

935 - **Binary operational indicators:** `is_courier_grabbed`, `is_weekend`, `is_prebook`;
936 - **Geolocation coordinates:** sender and recipient locations (`sender_lng`, `sender_lat`,
937 `recipient_lng`, `recipient_lat`) and courier location (`grab_lng`, `grab_lat`);
938 - **Time-related variables:** estimated arrival times, dispatching times, meal preparation
939 times, and order push timestamps in hour–weekday–minute format.

940 In this dataset, we define the following three binary decision targets:
941

942

943 - **Head 1:** `is_courier_grabbed`, indicating whether a courier accepted the order;
944 - **Head 2:** `is_weekend`, reflecting whether the order occurred on a weekend day;
945 - **Head 3:** `is_prebook`, identifying whether the user requested a prebooked delivery ser-
946 vice.

947 The full dataset contains 654,343 instances. To ensure efficient experimentation and fair runtime
948 comparison against multiple baseline models, we randomly sample 10% of the data (65,434 records)
949 while preserving the original distribution of all three decision targets.
950

951 **D.2 MODEL EXTENSION TO THE THIRD HEAD**
952

953 We use the same encoder, gated residual mechanism as described in Section 3 of the main paper, and
954 training hyperparameters as described in Appendix F, considering the instances number increase, we
955 slightly increase the epoch number to 30.
956

957 To incorporate a third sequential decision while maintaining architectural consistency, we replicate
958 the head-to-head connector mechanism used between the first and second heads. The replicate
959 follows the same architectural pattern used in the two-head version as Section 3.3 of the main paper.
960 So we refer this model as 3Head-PDHformer. Let $\mathbf{z}_2 \in \mathbb{R}^{C_2}$ denote the logits produced by the
961 second head. We first map these logits into a low-dimensional embedding via a learnable projection:
962

963
$$\mathbf{e}_2 = \mathbf{z}_2 \mathbf{W}_c^{(2)} \in \mathbb{R}^{d_{\text{hid}}}, \quad (13)$$

964 where $\mathbf{W}_c^{(2)} \in \mathbb{R}^{C_2 \times d_{\text{hid}}}$ is the projection matrix for the second head.
965

966 Next, this embedding is concatenated with the shared contextual representation $\mathbf{h} \in \mathbb{R}^{d_{\text{hid}}}$ from the
967 encoder:
968

969
$$\mathbf{h}_3 = [\mathbf{h}; \mathbf{e}_2] \in \mathbb{R}^{2d_{\text{hid}}}. \quad (14)$$

970 The resulting vector \mathbf{h}_3 serves as the input to the third prediction head, enabling the model to repre-
971 sent the dependency
972

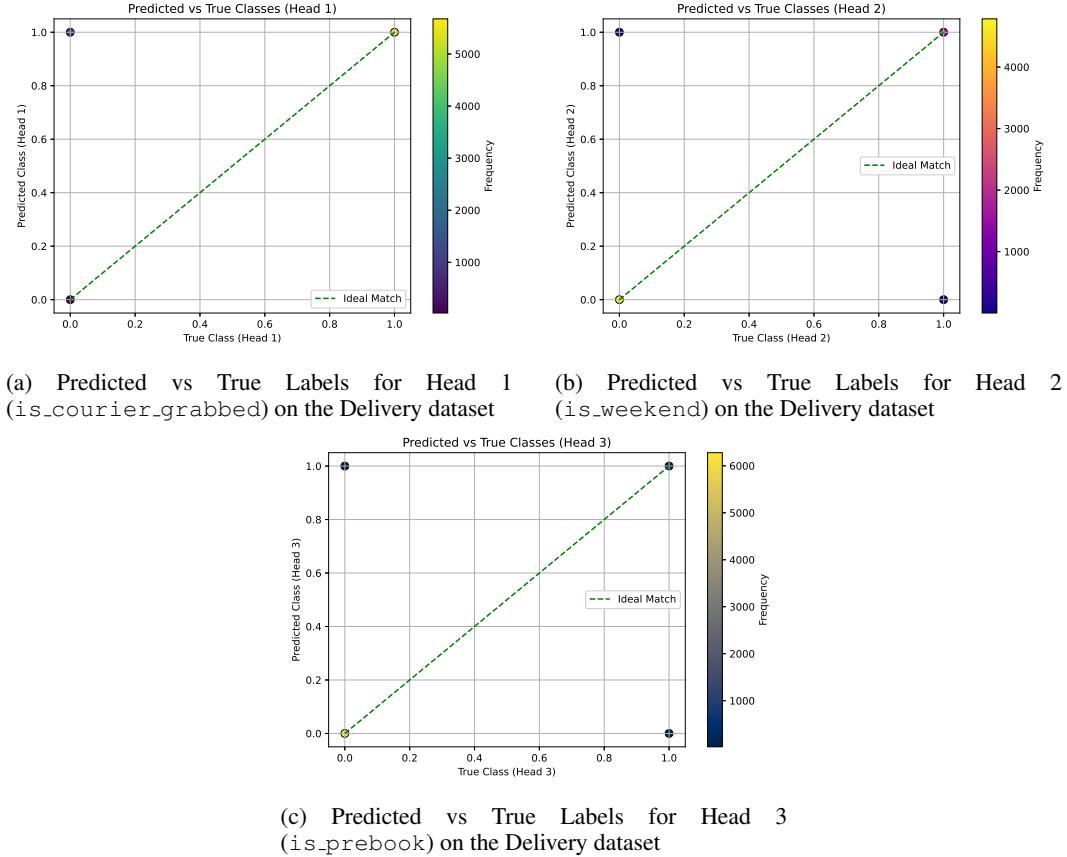
973 Choice A → Choice B → Choice C.
974

975 This design is modular and compositional: the head-to-head connector directly mirrors the structure
976 used in the two-head case and can be repeatedly applied, enabling PDHFormer to scale naturally
977 to decision sequences of arbitrary length (e.g., three, four, or more interdependent choices) while
978 preserving directional-dependency modeling and maintaining computational simplicity.
979

972 **D.3 TRAINING AND PREDICTION FIGURES**
973
974

975 The training and validation loss curves as Fig. 8 for the delivery dataset indicate a steady decrease
976 in training loss, while the validation loss attains its minimum at approximately the 30th epoch. In
977 Fig. 9a,9b and 9c The comparison between predicted and true labels for Head 1, Head 2 and Head 3
978 exhibits strong concordance with the ground truth.

991 Figure 8: Training and validation loss curves of the 3Head-PDHFormer model on the Delivery
992 dataset.



1021 Figure 9: Scatter plots of predicted vs true labels on the test set.

1022 To interpret model decisions, we apply SHAP analysis. Figs. 10a, 10b and 10c display the top 10
1023 influential features for Head 1, Head 2 and Head 3 respectively. The results show that the model
1024 captures a subset of meaningful features consistent with domain knowledge. Overall, these results
1025 demonstrate that for delivery dataset, the proposed model effectively predicts multiple choice.

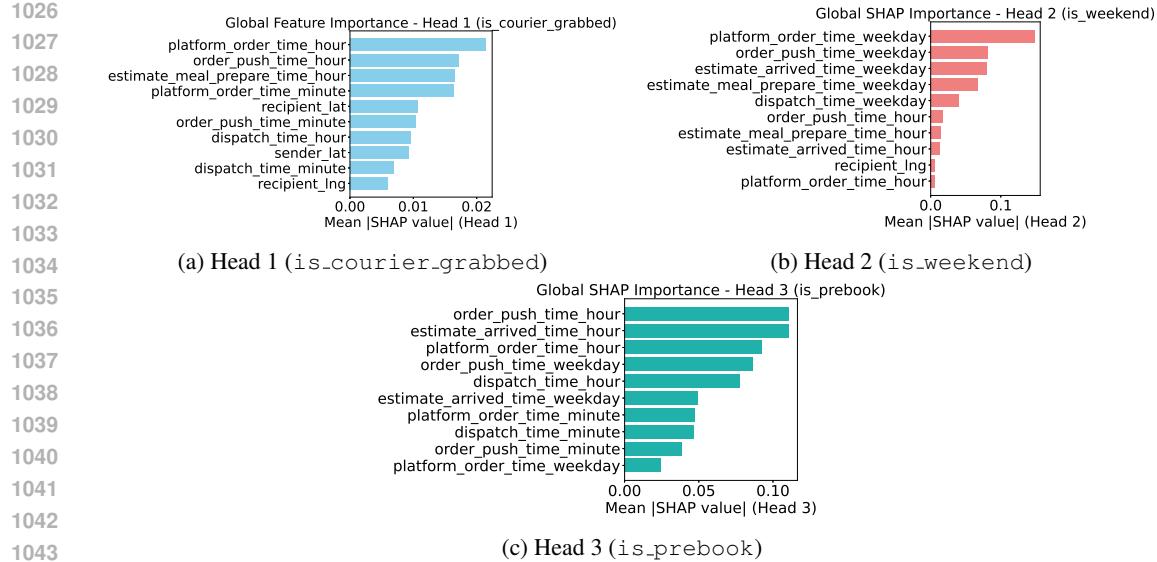


Figure 10: Global SHAP feature importance results for the delivery dataset. Subfigures (a), (b), and (c) correspond to the three prediction targets: `is_courier_grabbed`, `is_weekend`, and `is_prebook`, respectively.

D.4 BASELINES COMPARE

All baseline models were extended to output three predictions accordingly. Due to time and computational constraints, we selected a subset of baselines of main paper that either performed strongly in the previous experiments or represent recent state-of-the-art approaches, and adapted them for three-choice prediction.

For evaluation, we report a set of standard classification metrics, including Accuracy (ACC), Area Under the ROC Curve (AUC), Area Under the Precision–Recall Curve (AUCPR), Precision, Recall, and F1 Score for each decision target.

Table 6, Table 7 and Table 8 summarizes the classification performance across all models for the three prediction targets: `is_courier_grabbed`, `is_weekend`, and `is_prebook`, respectively. Our 3Head-PDHFormer consistently outperforms baselines in terms of Accuracy, Recall, and F1 score on different tasks, highlighting its ability to effectively capture complex non-linear patterns in real-world delivery data.

Table 6: Model comparison on the delivery dataset for `is_courier_grabbed`: Top 1 results are in red, Top 2 in yellow, and Top 3 in blue.

Model	ACC \uparrow	AUC \uparrow	AUCPR \uparrow	Precision \uparrow	Recall \uparrow	F1 \uparrow
Random Forest	0.8710	0.7059	0.9368	0.9353	0.5149	0.4944
Xgboost	0.8671	0.7404	0.9475	0.9335	0.5000	0.4644
CatBoost	0.8671	0.7090	0.9394	0.9335	0.5000	0.4644
RealMLP	0.8671	0.5529	0.8943	0.8847	0.8671	0.8053
HyperFast	0.8703	0.7023	0.9391	0.8444	0.5150	0.4951
TabICL	0.8721	0.5427	0.8770	0.7969	0.5292	0.5227
3Head-PDHFormer	0.8710	0.7471	0.9504	0.8877	0.8710	0.8147

1080 Table 7: Model comparison on the delivery dataset for `is_weekend`: Top 1 results are in **red**, Top
 1081 2 in **yellow**, and Top 3 in **blue**.

1082

Model	ACC \uparrow	AUC \uparrow	AUCPR \uparrow	Precision \uparrow	Recall \uparrow	F1 \uparrow
Random Forest	0.9957	0.9999	0.9996	0.9965	0.9926	0.9945
Xgboost	0.9986	1.0000	1.0000	0.9991	0.9974	0.9982
CatBoost	0.9985	1.0000	0.999	0.9984	0.9977	0.9981
RealMLP	0.9833	0.9923	0.9769	0.9833	0.9833	0.9833
HyperFast	0.9956	0.9999	0.9997	0.9941	0.9946	0.9944
TabICL	0.9995	0.9997	0.9996	0.9997	0.9991	0.9994
3Head-PDHFormer	0.9989	1.0000	1.0000	0.9989	0.9989	0.9989

1090

1091

1092 Table 8: Model comparison on the delivery dataset for `is_prebook`: Top 1 results are in **red**, Top
 1093 2 in **yellow**, and Top 3 in **blue**.

1094

Model	ACC \uparrow	AUC \uparrow	AUCPR \uparrow	Precision \uparrow	Recall \uparrow	F1 \uparrow
Random Forest	0.9645	0.8613	0.5032	0.9822	0.5304	0.5482
Xgboost	0.9623	0.9434	0.7242	0.9811	0.5000	0.4904
CatBoost	0.9623	0.9058	0.5017	0.9811	0.5000	0.4904
RealMLP	0.9623	0.6377	0.0644	0.9637	0.9623	0.9437
HyperFast	0.9705	0.9609	0.7173	0.9763	0.6113	0.6740
TabICL	0.9914	0.9561	0.8611	0.9573	0.9216	0.9387
3Head-PDHFormer	0.9861	0.9874	0.8988	0.9854	0.9861	0.9853

1104

1105

E HARDWARE INFORMATION

1106

1107

Table 9: Experimental Environment Specifications

1108

1109

Category	Details
Hardware Configuration	
CPU	AMD Ryzen™ 9 5950X
GPU	NVIDIA RTX 3090
RAM	128 GB
Storage	NVMe SSD
Software Environment	
Operating System	Windows 10
Python Version	3.10.18
PyTorch-GPU Version	2.4.1
CUDA Version	12.4
Scikit-learn Version	1.26.4
Pandas Version	2.3.2
Numpy Version	1.7.1
XGBoost Version	3.0.5
Matplotlib Version	3.10.5
Seaborn Version	0.13.2
SciPy Version	1.15.3
SHAP Version	0.48.0

1127

1128

1129

1130

1131

1132

1133

1134 **F HYPERPARAMETERS SETTINGS**
11351136 Table 10: Hyperparameters
1137

1138 Category	1139 Details
Model Hyperparameters	
1140 Input Embedding's Input Dimension	Features Nums
1141 Input Embedding Hidden Size	256
1142 Input Embedding's Output Dimension	128
1143 PDHFormer Encoder Input Dimension	128
1144 PDHFormer Encoder Hidden Dimension	512
1145 PDHFormer Encoder Output Dimension	128
1146 Encoder Block	2
1147 Number of Attention Heads	8
1148 Head 1 Input Dimension	128
1149 Head 1 Hidden Dimension	32
1150 Head 1 output Dimension	Class Nums (Choice 2)
1151 Projected Embedding Dimension	8
1152 Head to Head Connector Dimension Operation	128(Head 1 Input) + 8 (Projected Embedding)
1153 Head 2 Input Dimension	136
1154 Head 2 Hidden Dimension	32
1155 Head 2 output Dimension	Class Nums (Choice 1)
Training Hyperparameters	
1156 Dropout Rate	0.4
1157 Optimizer	AdamW
1158 Learning Rate	1×10^{-4}
1159 LR Weight Decay	1×10^{-2}
1160 Batch Size	32
1161 Epochs	20
1162 Classification Loss Functions	CrossEntropyLoss
1163 Classification Loss Weight α	2 (Choice 2)
1164 Classification Loss Weight β	1.2 (Choice 1)
1165 Gate Regularization Loss Weight γ	0.01
1166 Gate Weight (Embed Stage 1)	1
1167 Gate Weight (Classifier)	1
1168 Gate Weight (Regressor)	1
1169 Gate Initial Bias	0
1170 Gate Initial Weight	Xavier uniform
1171 Gate Initial Gain	1
1172 Random Seed	42
PyTorch Deterministic Mode	True
PyTorch Benchmarking	False

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **G DATA PREPROCESSING**
11891190 In this paper, we evaluate on two datasets:
11911192 (i) the *Urban Mobility Choice* dataset, which can be used directly without any preprocessing.
11931194 (ii) the *Manufacturing* dataset that requires several preprocessing steps, so we implement the following
1195 steps to prepare the dataset: Empirical tests showed this threshold effectively eliminates samples
1196 with missing values; Duplicate columns and columns with near-zero variance are excluded, unless
1197 marked as important for the task; Highly correlated features (absolute Pearson correlation coefficient
1198 greater than 0.99) are removed to reduce redundancy and multicellularity; Categorical features
1199 are encoded with one-hot encoding if they have fewer than 10 unique categories; otherwise, label
1200 encoding is applied; String-type columns with constant values are dropped since they do not provide
1201 discriminative information; Boolean-type features are converted to integer format to maintain numerical
1202 consistency; All remaining features are standardized using Z-score normalization (mean = 0, standard deviation = 1), which is essential for stable convergence in neural network-based models;
1203 The calibration code as classification target is mapped linearly to integer classes starting from 0 up
1204 to the total number of unique codes, facilitating classification; The calibration value as regression
1205 target is independently normalized using a separate Z-score scaler; After feature standardization, any
1206 samples containing NaN values are removed to ensure clean inputs; The cleaned dataset is randomly
1207 split into training (80%), validation (10%), and test (10%) subsets. Stratified sampling is used based
1208 on the classification target to preserve class distribution balance; Finally, all subsets are converted to
1209 PyTorch tensors and packaged into `DataLoaders` for efficient batch-wise training and evaluation.
12101211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **H BASELINES DETAILS**
12431244 **H.1 CLASSICAL MACHINE LEARNING METHODS**
1245

- 1246 • **Logistic Regression** (Ng & Jordan, 2001): A linear classifier modeling the log-odds of
1247 class probabilities, widely used for interpretable classification tasks.
- 1248 • **Naive Bayes** (Murphy et al., 2006): A probabilistic model assuming conditional indepen-
1249 dence among features given the class, efficient for text and tabular classification.
- 1250 • **Support Vector Machines (SVMs)** (Joachims, 1998): A margin-based classifier that
1251 learns separating hyperplanes in feature space, often effective with kernel methods.
- 1252 • **Decision Trees** (Song & Lu, 2015): A non-parametric model that partitions the input space
1253 into regions using recursive feature splits.

1254
1255 **H.2 ENSEMBLE MODELS**
1256

- 1257 • **Random Forests** Breiman (2001): An ensemble of decision trees trained on bootstrapped
1258 samples with feature randomness, reducing variance and improving generalization.
- 1259 • **XGBoost** (Chen & Guestrin, 2016): A gradient-boosted decision tree algorithm optimized
1260 for speed and regularization.
- 1261 • **CatBoost** (Prokhorenkova et al., 2018): A boosting method designed to handle categorical
1262 variables efficiently with ordered boosting to avoid target leakage.
- 1263 • **HistGBM** (Guryanov, 2019): A histogram-based gradient boosting method improving
1264 training efficiency on large datasets.

1265
1266 **H.3 NEURAL ARCHITECTURES FOR TABULAR DATA**
1267

- 1268 • **TabTransformer** (Huang et al., 2020): An attention-based architecture that models depen-
1269 dencies among categorical features via Transformer layers, enabling improved representa-
1270 tion learning for tabular data.
- 1271 • **TabNet** (Arik & Pfister, 2021): A deep tabular architecture that employs sequential at-
1272 tention to select salient features at each decision step, enabling both interpretability and
1273 efficient representation learning, with support for self-supervised pretraining.
- 1274 • **TabM** (Gorishniy et al., 2025): A parameter-efficient ensembling approach where a single
1275 MLP imitates an ensemble of multiple MLPs by sharing most parameters, achieving strong
1276 performance and efficiency on tabular learning benchmarks.
- 1277 • **RealMLP** (Holzmüller et al., 2024): Proposes optimized MLP-based architectures and
1278 training strategies for competitive performance on tabular data.
- 1279 • **HyperFast** (Bonet et al., 2024): A meta-trained hypernetwork that generates dataset-
1280 specific neural networks for tabular classification in a single forward pass.
- 1281 • **TabICL** (Qu et al., 2025): A tabular foundation model leveraging in-context learning, pre-
1282 trained on synthetic datasets up to 60K samples; it introduces a column-then-row attention
1283 mechanism to scale ICL to large tables.

1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 I EVALUATION METRIC DETAILS

1298 Here are the classification evaluation metrics which used in our Table 1, Table 2 and Table 3. Let y_i
 1299 and \hat{y}_i denote the true and predicted class labels, and let C be the total number of classes. Here, TP_c
 1300 (true positives) is the number of correctly predicted samples for class c ; FP_c (false positives) is the
 1301 number of samples incorrectly predicted as class c ; FN_c (false negatives) is the number of samples
 1302 of class c incorrectly predicted as other classes; N_c is the number of true samples belonging to class
 1303 c ; and $N = \sum_{c=1}^C N_c$ is the total number of samples.

- 1305 • **Accuracy (ACC)** measures the proportion of correctly predicted labels:

$$1306 \quad 1307 \quad 1308 \quad \text{ACC} = \frac{\sum_{c=1}^C TP_c}{N} \quad (15)$$

- 1309 • **Area Under the Receiver Operating Characteristic Curve (AUC):** Let $TPR(t)$ and
 1310 $FPR(t)$ denote the true positive rate and false positive rate at threshold t , respectively.
 1311 Then the AUC is computed as the integral over all thresholds:

$$1312 \quad 1313 \quad 1314 \quad \text{AUC} = \int_0^1 TPR(FPR) d(FPR) \quad (16)$$

- 1315 • **Area Under the Precision-Recall Curve (AUCPR):** Let $\text{Precision}(r)$ denote precision as
 1316 a function of recall r . Then the AUCPR is:

$$1317 \quad 1318 \quad 1319 \quad \text{AUCPR} = \int_0^1 \text{Precision}(r) dr \quad (17)$$

- 1320 • **Precision** is the average precision across classes, weighted by support:

$$1321 \quad 1322 \quad 1323 \quad \text{Precision} = \sum_{c=1}^C \frac{N_c}{N} \cdot \frac{TP_c}{TP_c + FP_c} \quad (18)$$

- 1324 • **Recall** is the average recall across classes, also weighted:

$$1326 \quad 1327 \quad 1328 \quad \text{Recall} = \sum_{c=1}^C \frac{N_c}{N} \cdot \frac{TP_c}{TP_c + FN_c} \quad (19)$$

- 1329 • **F1 Score** is the harmonic mean of precision and recall:

$$1331 \quad 1332 \quad 1333 \quad \text{F1} = \sum_{c=1}^C \frac{N_c}{N} \cdot \frac{2 \cdot \text{Precision}_c \cdot \text{Recall}_c}{\text{Precision}_c + \text{Recall}_c} \quad (20)$$

1334 Except for the common classification metrics, we use Mean Absolute Error (MAE), Mean Squared
 1335 Error (MSE), Root Mean Squared Error (RMSE), R^2 Score, and Pearson Correlation Coefficient
 1336 (PCC) to evaluate the regression prediction performance in Appendix ?? Table 4. Let y_i and \hat{y}_i
 1337 denote the true and predicted regression values.

- 1338 • **Mean Absolute Error (MAE):**

$$1340 \quad 1341 \quad 1342 \quad \text{MAE} = \frac{1}{N} \sum_{i=1}^N |\hat{y}_i - y_i| \quad (21)$$

- 1343 • **Mean Squared Error (MSE):**

$$1345 \quad 1346 \quad 1347 \quad \text{MSE} = \frac{1}{N} \sum_{i=1}^N (\hat{y}_i - y_i)^2 \quad (22)$$

- 1348 • **Root Mean Squared Error (RMSE):**

$$1349 \quad \text{RMSE} = \sqrt{\text{MSE}} \quad (23)$$

1350 • R^2 Score:

1351
$$R^2 = 1 - \frac{\sum_{i=1}^N (\hat{y}_i - y_i)^2}{\sum_{i=1}^N (y_i - \bar{y})^2} \quad (24)$$
 1352
1353

1354 where \bar{y} denotes the mean of the true values.

1355 • Pearson Correlation Coefficient (PCC):

1356
$$PCC = \frac{\sum_{i=1}^N (\hat{y}_i - \bar{y})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^N (\hat{y}_i - \bar{y})^2} \cdot \sqrt{\sum_{i=1}^N (y_i - \bar{y})^2}} \quad (25)$$
 1357
1358
1359

1360 All metrics are computed on the held-out test set. Weighted classification metrics are used to account
1361 for class imbalance, and inverse scaling is applied to regression outputs for correct unit interpreta-
1362 tion.

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404
1405
J DATASET FEATURE LISTS1406
1407
1408
1409
This appendix provides the complete feature lists for the two publicly describable datasets used in
our experiments: (1) the *Urban Mobility Choice Dataset* under AIP and BIP scenarios, and (2) the
Delivery Dataset derived from an online delivery platform. For reproducibility and clarity, we list
all features for these two datasets in Tables 11 and 12, respectively.1410
1411
1412
The Urban Mobility Choice Dataset contains behavioral, temporal, demographic, and contextual
features used in the AIP/BIP choice prediction tasks. The complete list of features is summarized in
Table 11.1413
1414
Table 11: Complete feature list of the Urban Mobility Choice Dataset used in AIP/BIP scenarios.

Category	Features
All Features	ID, Choice1, Choice2, Req, Time, Time1, Time2, Wait, Dec, Rate, Pickup, Loc, Surge, Long, Cong, Tip, Fare, Block, Workhr, Part, Full, Age, Beginners, Experienced, Acceptance, EarnInc, ExpInc, Satisfied, Taxi, Gender, Partner, Degree, NY, CA, NY_CA, Morning, Midday, Afternoon, Evening, Night, Fac1000, Fac2000, Weekend, Weekend_Friday, Sat_Fri, Sat, Thu_Fri_Sat, Peak_evening, Peak_morning, Peak

1423
1424
1425
The delivery dataset includes temporal, spatial, and operational features from an online delivery
platform. These variables relate to three sequential decision targets: `is_courier_grabbed`,
`is_weekend`, and `is_prebook`. All features are listed in Table 12.1426
1427
Table 12: Complete feature list for the Delivery Dataset.

Category	Features
All Features	<code>is_courier_grabbed</code> , <code>is_weekend</code> , <code>is_prebook</code> , <code>sender_lng</code> , <code>sender_lat</code> , <code>recipient_lng</code> , <code>recipient_lat</code> , <code>grab_lng</code> , <code>grab_lat</code> , <code>estimate_arrived_time_hour</code> , <code>estimate_arrived_time_weekday</code> , <code>estimate_arrived_time_minute</code> , <code>dispatch_time_hour</code> , <code>dispatch_time_weekday</code> , <code>dispatch_time_minute</code> , <code>estimate_meal_prepare_time_hour</code> , <code>estimate_meal_prepare_time_weekday</code> , <code>estimate_meal_prepare_time_minute</code> , <code>order_push_time_hour</code> , <code>order_push_time_weekday</code> , <code>order_push_time_minute</code> , <code>platform_order_time_hour</code> , <code>platform_order_time_weekday</code> , <code>platform_order_time_minute</code>

1437
1438
1439
1440
Another dataset used in the main paper, the *manufacturing scenario dataset* is derived from an
industrial production line. Due to confidential, we are unable to disclose the full list of feature names.
However, all experimental procedures, model configurations, and evaluation protocols remain fully
documented to ensure scientific transparency.1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458 **K COMPUTATIONAL COST COMPARISON**
1459

1460 Following the reviewer’s suggestion to report computational cost, we extend our architecture
 1461 by introducing a parallel dual-encoder variant, consistent with prior dual-path Transformer de-
 1462 signs (Yao et al., 2023; Han et al., 2022; Yan et al., 2023; Hu et al., 2022; Samoaa et al., 2024). Un-
 1463 like “parallel-head” designs, these works process the same input through two separate Transformer
 1464 encoders and merge the representations at the latent level. To compare with this line of work, we
 1465 modify PDHFormer as follows:

1466 • The first encoder processes the embedded input:

1468 $x_{\text{enc1}} = \text{TransformerEncoder}_1(x_{\text{embed}})$

1470 • The second encoder processes the same embedded input independently:

1472 $x_{\text{enc2}} = \text{TransformerEncoder}_2(x_{\text{embed}})$

1473 • The outputs are averaged:

1474 $x_{\text{enc}} = 0.5 \cdot (x_{\text{enc1}} + x_{\text{enc2}})$

1476 The aggregated representation is then fed into the PDHFormer predictor. We compare the compu-
 1477 tational cost and predictive performance of the original **single-encoder PDHFormer** and the new
 1478 **parallel-encoder PDHFormer**. Experiments are conducted on the Delivery Dataset under the 3-
 1479 choice setting for 30 epochs. Table 13 compared the training and inference cost, and Table 14
 1480 compared the single-encoder and parallel-encoder performance.

1481 Table 13: Single-Encoder and Parallel-Encoder Computational Cost Comparison

Metric / Model Variant	Single-Encoder PDFormer	Parallel-Encoder PDFormer
Training Time (s)	394.85	460.77
Inference Time (per batch, ms)	1.67	2.42
Inference Time (per sample, ms)	0.0260	0.0378

1487 Table 14: Single-Encoder and Parallel-Encoder Performance Comparison Across All Heads

Head	Metric	Single-Encoder	Parallel-Encoder
Head 1: <code>is_courier_grabbed</code>	ACC \uparrow	87.10%	87.09%
	AUC \uparrow	0.7471	0.7429
	AUCPR \uparrow	0.9504	0.9498
	Precision \uparrow	0.8877	0.8786
	Recall \uparrow	0.8710	0.8709
	F1 \uparrow	0.8147	0.8149
Head 2: <code>is_weekend</code>	ACC \uparrow	99.89%	99.94%
	AUC \uparrow	1.0000	1.0000
	AUCPR \uparrow	1.0000	1.0000
	Precision \uparrow	0.9989	0.9994
	Recall \uparrow	0.9989	0.9994
	F1 \uparrow	0.9989	0.9994
Head 3: <code>is_prebook</code>	ACC \uparrow	98.61%	98.52%
	AUC \uparrow	0.9874	0.9867
	AUCPR \uparrow	0.8988	0.8826
	Precision \uparrow	0.9854	0.9844
	Recall \uparrow	0.9861	0.9852
	F1 \uparrow	0.9853	0.9842

1509 The parallel dual-encoder design substantially increases computational cost while offering negligible
 1510 performance improvement. Training and inference times increase by roughly 45%, while accuracy,
 1511 AUC, and F1 vary by less than 0.1%. This confirms that the single-encoder PDHFormer is more
 efficient, justifying the use of the single-encoder architecture in the main paper.

1512 **L THE USE OF LARGE LANGUAGE MODELS (LLMs)**
15131514 In this work, large language models were leveraged to assist in refining and formatting LaTeX
1515 content, including tables, figures, and equations. The LLMs provided suggestions for improving
1516 clarity, consistency, and alignment of visual elements, ensuring that all figures and tables adhered to
1517 publication-quality standards while reducing manual editing effort.
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565