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ABSTRACT

Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for mon-
itoring cardiac conditions and is crucial in assisting clinicians. Recent studies
have concentrated on classifying cardiac conditions using ECG data but have
overlooked ECG report generation, which is time-consuming and requires clinical
expertise. To automate ECG report generation and ensure its versatility, we propose
the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to
tackle ECG report generation with LLMs and multimodal instructions. To facilitate
future research, we establish a benchmark to evaluate MEIT with various LLMs
backbones across two large-scale ECG datasets. Our approach uniquely aligns
the representations of the ECG signal and the report, and we conduct extensive
experiments to benchmark MEIT with nine open-source LLMs using more than
800,000 ECG reports. MEIT’s results underscore the superior performance of
instruction-tuned LLMs, showcasing their proficiency in quality report generation,
zero-shot capabilities, resilience to signal perturbation, and alignment with human
expert evaluation. These findings emphasize the efficacy of our MEIT1 framework
and its potential for real-world clinical application.

1 INTRODUCTION

Electrocardiogram (ECG) is the primary mechanism for heart disease diagnosis. Cardiologists read
and interpret these ECG recordings to manually generate comprehensive ECG reports for heart disease
diagnosis, which is a complex and time-consuming process. Recently, AI models have been developed
to facilitate ECG data analysis for the task of classification (Hu et al., 2023; Liu et al., 2023a; 2024).
Despite these efforts, the automatic generation of reports from ECG recordings still needs to be
explored. Unlike other AI-empowered medical report generation applications (e.g., radiology reports),
the primary challenge for ECG report generation stems from the distinct nature of ECG content.
ECG reports, often comprising brief phrases that summarize signal patterns, contrast with detailed
anatomical descriptions in radiology reports. The difference in the content and semantic interpretation
between imaging and ECG data complicates the direct application of radiology-focused methods
to ECG reports. Furthermore, there is still a lack of comprehensive benchmarks for evaluating the
performance of ECG report generation.

To tackle these challenges, we introduce MEIT, a Multimodal ECG Instruction Tuning framework
that extends the capabilities of LLMs in the cardiology context to generate ECG reports using
ECG recordings and human instructions. Inspired by the versatility of LLMs (Achiam et al., 2023;
Touvron et al., 2023a; Wan et al., 2023; Wang et al., 2024a;b) in handling diverse language tasks
simultaneously, we develop a specialized instruction tuning process for ECG report generation. MEIT
aligns human instructions with ECG recordings, enabling LLMs to generate clinically relevant reports
and exhibit zero-shot report generation capabilities under domain transfer scenarios across various
continents and data collection devices. Specifically, leveraging publicly available ECG datasets, we
construct a multimodal instruction dataset including ECG records, human instructions, and paired
reports. Then, we propose an effective and efficient attention-based fusion method to integrate ECG
and text representations in the latent space. This enables LLMs to understand ECG signals for report

1All data and code will be released upon acceptance.
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generation without introducing additional training parameters in the attention layer. In addition to
the ECG report generation approach, we introduce a comprehensive benchmark for ECG report
generation evaluation, utilizing two datasets with 20K and 800K ECG-report pairs, respectively,
across four evaluation tasks: report generation quality, zero-shot learning across datasets, robustness
analysis in the face of ECG signal perturbation, and alignment with human expert evaluation. Utilizing
the ECG report evaluation benchmark, we assess the proposed approach across ten open-source
LLMs. The results demonstrate (1) the superior performance of MEIT in ECG report generation and
the effective learning and alignment of ECG representations; (2) the effective transferability of LLMs
under the MEIT framework in domain transfer scenarios.

To summarize, our primary contribution is the MEIT framework, a novel approach to automating
ECG report generation and evaluation based on LLMs. This framework incorporates a lightweight,
attention-based fusion module across various LLM models. Furthermore, we design a new bench-
mark for ECG report generation, which contains four evaluation tasks. Our evaluations showcase
the enhanced capabilities of instruction-tuned LLMs in generating ECG reports, highlighting the
transferability in zero-shot tests, robustness against data perturbations, and alignment with human
expert evaluation. MEIT paves the way for future advances in automated ECG report generation and
methodological innovations in integrating biomedical signals into LLMs.

2 RELATED WORK
Medical Report Generation. Our work is highly related to the domain of medical report generation.
Existing works on medical report generation dominantly focus on medical images, where three
categories of techniques have been proposed: (1) Template Selection and Generation, highlighted
by HRGR (Li et al., 2018) and CMAS (Jing et al., 2017); (2) Data Integration and Coherence, as
seen in PPKED (Liu et al., 2021) and CA (Ma et al., 2021); (3) Cross-Modal Alignment, with efforts
like (Chen et al., 2022; Qin and Song, 2022). However, these methods are designed for medical
images and face challenges when applied to ECG data due to its unique temporal and waveform
characteristics. In contrast, we propose a new approach and benchmark specifically tailored for ECG
report generation, effectively addressing these challenges.

Instruction Tuning. Our work is also related to instruction tuning. Instruction tuning (Zhang et al.,
2023; Wang et al., 2023) boosts zero-shot learning in LLMs for new tasks using instructions. Notable
models like InstructGPT (Ouyang et al., 2022), FLAN-PaLM (Chung et al., 2022), and Alpaca (Taori
et al., 2023) fine-tune with instruction data through various methods, including human feedback.
Similarly, multimodal models such as LLaVA (Liu et al., 2023b), MiniGPT-4 (Zhu et al., 2023), and
AnyMAL (Moon et al., 2023) benefit from multimodal instructions for enhanced learning. However,
these methods are designed for natural images and cannot be directly applied to ECG signals, which
have different characteristics and complexities. Furthermore, instruction tuning for medical signals,
especially ECG, remains largely unexplored. In contrast, we propose a novel instruction-tuning
framework and benchmark specifically for ECG report generation, addressing this critical gap.

LLMs for ECG. Only a few research efforts have focused on utilizing LLMs for ECG signals (Liu
et al., 2023c; Qiu et al., 2023; Yu et al., 2023a). In particular, studies such as (Liu et al., 2023c;
Yu et al., 2023a) convert ECG signals into text features before feeding them into LLMs, bypassing
the original signal data. However, this method overlooks important modality-specific patterns in
the signals. Furthermore, these studies focus solely on disease classification from ECG data and
do not address medical report generation. Recently, Yu et al. (2023b; 2024) proposes zero-shot
ECG diagnosis using LLMs combined with retrieval-augmented generation, significantly improving
diagnostic with limited medical data. In contrast, (Qiu et al., 2023) attempts to generate ECG
reports by using handcrafted ECG features as input. However, their code and models are not publicly
available and focus on classification issues, making direct comparisons difficult. In this work, we
propose a new instruction-tuning benchmark and framework that directly utilizes ECG signals for
medical signal understanding and report generation, addressing the limitations of prior approaches.

3 MEIT

3.1 PRELIMINARIES

Electrocardiogram (ECG) measures the electrical activity of an individual’s heart over time. An
ECG recording typically contains a 12-lead multivariate time series, which acts as a 12-dimensional
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GPT-4

...
Given a ECG signal, please help me to 
generate an accurate discription for ......

Please assist me in generating a report 
based on the ECG signal.

Manual Design Samples

ECG Set

<|user|>: Help me to generate 
the ECG report ......+

Report Generator

<|assistant|>:possible atrial 
flutter, inferior/lateral st-t ...

Sampling
...

<|assistant |>:atrial fibrillation.  
possible inferior inract. lateral..

Inference

Auto-regressive

Ground Truth Generated Report

ECG Encoder
Self Attention

MLP Module

Embedding Layer

QtVtVeKtKe

Wk Wv Wq

Ht

M Leads

He

...
...

i

Layer i

Projection

Linear & Softmax
LLM

<|user|>: {Xp} <|assistant|>: {Xt}{Xe}

Frozen Unfrozen
LoRA Multiply

ECG Modality Alignment

(a) Overview of MEIT (b) Report Generator

Figure 1: (a) Overview of MEIT; (b) Illustration of model architecture for ECG Report Generation. Ke and
Ve refer to linear projection of He by multiplying shared Wk and Wv in the attention layer.

sequence of embeddings. The ECG signal offers a comprehensive view, encompassing both spatial
and temporal aspects of cardiac function. ECG leads can be categorized into six limb leads (i.e., I, II,
III, aVR, aVL, and aVF) to monitor arms and legs, providing frontal plane views, and six precordial
leads (i.e., V1, V2, V3, V4, V5, and V6) to monitor chest, showing horizontal plane views. We
denote an ECG recording as Xe ∈ RM×T , where M represents the number of leads, and T is signal
length. Each ECG recording is associated with an ECG report Xt for description. Thus, we denote
each ECG pair as {Xe,Xt}. More details on visualization can be found in the appendix A.7.

3.2 FRAMEWORK OVERVIEW

Figure 1 (a) illustrates the proposed MEIT framework. First, we extract and preprocess the ECG
signals and corresponding ground truth reports from the ECG dataset to construct the ECG instruction
data, which includes instruction prompts, ECG signals, and ground truth. The core steps of this
process are detailed in Section 3.3. Next, during the ECG instruction tuning, the processed ECG
instruction data is fed into the Report Generator, as shown in Figure 1 (b), for training using an
auto-regressive approach. During inference, the instruction prompts and ECG signals are input into
the Report Generator to generate professional ECG reports. Next, we describe each component.

3.3 DATA CURATION

Given an ECG signal Xe, our goal during inference is to generate an ECG report using an instruction
prompt. For instance, the prompt can be “Given the ECG signal embeddings, please help me generate
an accurate description for this ECG signal embeddings: ". To achieve this goal, during the training
phase, we aim to create instruction tuning data to generate a response X̂t that aligns semantically
with the ground truth Xt. In addition, since we cannot predict the exact instruction prompt that
users will use, we need to ensure that our report generation process is robust enough to handle
different prompts. To address this challenge, we manually design some prompt samples, then utilize
GPT-4 (Achiam et al., 2023) to generate a set of prompts by rephrasing, as shown in Figure 1. Then,
we randomly select one instruction prompt Xp from the prompt set and create a general instruction-
following template: <|user|>: {Xp, Xe}<|assistant|>: {Xt} </s>, where <|user|>
and <|assistant|> are added special tokens for tokenizer, </s> is a stop sign for each response.
This approach ensures that the generated response conveys the same meaning as the ground truth
and remains adaptable to different instruction prompts. Following this strategy, we construct the
ECG instruction data using a MIMIC-IV-ECG (Gow et al.) dataset that contains 800K annotated data
and a 20K dataset PTB-XL (Wagner et al., 2020). The ECG instruction data samples are shown in
Appendix A.7.

3
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3.4 REPORT GENERATION

In MEIT, the multimodal ECG report generation model decodes ECG signals end-to-end to generate
ECG reports. The architecture is illustrated in Figure 1. Specifically, the report generation model
directly encodes an entire ECG-signal Xe ∈ RM×T into latent embeddings and integrate it with the
language embeddings with modality alignment, and then autoregressively generate the ECG report.
Next, we detail each component of the report generation model.

ECG Encoder. Since the ECG signal is of high resolution in the temporal domain, it is vital to
efficiently extract temporal features per lead before interaction with semantic embeddings inside the
LLM backbone. Our default ECG encoder Fe(·) consists of temporal convolution blocks to encode
each ECG signal into embeddings. Specifically, each temporal convolution block comprises several
1-D convolution layers, batch normalization layers, and ReLU activation layers, followed by average
pooling. This design allows us to effectively capture temporal dependencies and reduce the complexity
of the signal representations, ensuring that the model can quickly learn important temporal features
efficiently. To further align the output dimension with the head dimension of the LLM backbone
Fl(·), we employ a non-linear projection layer Pe(·) to generate the ECG embeddings:

He = Pe (Fe (Xe)) , (1)
where He ∈ RDh , Dh has the same dimension as the multi-head attention layers of LLMs. Note that
our default ECG encoder is lightweight and is able to learn temporal patterns of signals without a
long training period. More details about ECG Encoder are illustrated in Appendix A.2.

ECG Modality Alignment. We introduce an ECG modality alignment strategy to guide the LLMs in
aligning ECG signal data with corresponding textual outputs. This approach is detailed in Figure 1
(b). Specifically, given the ECG embeddings He, the alignment strategy incorporates He with the
current hidden state Hi

t generated from previous i − 1-th layer of the LLM backbone Fl (·) for
next-token prediction task. Here Hi

t is defined as:

Hi
t = F i−1

l ([Xp,Xt]) , (2)
where i is the current layer index. Traditional gated-attention fusion in Flamingo (Alayrac et al., 2022),
Memorizing Transformer (Wu et al., 2022), and G-MAP (Wan et al., 2022), or Q-former in BLIP-
2 (Li et al., 2023) that requires additional trainable parameters and designed for complex multi-stage
alignment of rich semantic information (e.g., images). Different from them, our method provides
a lightweight concatenated-fusion alignment strategy tailored to the embeddings of ECG signals,
enabling efficient learning of ECG semantic features via directly injecting the ECG embeddings with
language context in the self-attention, while preventing potential catastrophic forgetting of general
knowledge in LLMs. In our approach, each attention layer combines He, generated from the ECG
encoder and projector as a prefix condition, with Hi

t, derived from the preceding layer. The fusion
process is as follows:

Self-Attn
(
He,H

i
t

)
= [head1, . . . ,headk]Wo, (3)

where k represents the number of attention heads, and Wo, a matrix in RkDh×Dm , serves as the
projection matrix with Dm denoting the hidden size of the LLM backbone. We replicate He for each
head k times, merging the ECG and language features in the sequence dimension. This is achieved
through a shared projection of keys and values for each pattern. The fusion is then articulated as:

Km,j = [Ke,j ,Kt,j ]
⊤,Vm,j = [Ve,j ,Vt,j ], (4)

headj = Softmax

(
Qt,jKm,j√

Dh

)
Vm,j , (5)

where Qt,j = Hi
t,jWq,j , Ke,j = HeWk,j , and Kt,j = Hi

t,jWk,j , with a similar notation for
Ve,j = HeWv,j and Vt,j = Hi

tWv,j . Concatenation is denoted by [·], and Km,j and Vm,j

symbolize the amalgamated features of query and key. Wq,j , Wk,j , and Wv,j in RDh×Dh represent
the projection matrices for query, key, and value for each head j, respectively. Our model’s design
allows for the efficient fusion of two modalities through causal attention, facilitating conditional
generation without the need for additional parameter updates to align the ECG modality. Ablation
studies comparing with other fusion methods demonstrate the effectiveness and efficiency of our
proposed lightweight alignment strategy. More comparisons about ECG modality alignment and
other fusion approaches are illustrated in Table 6.
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3.5 INSTRUCTION TUNING

As described in Section 3.3, we have converted ECG-text pairs into a chat-bot style instruction format:
<|user|>: {Xp, Xe}<|assistant|>: {Xt}</s>. During instruction tuning, we compute
autoregressive loss only on tokens after response tokens <assistant>, and use label loss masking
to finetune the model, where we mask all tokens belonging to Xp and Xe. To save computational
resources and accelerate the convergence of instruction tuning, we use LoRA (Hu et al., 2021)
adapters for all linear layers of the LLM backbone Fl and freeze its backbone. Subsequently, given
a sequence of ECG instruction data, we compute the probability of the target response Xt as an
autoregressive function:

p (Xt | Xp,Xe) =

L∏
i=j

pθ (xt,i | Xp,Xe,Xt,<i) , (6)

where j is the start index after <assistant>, θ is the trainable parameters of LoRA and ECG
encoder Fe, Xt,<i is the response tokens before the current generation xt,i.

4 ECG REPORT GENERATION BENCHMARK

4.1 DATASETS

PTB-XL. The PTB-XL dataset (Wagner et al., 2020) contains 21, 837 clinical 12-lead ECG record-
ings, each sampled at 500Hz and lasting 10 seconds, collected from 18, 885 patients. Each ECG
recording has a corresponding report. We divided this dataset into training, validation, and testing
subsets in a 70%:10%:20% ratio, respectively. The human experts double-check all samples in the
test set to ensure data quality. As mentioned in Sec 3.3, we reformulate the dataset into the instruction
data format.

MIMIC-IV-ECG. The MIMIC-IV-ECG dataset (Gow et al.) is currently the largest publicly ac-
cessible ECG dataset, containing 800,035 paired samples from 161,352 unique subjects. Similar to
PTB-XL, each sample in this dataset includes a raw ECG signal and its corresponding report, with all
recordings sampled at 500Hz for 10 seconds. The division of this dataset into training, validation, and
testing subsets is 80%:10%:10% ratio. Likewise, we reconstruct this dataset into an ECG instruction
data template.

4.2 MODELS

We use nine LLMs based on the peft2 library, which directly supports LoRA (Hu et al., 2021) to
construct the multimodal ECG report generation model described in Section 3.4. These models
include GPT-Neo (Black et al., 2021), GPT-NeoX (Black et al., 2022), GPT-J (Wang and Komatsuzaki,
2021), BLOOM (Workshop et al., 2022), OPT (Zhang et al., 2022), LLaMA-1 (Touvron et al., 2023b),
LLaMA-2-Instruct (Touvron et al., 2023a), LLaMA-3-Instruct (Touvron et al., 2023a), Mistral (Jiang
et al., 2023), and Mistral-Instruct3, along with two relatively small pre-trained language models
(GPT2-Medium and GPT-Large (Radford et al., 2019)) as fundamental baselines.

4.3 EVALUATION METRICS

We evaluate models using nine metrics: BLEU 1-4 (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE 1-2 and L (Lin, 2004), CIDEr-D (Vedantam et al., 2015), and
BERTScore (Zhang et al., 2019). BLEU and METEOR assess machine translation quality, focusing
on accuracy and fluency. ROUGE-L measures sentence fluency and structure, while ROUGE-1 and
ROUGE-2 examine uni-gram and bi-gram overlaps. CIDEr-D evaluates the relevance and uniqueness
of generated ECG reports against a candidate set, and BERTScore assesses semantic similarity to the
ground truth, ensuring content accuracy.

2https://github.com/huggingface/peft
3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Natural language generation metric on MIMIC-IV-ECG. For model size, ’M’ denotes the million level,
and ’B’ denotes the billion level. All checkpoints are downloaded from Hugging Face website. And all models
have been fine-tuned using ECG instructions. The light teal color indicates the second highest results, and

heavy teal color indicates the highest results.

MODELS SIZE BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L ROUGE-1 ROUGE-2 CIDEr-D

GPT2-Medium 345M 0.576 0.527 0.456 0.425 0.551 0.523 0.544 0.512 3.70
GPT2-Large 774M 0.614 0.563 0.490 0.476 0.595 0.571 0.585 0.538 4.21

GPT-Neo 2.7B 0.631 0.579 0.534 0.489 0.727 0.689 0.715 0.592 4.81
GPT-NeoX 20B 0.645 0.588 0.539 0.523 0.719 0.701 0.712 0.622 4.92

GPT-J 6B 0.676 0.628 0.584 0.542 0.756 0.721 0.744 0.632 5.23
BLOOM 7B 0.669 0.624 0.591 0.550 0.758 0.725 0.745 0.639 5.19

OPT 6.7B 0.673 0.616 0.598 0.532 0.755 0.732 0.743 0.631 5.32
LLaMA-1 7B 0.685 0.648 0.615 0.543 0.761 0.724 0.742 0.642 5.26

Mistral 7B 0.697 0.659 0.611 0.571 0.763 0.740 0.765 0.658 5.48

LLaMA-2-Instruct 7B 0.706 0.662 0.622 0.581 0.775 0.745 0.768 0.664 5.55
Mistral-Instruct 7B 0.714 0.665 0.619 0.576 0.768 0.751 0.762 0.667 5.62

LLaMA-3-Instruct 8B 0.733 0.686 0.648 0.610 0.799 0.773 0.795 0.686 5.78

Table 2: Natural language generation metric on PTB-XL. The light teal color indicates the second highest

results, and heavy teal color indicates the highest results.

MODELS SIZE BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L ROUGE-1 ROUGE-2 CIDEr-D

GPT2-Medium 345M 0.329 0.278 0.254 0.232 0.441 0.391 0.561 0.433 2.12
GPT2-Large 774M 0.437 0.395 0.355 0.320 0.575 0.481 0.652 0.527 3.25

GPT-Neo 2.7B 0.474 0.449 0.398 0.373 0.602 0.486 0.674 0.595 3.70
GPT-NeoX 20B 0.469 0.453 0.417 0.399 0.620 0.553 0.688 0.622 3.58

GPT-J 6B 0.485 0.452 0.428 0.405 0.656 0.550 0.662 0.613 3.72
BLOOM 7B 0.491 0.462 0.427 0.415 0.665 0.580 0.678 0.605 3.80

OPT 6.7B 0.502 0.477 0.431 0.418 0.662 0.568 0.669 0.624 3.94
LLaMA-1 7B 0.514 0.485 0.465 0.430 0.678 0.588 0.682 0.613 3.97

Mistral 7B 0.486 0.475 0.446 0.421 0.673 0.591 0.697 0.634 3.98

LLaMA-2-Instruct 7B 0.515 0.484 0.469 0.439 0.675 0.594 0.698 0.624 4.05
Mistral-Instruct 7B 0.501 0.481 0.457 0.425 0.664 0.592 0.700 0.641 4.01

LLaMA-3-Instruct 8B 0.539 0.513 0.494 0.467 0.698 0.615 0.725 0.646 4.45

4.4 TASKS

Quality of Generated Reports. This task aims to assess report quality after ECG instruction tuning
using 10% of MIMIC-IV-ECG and PTB-XL datasets as the test set. The evaluation examines how
closely generated reports match the original’s structure and meaning, considering various instructions
and ECG inputs. We analyze metrics like BLEU-1 to 4, METEOR, ROUGE 1, 2, L, CIDEr-D, and
BERTScore.

Zero-shot Generalizability. To explore the generalizability of LLMs in domain transfer scenarios
following ECG instruction tuning, we trained the models on 70% of the instruction data from
MIMIC-IV-ECG. Following this, we evaluated the models’ zero-shot capabilities on the PTB-XL test
set. It’s important to note that the PTB-XL and MIMIC-IV-ECG datasets originate from different
continents—Europe and the United States, respectively—utilizing varied devices and from distinct
hospitals, across different time periods. Therefore, we consider these datasets to represent two
separate domains. This distinction allows us to use the PTB-XL dataset to gauge our model’s
performance in zero-shot domain transfer effectively. We used the metrics BLEU-4, METEOR,
ROUGE-L, and CIDEr-D because of limited space and calculated their average for model evaluation.

Signal Perturbation Robustness. In real-world clinical settings, ECG signals often contain some
degree of noise. To evaluate the robustness of MEIT against such noisy interference, we selected
10% of the ECG samples from the MIMIC-IV-ECG test dataset. We then added Gaussian noise to
these samples during the models’ instruction-based inference process. For this evaluation, we used
BLEU-4, METEOR, ROUGE-L, and CIDEr-D as metrics.

Evaluation of Alignment with Human Expert Annotations. To evaluate the differences between
the reports generated by ECG-instructed LLMs and human expert annotations, we established specific
evaluation criteria and utilized closed-source LLMs to conduct a professional assessment of both the
generated reports and expert annotations.
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5 EXPERIMENTS AND ANALYSIS

5.1 EXPERIMENTAL SETUP

Table 3: Semantic similarity between the generated
ECG reports and ground truths is measured using
BERTScore, denoted as P for Precision, R for Recall,
and F-1 for the F-1 Score.

MIMIC-IV-ECG PTB-XL

MODELS P R F-1 P R F-1

GPT2-Medium 0.562 0.453 0.502 0.534 0.465 0.497
GPT2-Large 0.657 0.574 0.613 0.625 0.553 0.586

GPT-Neo 0.723 0.633 0.675 0.675 0.588 0.628
GPT-NeoX 0.719 0.638 0.676 0.654 0.579 0.614

GPT-J 0.725 0.655 0.688 0.689 0.622 0.654
BLOOM 0.734 0.684 0.708 0.701 0.645 0.672

OPT 0.713 0.667 0.689 0.712 0.648 0.678
LLaMA-1 0.752 0.697 0.723 0.725 0.657 0.689

Mistral 0.761 0.732 0.746 0.711 0.664 0.687

LLaMA-2-Instruct 0.764 0.725 0.744 0.721 0.668 0.693
Mistral-Instruct 0.773 0.722 0.747 0.730 0.661 0.694

LLaMA-3-Instruct 0.798 0.745 0.771 0.745 0.682 0.712

In this section, we evaluate and benchmark ten
open-source decoder-only LLMs using the con-
structed ECG report generation benchmark. Ad-
ditionally, we offer a comprehensive analysis
of scalability and instruction tuning and present
case studies showcasing the generated reports.

Implementation Details. Our study utilized
PyTorch 2.1, transformers (Wolf et al., 2020),
and accelerated on A100 GPUs with LLMs from
Hugging Face (Wolf et al., 2019) ranging from
2.7 to 70 billion parameters. For larger models,
we used DeepSpeed4. The training covered 5
epochs on MIMIC-IV-ECG and PTB-XL with a
2e-5 learning rate and 64 batch size, employing
a linear optimizer with a 0.03 warm-up ratio.
For text preprocessing, we initially remove all instances of the ‘nan’ string and sentences that consist
solely of numerical values. Subsequently, we discard any samples whose reports contain fewer than
5 tokens. For, ECG encoder, we adopt random initialization. Additionally, the default number of
generated prompts from GPT-4 is 256, more training, visualization details about ECG instruction
tuning are illustrated in Appendix A.1, Section 5.3, and Appendix A.3.

5.2 BENCHMARK TASK EVALUATION

5.2.1 QUALITY EVALUATION

Performance on MIMIC-I V-ECG. Table 3 and 1 present the results of various types of lan-
guage encoders Fl(·) on MIMIC-IV-ECG. The results show that all LLMs perform better than
smaller language models (SLMs), such as GPT2-Medium and GPT2-Large, across all eval-
uation metrics. Notably, from GPT-Neo to Mistral-Instruct, LLM-based backbones achieve
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Figure 2: Zero-shot performance on PTB-XL
dataset. “IT” denotes instruction tuning.

a significant margin over SLMs in all metrics. For
instance, compared to GPT2-Large, the METEOR
score increases in the range of 0.132 to 0.18 from
GPT-Neo to LLaMA-2, and Mistral-Instruct outper-
forms GPT2-Large with an improvement of 0.18
in the ROUGE-L score and 0.134 in the F-1 of
BERTScore. The observed performance underscores
the adeptness of LLMs in generalizing from signal
data, showcasing enhanced proficiency in aligning
ECG signal representations with corresponding tex-
tual information. This highlights the significant po-
tential of LLMs in medical signal-to-text generation.
Particularly, LLaMA-2-Instruct, Mistral-Instruct, and
LLaMA-3-Instruct surpass their counterparts in most
evaluative metrics, suggesting that models pre-tuned
with general instructions are more adept at learning
ECG-text alignment.

Performance on PTB-XL. As shown in Table 2, the models exhibit reduced performance on PTB-
XL compared to MIMIC-IV-ECG, which is attributable to the smaller scale of the instruction data
in PTB-XL. This underscores the importance of data scale in enhancing instruction-based ECG
report generation. Moreover, similar to the MIMIC-IV-ECG results, all LLM-based models show
significant improvement over SLMs. Specifically, LLaMA-2 surpasses GPT2-Large by 0.134 in
the BLEU-3 metric, while LLaMA-1 achieves a 0.103 improvement in the METEOR score. The

4https://github.com/microsoft/DeepSpeed
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overall experimental results also reveal that Mistral-Instruct, LLaMA-2-Instruct, and LLaMA-3-
Instruct are consistently the top two performers across most metrics because of their strong general
instruction-following capabilities.

5.2.2 ZERO-SHOT EVALUATION IN DOMAIN TRANSFER.

Although both PTB-XL and MIMIC-IV-ECG datasets are time-series data, they differ significantly in
several aspects, including population (European vs. American), diverse collection devices, continents
(Europe vs. US), protocols, and hospitals. These differences introduce substantial medical domain
gaps (Bilheimer and Klein, 2010; Ross et al., 2020). In Figure 2, we present the evaluation of the
zero-shot learning capabilities of various LLMs, which is trained on the MIMIC-IV-ECG dataset and
then tested on PTB-XL (unseen dataset). The assessed models include BLOOM, OPT, LLaMA-1,
and Mistral. Firstly, all selected LLMs undergo instruction tuning on the MIMIC-IV-ECG train
set, followed by zero-shot testing on the PTB-XL test set verified by human experts, denoted as
ZERO-SHOT IT. We also measure the performance of each model in report generation without prior
ECG-specific instruction tuning, denoted as ZERO-SHOT W/O IT. PTB-XL IT represents training on
the PTB-XL train set and then evaluated on the PTB-XL test set. Notably, although ZERO-SHOT IT
shows a slight degradation compared to PTB-XL IT, the results still indicate a variance in the model’s
ability to generalize to an unseen dataset with instruction tuning (IT), compared to ZERO-SHOT W/O
IT. The involvement of ECG instruction tuning on MIMIC-IV-ECG enables the models to achieve
superior zero-shot performance on the unseen PTB-XL dataset, indicating the necessity of instruction
tuning in enhancing the models’ zero-shot ability on unseen datasets in ECG report generation.

5.2.3 ROBUST ANALYSIS WITH PERTURBED ECG SIGNAL.

In a noise stress evaluation (Wang et al., 2019), we added Gaussian noise to ECG signals at
signal-to-noise ratios (SNRs) of 0.05, 0.1, 0.15, and 0.2 during testing to assess model robust-
ness. Our experiments utilized four LLM architectures: BLOOM, OPT, LLaMA-1, and Mistral, each
trained on clean ECG signals from the MIMIC-IV-ECG training set and tested on corresponding
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Figure 3: Signal perturbation robustness analysis on
various LLMs.

noise-added signals from its test set. The re-
sults, illustrated in Figure 3, show a perfor-
mance decline in all LLMs as SNR decreased,
highlighting the significant interference of ECG
noise. Furthermore, as shown in Table 1, Mis-
tral also excelled in tests on noise-free datasets,
suggesting a synergistic effect between clean
and noisy test sets. The results demonstrate Mis-
tral’s strong resistance to perturbations. Even
with more severe noise, it maintained robustness regarding ROUGE-L and METEOR metrics. Devel-
oping an even more robust framework is a goal for future research.

Table 4: Prompt template used for GPT-4o evaluation. This prompt guided the model’s evaluation of generated
ECG reports.

Prompt Template for GPT-4o Evaluation
You are an expert in Electrocardiogram (ECG) text evaluation. Your task is to assess the quality of a generated
ECG report by comparing it to a real, expert-annotated ECG report.
Generated ECG Report: {Generated_Report}
Real ECG Report: {Real_Report}
Please evaluate the generated report based on the following criteria:

1. Medical Terminology Accuracy: Does the generated report use correct and appropriate ECG signal
terms?
2. Logical Consistency: Is the information presented in a logical and medically sound order?
3. Completeness: Does the report include all necessary details that would be present in a real ECG report,
such as heart rhythm, rate, and any abnormalities?
4. Diagnostic Accuracy: Are the diagnoses and interpretations in the generated report accurate and consistent
with the expert-annotated report?
Please provide a detailed analysis and score each criterion on a scale of 1 to 5 (1 = Poor, 5 = Expert-Level).

5.2.4 EVALUATION OF ALIGNMENT WITH HUMAN EXPERT ANNOTATIONS.

We conducted an evaluation of model-generated ECG reports from ECG instruction-tuned versions
of LLaMA-2 and LLaMA-3 against 500 ground-truth reports, meticulously annotated by human
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Table 5: Evaluation results of LLaMA-2-Instruct and LLaMA-3-Instruct against human expert-annotated
ground-truth reports. Each dimension is scored on a scale of 1 to 5.

Model Medical Terminology Accuracy Logical Consistency Completeness Diagnostic Accuracy
LLaMA-2-Instruct 4.25 4.11 3.72 3.60

LLaMA-3-Instruct 4.52 4.38 4.01 3.98

medical experts. These test annotated data were randomly sampled from the PTB-XL dataset ,
with all selected reports carefully reviewed and validated by human experts. Each model-generated
report was compared with these expert-annotated reports using gpt-4o5, which assessed quality
across four dimensions: Medical Terminology Accuracy, Logical Consistency, Completeness, and
Diagnostic Accuracy, on a scale of 1 to 5. To evaluate these reports, we employed the following
prompt template, which guided GPT-4o’s scoring process across the defined dimensions, as shown in
Table 4. This prompt template ensures that GPT-4o evaluates the reports in a structured and consistent
manner, highlighting both strengths and weaknesses of the model-generated reports in comparison to
human expert annotations. The results indicate that the LLaMA-3 model, with an average Diagnostic
Accuracy score of 3.85, closely matches the quality of the human expert annotations, whereas the
LLaMA-2 model scored 3.60. This evaluation underscores the effectiveness of using human expert
annotations from the PTB-XL (Wagner et al., 2020) dataset as a rigorous benchmark for assessing
the models’ ability to generate clinically reliable ECG reports.

Table 6: Performance comparison of the proposed concatenated-fusion method and other mainstream fusion
variants. We evaluate these methods on the MIMIC-IV-ECG dataset, using BLEU-4, METEOR, ROUGE-L, and
CIDEr-D metrics. We take LLaMA-1 7B as the LLM backbone here. heavy teal color indicates the highest
results.

FRAMEWORK METHOD BLEU-4 METEOR ROUGE-L CIDEr-D

LLaVA Straightforward input 0.529 0.737 0.712 4.99
Flamingo Trainable cross-attention 0.527 0.768 0.715 5.11

MEIT Concatenated-fusion 0.543 0.761 0.724 5.26
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Figure 4: Visualizations of instruction tuning
loss and METEOR score.
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Figure 5: Model scaling performance on MIMIC-IV-
ECG and PTB-XL.

5.3 ANALYSIS

Instruction Tuning Visualization. Figure 4 compares the convergence curves of the instruction
tuning loss and the METEOR score between GPT-Neo (2.7B), BLOOM (7B), OPT (6.7B), and
LLaMA-2 (7B) on the MIMIC-IV-ECG train and validation datasets. We observe that larger models
with more parameters can converge to a more minor loss and achieve higher performance on the
METEOR score. Notably, an increase in model size correlates with higher performance and lower
loss, suggesting that larger models have the potential for better performance.

Analysis of ECG Modality Alignment. To study the effectiveness of our proposed concatenated-
fusion method for ECG modality alignment, we compare it with other fusion approaches such as direct
input in LLaVA (Liu et al., 2023b) and additional trainable cross-attention layer in Flamingo (Alayrac
et al., 2022). For straightforward input, we follow the design of LLaVA by directly concatenating
the ECG encoder’s output embeddings with the sentence’s embeddings before inputting them into
the LLM backbones. For the second comparison method, we follow Flamingo by adding a trainable
cross-attention layer within the attention block. From Table 6, we observe that the Concatenated-
fusion method outperforms the trainable cross-attention method of Flamingo in most metrics and is
consistently superior to the Straightforward input method of LLaVA. Consequently, the concatenated

5https://platform.openai.com/docs/models/gpt-4o

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

BLEU-1

BLEU-2
BLEU-3

BLEU-4

METEOR

ROUGE-L
F-1

0.2 0.4 0.6 0.8

BLOOM

Instruction Tuning
Finetuning

BLEU-1

BLEU-2
BLEU-3

BLEU-4

METEOR

ROUGE-L
F-1

0.2 0.4 0.6 0.8

OPT

Instruction Tuning
Finetuning

BLEU-1

BLEU-2
BLEU-3

BLEU-4

METEOR

ROUGE-L
F-1

0.2 0.4 0.6 0.8

LLaMA-1

Instruction Tuning
Finetuning

BLEU-1

BLEU-2
BLEU-3

BLEU-4

METEOR

ROUGE-L
F-1

0.2 0.4 0.6 0.8

Mistral

Instruction Tuning
Finetuning

Figure 6: Ablation Study of ECG Instruction Tuning on MIMIC-IV-ECG Dataset.

fusion is more effective for the LLM backbone’s alignment with fine-grained ECG patterns without
necessitating additional trainable parameters.

Scalability Analysis. To investigate whether ECG instruction tuning on larger-scale models yields
better results, we validated LLaMA-2 models of 7B, 13B, and 70B parameter sizes on both MIMIC-
IV-ECG and PTB-XL datasets. As depicted in Figure 5, an upward trend in all evaluation metrics is
observed with a gradual increase in model size.

However, it is noteworthy that the gains in performance associated with increasing model size
are not particularly significant. For example, the F-1 score for the 70B model on the PTB-XL
dataset exhibits a marginal increase of 0.02 over the 13B model. Similarly, on the MIMIC-IV-ECG
dataset, the 70B model’s F-1 score is only 0.01 higher than that of the 13B model. Therefore, we
conjecture that enhancing both data scale and model size concurrently is necessary to achieve superior
performance (Wei et al., 2022).

Generated Report: sinus rhythm with 1st degree a-v block. left axis 
deviation. left ventricular hypertrophy. inferior/lateral st-t changes may be 
due to hypertrophy and/or ischemia. abnormal ecg.

Ground Truth:sinus rhythm with 1st degree a-v block. left axis deviation. 
probable normal variant. inferior/lateral st-t changes may be due to 
myocardial ischemia. abnormal ecg.

LLaMA-2
[ECG signal sample 1]

Generated Report:sinus rhythm. right bundle branch block. abnormal ecg.

Ground Truth:sinus rhythm. indeterminate axis. right bundle branch 
block. abnormal ecg.

Mistral-Instruct
[ECG signal sample 2]

Pretraining Set

Pretrained LLM

Word Embedding Layer

<s>

</s>

Auto-regressive

Figure 7: Examples of ECG reports generated by
LLaMA-2 and Mistral-Instruct. We highlight the consis-
tent information between the generated reports and the
ground truths with blue color.

Ablation Study on ECG Instruction Tuning.
We conducted an ablation study to evaluate in-
struction tuning’s impact on aligning ECG sig-
nals with report representations. Utilizing LLMs
such as BLOOM, OPT, LLaMA-1, and Mistral
without instruction tuning, we allowed direct
learning from ECG signals. The findings, illus-
trated in Figure 6, indicate a significant perfor-
mance drop across all metrics without instruc-
tion tuning, particularly in Mistral. This under-
scores instruction tuning’s superiority in enhanc-
ing LLMs’ generalization to new tasks/data over
direct fine-tuning (Ouyang et al., 2022).

Qualitative Results. In Figure 7, we randomly
select two samples generated by MEIT using
LLaMA-2 and Mistral-Instruct as the LLM back-
bones. The consistent key information, high-
lighted in blue, indicates that both models have
successfully learned important patterns from the ECG signals. Overall, the models’ results align with
the ground truth, accurately identifying cardiac abnormalities from the ECG signals. Furthermore,
both models provide detailed explanations of abnormal ECG signal details, such as ‘ischemia’ from
sample 1 and ‘right bundle branch block’ from sample 2. These generated reports demonstrate the
efficacy of our method.

6 CONCLUSION

In this paper, we introduced MEIT, a new framework for generating instruction-following data to train
a multimodal LLM that can produce ECG reports based on human instructions. We also proposed
an effective method for aligning ECG and report representations across various open-source LLMs,
demonstrating strong performance on both the MIMIC-IV-ECG and PTB-XL datasets across multiple
tasks. Additionally, we established a comprehensive benchmark for ECG instruction-following
in report generation, providing a standardized evaluation for future research. Although this work
primarily focuses on ECG signals, it serves as a foundational step in applying instruction-tuning to
biomedical signals. For future research, we aim to extend our framework and benchmark to other
medical domains, such as EEG, with the hope of driving further progress in developing more capable
medical-signal LLMs.
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A APPENDIX.

A.1 HYPER-PARAMETERS OF ECG INSTRUCTION TUNING

Table 7: Hyper-parameters of ECG instruction tun-
ing for all LLM backbones.

Hyperparameters
Mixed precision bf16
Instruction tuning epochs 5
LoRA alpha 64
LoRA rank 128
LoRA dropout 0.1
Total batch size 64
Gradient accumulation 2
Maximum sequence length 256
Learning rate 2e-5, 1e-4
Learning rate Optimizer AdamW
Schedule linear
Warm-up ratio 0.03
Weight decay 0.0

Table 8: ECG dimension of different language
models.

MODELS ECG Dimension
GPT2-Medium 64
GPT2-Large 64
GPT-Neo 128
GPT-NeoX 96
GPT-J 256
BLOOM 128
OPT 128
LLaMA-1 128
Mistral 128
LLaMA-2 128
Mistral-Instruct 128

In this study, we implement the Low-Rank Adaptation (LoRA) (Hu et al., 2021) technique for efficient
fine-tuning, specifically applied to ECG instruction tuning. As detailed in Table 7 provided, we utilize
mixed precision at bf16 for enhanced computational efficiency. Our models undergo instruction
tuning over 5 epochs, with LoRA parameters set at an alpha of 64 and a rank of 128, accompanied
by a dropout rate of 0.1. The total batch size is 64, with a gradient accumulation factor of 2. The
maximum sequence length is constrained to 256 tokens. Additionally, we adopt a learning rate with
2e-5 for GPT-NeoX and 1e-4 for the other models, optimized using the AdamW algorithm. The
learning rate follows a linear schedule with a warm-up ratio of 0.03. We set the weight decay to 0.0.

Moreover, as shown in Table 8, we detail the ECG embedding dimensions for various language
models, highlighting their approach to ECG data encoding. GPT2-Medium and GPT2-Large feature
ECG dimensions 64, while GPT-Neo, BLOOM, OPT, LLaMA-1, Mistral, LLaMA-2, and Mistral-
Instruct use a dimension of 128. GPT-NeoX employs a dimension of 96, and GPT-J notably uses
the largest dimension of 256. These dimensions, reflecting each model’s head dimension design,
illustrate diverse strategies in ECG data processing across different models.

A.2 MORE DETAILS OF ECG ENCODER

Projection Layer For the design of the projection layer within the ECG encoder, we adopt a non-
linear approach similar to CLIP (Radford et al., 2021) and Med-UniC (Wan et al., 2024). Specifically,
in our experiments, we employ two consecutive linear layers, each followed by BatchNorm1d6.
Besides, ReLU serves as the activation function between the two linear layers. The default settings
for input and hidden layers dimensions are set to 2048 in our experiment.

Parameter Size Analysis To demonstrate the ECG encoder’s lightweight design, we analyzed its train-
able parameters during instruction tuning and total parameters during inference, using the LLaMA-1
7B model for illustration (Table 10). The analysis reveals the ECG encoder’s trainable parameters are
substantially fewer than those of the LoRA adapter in the LLM backbone during instruction tuning,
and its parameter share of the overall framework is minimal for inference, underscoring its efficiency.

Ablation Study of ECG Encoder we conducted additional experiments comparing our default 1-D
Temporal Convolution ECG encoder with alternative architectures, including: 1. S4-based Model:
Vim-B (Vision Mamba, 98M parameters) (Zhu et al., 2024). 2. Transformer-based Model: ViT-B/16
(Vision Transformer, 86M parameters) (Dosovitskiy et al., 2020), adapted for 1-D token patching to
align with the temporal nature of ECG signals. 3. SSL-Transformer Model: ViT-B/75 initialized with
self-supervised learning (SSL) weights specific to ECG signals (Na et al., 2024). We evaluated these

6https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
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Table 9: Comparisons of results with and without supervised manner. We take LLaMA-2-Instruct as
the LLM backbone here. heavy teal color indicates the highest results.

METHODS SIZE MIMC-IV-ECG PTB-XL

BLEU-4 METEOR ROUGE-L CIDEr-D MTA MTA LC DA

Vision Mamba 86M 0.548 0.737 0.715 5.58 3.78 3.88 3.61 3.50
Vision Transformer 98M 0.592 0.815 0.772 5.67 4.33 4.15 4.12 3.78

Vision Transformer (SSL) 98M 0.581 0.822 0.766 5.75 4.42 4.28 3.85 3.85
1-D Temporal Conv (Ours) 20.4M 0.610 0.799 0.773 5.78 4.52 4.38 4.01 3.98

models on two tasks: Quality of Generated Reports using the MIMIC-IV-ECG dataset, and Evaluation
of Alignment with Human Expert Annotations using the PTB-XL dataset. For fair comparison, we
used Meta-Llama-3-8B-Instruct as the LLM backbone due to its consistent strong performance.

The results, summarized in the table below, show that our 1-D Temporal Convolution ECG encoder,
despite having significantly fewer parameters, performs comparably or better across most metrics
compared to ViT and ViT-SSL, and comprehensively outperforms the S4-based Vim. Notably, the
ViT-SSL encoder demonstrates the benefit of self-supervised pretraining for initial ECG representation
learning. However, our default ECG encoder effectively captures the 12-channel ECG temporal
patterns while remaining lightweight, making it well-suited for our efficient instruction tuning
framework. These findings validate the effectiveness of our 1-D Temporal Conv encoder and also
provide valuable insights for future work, including designing more complex ViT-based architectures
optimized for ECG time-series data.

Table 10: Parameter Comparison of ECG encoder and LLM backbone. We use LLaMA-1 7B as an
example.

MODULE Trainable Params Inference Params
LLM backbone 159M 6.90B
ECG encoder 20.4M 20.4M

A.3 FURTHER ANALYSIS OF GENERATED PROMPTS

Prompts Number Analysis In the ECG instruction data curation, we manually created 32 prompt
examples, as illustrated in Section 3.3. To increase the diversity of our samples, we employed GPT-4
to rephrase these manually designed prompts, generating a larger pool of prompt examples. These
generated examples were randomly sampled and paired with ECG-text pairs to compile the ECG
instruction dataset. In this section, We compare the experiment’s effects using 128, 256, and 512-
generated samples, respectively. Table 11 shows the corresponding results with different dimensions.
When the number is 256, it can achieve better results in most experimental settings. Hence, we take
256 generated samples as our default setting during the instruction tuning and inference.

Table 11: Performance comparison of different numbers of generated prompt samples. We evaluate
them on the MIMIC-IV-ECG dataset, using BLEU-4, METEOR, ROUGE-L, and CIDEr-D metrics.
We take LLaMA-1 7B as the LLM backbone here. heavy teal color indicates the highest results.

PROMPT NUMS BLEU-4 METEOR ROUGE-L CIDEr-D

128 0.541 0.756 0.718 5.15
256 0.543 0.761 0.724 5.26
512 0.538 0.754 0.732 5.03

Ablation Study on GPT-4 Prompt Rephrasing We also conducted an ablation study to compare
the performance with and without GPT-4 rephrasing prompts, using a fixed prompt for the latter. The
results in the following Table 12 indicate that using diverse prompts rephrased by GPT-4 leads to better
performance, highlighting the superiority of instruction tuning in enhancing LLMs’ generalization to
new tasks and data over direct fine-tuning.
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Table 12: Performance comparison of with and without GPT-4 prompt rephrasing. We take Mistral-
Instruct as the LLM backbone here. heavy teal color indicates the highest results.

PROMPT NUMS BLEU-4 METEOR ROUGE-L CIDEr-D

w.o. Rephrasing 0.564 0.745 0.738 5.50
w. Rephrasing (Ours) 0.576 0.768 0.751 5.62

A.4 COMPARISON WITH ENCODER-DECODER MODELS

In this section, we conducted additional comparative experiments using two open-source traditional
encoder-decoder architectures: BART-Large (406M parameters) (Lewis, 2019) and T5-Large (780M
parameters) (Raffel et al., 2020), as shown in Table 13. In adapting our framework for ECG instruction
tuning, we employ the language encoder to process the input instruction, an ECG encoder to handle
the input ECG signals, and the language decoder to generate the ECG report based on the output
from both language end ECG encoder.

Our findings indicate that the performance of encoder-decoder models is comparable to the small
pre-trained language models (GPT2-Medium and GPT-Large) presented in Table 1 and Table 2 of
our paper. Moreover, LLM-based backbones (such as LLaMA1-2) consistently achieve a significant
margin of improvement over the encoder-decoder architectures across all metrics.

Table 13: Comparison with encoder-decoder-based models on MIMIC-IV-ECG. For model size, ’M’
denotes the million level, and ’B’ denotes the billion level. The light teal color indicates the second

highest results, and heavy teal color indicates the highest results.
MODELS SIZE BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L ROUGE-1 ROUGE-2 CIDEr-D

BART-Large 406M 0.525 0.498 0.466 0.388 0.455 0.472 0.5124 0.451 3.15
T5-Large 780M 0.595 0.542 0.465 0.422 0.498 0.456 0.522 0.438 4.08

LLaMA-1 7B 0.685 0.648 0.615 0.543 0.761 0.724 0.742 0.642 5.26

LLaMA-2-Instruct 7B 0.706 0.662 0.622 0.581 0.775 0.745 0.768 0.664 5.55

A.5 ANALYSIS OF COMBINING MEIT WITH A SUPERVISED MANNER

In this section, we conduct a new experiment where we trained a CNN (ECG encoder) in a supervised
manner on the PTB-XL training set, utilizing all available annotations (approximately 70 patterns),
as shown in Table 14. We then transferred the CNN for ECG instruction fine-tuning on both the
MIMIC-IV-ECG and PTB-XL datasets. Our findings indicate that performance increased on the
PTB-XL dataset in most metrics, likely due to the model’s prior learning of specific annotated patterns.
However, performance fluctuated on the MIMIC-IV-ECG dataset, which contains more data and
exhibits greater diversity. This suggests that the supervised approach may enhance performance on
in-domain data, but it limits generalizability to data from unseen domains.

Table 14: Comparisons of results with and without supervised manner. We take LLaMA-2-Instruct as
the LLM backbone here. heavy teal color indicates the highest results.

METHODS PTB-XL

BLEU-4 METEOR ROUGE-L CIDEr-D

MEIT 0.439 0.675 0.594 4.05
MEIT + Supervised manner 0.445 0.664 0.612 4.12

MIMIC-IV-ECG

BLEU-4 METEOR ROUGE-L CIDEr-D

MEIT 0.581 0.775 0.745 5.55
MEIT + Supervised manner 0.578 0.778 0.739 5.47

A.6 COMPUTATIONAL COST ANALYSIS OF MEIT
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The time cost experiment, detailed in the Table 15, was conducted on the MIMIC-IV-ECG dataset.
We found that larger models have longer training and inference times. Thus, we are considering
techniques like quantization and other compression methods to improve model efficiency in future
work.

Table 15: Computational time Analysis of MEIT with various parameters and backbones.

MODEL SIZE Training time Testing time
4 A100 and 3 Epochs 1 A100 and 128 Generated Samples

GPT-2 Large 774M 3.25h 3.125min
LLaMA-2-Instruct 7B 13.5h 9 min

LLaMA-2-Instruct (+) 13B 27h 14.125 min

A.7 VISUALIZATION OF GENERATED ECG REPORT SAMPLES

As illustrated in Figures 8, 9, and 10 we have visualized the report samples generated by LLaMA-
1, LLaMA-2, and Mistral-Instruct. The samples are presented in blue font to highlight the key
information that aligns with the ground truth. The visualization demonstrates that all three selected
models can capture the essential patterns of ECG signals and generate accurate reports. This
underscores the efficacy of our proposed MEIT framework, which is adaptable to most open-source
LLMs. It effectively learns the correct clinical semantics of ECG signals, thereby enabling the
generation of corresponding reports.

Generated Report: <|assistant|>: atrial fibrillation. extensive st-t changes 
may be due to myocardial ischemia. abnormal ecg.</s>

Ground Truth: <|assistant|>: atrial fibrillation. possible inferior infarct - 
age undetermined. possible anteroseptal infarct - age undetermined. lateral 
st-t changes may be due to myocardial ischemia. abnormal ecg.</s>

Instruction: <|user|>: Please provide me with a detailed interpretation of 
the ECG signal, based on the provided data.  

LLaMA-1

Figure 8: Reports generated by LLaMA-1 following ECG instruction Tuning.
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LLaMA-2

Generated Report: <|assistant|>: sinus rhythm with 1st degree a-v block. 
left axis deviation. left ventricular hypertrophy. inferior/lateral st-t 
changes may be due to hypertrophy and/or ischemia. abnormal ecg. </s>

Ground Truth: <|assistant|>: sinus rhythm with 1st degree a-v block. left 
axis deviation. probable normal variant. inferior/lateral st-t changes may 
be due to myocardial ischemia. abnormal ecg. </s>

Instruction: <|user|>: Given the ECG signal embeddings, please help me 
generate an accurate description for this ECG signal embeddings:   

Figure 9: Reports generated by LLaMA-2 following ECG instruction Tuning.

Generated Report: <|assistant|>: sinus rhythm. right bundle branch block. 
abnormal ecg.</s>

Ground Truth: <|assistant|>: sinus rhythm. indeterminate axis. right 
bundle branch block. abnormal ecg. </s>

Instruction: <|user|>: Please assist me in creating a precise description 
for the ECG signal:

Mistral-Instruct

Figure 10: Reports generated by Mistral-Instruct following ECG instruction Tuning.
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