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ABSTRACT

The theoretical advantages of distributional reinforcement learning (RL) over
expectation-based RL remain elusive, despite its remarkable empirical perfor-
mance. Starting from Categorical Distributional RL (CDRL), our work attributes
the potential superiority of distributional RL to its risk-sensitive entropy regular-
ization. This regularization stems from the additional return distribution infor-
mation regardless of only its expectation via the return density function decom-
position, a variant of the gross error model in robust statistics. Compared with
maximum RL that explicitly optimizes the policy to encourage the exploration,
we reveal that the resulting risk-sensitive entropy regularization of CDRL plays a
different role as an augmented reward function. It implicitly optimizes policies for
a risk-sensitive exploration towards true target return distributions, which helps to
reduce the intrinsic uncertainty of the environment. Finally, extensive experiments
verify the importance of this risk-sensitive regularization in distributional RL, as
well as the mutual impacts of both explicit and implicit entropy regularization.

1 INTRODUCTION

The intrinsic characteristics of classical reinforcement learning (RL) algorithms, such as Q-
learning (Sutton & Barto, 2018; Watkins & Dayan, 1992), are based on the expectation of dis-
counted cumulative rewards that an agent observes while interacting with the environment. In stark
contrast to the classical expectation-based RL, a new branch of algorithms called distributional RL
estimates the full distribution of total returns and has demonstrated the state-of-the-art performance
in a wide range of environments (Bellemare et al., 2017a; Dabney et al., 2018b;a; Yang et al., 2019;
Zhou et al., 2020; Nguyen et al., 2020; Sun et al., 2022b). Meanwhile, distributional RL also inher-
its other benefits in risk-sensitive control (Dabney et al., 2018a), policy exploration settings (Mavrin
et al., 2019; Rowland et al., 2019), robustness (Sun et al., 2023) and optimization (Sun et al., 2022a).

Despite the existence of numerous algorithmic variants of distributional RL with remarkable em-
pirical success, we still have a poor understanding of what the effectiveness of distributional RL is
stemming from, and the theoretical advantages of distributional RL over expectation-based RL are
still less studied. Previous works (Lyle et al., 2019) proved that in many realizations of tabular and
linear approximation settings distributional RL behaves the same as expectation-based RL under the
coupling updates method, but it diverges in non-linear approximation. Both risk-neutral and risk-
averse domains were investigated in offline distributional RL (Ma et al., 2021). However, there is
still a gap between the theory and practice, especially in the non-linear function approximation case.

In this paper, we illuminate the behavior difference of distributional RL over expectation-based RL
starting from Categorical Distributional RL (CDRL) (Bellemare et al., 2017a), the first success-
ful distributional RL family. Within the Neural Fitted Z-Iteration framework, we decompose the
distributional RL objective function into an expectation-based term and a risk-sensitive entropy reg-
ularization via the return density function decomposition, a variant of the gross error model in robust
statistics. As such, (categorical) distributional RL can be interpreted as a risk-sensitive entropy reg-
ularized Neural Fitted Q-Iteration. More importantly, the resulting entropy regularization serves as
an augmented reward in the actor-critic framework, leading to a different policy exploration strat-
egy compared with maximum entropy (MaxEnt) RL. Instead of explicitly optimizing the entropy
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of policies to encourage the exploration in MaxEnt RL, the risk-sensitive entropy regularization in
CDRL implicitly optimizes policies to explore states along with the following policy-determined
actions whose return distributions lag far behind the target return distributions. A theoretically prin-
cipled algorithm called Distribution-Entropy-Regularized Actor Critic is also proposed accordingly,
interpolating between expectation-based and distributional RL. Empirical results substantiate the
crucial role of risk-sensitive entropy regularization effect from CDRL in the potential superiority
over expectation-based RL on both Atari games and MuJoCo environments. We also reveal the mu-
tual impacts of both implicit risk-sensitive entropy in distributional RL and explicit vanilla entropy
in MaxEnt RL, providing more potential research directions in the future.

2 PRELIMINARY KNOWLEDGE

In classical RL, an agent interacts with an environment via a Markov decision process (MDP),
a 5-tuple (S,A, R, P, γ), where S and A are the state and action spaces, respectively. P is the
environment transition dynamics, R is the reward function and γ ∈ (0, 1) is the discount factor.

Action-State Value Function vs Action-State Return Distribution. Given a policy π, the dis-
counted sum of future rewards is a random variable Zπ(s, a) =

∑∞
t=0 γ

tR(st, at), where s0 = s,
a0 = a, st+1 ∼ P (·|st, at), and at ∼ π(·|st). In the control setting, expectation-based RL focuses
on the action-value function Qπ(s, a), the expectation of Zπ(s, a), i.e., Qπ(s, a) = E [Zπ(s, a)].
Distributional RL, on the other hand, focuses on the action-state return distribution, the full distribu-
tion of Zπ(s, a). We call its density as action-state return density function, which we use constantly.

Bellman Operators vs Distributional Bellman Operators. In the policy evaluation of clas-
sical RL, the value function is updated via the Bellman operator T πQ(s, a) = E[R(s, a)] +
γEs′∼p,a′∼π [Q (s′, a′)]. We also define Bellman Optimality Operator T optQ(s, a) = E[R(s, a)] +
γmaxa′ Es′∼p [Q (s′, a′)]. In distributional RL, the action-state return distribution of Zπ(s, a) is

updated via the distributional Bellman operator Tπ , i.e., TπZ(s, a)
D
= R(s, a) + γZ (s′, a′), where

s′ ∼ P (·|s, a) and a′ ∼ π (·|s′). The equality implies random variables of both sides are equal
in distribution. We use this random-variable definition of Tπ , which is appealing and easily un-
derstood due to its concise form, although its return-distribution definition is more mathematically
rigorous (Rowland et al., 2018; Bellemare et al., 2022).

Categorical Distributional RL (CDRL). CDRL (Bellemare et al., 2017a) can be viewed as the
first successful distributional RL algorithm family that approximates the return distribution η by
a discrete categorical distribution η̂ =

∑N
i=1 piδzi , where {zi}Ni=1 is a set of fixed supports and

{pi}Ni=1 are learnable probabilities. The usage of a heuristic projection operator ΠC (see Appendix A
for more details) as well as the KL divergence allows the theoretical convergence of categorical
distribution RL under Cramér distance or Wasserstein distance (Rowland et al., 2018).

3 RISK-SENSITIVE REGULARIZATION IN DISTRIBUTIONAL RL

3.1 DISTRIBUTIONAL RL: NEURAL FZI

Expectation-based RL: Neural Fitted Q-Iteration (Neural FQI). Neural FQI (Fan et al., 2020;
Riedmiller, 2005) offers a statistical explanation of DQN (Mnih et al., 2015), capturing its key
features, including experience replay and the target network Qθ∗ . In Neural FQI, we update a
parameterized Qθ in each iteration k in a regression problem:

Qk+1
θ = argmin

Qθ

1

n

n∑
i=1

[yi −Qθ (si, ai)]
2
, (1)

where the target yi = r(si, ai) + γmaxa∈A Qk
θ∗ (s′i, a) is fixed within every Ttarget steps to update

target network Qθ∗ by letting Qk+1
θ∗ = Qk+1

θ . The experience buffer induces independent samples
{(si, ai, ri, s′i)}i∈[n]. If {Qθ : θ ∈ Θ} is sufficiently large such that it contains T optQk

θ∗ , Eq. 1
has solution Qk+1

θ = T optQk
θ∗ , which is exactly the updating rule under Bellman optimality op-

erator (Fan et al., 2020). In the viewpoint of statistics, the optimization problem in Eq. 1 in each
iteration is a standard supervised and neural network parameterized regression regarding Qθ.
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Distributional RL: Neural Fitted Z-Iteration (Neural FZI). We interpret distributional RL as
Neural FZI as it is by far closest to the practical algorithms, although our analysis is not intended
for involving properties of neural networks. Analogous to Neural FQI, we can simplify value-based
distributional RL algorithms parameterized by Zθ into Neural FZI as

Zk+1
θ = argmin

Zθ

1

n

n∑
i=1

dp(Yi, Zθ (si, ai)), (2)

where the target Yi = R(si, ai) + γZk
θ∗ (s′i, πZ(s

′
i)) with the policy πZ following the greedy rule

πZ(s
′
i) = argmaxa′ E

[
Zk
θ∗(s′i, a

′)
]

is fixed within every Ttarget steps to update target network Zθ∗ .
Here the lower cases random variables s′i and πZ(s

′
i) are given for convenience. dp is a divergence

between two distributions.

3.2 EQUIVALENT FORM OF DISTRIBUTIONAL RL: ENTROPY-REGULARIZED NEURAL FQI

Return Density Function Decomposition. To separate the impact of additional distribution infor-
mation from the expectation of Zπ , we use a variant of gross error model from robust statistics (Hu-
ber, 2004), which was also similarly used to analyze Label Smoothing (Müller et al., 2019) and
Knowledge Distillation (Hinton et al., 2015). Akin to the categorical representation in CDRL (Dab-
ney et al., 2018b) we utilize a histogram function estimator p̂s,a(x) with N bins to approximate
an arbitrary continuous true action-value density ps,a(x) given a state s and action a. We leverage
the continuous histogram estimator rather than the discrete categorical parameterization to allow
richer analysis. Given a fixed set of supports l0 ≤ l1 ≤ ... ≤ lN with the equal bin size as
∆, ∆i = [li−1, li), i = 1, ..., N − 1 with ∆N = [lN−1, lN ], the histogram density estimator is
p̂s,a(x) =

∑N
i=1 pi1(x ∈ ∆i)/∆ with the i-th bin height as pi/∆. Denote ∆E as the interval that

E [Zπ(s, a)] falls into, i.e., E [Zπ(s, a)] ∈ ∆E . Putting all together, we have an action-state return
density function decomposition over the histogram density estimator p̂s,a(x):

p̂s,a(x) = (1− ϵ)1(x ∈ ∆E)/∆+ ϵµ̂s,a(x) (3)

where p̂s,a is decomposed into a single-bin histogram 1(x ∈ ∆E)/∆ and an induced histogram
density function µ̂s,a evaluated by µ̂s,a(x) =

∑N
i=1 p

µ
i 1(x ∈ ∆i)/∆ with pµi /∆ as the i-th bin

height. Optimizing the first term in Neural FZI is linked with Neural FQI for expectation-based
RL, which we will show later. The induced histogram µ̂s,a in the second term is to characterize
the impact of action-state return distribution despite its expectation E [Zπ(s, a)] on the performance
of distributional RL. ϵ is a pre-specified hyper-parameter before the decomposition, controlling the
proportion between 1(x ∈ ∆E)/∆ and µ̂s,a(x). Before establishing the equivalence between dis-
tributional RL and a specific entropy-regularized Neural FQI, we begin by showing that µ̂s,a is a
valid density function under certain ϵ in Proposition 1. The proof is provided in Appendix B.
Proposition 1. (Decomposition Validity) Denote p̂s,a(x ∈ ∆E) = pE/∆ with pE/∆ as the bin
height. µ̂s,a(x) =

∑N
i=1 p

µ
i 1(x ∈ ∆i)/∆ is a valid density function if and only if ϵ ≥ 1− pE .

Proposition 1 indicates that the return density function decomposition in Eq. 3 is valid when the pre-
specified hyper-parameter ϵ satisfies ϵ ≥ 1 − pE , implying that ϵ → 0 is not attainable. Under this
valid return density decomposition condition, this return density decomposition approach precisely
maintains the standard categorical distribution framework in distributional RL.

Histogram Function Parameterization Error: Uniform Convergence in Probability. We further
show that the histogram density estimator is equivalent to the categorical parameterization with the
proof given in Appendix C, although the former is a continuous estimator in contrast to the discrete
nature of the latter. However, the previous discrete categorical parameterization error bound in
(Rowland et al., 2018) (Proposition 3) is derived between the true return distribution and the limiting
return distribution denoted as ηC iteratively updated via the Bellman operator ΠCT

π in expectation,
without considering an asymptotic analysis when the number of sampled {si, ai}ni=1 pairs goes to
infinity. As a complementary result, we provide a uniform convergence rate for the histogram density
estimator in the context of distributional RL. In this particular analysis within this subsection, we
denote p̂s,aC as the density function estimator for the true limiting return distribution ηC via ΠCT

π

with its true density ps,aC . In Theorem 1, we show that the sample-based histogram estimator p̂s,aC
can approximate any arbitrary continuous limiting density function ps,aC under a mild condition. The
proof is provided in Appendix D.

3



Under review as a conference paper at ICLR 2024

Theorem 1. (Uniform Convergence Rate in Probability) Suppose ps,aC (x) is Lipschitz continuous
and the support of a random variable is partitioned by N bins with bin size ∆. Then

sup
x
|p̂s,aC (x)− ps,aC (x)| = O (∆) +OP

(√
logN

n∆2

)
. (4)

Distributional RL: Entropy-regularized Neural FQI. We apply the decomposition on the tar-
get action-value histogram density function and choose KL divergence as dp in Neural FZI. Let
H(U, V ) be the cross-entropy between two probability measures U and V , i.e., H(U, V ) =
−
∫
x∈X U(x) log V (x) dx. The target histogram density function p̂s,a is decomposed as p̂s,a(x) =

(1− ϵ)1(x ∈ ∆E)/∆+ ϵµ̂s,a(x). We can derive the following entropy-regularized form for distri-
butional RL in Proposition 2. The proof is given in Appendix F.
Proposition 2. (Decomposed Neural FZI) Denote qs,aθ (x) as the histogram estimator of Zk

θ (s, a) in
Neural FZI. Based on Eq. 3 and KL divergence as dp, Neural FZI in Eq. 2 is simplified as

Zk+1
θ = argmin

qθ

1

n

n∑
i=1

[− log qsi,ai

θ (∆i
E)︸ ︷︷ ︸

(a)

+ αH(µ̂s′i,πZ(s′i), qsi,ai

θ )], (5)

where α = ε/(1 − ε) > 0 and ∆i
E represents the interval that the expectation of the target return

distribution R(si, ai) + γZk
θ∗ (s′i, πZ(s

′
i)) falls into, i.e., E

[
R(si, ai) + γZk

θ∗ (s′i, πZ(s
′
i))
]
∈ ∆i

E .
µ̂s′i,πZ(s′i) is the induced histogram density function by decomposing the histogram density estimator
of R(si, ai) + γZk

θ∗ (s′i, πZ(s
′
i)) via Eq. 3. In Proposition 3, we further show that minimizing the

term (a) in Eq. 5 is equivalent to minimizing Neural FQI, and therefore the regularization term
αH(µ̂s′i,πZ(s′i), qsi,ai

θ ) can be sufficiently used to interpret the benefits of CDRL over classical RL.
For the uniformity of notation, we still use s, a in the following analysis instead of si, ai.
Proposition 3. (Equivalence between the term (a) in Decomposed Neural FZI and Neural FQI) In
Eq. 5 of Neural FZI, if the function class {Zθ : θ ∈ Θ} is sufficiently large such that it contains the
target {Yi}ni=1. As ∆→ 0, for all k, minimizing the term (a) in Eq. 5 implies

P (Zk+1
θ (s, a) = T optQk

θ∗(s, a)) = 1, and
∫ +∞

−∞

∣∣∣Fqθ (x)− FδT optQk
θ∗ (s,a)

(x)
∣∣∣ dx = o(∆),

(6)
where δT optQk

θ∗ (s,a)
is the delta function defined on T optQk

θ∗(s, a).

The proof is given in Appendix G. Given the fact that {Zθ : θ ∈ Θ} is sufficiently large such that it
contains {Yi}ni=1 in Neural FZI, we have Zk+1

θ = T optQk
θ∗ with probability one when ∆→ 0. This

result establishes a theoretical link between Neural FZI regarding the term (a) in Eq. 5 with Neural
FQI, allowing us to leverage the regularization term αH(µ̂s′i,πZ(s′i), qsi,ai

θ ) to explain the benefits of
CDRL over classical RL. Next, we shift out attention to elaborating the impact of the regularization
part in Eq. 5 for Neural FZI.

Risk-Sensitive Entropy Regularization in Proposition 2. Based on the equivalence between the
term (a) of decomposed Neural FZI and FQI, we, therefore, interpret the form of distributional RL
in Eq. 5 as entropy-regularized Neural FQI. As such, the behavior difference of distributional RL
compared with expectation-based RL, especially the ability to significantly reduce intrinsic uncer-
tainty of the environment (Mavrin et al., 2019), can be attributed to the second regularization term
H(µ̂s′i,πZ(s′i), qsi,ai

θ ). It pushes qs,aθ for the current state-action pair to approximate µ̂s′i,πZ(s′i) for
the target state-action pair, which additionally incorporates the return distribution information in
the whole learning process instead of only encoding its expectation. According to the literature of
risks in RL (Dabney et al., 2018a), where “risk” refers to the uncertainty over possible outcomes
and “risk-sensitive policies” are those which depend upon more than the mean of the outcomes,
we hereby call the novel cross-entropy regularization for the second term in Eq. 5 as risk-sensitive
entropy regularization. This risk-sensitive entropy regularization derived within distributional RL
expands the class of policies using the information provided by the distribution over returns (i.e. to
the class of risk-sensitive policies).

Remark on KL Divergence. As stated in Section 2 of CDRL (Bellemare et al., 2017a), when the
categorical parameterization is applied after the projection operator ΠC , the distributional Bellman
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operator Tπ has the contraction guarantee under Cramér distance (Rowland et al., 2018), albeit the
use of a non-expansive KL divergence (Morimura et al., 2012). Similarly, our histogram density pa-
rameterization with the projection ΠC and KL divergence also enjoys a contraction property due to
the equivalence between optimizing histogram function and categorical distribution analyzed in Ap-
pendix C. We summarize favorable properties of KL divergence in distributional RL in Appendix E.

How to Obtain a Good Approximation of µ̂s′,πZ(s′)? As in practical distributional RL algorithms,
we typically use the bootstrap, e.g., TD learning, to attain the target probability density estimate
µ̂s′,πZ(s′) based on Eq. 3 as long as E [Z(s, a)] exists and ϵ ≥ 1−pE in Proposition 1. The leverage
of µ̂s′,πZ(s′) and the regularization effect revealed in Eq. 5 of distributional RL de facto establishes
a bridge with MaxEnt RL (Williams & Peng, 1991) as analyzed in Section 4.

4 IMPLICIT REGULARIZATION IN THE ACTOR CRITIC FRAMEWORK

4.1 CONNECTION WITH MAXENT RL

Explicit Vanilla Entropy Regularization in MaxEnt RL. MaxEnt RL (Williams & Peng, 1991),
including Soft Q-Learning (Haarnoja et al., 2017), explicitly encourages the exploration by optimiz-
ing for policies that aim to reach states where they will have high entropy in the future:

J(π) =

T∑
t=0

E(st,at)∼ρπ
[r (st, at) + βH(π(·|st))] , (7)

where H (πθ (·|st)) = −
∑

a πθ (a|st) log πθ (a|st) and ρπ is the generated distribution following
π. The temperature parameter β determines the relative importance of the entropy term against the
cumulative rewards and thus controls the action diversity of the optimal policy learned via Eq. 7.
This maximum entropy regularization has various conceptual and practical advantages. Firstly,
the learned policy is encouraged to visit states with high entropy in the future, thus promoting
the exploration of diverse states (Han & Sung, 2021). It also considerably improves the learn-
ing speed (Mei et al., 2020) and therefore is widely used in state-of-the-art algorithms, e.g., Soft
Actor-Critic (SAC) (Haarnoja et al., 2018). Similar empirical benefits of both distributional RL and
MaxEnt RL motivate us to probe their underlying connection.

Implicit Risk-Sensitive Entropy Regularization in Distributional RL. To make a direct compar-
ison with MaxEnt RL, we need to specifically analyze the impact of the regularization term in Eq. 5,
and thus we incorporate the risk-sensitive entropy regularization of distributional RL into the Actor
Critic (AC) framework akin to MaxEnt RL. We thus consider a new soft Q-value, i.e., the expecta-
tion of Zπ(s, a). The new Q function can be computed iteratively by applying a modified Bellman
operator T π

d which we call Distribution-Entropy-Regularized Bellman Operator defined as

T π
d Q (st, at) ≜ r (st, at) + γEst+1∼P (·|st,at) [V (st+1|st, at)] , (8)

where a new soft value function V (st+1|st, at) conditioned on st, at is defined by

V (st+1|st, at) = Eat+1∼π [Q (st+1, at+1)] + f(H (µst,at , qst,at

θ )), (9)

where f is a continuous increasing function over the cross-entropy H. Note that in this specific
tabular setting regarding st, at, we particularly use qst,at

θ (x) to approximate the true density func-
tion of Z(st, at). We use µst,at to represent the induced true target return histogram function via
the decomposition in Eq. 3 regardless of its expectation, which can typically be approximated via
bootstrap estimate µ̂st+1,πZ(st+1) similar in Eq. 5. The f transformation over the cross-entropy H
between µst,at and qst,at

θ (x) serves as the risk-sensitive entropy regularization that we implicitly
derive from value-based distributional RL in Section 3.2. Here, we elaborate its impact on the opti-
mization in actor-critic framework in contrast to MaxEnt RL.

Implicit Reward Augmentation for a Different Exploration. As opposed to the vanilla entropy
regularization in MaxEnt RL that explicitly encourages the policy to explore, our risk-sensitive en-
tropy regularization in distributional RL plays a role of the implicit reward augmentation. The
augmented reward incorporates additional return distribution knowledge in the learning process
compared with expectation-based RL. As suggested in Eq. 9, the augmented reward encourages
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policies to reach states st with the following actions at ∼ π(·|st), whose current action-state return
distribution qst,at

θ lag far behind the target ones, measured by the cross entropy.

For a comprehensive analysis and a detailed comparison with MaxEnt RL, we now concentrate on
the properties of our risk-sensitive entropy regularization in the framework of Actor Critic (AC).
In Lemma 1, we first show that our Distribution-Entropy-Regularized Bellman operator T π

d still
inherits the convergence property in the policy evaluation phase with a cumulative augmented reward
function as the new objective function.
Lemma 1. (Distribution-Entropy-Regularized Policy Evaluation) Consider the distribution-
entropy-regularized Bellman operator T π

d in Eq. 8 and assume H(µst,at , qst,at

θ ) ≤ M for all
(st, at) ∈ S × A, where M is a constant. Define Qk+1 = T π

d Qk, then Qk+1 will converge to
a corrected Q-value of π as k →∞ with the new objective function J ′(π) defined as

J ′(π) =

T∑
t=0

E(st,at)∼ρπ
[r (st, at) + γf(H (µst,at , qst,at

θ ))] . (10)

In the policy improvement for distributional RL, we keep the vanilla updating rules according to
πnew = argmaxπ′∈Π Eat∼π′ [Qπold(st, at)] . Next, we can immediately derive a new policy iteration
algorithm, called Distribution-Entropy-Regularized Policy Iteration (DERPI) that alternates between
the policy evaluation in Eq. 8 and the policy improvement. It will provably converge to the policy
with the optimal risk-sensitive entropy among all policies in Π as shown in Theorem 2.
Theorem 2. (Distribution-Entropy-Regularized Policy Iteration) AssumeH(µst,at , qst,at

θ ) ≤M for
all (st, at) ∈ S × A, where M is a constant. Repeatedly applying distribution-entropy-regularized
policy evaluation in Eq. 8 and the policy improvement, the policy converges to an optimal policy π∗

such that Qπ∗
(st, at) ≥ Qπ (st, at) for all π ∈ Π.

Please refer to Appendix H for the proof of Lemma 1 and Theorem 2. Theorem 2 indicates that
if we incorporate the risk-sensitive entropy regularization into the policy gradient framework in
Eq. 10, we can design a variant of “soft policy iteration” (Haarnoja et al., 2018) that can guarantee
the convergence to an optimal policy, where the optimal policy is defined based on the optimal Q
function. Based on the analysis above, we next provide a comprehensive comparison between the
explicit vanilla entropy in MaxEnt RL and the implicit risk-sensitive entropy in distributional RL.

Figure 1: Intrinsic uncertainty
reduction via risk-sensitive ex-
ploration. qs,aθ is encouraged to
disperse under the risk-sensitive
entropy regularization.

Explicit vs Implicit Policy Optimization and Exploration. By
comparing J(π) in Eq. 7 and J ′(π) in Eq. 10, the state-wise en-
tropy H(π(·|st)) is maximized explicitly w.r.t. π in MaxEnt RL
for policies with a higher entropy in terms of diverse actions. In
contrast, distributional RL implicitly maximizes the risk-sensitive
entropy regularization w.r.t. π via at ∼ π(·|st), leading to dif-
ferent impact of exploration. Concretely, the learned policy is
encouraged to visit state st along with the policy-determined ac-
tion pairs via at ∼ π(·|st) in the future whose current action-
state return distributions qst,at

θ “lag far behind” compared with
the target return distributions, measure by the cross entropy. In
expectation-based RL, the learned qst,at

θ is more likely to concen-
trate on the expectation of target return distribution, without the
leverage of the full return distribution information. Thus, optimizing the implicit regularization in
distributional RL pushes qst,at

θ to approach the target return distribution µst,at that tends to have a
higher degree of dispersion, e.g., variance. As such, the implicit risk-sensitive entropy potentially
promotes the risk-sensitive exploration to reduce the intrinsic uncertainty of the environment, as
illustrated in Figure 1 as an example. It is still possible that qst,at

θ has already a higher variance than
µst,at in the learning process and thus it is to be optimized to reduce the dispersion. We argue that
it highly depends on the environment and learning phases to determine which scenario happens.

4.2 DERAC ALGORITHM: INTERPOLATING AC AND DISTRIBUTIONAL AC

For a practical algorithm, we extend DERPI to the function approximation setting by parameter-
izing the return distribution qθ(st, at) and the policy πϕ(at|st), yielding the Distribution-Entropy-
Regularized Actor-Critic (DERAC) that interpolates expectation-based AC and distributional AC.
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Optimize the parameterized return distribution qθ. The new value function Ĵq(θ) is originally
trained to minimize the squared residual error of Eq. 8. We show that Ĵq(θ) can be simplified as:

Ĵq(θ) ∝ (1− λ)Es,a

[
(T πE [qθ∗(s, a)]− E [qθ(s, a)])

2
]
+ λEs,a [H(µs,a, qs,aθ )] , (11)

where we use a particular increasing function f(H) = (τH) 1
2 /γ and λ = τ

1+τ ∈ [0, 1], τ ≥ 0 is
the hyperparameter that controls the risk-sensitive regularization effect. The proof is given in Ap-
pendix I. Interestingly, when we leverage the whole target density function p̂s,a to approximate the
true µs,a, the objective function in Eq. 11 can be viewed as an exact interpolation of loss functions
between expectation-based AC (the first term) and categorical distributional AC loss (the second
term)(Ma et al., 2020). Note that for the target T πE [qθ∗(s, a)], we use the target return distribu-
tion neural network qθ∗ to stabilize the training, which is consistent with the Neural FZI framework
analyzed in Section 3.1.

Optimize the policy πϕ. We optimize πϕ in the policy optimization based on the Q-function and
therefore the new objective function Ĵπ(ϕ) can be expressed as Ĵπ(ϕ) = Es,a∼πϕ

[E [qθ(s, a)]]. The
complete DERAC algorithm is described in Algorithm 1 of Appendix K.

5 EXPERIMENTS

In our experiments, we first verify the risk-sensitive entropy regularization effect in value-based
CDRL analyzed in Section 3 on eight typical Atari games. For the actor-critic framework ana-
lyzed in Section 4, we demonstrate the implicit regularization in Distributional SAC (DSAC) (Ma
et al., 2020) with C51 as the critic loss, as well as the interpolation behavior of DERAC algo-
rithm in continuous control environments. Finally, an empirical extension to Implicit Quantile Net-
works (IQN) (Dabney et al., 2018a) is provided on eight MuJoCo environments to reveal the mutual
impacts of explicit and implicit entropy regularization. The implementation of the DERAC algo-
rithm is based on DSAC (Ma et al., 2020), which also serves as a baseline. More implementation
details are provided in Appendix J.

5.1 RISK-SENSITIVE ENTROPY REGULARIZATION IN VALUE-BASED DISTRIBUTIONAL RL

We demonstrate the rationale of action-state return density function decomposition in Eq. 3 and the
risk-sensitive entropy regularization effect analyzed in Eq. 5 based on the C51 algorithm. Firstly, it is
a fact that the return distribution decomposition is based on the equivalence between KL divergence
and cross-entropy owing to the usage of target networks. Hence, we demonstrate that the C51
algorithm can still achieve similar results under the cross-entropy loss across both Atari games and
MuJoCo environments in Figure 5 of Appendix L. In the value-based C51 loss, we replace the
whole target categorical distribution p̂s,a(x) in C51 with the derived µ̂s,a(x) under different ε based
on Eq. 3 in the cross-entropy loss, allowing to investigate the risk-sensitive regularization effect of
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Figure 2: Learning curves of value-based CDRL, i.e., C51 algorithm, with return distribution de-
compositionH(µ, qθ) under different ε on eight typical Atari games averaged over 3 seeds.
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distributional RL. Concretely, we define ε as the proportion of probability of the bin that contains
the expectation with mass to be transported to other bins. We use ε to replace ϵ for convenience as
the leverage of ε can always guarantee the valid density function µ̂ analyzed in Proposition 1. A
large proportion probability ε that transports less mass to other bins corresponds to a large ϵ in Eq. 3,
which would be closer to a distributional RL algorithm, i.e., C51.

As shown in Figure 2, when ε gradually decreases from 0.8 to 0.1, learning curves of decomposed
C51 denoted as H(µ, qθ)(ε = 0.8/0.5/0.1) tend to degrade from vanilla C51 to DQN across most
eight Atari games, although their sensitivity in terms of ε may depend on the environment. This
empirical observation corroborates the role of risk-sensitive entropy regularization we derive in Sec-
tion 3.2, suggesting that the risk-sensitive entropy regularization is pivotal to the success of CDRL.

5.2 RISK-SENSITIVE ENTROPY REGULARIZATION IN CONTINUOUS CONTROL
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Figure 3: (First Row) Learning curves of Distributional AC (C51) with the return distribution de-
composition H(µ, qθ) under different ε. (Second Row) Learning curves of DERAC algorithm. All
results are averaged over 5 seeds. We denote AC as SAC without the leverage of entropy.

As suggested in the first row of Figure 3, the performance of the decomposed DSAC (C51), denoted
as H(µ, qθ)(ε = 0.8/0.5/0.1), also tends to vary from the vanilla DSAC (C51) to SAC with the
decreasing of ε on three MuJoCo environments, except bipedalwalkerhardcore. This is because our
return density decomposition is valid only when ϵ ≥ 1−pE as shown in Proposition 1, and therefore
ϵ can not strictly go to 0, whereH(µ, qθ) would degenerate to SAC ideally.

The second row of Figure 3 showcases that DERAC (the red line) tends to “interpolate” between
the expectation-based AC (without vanilla entropy) / SAC and DSAC (C51) across three MuJoCo
environments, except bipedalwalkerhardcore (hard for exploration), where the interpolation has ex-
tra advantages. We hypothesize that this risk-sensitive regularization is more likely to improve the
performance on complicated environments, e.g., bipedalwalkerhardcore, for which we provide more
results and discussions in Appendix M.

We emphasize that introducing the DERAC algorithm is not to pursue the empirical outperformance
over DSAC but to corroborate the rationale of incorporating risk-sensitive entropy regularization
in actor-critic framework, including the theoretical convergence of the tabular DERPI algorithm in
Theorem 2, by observing the interpolating behavior of DERAC between SAC and DSAC. Specifi-
cally, as we choose ε = 0.9 in DERAC, there exists a distribution information loss, resulting in the
learning performance degradation, e.g., on Swimmer. To pursue the performance in practice, our
suggestion is to directly deploy DSAC that takes advantage of the full return distribution informa-
tion. We also provide a sensitivity analysis of DERAC regarding λ in Figure 6 of Appendix L.

5.3 MUTUAL IMPACTS OF EXPLICIT AND IMPLICIT REGULARIZATION AND BEYOND

Since the implicit regularization we reveal is highly linked to CDRL, we study the mutual impacts
of explicit regularization in SAC and implicit regularization in DSAC in quantile-based distribu-
tional RL, e.g., QR-DQN (Dabney et al., 2018b) to reveal that the impact regularization in CDRL
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Figure 4: Learning curves of AC, AC+VE (SAC), AC+RE and AC+RE+VE (DSAC) over 5 seeds
with smooth size 5 across eight MuJoCo environments where distributional RL is based on IQN.

potentially exists in the general distributional RL. Similar results conducted on DSAC (C51) are
also given in Appendix N. Specifically, we conduct a careful ablation study to control the effects of
vanilla entropy (VE), risk-sensitive entropy (RE), and their mutual impacts. We denote SAC with
and without vanilla entropy as AC and AC+VE, and distributional SAC with and without vanilla en-
tropy as AC+RE+VE and AC+RE, where VE and RE are short for Vanilla Entropy and Risk-sensitive
Entropy. For the implementation, we leverage the quantiles generation strategy in IQN (Dabney
et al., 2018a) in distributional SAC (Ma et al., 2020). Hyper-parameters are listed in Appendix J. As
suggested in Figure 4, we make the following conclusions:

(1) With no surprise, the explicit vanilla entropy is useful as AC+VE (blue line) outperforms AC (red
lines) across most environments except on the humanoid and swimmer. By contrast, The implicit
risk-sensitive entropy effect (RE) from distributional RL also benefits the learning as AC+RE (black
lines) tends to bypass AC (red lines), especially on the complex BipealWalkerHardcore (hard for
exploration) and Humanoidstandup (with the specific objective as opposed to Humanoid).

(2) The leverage of both risk-sensitive entropy and vanilla entropy may interfere with each other, e.g.,
on BipealWalkerHardcore and Swimmer games, where AC+RE+VE (orange lines) is significantly
inferior to AC+RE (black lines). This may result from the different policy optimization/exploration
preferences of two regularization effects. SAC explicitly optimizes the policy to visit states with
high entropy, while distributional RL implicitly optimizes the policy to visit states and the follow-
ing actions whose return distribution has a higher cross-entropy for the current return distribution
estimate, thus potentially promoting the risk-sensitive exploration. We hypothesize that mixing two
different policy optimization/exploration directions may lead to sub-optimal solutions in certain en-
vironments, thus interfering with each other eventually.

6 DISCUSSIONS AND CONCLUSION

The implicit regularization effect we reveal is mainly based on CDRL. Although CDRL is viewed as
the first successfully distributional RL family, the theoretical techniques, including the contraction
analysis, in other distributional RL families, e.g., QR-DQN, are highly different from CDRL (Row-
land et al., 2023). Hence, there remain some theoretical gaps to extend the implicit regularization
conclusions in CDRL to general distributional RL algorithms, which we leave as future work.

In this paper, we interpret the potential superiority of CDRL over expectation-based RL as the im-
plicit regularization derived through the return density decomposition. In contrast to the explicit pol-
icy optimization in MaxEnt RL, the risk-sensitive regularization in CDRL serves as an augmented
reward, which implicitly optimizes the policy. Starting from CDRL, our research contributes to a
deeper understanding of the potential superiority of distributional RL algorithms.
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Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. International Conference on Machine Learning (ICML), 2017a.

Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan,
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A CONVERGENCE GUARANTEE OF CATEGORICAL DISTRIBUTIONAL RL

Categorical Distributional RL (Bellemare et al., 2017a) uses the heuristic projection operator ΠC
that was defined as

ΠC (δy) =


δl1 y ≤ l1
li+1−y
li+1−zi

δli +
y−li

li+1−zi
δli+1

li < y ≤ li+1

δlK y > lK

, (12)

and extended affinely to finite mixtures of Dirac measures, so that for a mixture of Diracs∑N
i=1 piδyi

, we have ΠC

(∑N
i=1 piδyi

)
=
∑N

i=1 piΠC (δyi
). The Cramér distance was recently

studied as an alternative to the Wasserstein distances in the context of generative models (Bellemare
et al., 2017b). Recall the definition of Cramér distance.

Definition 1. (Definition 3 (Rowland et al., 2018)) The Cramér distance ℓ2 between two distribu-
tions ν1, ν2 ∈P(R), with cumulative distribution functions Fν1

, Fν2
respectively, is defined by:

ℓ2 (ν1, ν2) =

(∫
R
(Fν1(x)− Fν2(x))

2
dx

)1/2

.

Further, the supremum-Cramér metric ℓ̄2 is defined between two distribution functions η, µ ∈
P(R)X×A by

ℓ̄2(η, µ) = sup
(x,a)∈X×A

ℓ2

(
η(x,a), µ(x,a)

)
.

Thus, the contraction of categorical distributional RL can be guaranteed under Cramér distance:

Proposition 4. (Proposition 2 (Rowland et al., 2018)) The operator ΠCT π is a
√
γ-contraction in

ℓ̄2.

An insight behind this conclusion is that Cramér distance endows a particular subset with a no-
tion of orthogonal projection, and the orthogonal projection onto the subset is exactly the heuristic
projection ΠC (Proposition 1 in (Rowland et al., 2018)).

B PROOF OF PROPOSITION 1

Proposition 1. Denote p̂s,a(x ∈ ∆E) = pE/∆. Following the density function decomposition
in Eq. 3, µ̂(x) =

∑N
i=1 p

µ
i 1(x ∈ ∆i)/∆ is a valid probability density function if and only if

ϵ ≥ 1− pE .

Proof. Recap a valid probability density function requires non-negative and one-bounded probabil-
ity in each bin and all probabilities should sum to 1.

Necessity. (1) When x ∈ ∆E , Eq. 3 can simplified as pE/∆ = (1 − ϵ)/∆+ ϵpµE/∆, where pµE =
µ̂(x ∈ ∆E). Thus, pµE = pE

ϵ −
1−ϵ
ϵ ≥ 0 if ϵ ≥ 1− pE . Obviously, pµE = pE

ϵ −
1−ϵ
ϵ ≤

1
ϵ −

1−ϵ
ϵ = 1

guaranteed by the validity of p̂s,aE . (2) When x /∈ ∆E , we have pi/∆ = ϵpµi /∆, i.e.,When x /∈ ∆E ,
We immediately have pµi = pi

ϵ ≤
1−pE

ϵ ≤ 1 when ϵ ≥ 1− pE . Also, pµi = pi

ϵ ≥ 0.

Sufficiency. (1) When x ∈ ∆E , let pµE = pE

ϵ −
1−ϵ
ϵ ≥ 0, we have ϵ ≥ 1− pE . pµE = pE

ϵ −
1−ϵ
ϵ ≤ 1

in nature. (2) When x /∈ ∆E , pµi = pi

ϵ ≥ 0 in nature. Let pµi = pi

ϵ ≤ 1, we have pi ≤ ϵ. We need to
take the intersection set of (1) and (2), and we find that ϵ ≥ 1−pE ⇒ ϵ ≥ 1−pE ≥ pi that satisfies
the condition in (2). Thus, the intersection set of (1) and (2) would be ϵ ≥ 1− pE .

In summary, as ϵ ≥ 1 − pE is both the necessary and sufficient condition, we have the conclusion
that µ̂(x) is a valid probability density function ⇐⇒ ϵ ≥ 1− pE .
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C EQUIVALENCE BETWEEN CATEGORICAL AND HISTOGRAM
PARAMETERIZATION

Proposition 5. Suppose the target categorical distribution c =
∑N

i=1 piδzi and the target histogram
function h(x) =

∑N
i=1 pi1(x ∈ ∆i)/∆, updating the parameterized categorical distribution cθ

under KL divergence is equivalent to updating the parameterized histogram function hθ.

Proof. For the histogram density estimator hθ and the true target density function p(x), we can
simplify the KL divergence as follows.

DKL(h, hθ) =

N∑
i=1

∫ li

li−1

pi(x)

∆
log

pi(x)
∆
hi
θ

∆

dx

=

N∑
i=1

∫ li

li−1

pi(x)

∆
log

pi(x)

∆
dx−

N∑
i=1

∫ li

li−1

pi(x)

∆
log

hi
θ

∆
dx

∝ −
N∑
i=1

∫ li

li−1

pi(x)

∆
log

hi
θ

∆
dx

= −
N∑
i=1

pi(x) log
hi
θ

∆
∝ −

N∑
i=1

pi(x) log h
i
θ

(13)

where hi
θ is determined by i and θ and is independent of x. For categorical distribution estimator cθ

with the probability pi in for each atom zi, we also have its target categorical distribution p(x) with
each probability pi, we have:

DKL(c, cθ) =

N∑
i=1

pi log
pi
ciθ

=

N∑
i=1

pi log pi −
N∑
i=1

pi log c
i
θ

∝ −
N∑
i=1

pi log c
i
θ

(14)

In CDRL, we only use a discrete categorical distribution with probabilities centered on the fixed
atoms {zi}Ni=1, while the histogram density estimator in our analysis is a continuous function defined
on [z0, zN ] to allow richer analysis. We reveal that minimizing the KL divergence regarding the
parameterized categorical distribution in Eq. 14 is equivalent to minimizing the cross-entropy loss
regarding the parameterized histogram function in Eq. 13.

D PROOF OF THEOREM 1

Theorem 1. Suppose ps,aC (x) is Lipschitz continuous and the support of X is partitioned by N bins
with bin size ∆. Then

sup
x
|p̂s,aC (x)− ps,aC (x)| = O (∆) +OP

(√
logN

n∆2

)
. (15)

Proof. Our proof is mainly based on the non-parametric statistics analysis (Wasserman, 2006). In
particular, the difference of p̂s,aC (x)− ps,aC (x) can be written as

p̂s,aC (x)− ps,aC (x) = E (p̂s,aC (x))− ps,aC (x)︸ ︷︷ ︸
bias

+ p̂s,aC (x)− E (p̂s,aC (x))︸ ︷︷ ︸
stochastic variation

.
(16)

13
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(1) The first bias term. Without loss of generality, we consider x ∈ ∆k, we have

E (p̂s,aC (x)) =
P (X ∈ ∆k)

∆

=

∫ l0+k∆

l0+(k−1)∆
p(y)dy

∆

=
F (l0 + (k − 1)∆)− F (l0 + (k − 1)∆)

l0 + k∆− (l0 + (k − 1)∆)

= ps,aC (x′),

(17)

where the last equality is based on the mean value theorem. According to the L-Lipschitz continuity
property, we have

|E (p̂s,aC (x))− ps,aC (x)| = |ps,aC (x′)− ps,aC (x)|
≤ L|x′ − x|
≤ L∆

(18)

(2) The second stochastic variation term. If we let x ∈ ∆k, then p̂s,aC = pk = 1
n

∑n
i=1 1(Xi ∈

∆k), we thus have

P

(
sup
x
|p̂s,aC (x)− E (p̂s,aC (x))| > ϵ

)
= P

(
max

j=1,··· ,N

∣∣∣∣∣ 1n
n∑

i=1

1 (Xi ∈ ∆j) /∆− P (Xi ∈ ∆j) /∆

∣∣∣∣∣ > ϵ

)

= P

(
max

j=1,··· ,N

∣∣∣∣∣ 1n
n∑

i=1

1 (Xi ∈ ∆j)− P (Xi ∈ ∆j)

∣∣∣∣∣ > ∆ϵ

)

≤
N∑
j=1

P

(∣∣∣∣∣ 1n
n∑

i=1

1 (Xi ∈ ∆j)− P (Xi ∈ ∆j)

∣∣∣∣∣ > ∆ϵ

)
≤ N · exp

(
−2n∆2ϵ2

)
(by Hoeffding’s inequality),

(19)

where in the last inequality we know that the indicator function is bounded in [0, 1]. We then let the
last term be a constant independent of N,n,∆ and simplify the order of ϵ. Then, we have:

sup
x
|p̂s,aC (x)− E (p̂s,aC (x))| = OP

(√
logN

n∆2

)
(20)

In summary, as the above inequality holds for each x, we thus have the uniform convergence rate of
a histogram density estimator

sup
x
|p̂s,aC (x)− ps,aC (x)| ≤ sup

x
|E (p̂s,aC (x))− ps,aC (x)|+ sup

x
|p̂s,aC (x)− E (p̂s,aC (x))|

= O (∆) +OP

(√
logN

n∆2

)
.

(21)

E PROPERTIES OF KL DIVERGENCE IN DISTRIBUTIONAL RL

Proposition 6. Given two probability measures µ and ν, we define the supreme DKL as a functional
P(X )S×A × P(X )S×A → R, i.e., D∞

KL(µ, ν) = sup(x,a)∈S×A DKL(µ(x, a), ν(x, a)). we have:
(1) Tπ is a non-expansive distributional Bellman operator under D∞

KL, i.e., D∞
KL(T

πZ1,T
πZ2) ≤

D∞
KL(Z1, Z2), (2) D∞

KL(Zn, Z) → 0 implies the Wasserstein distance Wp(Zn, Z) → 0, (3) the ex-
pectation of Zπ is still γ-contractive under D∞

KL, i.e., ∥ETπZ1 − ETπZ2∥∞ ≤ γ ∥EZ1 − EZ2∥∞.

14
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Proof. We firstly assume Zθ is absolutely continuous and the supports of two distributions in KL
divergence have a negligible intersection (Arjovsky & Bottou, 2017), under which the KL divergence
is well-defined.

(1) Please refer to (Morimura et al., 2012) for the proof. Therefore, we have D∞
KL(T

πZ1,T
πZ2) ≤

D∞
KL(Z1, Z2), implying that Tπ is a non-expansive operator under D∞

KL.

(2) By the definition of D∞
KL, we have sups,a DKL(Zn(s, a), Z(s, a)) → 0 implies DKL(Zn, Z) →

0. DKL(Zn, Z) → 0 implies the total variation distance δ(Zn, Z) → 0 according to a straightfor-
ward application of Pinsker’s inequality

δ (Zn, Z) ≤
√

1

2
DKL (Zn, Z)→ 0

δ (Z,Zn) ≤
√

1

2
DKL (Z,Zn)→ 0

(22)

Based on Theorem 2 in WGAN (Arjovsky et al., 2017), δ(Zn, Z) → 0 implies Wp(Zn, Z) → 0.
This is trivial by recalling the fact that δ and W give the strong and weak topologies on the dual of
(C(X ), ∥ · ∥∞) when restricted to Prob(X ).
(3) The conclusion holds because the Tπ degenerates to T π regardless of the metric dp (Bellemare
et al., 2017a). Specifically, due to the linearity of expectation, we obtain that

∥ETπZ1 − ETπZ2∥∞ = ∥T πEZ1 − T πEZ2∥∞ ≤ γ∥EZ1 − EZ2∥∞. (23)

This implies that the expectation of Z under DKL exponentially converges to the expectation of Z∗,
i.e., γ-contraction.

F PROOF OF PROPOSITION 2

Proposition 2 (Decomposed Neural FZI) Denote qs,aθ (x) as the histogram density function of
Zk
θ (s, a) in Neural FZI. Based on Eq. 3 and KL divergence as dp, Neural FZI in Eq. 2 is simplified

as

Zk+1
θ = argmin

qθ

1

n

n∑
i=1

[− log qsi,ai

θ (∆i
E)︸ ︷︷ ︸

(a)

+ αH(µ̂s′i,πZ(s′i), qsi,ai

θ )], (24)

Proof. Firstly, given a fixed p(x) we know that minimizing DKL(p, qθ) is equivalent to minimizing
H(p, q) by following

DKL(p, qθ) =

N∑
i=1

∫ li

li−1

pi(x)/∆ log
pi(x)/∆

qiθ/∆
dx

= −
N∑
i=1

∫ li

li−1

pi(x)/∆ log qiθ/∆ dx− (

N∑
i=1

∫ li

li−1

pi(x)/∆ log pi(x)/∆ dx)

= H(p, qθ)−H(p)
∝ H(p, qθ)

(25)

where p =
∑N

i=1 pi(x)1(x ∈ ∆i)/∆ and qθ =
∑N

i=1 qi/∆. Based on H(p, qθ), we use
ps

′
i,πZ(s′i)(x) to denote the target probability density function of the random variable R(si, ai) +

15
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γZk
θ∗ (s′i, πZ(s

′
i)). Then, we can derive the objective function within each Neural FZI as

1

n

n∑
i=1

H(ps
′
i,πZ(s′i)(x), qsi,ai

θ )

=
1

n

n∑
i=1

(
(1− ϵ)H(1(x ∈ ∆i

E)/∆, qsi,ai

θ ) + ϵH(µ̂s′i,πZ(s′i), qsi,ai

θ )
)

=
1

n

n∑
i=1

−(1− ϵ)

N∑
j=1

∫ lj

lj−1

1(x ∈ ∆i
E)/∆ log qsi,ai

θ (∆j)/∆dx− ϵ

N∑
j=1

∫ lj

lj−1

pµj /∆ log qsi,ai

θ (∆j)/∆


=

1

n

n∑
i=1

1

∆

(1− ϵ)(− log qsi,ai

θ (∆i
E)/∆)− ϵ

N∑
j=1

pµj log q
si,ai

θ (∆j)/∆


∝ 1

n

n∑
i=1

(
(1− ϵ)(− log qsi,ai

θ (∆i
E)) + ϵH(µ̂s′i,πZ(s′i), qsi,ai

θ )
)

∝ 1

n

n∑
i=1

(
− log qsi,ai

θ (∆i
E) + αH(µ̂s′i,πZ(s′i), qsi,ai

θ )
)
, where α =

ϵ

1− ϵ
> 0

(26)
where recall that µ̂s′i,πZ(s′i) =

∑N
i=1 p

µ
i (x)1(x ∈ ∆i)/∆ =

∑N
i=1 p

µ
i /∆ for conciseness and de-

note qsi,ai

θ =
∑N

j=1 q
si,ai

θ (∆j)/∆. The cross-entropy H(µ̂s′i,πZ(s′i), qsi,ai

θ ) is based on the discrete
distribution when i = 1, ..., N . ∆i

E represent the interval that E
[
R(si, ai) + γZk

θ∗ (s′i, πZ(s
′
i))
]

falls into, i.e., E
[
R(si, ai) + γZk

θ∗ (s′i, πZ(s
′
i))
]
∈ ∆i

E .

G PROOF OF PROPOSITION 3

Proposition 3 (Equivalence between the term (a) in Decomposed Neural FZI and Neural FQI) In
Eq. 5 of Neural FZI, if the function class {Zθ : θ ∈ Θ} is sufficiently large such that it contains the
target {Yi}ni=1. As ∆→ 0, for ∀k, minimizing the term (a) in Eq. 5 implies

P (Zk+1
θ (s, a) = T optQk

θ∗(s, a)) = 1, and
∫ +∞

−∞

∣∣∣Fqθ (x)− FδT optQk
θ∗ (s,a)

(x)
∣∣∣ dx = o(∆),

(27)
where δT optQk

θ∗ (s,a)
is the delta function defined on T optQk

θ∗(s, a).

Proof. Firstly, we define the distributional Bellman optimality operator Topt as follows:

ToptZ(s, a)
D
= R(s, a) + γZ (S′, a∗) , (28)

where S′ ∼ P (· | s, a) and a∗ = argmax
a′

E [Z (S′, a′)]. If {Zθ : θ ∈ Θ} is sufficiently large enough

such that it contains ToptZθ∗ ({Yi}ni=1), then optimizing Neural FZI in Eq. 2 leads to Zk+1
θ =

ToptZθ∗ .

We apply the action-value density function decomposition on the target histogram function p̂s,a(x).
Consider the parameterized histogram density function hθ and denote hE

θ /∆ as the bin height in the
bin ∆E , under the KL divergence between the first histogram function 1(x ∈ ∆E) with hθ(x), the
objective function is simplified as

DKL(1(x ∈ ∆E)/∆, hθ(x)) = −
∫
x∈∆E

1

∆
log

hE
θ

∆
1
∆

dx = − log hE
θ

(29)

Since {Zθ : θ ∈ Θ} is sufficiently large enough that can represent the pdf of {Yi}ni=1, it
also implies that {Zθ : θ ∈ Θ} can represent the term (a) part in its pdf via the return den-
sity decomposition. The KL minimizer would be ĥθ = 1(x ∈ ∆E)/∆ in expectation. Then,
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lim∆→0 argminhθ
DKL(1(x ∈ ∆E)/∆, hθ(x)) = δE[Z target(s,a)], where δE[Z target(s,a)] is a Dirac Delta

function centered at E [Z target(s, a)] and can be viewed as a generalized probability density function.
The limit behavior from a histogram function p̂ to a continuous one for Z target is guaranteed by The-
orem 1, and this also applies from hθ to Zθ. In Neural FZI, we have Z target = ToptZθ∗ . According
to the definition of the Dirac function, as ∆→ 0, we attain

P (Zk+1
θ (s, a) = E

[
ToptZk

θ∗(s, a)
]
) = 1 (30)

Due to the linearity of expectation analyzed in Lemma 4 of (Bellemare et al., 2017a), we have

E
[
ToptZk

θ∗(s, a)
]
= ToptE

[
Zk
θ∗(s, a)

]
= T optQk

θ∗(s, a) (31)

Finally, we obtain:
P (Zk+1

θ (s, a) = T optQk
θ∗(s, a)) = 1 as ∆→ 0 (32)

In order to characterize how the difference varies when ∆ → 0, we further define ∆E = [le, le+1)
and we have:∫ +∞

−∞

∣∣∣Fqθ (x)− FδT optQk
θ∗ (s,a)

(x)
∣∣∣ dx =

1

2∆

((
T optQk

θ∗(s, a)− le
)2

+
(
le+1 − T optQk

θ∗(s, a)
)2)

=
1

2∆
(a2 + (∆− a)2)

≤ ∆/2

= o(∆),
(33)

where T optQk
θ∗(s, a) = E

[
ToptZk

θ∗(s, a)
]
∈ ∆E and we denote a = T optQk

θ∗(s, a) − le. The first
equality holds as qθ(x), the KL minimizer while minimizing the term (a), would follows a uniform
distribution on ∆E , i.e., q̂θ = 1(x ∈ ∆E)/∆. Thus, the integral of LHS would be the area of two
centralized triangles according. The inequality is because the maximizer is obtained when a = ∆
or 0.

H CONVERGENCE PROOF OF DERPI IN THEOREM 2

H.1 PROOF OF DISTRIBUTION-ENTROPY-REGULARIZED POLICY EVALUATION IN LEMMA 1

Lemma 1(Distribution-Entropy-Regularized Policy Evaluation) Consider the distribution-entropy-
regularized Bellman operator T π

d in Eq. 8 and assume H(µst,at , qst,at

θ ) ≤ M for all (st, at) ∈
S × A, where M is a constant. Define Qk+1 = T π

d Qk, then Qk+1 will converge to a corrected
Q-value of π as k →∞ with the new objective function J ′(π) defined as

J ′(π) =

T∑
t=0

E(st,at)∼ρπ
[r (st, at) + γf(H (µst,at , qst,at

θ ))] . (34)

Proof. Firstly, we plug in V (st+1) into RHS of the iteration in Eq. 8, then we obtain

T π
d Q (st, at)

= r (st, at) + γEst+1∼P (·|st,at) [V (st+1)]

= r (st, at) + γf(H (µst,at , qst,at

θ )) + γE(st+1,at+1)∼ρπ [Q (st+1, at+1)]

≜ rπ (st, at) + γE(st+1,at+1)∼ρπ [Q (st+1, at+1)] ,

(35)

where rπ (st, at) ≜ r (st, at)+γf(H (µst,at , qst,at

θ )) is the entropy augmented reward we redefine.
Applying the standard convergence results for policy evaluation (Sutton & Barto, 2018), we can
attain that this Bellman updating under T π

d is convergent under the assumption of |A| < ∞ and
bounded entropy augmented rewards rπ .
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H.2 POLICY IMPROVEMENT WITH PROOF

Lemma 2. (Distribution-Entropy-Regularized Policy Improvement) Let π ∈ Π and a new policy
πnew be updated via the policy improvement step in the policy optimization. Then Qπnew (st, at) ≥
Qπold (st, at) for all (st, at) ∈ S ×A with |A| ≤ ∞.

Proof. The policy improvement in Lemma 2 implies that Eat∼πnew [Q
πold(st, at)] ≥

Eat∼πold [Q
πold(st, at)], we consider the Bellman equation via the distribution-entropy-regularized

Bellman operator T π
sd:

Qπold (st, at) ≜ r (st, at) + γEst+1∼ρ [V
πold (st+1)]

= r (st, at) + γf(H (µst,at , qst,at

θ )) + γE(st+1,at+1)∼ρπold [Qπold (st+1, at+1)]

≤ r (st, at) + γf(H (µst,at , qst,at

θ )) + γE(st+1,at+1)∼ρπnew [Qπold (st+1, at+1)]

= rπnew (st, at) + γE(st+1,at+1)∼ρπnew [Qπold (st+1, at+1)]

...
≤ Qπnew (st+1, at+1) ,

(36)

where we have repeated expanded Qπold on the RHS by applying the distribution-entropy-regularized
distributional Bellman operator. Convergence to Qπnew follows from Lemma 1.

H.3 PROOF OF DERPI IN THEOREM 2

Theorem 2 (Distribution-Entropy-Regularized Policy Iteration) AssumeH(µst,at , qst,at

θ ) ≤M for
all (st, at) ∈ S × A, where M is a constant. Repeatedly applying distribution-entropy-regularized
policy evaluation in Eq. 8 and the policy improvement, the policy converges to an optimal policy π∗

such that Qπ∗
(st, at) ≥ Qπ (st, at) for all π ∈ Π.

Proof. The proof is similar to soft policy iteration (Haarnoja et al., 2018). For completeness, we
provide the proof here. By Lemma 2, as the number of iteration increases, the sequence Qπi at i-th
iteration is monotonically increasing. Since we assume the risk-sensitive entropy is bounded by M ,
the Qπ is thus bounded as the rewards are bounded. Hence, the sequence will converge to some π∗.
Further, we prove that π∗ is in fact optimal. At the convergence point, for all π ∈ Π, it must be case
that:

Eat∼π∗ [Qπold (st, at)] ≥ Eat∼π [Q
πold (st, at)] .

According to the proof in Lemma 2, we can attain Qπ∗
(st, at) > Qπ(st, at) for (st, at). That is

to say, the “corrected” value function of any other policy in Π is lower than the converged policy,
indicating that π∗ is optimal.

I PROOF OF INTERPOLATION FORM OF Ĵq(θ)

Ĵq(θ) = Es,a

[
(T π

d Qθ∗(s, a)−Qθ(s, a))
2
]

= Es,a

[(
T πQθ∗(s, a)−Qθ(s, a) + γ(τ1/2H1/2(µs,a, qs,aθ )/γ)

)2]
= Es,a

[
(T πE [qθ∗(s, a)]− E [qθ(s, a)])

2
]
+ τEs,a [H(µs,a, qs,aθ )]

+ Es,a [(T πE [qθ∗(s, a)]− E [qθ(s, a)])H(µs,a, qs,aθ )]

= Es,a

[
(T πE [qθ∗(s, a)]− E [qθ(s, a)])

2
]
+ τEs,a [H(µs,a, qs,aθ )]

∝ (1− λ)Es,a

[
(T πE [qθ∗(s, a)]− E [qθ(s, a)])

2
]
+ λEs,a [H(µs,a, qs,aθ )] ,

(37)

where the second equation is based on the definition of Distribution-Entropy-Regularized Bell-
man Operator T π

d in Eq. 8 and let f(H) = (τH)1/2/γ. The last equation is based on
Lemma 1 in (Shi et al., 2022), where we let φ (St, At) = H(µSt,At , qSt,At

θ ), and thus we have
Es,a [(T πE [qθ∗(s, a)]− E [qθ(s, a)])H(µs,a, qs,aθ )] = 0. We set λ = τ

1+τ ∈ [0, 1].
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J IMPLEMENTATION DETAILS

Table 1: Hyper-parameters Sheet.

Hyperparameter Value
Shared

Policy network learning rate 3e-4
(Quantile) Value network learning rate 3e-4
Optimization Adam
Discount factor 0.99
Target smoothing 5e-3
Batch size 256
Replay buffer size 1e6
Minimum steps before training 1e4

DSAC with C51
Number of Atoms (N ) 51

DSAC with IQN
Number of quantile fractions (N ) 32
Quantile fraction embedding size 64
Huber regression threshold 1

Hyperparameter Temperature Parameter β Max episode lenght
Walker2d-v2 0.2 1000
Swimmer-v2 0.2 1000
Reacher-v2 0.2 1000
Ant-v2 0.2 1000
HalfCheetah-v2 0.2 1000
Humanoid-v2 0.05 1000
HumanoidStandup-v2 0.05 1000
BipedalWalkerHardcore-v2 0.002 2000

Our implementation is directly adapted from the source code in (Ma et al., 2020).

For Distributional SAC with C51, we use 51 atoms similar to the C51 (Bellemare et al., 2017a).
For distributional SAC with quantile regression, instead of using fixed quantiles in QR-DQN, we
leverage the quantile fraction generation based on IQN (Dabney et al., 2018a) that uniformly samples
quantile fractions in order to approximate the full quantile function. In particular, we fix the number
of quantile fractions as N and keep them in ascending order. Besides, we adapt the sampling as
τ0 = 0, τi = ϵi/

∑N−1
i=0 , where ϵi ∈ U [0, 1], i = 1, ..., N .

J.1 HYPER-PARAMETERS AND NETWORK STRUCTURE.

We adopt the same hyper-parameters, which are listed in Table 1 and network structure as in the
original distributional SAC paper (Ma et al., 2020).

K DERAC ALGORITHM

We provide a detailed algorithm description of DERAC algorithm in Algorithm 1.

L EXPERIMENTS: SENSITIVITY ANALYSIS OF DERAC

Figure 5 suggests that C51 with cross-entropy loss behaves similarly to the vanilla C51 equipped
with KL divergence.
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Algorithm 1 Distribution-Entropy-Regularized Actor Critic (DERAC) Algorithm

1: Initialize two value networks qθ, qθ∗ , and policy network πϕ.
2: for each iteration do
3: for each environment step do
4: at ∼ πϕ(at|st).
5: st+1 ∼ p(st+1|st, at).
6: D ← D ∪ {(st, at, r (st, at) , st+1)}
7: end for
8: for each gradient step do
9: θ ← θ − λq∇θĴq(θ)

10: ϕ← ϕ+ λπ∇ϕĴπ(ϕ).
11: θ∗ ← τθ + (1− τ)θ∗

12: end for
13: end for
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Figure 5: (First row) Learning curves of C51 under cross-entropy loss on Atari games over 3
seeds. (Second row) Learning curves of DSAC with C51 under cross-entropy loss on MuJoCo
environments over 5 seeds.
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Figure 6 shows that DERAC with different λ in Eq. 11 may behave differently in the different
environment. Learning curves of DERAC with an increasing λ will tend to DSAC (C51), e.g.,
Bipedalwalkerhardcore, where DERAC with λ = 1 in the green line tends to DSAC (C51) in the blue
line. However, DERAC with a small λ is likely to outperform DSAC (C51) by only leveraging the
expectation effect of return distribution, on Bipedalwalkerhardcore, where DERAC with λ = 0, 0.5
bypass DERAC with λ = 1.0.
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Figure 6: Learning curves of DERAC algorithms across different λ on three MuJoCo environments
over 5 seeds.

M EXPERIMENTS: MORE COMPLICATED ENVIRONMENTS

We further conduct experiments on more complicated environments, including Humanoid (state
space as 375, action space as 16) and Walker2D (state space 17, action space 16) to show that DE-
RAC is more likely to outperform on complicated environments. As shown in Figure 7, DERAC (red
line) without entropy is competitive to other baselines, including AC (or SAC) and DAC (C51) and
especially is superior to DAC (C51) on both complicated environments. In particular, on humanoid,
DERAC performs better than both SAC and DAC (C51), and bypasses both AC and DAC (C51) on
Walker2D, suggesting its potential on complicated environments.
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Figure 7: Learning curves of Distributional AC (C51) with the return distribution decomposition
on complicated environments, including Humanoid and Walker2D. All results are averaged over
5 seeds. We denote AC as SAC without the leverage of entropy and DAC (C51) as DSAC (C15)
without entropy.

N ENVIRONMENTS: MUTUAL IMPACTS ON DSAC (C51)

We presents results on 7 MuJoCo environments and omits Bipedalwalkerhardcore due to some en-
gineering issue when the C51 algorithm interacts with the simulator. Figures 8 showcases that
AC+RE (black) tends to perform better than AC (red) except on Humanoid and walker2d. However,
when compared with AC+RE, AC+RE+VE (orange) may hurt the performance , e.g. on halfchee-
tah, ant and swimmer, while further boosts the performance on complicated environments, including
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Figure 8: Learning curves of AC, AC+VE (SAC), AC+RE (DAC) and AC+RE+VE (DSAC) over 5
seeds with smooth size 5 across 7 MuJoCo environments where distributional RL part is based on
C51.

humanoidstandup and walker2d. Similar situation is also applicable to AC+VE (blue). All of the
conclusions made on DSAC (C51) is similar to DSAC (IQN).
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