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Abstract

Large language models (LLMs) have demon-
strated remarkable performance across various
real-world tasks. However, recent studies re-
veal that LLMs often struggle to fully compre-
hend and effectively utilize their input contexts,
resulting in responses that lack faithfulness or
suffer from hallucination. This difficulty be-
comes particularly evident when the contexts
are lengthy or contain distracting information,
which can divert LLMs from fully capturing
essential evidence. Most prior work focuses
on designing effective prompts to guide LLMs
in utilizing contextual information more faith-
fully. For instance, iterative prompting high-
lights key information through two high-level
prompting steps that first ask the LLM to iden-
tify important pieces of context and then de-
rive answers accordingly. However, prompting
methods are constrained to highlighting key in-
formation implicitly in token space, which is
often insufficient to fully steer the model’s at-
tention. To improve model faithfulness more re-
liably, we propose AutoPASTA, a method that
automatically identifies contextual key infor-
mation and explicitly highlights it by steering
the model’s attention scores. Similar to prompt-
ing, AutoPASTA is applied at inference time
and does not require changing any model pa-
rameters. Our experiments on open-book QA
demonstrate that AutoPASTA can effectively
guide models to grasp essential contextual in-
formation, leading to substantially improved
model faithfulness and performance, e.g., an
average improvement of 11.26% for LLAMA3-
8B-Instruct. Code will be publicly available.

1 Introduction

Large language models (LLMs) exhibit remarkable
performance across various natural language pro-
cessing (NLP) tasks and artificial intelligence (Al)
applications (Brown et al., 2020; Touvron et al.,
2023; OpenAl, 2023). Despite their remarkable
capabilities, recent studies reveal that LLMs often

encounter challenges in fully understanding their
input contexts, overlooking or showing insensitiv-
ity to crucial contextual information (Kasai et al.,
2023; Li et al., 2023; Si et al., 2023; Zhou et al.,
2023; Yu et al., 2024; Zhang et al., 2024). Con-
sequently, the models tend to fabricate answers
(also known as hallucination), resulting in unfaith-
ful responses that are inconsistent with the pre-
sented contexts (Zhou et al., 2023; Yu et al., 2024).
This becomes particular problematic when mod-
els are presented prompts containing lengthy back-
ground contexts (Liu et al., 2023) or complex ques-
tions, such as open-book question answering (QA)
(Kwiatkowski et al., 2019; Shi et al., 2023b; Peng
et al., 2023). In these information-dense scenarios,
lengthy contexts can overwhelm LL.Ms, which con-
tain many details with varying degree of relevance
(Wan et al., 2024; Zhang et al., 2024). Some sen-
tences are crucial for providing the correct answer,
while others, though irrelevant, can distract models
from fully capturing the essential information.

To improve model faithfulness, most prior work
explores well-designed prompts to guide the LLM
to use contextual knowledge more reliably (Zhou
et al., 2023; Wan et al., 2024; Radhakrishnan et al.,
2023). In particular, iterative prompting in chain-
of-thought (COT; Wei et al., 2022) fashion can help
LLMs decompose complex task-solving into more
interpretable and manageable intermediate steps,
thus yielding better performance (Radhakrishnan
et al., 2023). Motivated by this, it is natural to de-
sign multi-step iterative prompting to guide LLMs
to pay more attention to relevant contextual parts
and derive answers accordingly. Specifically, for
open-book QA tasks iterative prompting can be
decomposed into two steps: (i) identifying key in-
formation and (ii) deriving answers using the key
information. This strategy can work effectively
for black-box LLMs of significantly large sizes
(e.g., >100B) (Radhakrishnan et al., 2023). How-
ever, for LLMs of smaller sizes (e.g., LLAMAS3-
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Figure 1: The illustration of AutoPASTA and alternative methods given a running example. Responses by Vicuna-7B are shown
in red square where Authority is the label. Prompting methods (direct and iterative prompting) fail to guide a model to derive
correct answers while AutoPASTA successfully steers it to answer correctly by explicitly highlighting identified key parts.

70B, Meta, 2024), it remains unclear if this strategy
can guide models to fully attend to the extracted
key information and subsequently improve perfor-
mance. First, step-by-step generations typically re-
sult in longer contexts. However, key information
is only highlighted in token space by appending
the short predicted key sentences, which are often
not strong enough to fully steer the model’s atten-
tion. As illustrated in the left part of Figrue 1, even
though the model correctly predicts the key sen-
tence which is appened in the subsequent prompt,
it still fails to provide the correct answer. Moreover,
erTors can propagate across steps, further compro-
mising performance. Therefore, we aim to develop
an alternative inference framework that emulates
iterative prompting while addressing these limita-
tions.

Motivated by this, we propose AutoPASTA, an
inference-only approach that (i) automatically iden-
tifies key contextual parts, and (ii) explicitly high-
lights them through attention score manipulation
for improving model faithfulness and performance
on open-book QA tasks. Specifically, AutoPASTA
integrates iterative question-decomposition prompt-
ing and attention steering approaches (Zhang et al.,
2024). Given the original context and question,
AutoPASTA first prompts an LLM to identify the
key information (sentences) through free-text gen-
eration. Then, instead of appending those key
sentences to the initial prompt, AutoPASTA maps
those sentences back to the original context using

semantic embeddings (Figure 1 right). By using
the original sentences for highlighting, we avoid
more lengthy input for the next step, and poten-
tially reduce the unfaithful key sentences gener-
ations, mitigating the error propagation. Finally,
to guide the model to attend to the selected key
sentences, AutoPASTA highlights them through at-
tention steering that upweights their corresponding
attention scores at the selected attention heads as
done by Zhang et al. (2024). Unlike existing atten-
tion steering work, our method does not necessitate
human annotation on the highlighting part, recti-
fying its critical limitation. Additionally, we also
design an efficient coarse-to-fine search scheme for
identifying effective attention heads for steering,
which reduces the searching overheads by 4.5
compared to the greedy method used by previous
work (Zhang et al., 2024).

We conduct experiments to evaluate the effec-
tiveness of AutoPASTA using Vicuna-7B (Chiang
etal., 2023), LLAMA3-8B-Instruct, and LLAMA3-
70B-Instruct (Meta, 2024) on both single- and
multi-hop open-book QA tasks from Natural Ques-
tions (NQ; Kwiatkowski et al., 2019) and Hot-
potQA (Yang et al., 2018b). AutoPASTA consis-
tently provides significant performance improve-
ments over baseline prompting strategies. For ex-
ample, AutoPASTA achieves an average improve-
ment of 18.28% on exact-match (EM) score over it-
erative prompting for LLAMA3-8B-Instruct across
both tasks. Remarkably, the attention head sets



obtained by AutoPASTA exhibit outstanding gen-
eralization ability, allowing them to be effectively
steered across different tasks.

2 Background

Problem description. In standard LLM prompt-
ing, we are given a pre-trained LLM and a text
prompt & consisting of n tokens. In the closed-
book setting, the prompt & can only be a question
or instruction to be completed by models. Relying
solely on model parametric knowledge poses chal-
lenges in scenarios involving complex questions
that entail new knowledge or private information
(Zhou et al., 2023; Yu et al., 2024). Existing meth-
ods (Shi et al., 2023b; Peng et al., 2023) resort
to augmenting the prompt with additional back-
ground contexts to facilitate question answering,
i.e., open-book question answering. The follow-
ing box presents a prompt template that we use for
open-book QA:

A direct prompt template for open-book QA

Answer the question below, paired with a context that provides
background knowledge. Only output the answer without other
context words.

Context: {context}

Question: {question}

Answer:
\ J

Multi-head attention. A typical transformer
model consists of L stacked layers, where each
layer contains two submodules: a multi-head
attention (MHA) and a fully connected feed-
forward network (FFN). Given the input X €
R™*4 MHA of the layer [ performs the atten-
tion function in parallel H heads: MHA® (X)) =
Concat(H®V .., HEH))YW , with

HM = Softmax(ALM)yy R

where A = ﬁQK T e R™™ is the scaled
inner product between query Q) and key K.
Q=Xw, K=XW,,V=XW, and
W, Wi, ,W,, € R™d are learnable projec-
tion matrices of head h. dy, is typically set to d/H.

Post-hoc attention steering. Zhang et al. (2024)
propose PASTA, an inference-only method that ap-
plies attention reweighting to steer model attention
towards user-highlighted input sets, thereby im-
proving instruction following and contextual com-
prehension. Specifically, given the index set of

user-specified tokens as G (G C [n]), PASTA high-
light these tokens by upweighting their attention
scores with a constant attention bias B (")

HGY = Softmax(A(l’h) + B(l’h))V(l’h),
B _ { —§ if(l,h)cHandj¢ g (D

v 0 otherwise.

where 0 is a positive constant. After Softmax(-),
the attention scores of tokens not in G is scaled
down by exp(d). Correspondingly, the others in G
are upweighted due to the renormalization of Soft-
max!, steering the model to pay more attention to
the input spans of G. Following Zhang et al. (2024),
we set & = log 100 in all of our experiments. # is
an index set of attention heads selected for steering.
Since various heads function diversely, steering
different heads yields dramatically different per-
formance. To identify the effective heads, Zhang
et al. (2024) employ a greedy search approach that
evaluates the steering performance of each head on
multiple tasks and selects those with best accuracy.
The resulting head set H can be generalized for
steering across different tasks.

PASTA requires the access to user-annotated in-
put spans for highlighting. In the case of context-
specific tasks, it is generally prohibitively expen-
sive to extract and annotate relevant sentences from
lengthy contexts through humans. To address this
critical limitation and improve the contextual faith-
fulness by automatic explicit highlighting, we in-
troduce our method — AutoPASTA.

3 Method

Our proposed method — Automatic Post-hoc Atten-
tion Steering Approach (AutoPASTA), integrates
iterative prompting and attention steering. This in-
tegration synergistically combines the advantages
of both techniques while mitigating their respective
limitations. For multi-step iterative prompting, in-
corporating attention steering externalizes the high-
lighting of key information through an inference-
only operation, efficiently enhancing model faith-
fulness with improved reliability and controllability.
For post-hoc attention steering, equipping it with
iterative prompting enables the automatic identi-
fication of contextually relevant key information,
thereby addressing its significant reliance on hu-
man annotations.

'Misa simplified formula from Equation (2) in Zhang
et al. (2024), which we elaborate in Appendix A.



Algorithm 1 AutoPASTA

Input a question g, a context c, the head set H of
an LLM M, prompt templates P;, P4 and 4.
1: Generate g; = Generate(Pi(q, c));
2: Calculate s = Match, (g1, {s1,-.-,Sm});
3: Steer g, = Steery s, (Generater((Py(q, c)));
Output: The final answer g,

3.1 Automatic Contextual Highlighting

In the open-book QA task, an LLM M is prompted
to answer a question q paired with a background
context ¢ that consists of m sentences ¢ =
s1||...||8m- Instead of directly prompting an
LLM with (q, c), AutoPASTA first prompts the
LLM to generate a key sentence from the context c
that supports answering the question:

g1 = Generate(Pi(q. ©)), 2

where P; is the prompt template of key sentence
identification that we show in Section 4.1. Then,
AutoPASTA maps g; back to a sentence from the
original context ¢ to avoid potential token-level
generation errors in g; and mitigate error propa-
gation. Specifically, it employs a small encoder e
to calculates the semantic embeddings of g; and
every s;(1 < i <m), and pick the best-matching
sentence s with the highest similarity to g;:

s, = Match, (gl, {s1,..., sm}> ce. 3

In the final step, AutoPASTA steers the attention
scores of tokens in s; based on (1) at the specific
attention heads H, when directly prompting the
LLM M to derive the answer for (g, ¢):

go = Steery s, (GenerateM (Pa(q, c))) 4)

where Py is the prompt template of direct answer-
ing as shown in Section 2, and Steery; g, () is de-
tailed by (1) with G as the index set of s;. As
such, the identified key sentence si is explicitly
highlighted through attention score upweighting,
directing the model to grasp the key information
and generate more faithful answers. Notably, Au-
toPASTA is applied at inference time and does not
require changing any model parameters. More im-
portantly, it does not involve human annotation on
highlighted parts. The key information is automat-
ically identified by iterative prompting the model
M, addressing the major limitation of existing at-
tention steering approach.

3.2 Coarse-to-fine Model Profiling

AutoPASTA requires carefully selecting 7, the set
of attention heads to be steered in (1), but find-
ing these heads can be computationally intensive.
Zhang et al. (2024) propose a greedy search strat-
egy that evaluates the steering performance of each
head on small validation sets of multiple tasks and
selects the heads that yield the best performance.
This greedy strategy requires evaluating L x H
times, resulting in non-trivial overheads especially
for large models. To improve the efficiency of
searching heads, we propose an alternative coarse-
to-fine model profiling scheme that searches from
the layer level to head level. Specifically, we first
evaluate the performance of steering all attention
heads of one single layer, then pick the top-I lay-
ers, and further evaluate the steering performance
of each head in these layers. The head set H is
obtained by selecting the best-performing heads
from top-/ layers. Empirically, we find that a small
[ (e.g.,l = 6 compared to L = 32) is sufficient for
AutoPASTA to achieves superior performance and
identify effective attention heads that can general-
ize across tasks, substantially reducing the search-

ing overheads to ”ﬁ}L.

4 Experiments

We conduct experiments to evaluate the effective-
ness of AutoPASTA using Vicuna-7B (Chiang
etal., 2023), LLAMA3-8B-Instruct, and LLAMA3-
70B-Instruct (Meta, 2024) on both single- and
multi-hop open-book QA tasks including Natural
Questions (NQ, (Kwiatkowski et al., 2019)) and
HotpotQA (Yang et al., 2018b).

4.1 Experimental Setup

Dataset. We study 2 datasets: the MRQA ver-
sion (Fisch et al., 2019) of Natural Questions (NQ)
(Kwiatkowski et al., 2019) and HotpotQA (Yang
et al., 2018a). Following the filtering procedures
outlined by Yu et al. (2024), duplicated and low-
quality questions are removed from the NQ dataset,
resulting in 7,189 instances remaining in NQ, and
5,190 instances in HotpotQA. For each dataset, we
randomly select 1,000 examples as the profiling set
and keep the remaining examples as the test set (see
breakdown in Table 5). For all the experiments, we
present two evaluation metrics: Exact Match (EM),
and Token-level F1 score. We apply greedy search
decoding for all experiments.



Task Prompt Baseline AutoPASTA

NQ Answer the question below, paired with a context that provides background knowledge. Only output
the answer without other context words.
Context: Although the delegates were divided early on as to whether to break from Crown rule, the
second Continental Congress on July 2, 1776, passed a resolution asserting independence, with
no opposing vote recorded. The Declaration of Independence was issued two days later declaring
themselves a new nation: the United States of America. It established a Continental Army, giving
command to one of its members, George Washington of Virginia. It waged war with Great Britain,
made a militia treaty with France, and funded the war effort with loans and paper money.
Question: when did the continental congress vote to adopt the declaration of independence?
Answer:

X The Continental v July 2,
Congress voted to 1776.

adopt the Declaration

of Independence on  Label: July 2.
July 4, 1776. 1776.

HotpotQA Answer the question below, paired with a context that provides background knowledge. Only output 110 miles.
the answer without other context words.

Context: [1]: Branford, Connecticut - Branford is a shoreline town located on Long Island Sound
in New Haven County, Connecticut, 8 mi east of New Haven. The population was 28,026 at the
2010 census. [2]: Long Island Sound - Long Island Sound is a tidal estuary of the Atlantic Ocean,
lying between the eastern shores of Bronx County, New York City, southern Westchester County,
and Connecticut to the north, and the North Shore of Long Island, to the south. From east to west,
the sound stretches 110 miles (177 km) from the East River in New York City, along the North Shore
of Long Island, to Block Island Sound. A mix of freshwater from tributaries and saltwater from the
ocean, Long Island Sound is 21 miles (34 km) at its widest point and varies in depth from 65 to.
Question: How long is the tidal estuary in which Branford is a shoreline town?

Answer:

X Long Island Sound. v/

Label:110 miles.

Table 1: Generation examples of a Vicuna-7B on NQ and HotpotQA. Texts in bold are predicted by the model for
highlighting and texts in blue are highlighted by AutoPASTA.

Implementation Details. We use PyTorch to im-  ual hop separately. Finally, we highlight s; by

plement the evaluation pipeline and all methods
(Paszke et al., 2019). Our implementation is based
on the publicly available Huggingface Transform-
ers> (Wolf et al., 2019). All the experiments are
conducted on NVIDIA A6000 and A100 GPUs.

AutoPASTA Settings. For AutoPASTA, we uti-
lize the following prompt template P; to prompt a
LLM M to identify the key information from the
context that support answering the question.

Prompt template P; of key sentence identification

A question, and a passage are shown below. Please select the
key sentence in the passage that supports to answer the question
correctly. Only output the exactly same sentence from the passage
without other additional words.

Question: {question}

Passage: {context}

Sentence:

Then, we map the predicted key sentence g
back to the original context by (3), which uses a
small encoder models to calculate the semantic
embeddings of the predicted key sentence g, and
every sentence s; in the context c. Specifically, we
use a "all-MinilLM-L6-v2" model from Sentence-
Transformer (Reimers and Gurevych, 2019) as the
encoder to encode sentences. Then, we calculate
the cosine similarity between semantic embeddings
of g; and each sentence s; in the context, and select
the contextual sentence sy with the highest similar-
ity score as the final key sentence prediction. For
multi-hop question answering, such as HotpotQA,
the key sentences are identified for each individ-

https://huggingface.co/

(4) while directly prompting the model to answer
the question paired by the context with the direct
prompting template shown in Section 2.

Coarse-to-fine Model Profiling. For the coarse-
to-fine search strategy outlined in Section 3.2, we
consider all attention heads in the top-/ layers as
potential candidates for selection, where [ is chosen
from {3, 4, 5, 6}. Subsequently, we either select
top-¢ heads from each individual layer, or top-j
heads from the pool of head candidates. Top-: is
chosen from {4, 6, 8}, and top-j is chosen from
{16, 24, 32, 64}. The final head set utilized in the
study is determined based on the highest token-F1
performance achieved on the profiling set.

Baselines. We evaluate three open-source LLMs:
Vicuna-7B (Chiang et al., 2023), Llama3-8B-
Instruct, and Llama3-70B-Instruct under direct
prompting, iterative prompting, and direct prompt-
ing with AutoPASTA.

e Direct prompting: Models are prompted to di-
rectly answer the question g based on the provided
context c. The prompt template Py is displayed in
Section 2.

o [terative Prompting: Models are first prompted
to generate the key sentence that supports answer-
ing the question, using the same prompt template
‘P;. For multi-hop question answering, such as Hot-
potQA, the key sentences are identified for each
individual hop separately. The predicted key sen-
tences are also mapped back to the original context,
similar as that in AutoPASTA. Then, the model
are prompted to answer the question with the key
sentences appended to the context:


https://huggingface.co/

NQ HotpotQA All

Model Method EM TokenFl | EM TokenFl | Ave.

Direct Prompting 8.13 33.79 18.11 38.77 24.770

. Iterative Prompting 4.36 31.48 14.04 34.99 21.22
Vicuna-7B

AutoPASTA ;u( of-domain generalize | 11.78 35.53 21.94 39.92 27.29

AutoPASTA ;,_domain profiling 19.77 46.72 29.54 4751 35.89

Direct Prompting 8.68 41.55 10.55 49.34 27.53

Iterative Prompting 13.21 47.28 27.39 62.25 37.53

LLAMAS-8B AutoPASTA ut-of-domain generalize | 31.93 52.36 44.49 66.95 48.93

AutoPASTA - domain profiling 29.34 51.60 | 47.82 66.39 48.79

Direct Prompting 17.33 53.50 31.45 69.49 42.94

Iterative Prompting 13.97 53.12 17.71 65.49 37.57

LLAMA3-708 AutoPASTA ;u(-of-domain generalize | 39-26 55.97 54.77 73.43 54.86

AutoPASTA - domain profiling 34.74 57.65 54.40 71.90 54.67

Table 2: Evaluation results using Vicuna-7B, LLAMA-8B-Instruct, and LLAMA3-70B-Instruct on NQ and
HotpotQA. "In-domain" means that the head set is selected based on the profiling set of the target task. "Out-of-
domain" means that the head set is selected from the other dataset and the target task is unseen during the profiling.

Prompt Templates of Two-Round Iterative Prompting

[First Round]: A question, and a passage are shown below. Please
select the key sentence in the passage that supports to answer the
question correctly. Only output the exactly same sentence from the
passage without other additional words.

Question: {Question}

Passage: {Evidence}

Sentence:

[Second Round]: Answer the question below, paired with a context
that provides background knowledge, and a key sentence. Only
output the answer without other context words.

Context: {Evidence}

Key Sentence: { Predicted key sentence}

Question: {Question}

Answer:

4.2 Main Result: AutoPASTA improves
open-book QA.

To demonstrate the effectiveness of AutoPASTA,
we evaluate its performance on NQ and HotpotQA.
Specifically, there are two settings: in-domain and
out-of-domain evaluation. In the in-domain setting,
we evaluate its performance on a task, using the
head set that is selected based on the performance
on the profiling set of the same task. Differently,
the out-of-domain setting assesses the generaliza-
tion ability of AutoPASTA, where the head set H
is selected from a different dataset, and the target
task is totally unseen during the profiling.

In-domain Evaluation. The results in Table 2
suggest that, for all the models, AutoPASTA sig-
nificantly improves the model performance com-
pared with other baselines, regardless of model size

and datasets. For example, AutoPASTA achieves
47.82% EM for LLAMA3-8B-Instruct on Hot-
potQA, yielding a significant 20.43% improvement
compared to the best-performing baseline. We also
observe that iterative prompting can mostly im-
prove upon the direct prompting, showcasing the
performance gains from identifying key sentences
and appending them to contexts. However, in cer-
tain cases, such as Vicuna-7B and LLAMA3-70B-
Instruct on HotpotQA, iterative prompting can ac-
tually underperform direct prompting. It suggests
that highlighting in token space by appending key
sentences is insufficient to fully steer a model’s
attention. In contrast, AutoPASTA shows a consis-
tently substantial improvement over all baselines,
demonstrating the effectiveness of automatic atten-
tion steering to improve model faithfulness. Table 1
further illustrates this by comparing the generation
examples of AutoPASTA and direct prompting.

Out-of-domain Evaluation. In this setting, given
an evaluation task (e.g., NQ), we employ the head
sets selected from profiling on the profiling set of
the other task (e.g., HotpotQA) for AutoPASTA to
evaluate its generalization ability across different
domains and tasks. The results in Table 2 indicate
that AutoPASTA significantly outperforms all base-
line methods for all models and all datasets, achiev-
ing better or comparable performance to that of in-
domain profiling. Notably, for LLAMA3-8B/70B-
Instruct on NQ, the cross-domain performance sur-
passes the in-domain performance, compellingly
demonstrating the robustness and generalization
proficiency of our approach.



5 Analysis

5.1 Isolating the effect of AutoPASTA’s two
components

AutoPASTA consists of two primary components:
automatic key sentence identification, and explicit
highlighting key sentences. To underscore the
necessity of both components, we conduct the
comparison using LLAMA3-8B-Instruct model be-
tween following methods: (i) direct prompting with
the original context; (ii) direct prompting with the
identified key sentences appended to the context;
(iii) highlighting the entire context by attention
steering approach but without key-sentence identi-
fication; (iv) AutoPASTA that highlights the identi-
fied key sentences.

The results in Table 3 indicate that both Au-
toPASTA and direct prompting can benefit from
using the identified key sentence, yielding signifi-
cant performance gains. Specifically, highlighting
the entire context via attention steering can im-
prove upon direct prompting but underperforms
AutoPASTA, suggesting the importance of key sen-
tence identification. Meanwhile, the comparison
between (ii) and (iv) illustrates the performance
gains yielded by explicitly highlighting via atten-
tion steering. Therefore, these results suggest that
both components are essential for AutoPASTA to
achieve its best performance.

Method EM Token F1
Direct prompting 10.55 49.34
Direct prompting w. key sentences 27.39  62.25
Highlight the entire context 36.00 60.19
Highlight identified key sentences 47.82  66.39

Table 3: Performance of LLAMA3-8B-Instruct on Hot-
potQA when highlighting different parts of contexts.

5.2 Comparison between profiling strategies

To illustrate the effectiveness of the coarse-to-fine
profiling strategy introduced in Section 3.2, we
evaluate several different profiling approaches as
follows:

e Greedy search proposed by (Zhang et al.,
2024): This strategy involves selecting the top-k
heads from all the attention heads in the models.
The evaluation times for this strategy is L x H.

e Group search inspired by (Ainslie et al., 2023):
Here, 8 adjacent heads from one layer form a group.
Then, we evaluate them group-wise, and select the

top-k head groups. The evaluate times for this
strategy is LH /8.

e Coarse-to-fine search: This strategy initially
selects the top-I layers and then chooses the head
set only from the heads within these layers. The
evaluation times for this strategy is L + [ H.
where L is the number of layers, and H is the num-
ber of attention heads per layer. We compare them
with a Vicuna-7B (Chiang et al., 2023) that has 32
layers, and 32 heads per layer. The results in Table
4 show that coarse-to-fine profiling significantly
outperforms all the other strategies while reducing
the total evaluation times by 4.5 x compared to the
original greedy search in (Zhang et al., 2024).

Method | #Eval| EM  Token F1
Baseline N.A. | 8.13 33.79
Greedy search all heads | 1,024 | 14.81 35.63
Group search (size of 8) | 128 [ 12.12 36.13
Coarse-to-fine search 224 | 19.77 46.72

Table 4: Performance of AutoPASTA on NQ with
Vicuna-7B when searching effective attention heads
with different strategies. "# Eval" refers to the total
evaluations with the profiling set.

5.3 Ablation study

We conduct ablation study to discuss the perfor-
mance of AutoPASTA given different number of
attention heads for steering and different 9.

Varying the number of steered heads. Fig-
ure 2a presents the performance variation of Au-
toPASTA with Vicuna-7B on HotpotQA dataset
when steering different number of attention heads.
Figure 2b illustrates the EM results for LLAMA3-
8B-Instruct on the HotpotQA dataset under similar
conditions. We see that steering more heads for Au-
toPASTA may result in slight performance degener-
ation, for example, the performance of LLAMA3-
8B-Instruct on HotpotQA. This observation is sim-
ilar to findings in previous work (see Figure 3 in
Zhang et al. (2024)), where overemphasizing too
many heads can lead models to focus on solely on
highlighted information while ignoring other parts,
potentially degenerating performance. In practice,
we recommend applying AutoPASTA to steer a
moderate number of heads. The optimal number of
steered heads in our study is determined based on
the performance metrics on the profiling data.
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Figure 2: Ablation study of AutoPASTA performance when steering different numbers of heads (2a and 2b) and
setting different § (2c). Dashed line in red refers to the baseline performance of direct prompting.

The sensitivity about §. Figure 2c¢ presents the
sensitivity analysis for varying ¢ in (1) using
LLAMAS3-8B-Instruct on HotpotQA. We can see
that the performance of AutoPASTA is not sen-
sitive to the attention bias constant §. Changing
its logarithm values (i.e., the scaling-down coef-
ficient for non-highlighted tokens as elobrated in
Appendix A) from 50 to 3000 does not induce dra-
matic performance variation. Therefore, we set &
as its default value log(100), which is the same as
Zhang et al. (2024).

6 Related Work

Large language models exhibit remarkable perfor-
mance on (context-free) knowledge-intensive tasks,
such as open-domain question answering (QA)
(Kwiatkowski et al., 2019) and commonsense rea-
soning (Mihaylov et al., 2018; Clark et al., 2018),
indicating that they encode substantial knowledge
about open-world facts (Zhou et al., 2023) in their
parameters. Despite their proficiency in memoriza-
tion, different kinds of hallucinations in the output
are observed, including factual knowledge hallu-
cination (Huang et al., 2023; Yu et al., 2024), hal-
lucination in summarization (Maynez et al., 2020;
Pagnoni et al., 2021), hallucination in logical op-
erations (Lyu et al., 2023; Huang et al., 2023). In
this work, we focus on the factual knowledge hal-
lucination due to models’ unawareness of relevant
knowledge or overlooking contextual information.
Retrieval-augmented LLMs. To address the prob-
lem of missing relevant knowledge, one popular
method is to use retrieval-augmented LMs that sup-
plement missing knowledge from external sources
(Shi et al., 2023b; Peng et al., 2023). Retrieval
augmentation requires that LLMs are sensitive to
the input context and generate responses that are
faithful. However, recent work shows that even

if the relevant knowledge is presented, the model
may still not be faithful to the given evidence (Zhou
et al., 2023; Yu et al., 2024; Wan et al., 2024).

Prompt-based strategies. To improve the faithful-
ness of the models, various prompting strategies
are designed to guide the model to detect the key
information (Wei et al., 2022; Radhakrishnan et al.,
2023), or focus on the given evidence (Zhou et al.,
2023), while these extracted key information is
only added as additional tokens in the input, and
models may still not be faithful to these new tokens.

Model-based strategies. Besides using prompting
to improve the faithfulness, Koksal et al. (2023)
constructs counterfactual evidence to finetune mod-
els, and Shi et al. (2023a) proposes a context-aware
decoding method to downweight the output dis-
tribution associated with the model’s prior knowl-
edge.

To the best of our knowledge, we are the first
work to integrate key information prompting and
explicit token highlighting during the inference
without any additional training.

7 Conclusion

In this paper, we address the challenge of contex-
tual faithfulness in open-book QA tasks and in-
troduce AutoPASTA, an inference-only method
that automatically identifies crucial information
pieces within contexts and explicitly highlights
them through steering a model’s attention scores.
AutoPASTA guides the model to focus on the es-
sential information within contexts, leading to sub-
stantially improved model faithfulness and perfor-
mance. Remarkably, by integrate iterative prompt-
ing and attention steering techniques, AutoPASTA
synergistically combines their advantages while
mitigating their respective limitations.



Limitations

First, while this study primarily examines the ques-
tion answering scenario with passages of gold evi-
dences provided, it is acknowledged that practical
applications may present multiple passages, poten-
tially enhancing retrieval recall. However, the per-
formance of the proposed method in the absence of
guaranteed gold evidence remains to be empirically
validated. It is anticipated that our algorithm could
still perform reasonably well when confronted with
additional passages, though the exact impact of ir-
relevant or conflicting information requires further
investigation.

Secondly, the efficacy of our algorithm is influ-
enced by the accuracy of key sentence selection.
While the mapping-back method offers a means to
address certain propagation errors that may occur
during intermediate stages, it is predicated on the
assumption that the predicted key sentence closely
aligns with the actual correct sentence. Future re-
search endeavors may focus on refining techniques
for key sentence prediction, potentially enhancing
overall performance.
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A Derivation for Equation 1

In this section, we present the derivation to show why (1) is equivalent to equation (2) in Zhang et al.
(2024).

For the token that are not highlighted j ¢ G, Zhang et al. (2024) downweight their attention scores
by scaling down their scores post-softmax by a coefficient o (0 < v < 1): « - Softmax(A;.);/C; where
Ci = > jeg Softmax(A;.); + 3 4g o - Softmax(A;.);. Now we show that:

a  exp(Ajj)
o - Softmax(A4;.);/C; =— —=————""— (5
()il =65 exp(Auy)
_exp(A;j +log(a))

a CZ Z]/ eXp(Aij’)

(6)

For the tokens in G:

_ exp(Aij)
Ci Zj/ eXP(Aij/)

Softmax(A;.);/C; 7

Therefore, after the renormalization, it is equivalent to condut the Softmax among A;; + log(c) for j ¢ G
and Aij for j € G, which is our simplified equation in (1).
B Evaluation Details

B.1 Dataset Statistics

‘ Profiling  Test

Natural Questions 1,000 6,189
HotpotQA 1,000 4,190

Table 5: Natural Questions and HotpotQA data statistics after the preprocessing.

B.2 The detailed number of attention heads for steering

Model ‘ NQ ‘ HotpotQA

Vicuna-7B ‘ top 64 heads from top 4 layers ‘ top 96 heads from top 6 layers

LLAMA3-8B ‘ top24 heads, 4 from each of top 6 layers ‘ top24 heads, 4 from each of top 6 layers
LLAMA3-70B ‘ top20 heads, 4 from each of top 5 layers ‘ top 64 heads from top 5 layers

Table 6: The detailed number of attention heads for steering
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