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Abstract001

Large language models (LLMs) have demon-002
strated remarkable performance across various003
real-world tasks. However, recent studies re-004
veal that LLMs often struggle to fully compre-005
hend and effectively utilize their input contexts,006
resulting in responses that lack faithfulness or007
suffer from hallucination. This difficulty be-008
comes particularly evident when the contexts009
are lengthy or contain distracting information,010
which can divert LLMs from fully capturing011
essential evidence. Most prior work focuses012
on designing effective prompts to guide LLMs013
in utilizing contextual information more faith-014
fully. For instance, iterative prompting high-015
lights key information through two high-level016
prompting steps that first ask the LLM to iden-017
tify important pieces of context and then de-018
rive answers accordingly. However, prompting019
methods are constrained to highlighting key in-020
formation implicitly in token space, which is021
often insufficient to fully steer the model’s at-022
tention. To improve model faithfulness more re-023
liably, we propose AutoPASTA, a method that024
automatically identifies contextual key infor-025
mation and explicitly highlights it by steering026
the model’s attention scores. Similar to prompt-027
ing, AutoPASTA is applied at inference time028
and does not require changing any model pa-029
rameters. Our experiments on open-book QA030
demonstrate that AutoPASTA can effectively031
guide models to grasp essential contextual in-032
formation, leading to substantially improved033
model faithfulness and performance, e.g., an034
average improvement of 11.26% for LLAMA3-035
8B-Instruct. Code will be publicly available.036

1 Introduction037

Large language models (LLMs) exhibit remarkable038

performance across various natural language pro-039

cessing (NLP) tasks and artificial intelligence (AI)040

applications (Brown et al., 2020; Touvron et al.,041

2023; OpenAI, 2023). Despite their remarkable042

capabilities, recent studies reveal that LLMs often043

encounter challenges in fully understanding their 044

input contexts, overlooking or showing insensitiv- 045

ity to crucial contextual information (Kasai et al., 046

2023; Li et al., 2023; Si et al., 2023; Zhou et al., 047

2023; Yu et al., 2024; Zhang et al., 2024). Con- 048

sequently, the models tend to fabricate answers 049

(also known as hallucination), resulting in unfaith- 050

ful responses that are inconsistent with the pre- 051

sented contexts (Zhou et al., 2023; Yu et al., 2024). 052

This becomes particular problematic when mod- 053

els are presented prompts containing lengthy back- 054

ground contexts (Liu et al., 2023) or complex ques- 055

tions, such as open-book question answering (QA) 056

(Kwiatkowski et al., 2019; Shi et al., 2023b; Peng 057

et al., 2023). In these information-dense scenarios, 058

lengthy contexts can overwhelm LLMs, which con- 059

tain many details with varying degree of relevance 060

(Wan et al., 2024; Zhang et al., 2024). Some sen- 061

tences are crucial for providing the correct answer, 062

while others, though irrelevant, can distract models 063

from fully capturing the essential information. 064

To improve model faithfulness, most prior work 065

explores well-designed prompts to guide the LLM 066

to use contextual knowledge more reliably (Zhou 067

et al., 2023; Wan et al., 2024; Radhakrishnan et al., 068

2023). In particular, iterative prompting in chain- 069

of-thought (COT; Wei et al., 2022) fashion can help 070

LLMs decompose complex task-solving into more 071

interpretable and manageable intermediate steps, 072

thus yielding better performance (Radhakrishnan 073

et al., 2023). Motivated by this, it is natural to de- 074

sign multi-step iterative prompting to guide LLMs 075

to pay more attention to relevant contextual parts 076

and derive answers accordingly. Specifically, for 077

open-book QA tasks iterative prompting can be 078

decomposed into two steps: (i) identifying key in- 079

formation and (ii) deriving answers using the key 080

information. This strategy can work effectively 081

for black-box LLMs of significantly large sizes 082

(e.g., >100B) (Radhakrishnan et al., 2023). How- 083

ever, for LLMs of smaller sizes (e.g., LLAMA3- 084
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Question

Which term is used to identify having official 
power to act?

Original Evidence

In government , the term authority is often … 
However , their meanings differ : while power is 
defined as `` the ability to influence somebody 
to do something that he / she would not have 
done '' , authority refers to a claim of legitimacy , 
the justification and right to exercise that power 
. For example , while a mob has the power to 
punish a criminal , …

Power.

Key Sentence Prediction

Key Sentence

authority refers to a claim of legitimacy , the 
justification and right to exercise that power

Power.

Original Evidence

In government , the term authority is often … 
However , their meanings differ : while power is 
defined as `` the ability to influence somebody to 
do something that he / she would not have done '' , 
authority refers to a claim of legitimacy , the 
justification and right to exercise that power . 
For example , while a mob has the power to punish 
a criminal , …

Authority.

Pay more attention 
to the key sentence. 

Head 1

Layer 1

Layer 2

…

Layer L

…
Head 2

Head h
…

Selected attention heads

…

Scale up the attention weight 
of highlighted tokens. 

Direct Prompting

Iterative Prompting

AutoPASTA

Figure 1: The illustration of AutoPASTA and alternative methods given a running example. Responses by Vicuna-7B are shown
in red square where Authority is the label. Prompting methods (direct and iterative prompting) fail to guide a model to derive
correct answers while AutoPASTA successfully steers it to answer correctly by explicitly highlighting identified key parts.

70B, Meta, 2024), it remains unclear if this strategy085

can guide models to fully attend to the extracted086

key information and subsequently improve perfor-087

mance. First, step-by-step generations typically re-088

sult in longer contexts. However, key information089

is only highlighted in token space by appending090

the short predicted key sentences, which are often091

not strong enough to fully steer the model’s atten-092

tion. As illustrated in the left part of Figrue 1, even093

though the model correctly predicts the key sen-094

tence which is appened in the subsequent prompt,095

it still fails to provide the correct answer. Moreover,096

errors can propagate across steps, further compro-097

mising performance. Therefore, we aim to develop098

an alternative inference framework that emulates099

iterative prompting while addressing these limita-100

tions.101

Motivated by this, we propose AutoPASTA, an102

inference-only approach that (i) automatically iden-103

tifies key contextual parts, and (ii) explicitly high-104

lights them through attention score manipulation105

for improving model faithfulness and performance106

on open-book QA tasks. Specifically, AutoPASTA107

integrates iterative question-decomposition prompt-108

ing and attention steering approaches (Zhang et al.,109

2024). Given the original context and question,110

AutoPASTA first prompts an LLM to identify the111

key information (sentences) through free-text gen-112

eration. Then, instead of appending those key113

sentences to the initial prompt, AutoPASTA maps114

those sentences back to the original context using115

semantic embeddings (Figure 1 right). By using 116

the original sentences for highlighting, we avoid 117

more lengthy input for the next step, and poten- 118

tially reduce the unfaithful key sentences gener- 119

ations, mitigating the error propagation. Finally, 120

to guide the model to attend to the selected key 121

sentences, AutoPASTA highlights them through at- 122

tention steering that upweights their corresponding 123

attention scores at the selected attention heads as 124

done by Zhang et al. (2024). Unlike existing atten- 125

tion steering work, our method does not necessitate 126

human annotation on the highlighting part, recti- 127

fying its critical limitation. Additionally, we also 128

design an efficient coarse-to-fine search scheme for 129

identifying effective attention heads for steering, 130

which reduces the searching overheads by 4.5× 131

compared to the greedy method used by previous 132

work (Zhang et al., 2024). 133

We conduct experiments to evaluate the effec- 134

tiveness of AutoPASTA using Vicuna-7B (Chiang 135

et al., 2023), LLAMA3-8B-Instruct, and LLAMA3- 136

70B-Instruct (Meta, 2024) on both single- and 137

multi-hop open-book QA tasks from Natural Ques- 138

tions (NQ; Kwiatkowski et al., 2019) and Hot- 139

potQA (Yang et al., 2018b). AutoPASTA consis- 140

tently provides significant performance improve- 141

ments over baseline prompting strategies. For ex- 142

ample, AutoPASTA achieves an average improve- 143

ment of 18.28% on exact-match (EM) score over it- 144

erative prompting for LLAMA3-8B-Instruct across 145

both tasks. Remarkably, the attention head sets 146
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obtained by AutoPASTA exhibit outstanding gen-147

eralization ability, allowing them to be effectively148

steered across different tasks.149

2 Background150

Problem description. In standard LLM prompt-151

ing, we are given a pre-trained LLM and a text152

prompt x consisting of n tokens. In the closed-153

book setting, the prompt x can only be a question154

or instruction to be completed by models. Relying155

solely on model parametric knowledge poses chal-156

lenges in scenarios involving complex questions157

that entail new knowledge or private information158

(Zhou et al., 2023; Yu et al., 2024). Existing meth-159

ods (Shi et al., 2023b; Peng et al., 2023) resort160

to augmenting the prompt with additional back-161

ground contexts to facilitate question answering,162

i.e., open-book question answering. The follow-163

ing box presents a prompt template that we use for164

open-book QA:165

A direct prompt template for open-book QA

Answer the question below, paired with a context that provides
background knowledge. Only output the answer without other
context words.

Context: {context}

Question: {question}

Answer:
166

Multi-head attention. A typical transformer167

model consists of L stacked layers, where each168

layer contains two submodules: a multi-head169

attention (MHA) and a fully connected feed-170

forward network (FFN). Given the input X ∈171

Rn×d, MHA of the layer l performs the atten-172

tion function in parallel H heads: MHA(l) (X) =173

Concat(H(l,1), ...,H(l,H))W o with174

H(l,h) = Softmax(A(l,h))V (l,h)175

where A = 1√
dh
QK⊤ ∈ Rn×n is the scaled176

inner product between query Q and key K.177

Q = XW qh ,K = XW kh ,V = XW vh and178

W qh ,W kh ,W vh ∈ Rd×dh are learnable projec-179

tion matrices of head h. dh is typically set to d/H .180

Post-hoc attention steering. Zhang et al. (2024)181

propose PASTA, an inference-only method that ap-182

plies attention reweighting to steer model attention183

towards user-highlighted input sets, thereby im-184

proving instruction following and contextual com-185

prehension. Specifically, given the index set of186

user-specified tokens as G (G ⊂ [n]), PASTA high- 187

light these tokens by upweighting their attention 188

scores with a constant attention bias B(l,h): 189

H(l,h) = Softmax(A(l,h) +B(l,h))V (l,h),

B
(l,h)
ij =

{
−δ if (l, h) ∈ H and j /∈ G
0 otherwise.

(1) 190

where δ is a positive constant. After Softmax(·), 191

the attention scores of tokens not in G is scaled 192

down by exp(δ). Correspondingly, the others in G 193

are upweighted due to the renormalization of Soft- 194

max1, steering the model to pay more attention to 195

the input spans of G. Following Zhang et al. (2024), 196

we set δ = log 100 in all of our experiments. H is 197

an index set of attention heads selected for steering. 198

Since various heads function diversely, steering 199

different heads yields dramatically different per- 200

formance. To identify the effective heads, Zhang 201

et al. (2024) employ a greedy search approach that 202

evaluates the steering performance of each head on 203

multiple tasks and selects those with best accuracy. 204

The resulting head set H can be generalized for 205

steering across different tasks. 206

PASTA requires the access to user-annotated in- 207

put spans for highlighting. In the case of context- 208

specific tasks, it is generally prohibitively expen- 209

sive to extract and annotate relevant sentences from 210

lengthy contexts through humans. To address this 211

critical limitation and improve the contextual faith- 212

fulness by automatic explicit highlighting, we in- 213

troduce our method – AutoPASTA. 214

3 Method 215

Our proposed method – Automatic Post-hoc Atten- 216

tion Steering Approach (AutoPASTA), integrates 217

iterative prompting and attention steering. This in- 218

tegration synergistically combines the advantages 219

of both techniques while mitigating their respective 220

limitations. For multi-step iterative prompting, in- 221

corporating attention steering externalizes the high- 222

lighting of key information through an inference- 223

only operation, efficiently enhancing model faith- 224

fulness with improved reliability and controllability. 225

For post-hoc attention steering, equipping it with 226

iterative prompting enables the automatic identi- 227

fication of contextually relevant key information, 228

thereby addressing its significant reliance on hu- 229

man annotations. 230

1(1) is a simplified formula from Equation (2) in Zhang
et al. (2024), which we elaborate in Appendix A.
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Algorithm 1 AutoPASTA
Input a question q, a context c, the head set H of

an LLM M, prompt templates Pi,Pd and δ.
1: Generate g1 = GenerateM(Pi(q, c));
2: Calculate sk = Matche (g1, {s1, . . . , sm});
3: Steer g2 = SteerH,sk(GenerateM(Pd(q, c)));

Output: The final answer g2

3.1 Automatic Contextual Highlighting231

In the open-book QA task, an LLM M is prompted232

to answer a question q paired with a background233

context c that consists of m sentences c =234

s1|| . . . ||sm. Instead of directly prompting an235

LLM with (q, c), AutoPASTA first prompts the236

LLM to generate a key sentence from the context c237

that supports answering the question:238

g1 = GenerateM(Pi(q, c)), (2)239

where Pi is the prompt template of key sentence240

identification that we show in Section 4.1. Then,241

AutoPASTA maps g1 back to a sentence from the242

original context c to avoid potential token-level243

generation errors in g1 and mitigate error propa-244

gation. Specifically, it employs a small encoder e245

to calculates the semantic embeddings of g1 and246

every si(1 ≤ i ≤ m), and pick the best-matching247

sentence sk with the highest similarity to g1:248

sk = Matche
(
g1, {s1, . . . , sm}

)
⊂ c. (3)249

In the final step, AutoPASTA steers the attention250

scores of tokens in sk based on (1) at the specific251

attention heads H, when directly prompting the252

LLM M to derive the answer for (q, c):253

g2 = SteerH,sk

(
GenerateM (Pd(q, c))

)
(4)254

where Pd is the prompt template of direct answer-255

ing as shown in Section 2, and SteerH,sk(·) is de-256

tailed by (1) with G as the index set of sk. As257

such, the identified key sentence sk is explicitly258

highlighted through attention score upweighting,259

directing the model to grasp the key information260

and generate more faithful answers. Notably, Au-261

toPASTA is applied at inference time and does not262

require changing any model parameters. More im-263

portantly, it does not involve human annotation on264

highlighted parts. The key information is automat-265

ically identified by iterative prompting the model266

M, addressing the major limitation of existing at-267

tention steering approach.268

3.2 Coarse-to-fine Model Profiling 269

AutoPASTA requires carefully selecting H, the set 270

of attention heads to be steered in (1), but find- 271

ing these heads can be computationally intensive. 272

Zhang et al. (2024) propose a greedy search strat- 273

egy that evaluates the steering performance of each 274

head on small validation sets of multiple tasks and 275

selects the heads that yield the best performance. 276

This greedy strategy requires evaluating L × H 277

times, resulting in non-trivial overheads especially 278

for large models. To improve the efficiency of 279

searching heads, we propose an alternative coarse- 280

to-fine model profiling scheme that searches from 281

the layer level to head level. Specifically, we first 282

evaluate the performance of steering all attention 283

heads of one single layer, then pick the top-l lay- 284

ers, and further evaluate the steering performance 285

of each head in these layers. The head set H is 286

obtained by selecting the best-performing heads 287

from top-l layers. Empirically, we find that a small 288

l (e.g., l = 6 compared to L = 32) is sufficient for 289

AutoPASTA to achieves superior performance and 290

identify effective attention heads that can general- 291

ize across tasks, substantially reducing the search- 292

ing overheads to lH+L
LH . 293

4 Experiments 294

We conduct experiments to evaluate the effective- 295

ness of AutoPASTA using Vicuna-7B (Chiang 296

et al., 2023), LLAMA3-8B-Instruct, and LLAMA3- 297

70B-Instruct (Meta, 2024) on both single- and 298

multi-hop open-book QA tasks including Natural 299

Questions (NQ, (Kwiatkowski et al., 2019)) and 300

HotpotQA (Yang et al., 2018b). 301

4.1 Experimental Setup 302

Dataset. We study 2 datasets: the MRQA ver- 303

sion (Fisch et al., 2019) of Natural Questions (NQ) 304

(Kwiatkowski et al., 2019) and HotpotQA (Yang 305

et al., 2018a). Following the filtering procedures 306

outlined by Yu et al. (2024), duplicated and low- 307

quality questions are removed from the NQ dataset, 308

resulting in 7,189 instances remaining in NQ, and 309

5,190 instances in HotpotQA. For each dataset, we 310

randomly select 1,000 examples as the profiling set 311

and keep the remaining examples as the test set (see 312

breakdown in Table 5). For all the experiments, we 313

present two evaluation metrics: Exact Match (EM), 314

and Token-level F1 score. We apply greedy search 315

decoding for all experiments. 316
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Task Prompt Baseline AutoPASTA
NQ Answer the question below, paired with a context that provides background knowledge. Only output

the answer without other context words.
Context: Although the delegates were divided early on as to whether to break from Crown rule, the
second Continental Congress on July 2, 1776, passed a resolution asserting independence, with
no opposing vote recorded. The Declaration of Independence was issued two days later declaring
themselves a new nation: the United States of America. It established a Continental Army, giving
command to one of its members, George Washington of Virginia. It waged war with Great Britain,
made a militia treaty with France, and funded the war effort with loans and paper money.
Question: when did the continental congress vote to adopt the declaration of independence?
Answer:

✗ The Continental
Congress voted to
adopt the Declaration
of Independence on
July 4, 1776.

✓ July 2,
1776.

Label: July 2,
1776.

HotpotQA Answer the question below, paired with a context that provides background knowledge. Only output
the answer without other context words.
Context: [1]: Branford, Connecticut - Branford is a shoreline town located on Long Island Sound
in New Haven County, Connecticut, 8 mi east of New Haven. The population was 28,026 at the
2010 census. [2]: Long Island Sound - Long Island Sound is a tidal estuary of the Atlantic Ocean,
lying between the eastern shores of Bronx County, New York City, southern Westchester County,
and Connecticut to the north, and the North Shore of Long Island, to the south. From east to west,
the sound stretches 110 miles (177 km) from the East River in New York City, along the North Shore
of Long Island, to Block Island Sound. A mix of freshwater from tributaries and saltwater from the
ocean, Long Island Sound is 21 miles (34 km) at its widest point and varies in depth from 65 to.
Question: How long is the tidal estuary in which Branford is a shoreline town?
Answer:

✗ Long Island Sound. ✓ 110 miles.

Label:110 miles.

Table 1: Generation examples of a Vicuna-7B on NQ and HotpotQA. Texts in bold are predicted by the model for
highlighting and texts in blue are highlighted by AutoPASTA.

Implementation Details. We use PyTorch to im-317

plement the evaluation pipeline and all methods318

(Paszke et al., 2019). Our implementation is based319

on the publicly available Huggingface Transform-320

ers2 (Wolf et al., 2019). All the experiments are321

conducted on NVIDIA A6000 and A100 GPUs.322

AutoPASTA Settings. For AutoPASTA, we uti-323

lize the following prompt template Pi to prompt a324

LLM M to identify the key information from the325

context that support answering the question.326

Prompt template Pi of key sentence identification

A question, and a passage are shown below. Please select the
key sentence in the passage that supports to answer the question
correctly. Only output the exactly same sentence from the passage
without other additional words.

Question: {question}

Passage: {context}

Sentence:
327

Then, we map the predicted key sentence g1328

back to the original context by (3), which uses a329

small encoder models to calculate the semantic330

embeddings of the predicted key sentence g1 and331

every sentence si in the context c. Specifically, we332

use a "all-MiniLM-L6-v2" model from Sentence-333

Transformer (Reimers and Gurevych, 2019) as the334

encoder to encode sentences. Then, we calculate335

the cosine similarity between semantic embeddings336

of g1 and each sentence si in the context, and select337

the contextual sentence sk with the highest similar-338

ity score as the final key sentence prediction. For339

multi-hop question answering, such as HotpotQA,340

the key sentences are identified for each individ-341

2https://huggingface.co/

ual hop separately. Finally, we highlight sk by 342

(4) while directly prompting the model to answer 343

the question paired by the context with the direct 344

prompting template shown in Section 2. 345

Coarse-to-fine Model Profiling. For the coarse- 346

to-fine search strategy outlined in Section 3.2, we 347

consider all attention heads in the top-l layers as 348

potential candidates for selection, where l is chosen 349

from {3, 4, 5, 6}. Subsequently, we either select 350

top-i heads from each individual layer, or top-j 351

heads from the pool of head candidates. Top-i is 352

chosen from {4, 6, 8}, and top-j is chosen from 353

{16, 24, 32, 64}. The final head set utilized in the 354

study is determined based on the highest token-F1 355

performance achieved on the profiling set. 356

Baselines. We evaluate three open-source LLMs: 357

Vicuna-7B (Chiang et al., 2023), Llama3-8B- 358

Instruct, and Llama3-70B-Instruct under direct 359

prompting, iterative prompting, and direct prompt- 360

ing with AutoPASTA. 361

• Direct prompting: Models are prompted to di- 362

rectly answer the question q based on the provided 363

context c. The prompt template Pd is displayed in 364

Section 2. 365

• Iterative Prompting: Models are first prompted 366

to generate the key sentence that supports answer- 367

ing the question, using the same prompt template 368

Pi. For multi-hop question answering, such as Hot- 369

potQA, the key sentences are identified for each 370

individual hop separately. The predicted key sen- 371

tences are also mapped back to the original context, 372

similar as that in AutoPASTA. Then, the model 373

are prompted to answer the question with the key 374

sentences appended to the context: 375

5
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Model Method NQ HotpotQA All
EM Token F1 EM Token F1 Ave.

Vicuna-7B

Direct Prompting 8.13 33.79 18.11 38.77 24.70
Iterative Prompting 4.36 31.48 14.04 34.99 21.22
AutoPASTAout-of-domain generalize 11.78 35.53 21.94 39.92 27.29
AutoPASTAin-domain profiling 19.77 46.72 29.54 47.51 35.89

LLAMA3-8B

Direct Prompting 8.68 41.55 10.55 49.34 27.53
Iterative Prompting 13.21 47.28 27.39 62.25 37.53
AutoPASTAout-of-domain generalize 31.93 52.36 44.49 66.95 48.93
AutoPASTAin-domain profiling 29.34 51.60 47.82 66.39 48.79

LLAMA3-70B

Direct Prompting 17.33 53.50 31.45 69.49 42.94
Iterative Prompting 13.97 53.12 17.71 65.49 37.57
AutoPASTAout-of-domain generalize 35.26 55.97 54.77 73.43 54.86
AutoPASTAin-domain profiling 34.74 57.65 54.40 71.90 54.67

Table 2: Evaluation results using Vicuna-7B, LLAMA-8B-Instruct, and LLAMA3-70B-Instruct on NQ and
HotpotQA. "In-domain" means that the head set is selected based on the profiling set of the target task. "Out-of-
domain" means that the head set is selected from the other dataset and the target task is unseen during the profiling.

Prompt Templates of Two-Round Iterative Prompting

[First Round]: A question, and a passage are shown below. Please
select the key sentence in the passage that supports to answer the
question correctly. Only output the exactly same sentence from the
passage without other additional words.

Question: {Question}

Passage: {Evidence}

Sentence:
———————————————————————————
[Second Round]: Answer the question below, paired with a context
that provides background knowledge, and a key sentence. Only
output the answer without other context words.

Context: {Evidence}

Key Sentence:{Predicted key sentence}

Question: {Question}

Answer:
376

4.2 Main Result: AutoPASTA improves377

open-book QA.378

To demonstrate the effectiveness of AutoPASTA,379

we evaluate its performance on NQ and HotpotQA.380

Specifically, there are two settings: in-domain and381

out-of-domain evaluation. In the in-domain setting,382

we evaluate its performance on a task, using the383

head set that is selected based on the performance384

on the profiling set of the same task. Differently,385

the out-of-domain setting assesses the generaliza-386

tion ability of AutoPASTA, where the head set H387

is selected from a different dataset, and the target388

task is totally unseen during the profiling.389

In-domain Evaluation. The results in Table 2390

suggest that, for all the models, AutoPASTA sig-391

nificantly improves the model performance com-392

pared with other baselines, regardless of model size393

and datasets. For example, AutoPASTA achieves 394

47.82% EM for LLAMA3-8B-Instruct on Hot- 395

potQA, yielding a significant 20.43% improvement 396

compared to the best-performing baseline. We also 397

observe that iterative prompting can mostly im- 398

prove upon the direct prompting, showcasing the 399

performance gains from identifying key sentences 400

and appending them to contexts. However, in cer- 401

tain cases, such as Vicuna-7B and LLAMA3-70B- 402

Instruct on HotpotQA, iterative prompting can ac- 403

tually underperform direct prompting. It suggests 404

that highlighting in token space by appending key 405

sentences is insufficient to fully steer a model’s 406

attention. In contrast, AutoPASTA shows a consis- 407

tently substantial improvement over all baselines, 408

demonstrating the effectiveness of automatic atten- 409

tion steering to improve model faithfulness. Table 1 410

further illustrates this by comparing the generation 411

examples of AutoPASTA and direct prompting. 412

Out-of-domain Evaluation. In this setting, given 413

an evaluation task (e.g., NQ), we employ the head 414

sets selected from profiling on the profiling set of 415

the other task (e.g., HotpotQA) for AutoPASTA to 416

evaluate its generalization ability across different 417

domains and tasks. The results in Table 2 indicate 418

that AutoPASTA significantly outperforms all base- 419

line methods for all models and all datasets, achiev- 420

ing better or comparable performance to that of in- 421

domain profiling. Notably, for LLAMA3-8B/70B- 422

Instruct on NQ, the cross-domain performance sur- 423

passes the in-domain performance, compellingly 424

demonstrating the robustness and generalization 425

proficiency of our approach. 426
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5 Analysis427

5.1 Isolating the effect of AutoPASTA’s two428

components429

AutoPASTA consists of two primary components:430

automatic key sentence identification, and explicit431

highlighting key sentences. To underscore the432

necessity of both components, we conduct the433

comparison using LLAMA3-8B-Instruct model be-434

tween following methods: (i) direct prompting with435

the original context; (ii) direct prompting with the436

identified key sentences appended to the context;437

(iii) highlighting the entire context by attention438

steering approach but without key-sentence identi-439

fication; (iv) AutoPASTA that highlights the identi-440

fied key sentences.441

The results in Table 3 indicate that both Au-442

toPASTA and direct prompting can benefit from443

using the identified key sentence, yielding signifi-444

cant performance gains. Specifically, highlighting445

the entire context via attention steering can im-446

prove upon direct prompting but underperforms447

AutoPASTA, suggesting the importance of key sen-448

tence identification. Meanwhile, the comparison449

between (ii) and (iv) illustrates the performance450

gains yielded by explicitly highlighting via atten-451

tion steering. Therefore, these results suggest that452

both components are essential for AutoPASTA to453

achieve its best performance.454

Method EM Token F1

Direct prompting 10.55 49.34
Direct prompting w. key sentences 27.39 62.25
Highlight the entire context 36.00 60.19
Highlight identified key sentences 47.82 66.39

Table 3: Performance of LLAMA3-8B-Instruct on Hot-
potQA when highlighting different parts of contexts.

5.2 Comparison between profiling strategies455

To illustrate the effectiveness of the coarse-to-fine456

profiling strategy introduced in Section 3.2, we457

evaluate several different profiling approaches as458

follows:459

• Greedy search proposed by (Zhang et al.,460

2024): This strategy involves selecting the top-k461

heads from all the attention heads in the models.462

The evaluation times for this strategy is L×H .463

• Group search inspired by (Ainslie et al., 2023):464

Here, 8 adjacent heads from one layer form a group.465

Then, we evaluate them group-wise, and select the466

top-k head groups. The evaluate times for this 467

strategy is LH/8. 468

• Coarse-to-fine search: This strategy initially 469

selects the top-l layers and then chooses the head 470

set only from the heads within these layers. The 471

evaluation times for this strategy is L+ lH . 472

where L is the number of layers, and H is the num- 473

ber of attention heads per layer. We compare them 474

with a Vicuna-7B (Chiang et al., 2023) that has 32 475

layers, and 32 heads per layer. The results in Table 476

4 show that coarse-to-fine profiling significantly 477

outperforms all the other strategies while reducing 478

the total evaluation times by 4.5× compared to the 479

original greedy search in (Zhang et al., 2024). 480

Method # Eval EM Token F1

Baseline N.A. 8.13 33.79
Greedy search all heads 1,024 14.81 35.63
Group search (size of 8) 128 12.12 36.13
Coarse-to-fine search 224 19.77 46.72

Table 4: Performance of AutoPASTA on NQ with
Vicuna-7B when searching effective attention heads
with different strategies. "# Eval" refers to the total
evaluations with the profiling set.

5.3 Ablation study 481

We conduct ablation study to discuss the perfor- 482

mance of AutoPASTA given different number of 483

attention heads for steering and different δ. 484

Varying the number of steered heads. Fig- 485

ure 2a presents the performance variation of Au- 486

toPASTA with Vicuna-7B on HotpotQA dataset 487

when steering different number of attention heads. 488

Figure 2b illustrates the EM results for LLAMA3- 489

8B-Instruct on the HotpotQA dataset under similar 490

conditions. We see that steering more heads for Au- 491

toPASTA may result in slight performance degener- 492

ation, for example, the performance of LLAMA3- 493

8B-Instruct on HotpotQA. This observation is sim- 494

ilar to findings in previous work (see Figure 3 in 495

Zhang et al. (2024)), where overemphasizing too 496

many heads can lead models to focus on solely on 497

highlighted information while ignoring other parts, 498

potentially degenerating performance. In practice, 499

we recommend applying AutoPASTA to steer a 500

moderate number of heads. The optimal number of 501

steered heads in our study is determined based on 502

the performance metrics on the profiling data. 503
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Figure 2: Ablation study of AutoPASTA performance when steering different numbers of heads (2a and 2b) and
setting different δ (2c). Dashed line in red refers to the baseline performance of direct prompting.

The sensitivity about δ. Figure 2c presents the504

sensitivity analysis for varying δ in (1) using505

LLAMA3-8B-Instruct on HotpotQA. We can see506

that the performance of AutoPASTA is not sen-507

sitive to the attention bias constant δ. Changing508

its logarithm values (i.e., the scaling-down coef-509

ficient for non-highlighted tokens as elobrated in510

Appendix A) from 50 to 3000 does not induce dra-511

matic performance variation. Therefore, we set δ512

as its default value log(100), which is the same as513

Zhang et al. (2024).514

6 Related Work515

Large language models exhibit remarkable perfor-516

mance on (context-free) knowledge-intensive tasks,517

such as open-domain question answering (QA)518

(Kwiatkowski et al., 2019) and commonsense rea-519

soning (Mihaylov et al., 2018; Clark et al., 2018),520

indicating that they encode substantial knowledge521

about open-world facts (Zhou et al., 2023) in their522

parameters. Despite their proficiency in memoriza-523

tion, different kinds of hallucinations in the output524

are observed, including factual knowledge hallu-525

cination (Huang et al., 2023; Yu et al., 2024), hal-526

lucination in summarization (Maynez et al., 2020;527

Pagnoni et al., 2021), hallucination in logical op-528

erations (Lyu et al., 2023; Huang et al., 2023). In529

this work, we focus on the factual knowledge hal-530

lucination due to models’ unawareness of relevant531

knowledge or overlooking contextual information.532

Retrieval-augmented LLMs. To address the prob-533

lem of missing relevant knowledge, one popular534

method is to use retrieval-augmented LMs that sup-535

plement missing knowledge from external sources536

(Shi et al., 2023b; Peng et al., 2023). Retrieval537

augmentation requires that LLMs are sensitive to538

the input context and generate responses that are539

faithful. However, recent work shows that even540

if the relevant knowledge is presented, the model 541

may still not be faithful to the given evidence (Zhou 542

et al., 2023; Yu et al., 2024; Wan et al., 2024). 543

Prompt-based strategies. To improve the faithful- 544

ness of the models, various prompting strategies 545

are designed to guide the model to detect the key 546

information (Wei et al., 2022; Radhakrishnan et al., 547

2023), or focus on the given evidence (Zhou et al., 548

2023), while these extracted key information is 549

only added as additional tokens in the input, and 550

models may still not be faithful to these new tokens. 551

Model-based strategies. Besides using prompting 552

to improve the faithfulness, Köksal et al. (2023) 553

constructs counterfactual evidence to finetune mod- 554

els, and Shi et al. (2023a) proposes a context-aware 555

decoding method to downweight the output dis- 556

tribution associated with the model’s prior knowl- 557

edge. 558

To the best of our knowledge, we are the first 559

work to integrate key information prompting and 560

explicit token highlighting during the inference 561

without any additional training. 562

7 Conclusion 563

In this paper, we address the challenge of contex- 564

tual faithfulness in open-book QA tasks and in- 565

troduce AutoPASTA, an inference-only method 566

that automatically identifies crucial information 567

pieces within contexts and explicitly highlights 568

them through steering a model’s attention scores. 569

AutoPASTA guides the model to focus on the es- 570

sential information within contexts, leading to sub- 571

stantially improved model faithfulness and perfor- 572

mance. Remarkably, by integrate iterative prompt- 573

ing and attention steering techniques, AutoPASTA 574

synergistically combines their advantages while 575

mitigating their respective limitations. 576
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Limitations577

First, while this study primarily examines the ques-578

tion answering scenario with passages of gold evi-579

dences provided, it is acknowledged that practical580

applications may present multiple passages, poten-581

tially enhancing retrieval recall. However, the per-582

formance of the proposed method in the absence of583

guaranteed gold evidence remains to be empirically584

validated. It is anticipated that our algorithm could585

still perform reasonably well when confronted with586

additional passages, though the exact impact of ir-587

relevant or conflicting information requires further588

investigation.589

Secondly, the efficacy of our algorithm is influ-590

enced by the accuracy of key sentence selection.591

While the mapping-back method offers a means to592

address certain propagation errors that may occur593

during intermediate stages, it is predicated on the594

assumption that the predicted key sentence closely595

aligns with the actual correct sentence. Future re-596

search endeavors may focus on refining techniques597

for key sentence prediction, potentially enhancing598

overall performance.599
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A Derivation for Equation 1 788

In this section, we present the derivation to show why (1) is equivalent to equation (2) in Zhang et al. 789

(2024). 790

For the token that are not highlighted j /∈ G, Zhang et al. (2024) downweight their attention scores 791

by scaling down their scores post-softmax by a coefficient α (0 ≤ α ≤ 1): α · Softmax(Ai·)j/Ci where 792

Ci =
∑

j∈G Softmax(Ai·)j +
∑

j /∈G α · Softmax(Ai·)j . Now we show that: 793

α · Softmax(Ai·)j/Ci =
α

Ci

exp(Aij)∑
j′ exp(Aij′)

(5) 794

=
exp(Aij + log(α))

Ci
∑

j′ exp(Aij′)
(6) 795

For the tokens in G: 796

Softmax(Ai·)j/Ci =
exp(Aij)

Ci
∑

j′ exp(Aij′)
(7) 797

Therefore, after the renormalization, it is equivalent to condut the Softmax among Aij + log(α) for j /∈ G 798

and Aij for j ∈ G, which is our simplified equation in (1). 799

B Evaluation Details 800

B.1 Dataset Statistics 801

Profiling Test

Natural Questions 1,000 6,189
HotpotQA 1,000 4,190

Table 5: Natural Questions and HotpotQA data statistics after the preprocessing.

B.2 The detailed number of attention heads for steering 802

Model NQ HotpotQA

Vicuna-7B top 64 heads from top 4 layers top 96 heads from top 6 layers

LLAMA3-8B top24 heads, 4 from each of top 6 layers top24 heads, 4 from each of top 6 layers

LLAMA3-70B top20 heads, 4 from each of top 5 layers top 64 heads from top 5 layers

Table 6: The detailed number of attention heads for steering
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