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ABSTRACT

Multi-output Gaussian processes (MOGPs) provide a Bayesian framework for mod-
eling non-linear functions with multiple outputs, in which nonstationary kernels are
essential for capturing input-dependent variations in observations. However, from
a spectral (dual) perspective, existing nonstationary kernels inherit the inflexibility
and over-parameterization of their spectral densities due to the restrictive spec-
tral–kernel duality. To overcome this, we establish a generalized spectral–kernel
duality that enables fully flexible matrix-valued spectral densities — albeit at the
cost of quadratic parameter growth in the number of outputs. To achieve linear scal-
ing while retaining sufficient expressiveness, we propose the multi-output low-rank
nonstationary (MO-LRN) kernel: by modeling the spectral density through a low-
rank matrix whose rows are independently parameterized by bivariate Gaussian
mixtures. Experiments on synthetic and real-world datasets demonstrate that MO-
LRN consistently outperforms existing MOGP kernels in regression, missing-data
interpolation, and imputation tasks.

1 INTRODUCTION

Gaussian processes (GPs) (Williams and Rasmussen, 2006) offer a principled Bayesian non-
parametric framework that is both flexible and interpretable for modeling complex nonlinear functions.
Extending GPs to the multi-output setting leads to a multi-output Gaussian process (MOGPs) (Alvarez
et al., 2012), which, rather than modeling each output independently as in standard GPs, explicitly
capture statistical dependencies across multiple outputs. This capability is particularly valuable in
diverse application domains, such as early sepsis detection (Futoma et al., 2017), traffic speed predic-
tion (Rodrigues et al., 2018), financial risk modeling (Nguyen et al., 2014), and heterogeneous-output
modeling (Moreno-Muñoz et al., 2018).

Formally, an MOGP defines a priori over a vector-valued function f : RD → RV : f(x) =[
f1(x), . . . , fV (x)

]⊤
, with zero mean and a matrix-valued covariance (kernel) function K(x1,x2) =[

kij(x1,x2)
]V
i,j=1

∈ RV×V (Alvarez et al., 2012), i.e.,

f(x) ∼ GP
(
0,K(x1,x2)

)
.

Given a set of inputs X = [x1, . . . ,xN ]⊤ ∈ RN×D (distinct from the generic x1,x2 above), the
corresponding outputs

F =
[
f(x1), . . . , f(xN )

]⊤ ∈ RN×V

follow a joint Gaussian distribution:

p(F) = N
(
vec(F) | 0,K(X,X)

)
,

where
K(X,X) =

[
kij(X,X)

]V
i,j=1

∈ RNV×NV

is a block-structured covariance matrix where each element of the block [kij(X,X)]pq = kij(xp,xq).
Intuitively, the diagonal blocks kii(X,X) ∈ RN×N capture output-specific patterns, while off-
diagonal blocks kij(X,X) ∈ RN×N , i ̸= j, capture cross-output dependencies. Note that when
V = 1, the above definition reduces to the standard GP (named single-output GP (SOGP) for
convenience) with scalar kernel k(x1,x2). Using a standard GP for V -dimensional outputs assumes
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independence across dimensions, i.e., p(F) =
∏V

i=1 N
(
F :,i | 0, kii(X,X)

)
, which is equivalent to

K(X,X) being block-diagonal.

A key aspect of GPs is the choice of the covariance function, as it encodes prior assumptions about the
latent functions f , which in turn determine the patterns the model can capture in the data. Stationary
kernels are the most prominent choice (Ulrich et al., 2015; Parra and Tobar, 2017; Alvarez and
Lawrence, 2008), where covariance depend only on relative distances x1 − x2. Consequently, an
MOGP model with such a kernel cannot capture input-dependent variations in the observations which
are prevalent in real-world data.

Thus, designing nonstationary kernels for MOGPs is essential. A straightforward approach is to extend
the linear model of coregionalization (LMC) by replacing its SOGP base kernel with a nonstationary
variant (Boyle and Frean, 2004; Álvarez et al., 2010). However, from a spectral (dual) perspective, this
extension still restricts the form of cross-output covariances, thus limiting flexibility (Parra and Tobar,
2017). Recently, Altamirano and Tobar (2022) introduced the multi-output harmonizable spectral
mixture (MOHSM) kernel, which constructs a two-level mixture spectral density and maps it to the
kernel domain via an existing duality to overcome this problem. Nevertheless, because the duality
enforces structural conditions on the spectral density, its design ends up over-parameterized but still
inflexible. These limitations carry over to the kernel, reducing its ability to model nonstationarity and
creating a redundant parameter space that is difficult to optimize.

In this paper, we propose an expressive and parameter-efficient nonstationary kernel for MOGPs. Our
contributions are as follows:

1. We establish a new duality between the spectral density and the kernel, removing con-
ventional restrictions and thereby enabling, in theory, fully flexible matrix-valued spectral
densities, though with quadratic parameter growth in V .

2. We propose both a parameter-efficient and sufficiently expressive multi-output low-rank
nonstationary (MO-LRN) kernel by first specifying a low-rank spectral density with in-
dependent bivariate Gaussian-mixture factors to reduce parameter growth to linear in the
output dimension, and then mapping it back to the kernel space via the new duality.

3. We provide experimental results covering tasks such as regression, missing-data interpola-
tion, and imputation, on both synthetic datasets and diverse real-world benchmarks, to show
that MO-LRN achieves state-of-the-art (SOTA) performance compared with all existing
MOGP kernels.

2 BACKGROUND AND PROBLEM STATEMENT

In this section we examine the design of the MOHSM kernel by taking the next-gen spectral mixture
(NG-SM) kernel, which is currently the leading nonstationary kernel for SOGPs, as a reference point.
We first present NG-SM and MOHSM (§ 2.1, § 2.2), and then revisit the MOHSM design through
the lens of the NG-SM’s principles, highlighting its key shortcomings via theoretical analysis and
empirical validation.

2.1 NEXT-GEN SPECTRAL MIXTURE (NG-SM) KERNEL

The NG-SM kernel is a single output nonstationary kernel that is theoretically capable of approx-
imating any continuous kernel arbitrarily well (Yang et al., 2025). Its core design principle is to
specify a dense spectral density and subsequently derive the corresponding kernel function via the
well-established duality between kernels and spectral densities. Formally, this duality is characterized
by the following theorem:
Theorem 1 (Universal Bochner’s Theorem). A complex-valued bounded continuous kernel k(x1,x2)
on RD is the covariance function of a mean square continuous complex-valued random process on
RD if and only if

k(x1,x2) =
1

4

∫ [
exp
(
iω⊤

1 x1 − iω⊤
2 x2

)
+ exp

(
iω⊤

2 x1 − iω⊤
1 x2

)
+ exp

(
iω⊤

1 (x1 − x2)
)
+ exp

(
iω⊤

2 (x1 − x2)
)]

u(dω1, dω2),

(1)

where u is the Lebesgue-Stieltjes measure associated with some function p (ω1,ω2). When
u(ω1, ω2) = δ(ω1 − ω2)u(ω) (with ω ≜ ω1 = ω2), this theorem reduces to Bochner’s theorem.
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(a) Periodic function (b) Piecewise function
MOHSM NG-SM MOHSM C.I. NG-SM C.I. Training data

Figure 1: MOHSM vs. NG-SM fits on scalar observations. Panel (a) shows a periodic function, and panel
(b) a piecewise function. In both panels, the blue line denotes the MOHSM posterior mean and the red line the
NG-SM posterior mean. The shaded light blue and pink regions indicate the corresponding 95% confidence
intervals. Black dots mark the training data.

By specifying the spectral density as a mixture of bivariate Gaussians, i.e., p(ω1,ω2) =∑Q
q=1 αqsq(ω1,ω2), where each sq(ω1,ω2) is a bivariate Gaussian component, the NG-SM kernel

can be derived via Eq. (1). Leveraging the fact that Gaussian mixtures are dense in the space of
continuous functions (Plataniotis and Hatzinakos, 2000), the NG-SM kernel can approximate any
continuous kernel arbitrarily well.

2.2 MULTI-OUTPUT HARMONIZABLE SPECTRAL MIXTURE (MOHSM) KERNEL

The current exemplar for nonstationary multi-output kernels is the MOHSM kernel (Altamirano
and Tobar, 2022). It follows the general paradigm of specifying a matrix-valued spectral density
and mapping it back to the kernel domain via a multivariate duality result known as Kakihara’s
theorem (see Appendix A.1 and Theorem 2 in Altamirano and Tobar (2022)). Specifically, by
defining ω̂ = ω1 −ω2 and ω̄ = (ω1 +ω2)/2, the (i, j)-th element of matrix-valued spectral density
S ≜ [Sij ]

V
i,j=1 is:

Sij =

Q∑
q=1

w
(q)
ij SE

(q)
1 (ω̂)SE

(q)
2 (ω̄),

where w
(q)
ij are scalar weights and SE

(q)
1 , SE

(q)
2 are squared-exponential functions (Rasmussen and

Nickisch, 2010). Applying Kakihara’s theorem yields the (i, j)-th element of corresponding kernel
kij(x1,x2) =

Q∑
q=1

α
(q)
ij exp

(
− 1

2
(x̂+ θ

(q)
ij )⊤Σ

(q)
ij (x̂+ θ

(q)
ij )

)
cos

(
(x̂+ θ

(q)
ij )⊤µ

(q)
ij + ϕ

(q)
ij

)
exp

(
− lij

2
∥x̄∥2

)
, (2)

where x̂ = x1 − x2, x̄ = (x1 + x2)/2, and {θ(q)
ij ,µ

(q)
ij ,Σ

(q)
ij , lij}Q;V

q=1;i,j=1 are the kernel hyperpa-
rameters. Equation (2) represents a locally stationary kernel—obtained by multiplying a stationary
kernel with a non-negative modulation function—which generally limits its ability to capture strong
nonstationarities (Altamirano and Tobar, 2022). To overcome this limitation, Altamirano and Tobar
treat (2) as a base kernel kpij and localize it by replacing the global Gaussian envelope in x̄ with a
window centered at a set of shift points {xp}Pp=1, i.e., kpij(x1,x2) =

Q∑
q=1

α
(q)
ij exp

(
− 1

2
(x̂+θ

(q)
ij )⊤Σ

(q)
ij (x̂+θ

(q)
ij )

)
cos

(
(x̂+θ

(q)
ij )⊤µ

(q)
ij +ϕ

(q)
ij

)
exp

(
−

l
(p)
ij ]

2
∥x̄−xp∥2

)
, (3)

The final MOHSM kernel is then the superposition of the base kernels, kij(x1,x2) =∑P
p=1 k

p
ij(x1,x2), which models nonstationarity by representing the data as a union of locally

stationary regimes. Notably, the resulting spectral density exhibits a two-level mixture structure: a

3
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Table 1: Simulation settings and runtime comparison for NG-SM and MOHSM

Model No. Iterations No. Mixture
Components (Q)

No. Positional
Shifts (P )

Parameter
Size Runtimes [s] Reference

MOHSM 2000 2 2 29 63 (Altamirano and Tobar, 2022)

NGSM 2000 2 N/A 11 21 (Yang et al., 2025)

mixture over shift points xp, p = 1, . . . , P , with each shift point further associated with a mixture of
Q components.

2.3 REVISITING THE MOHSM DESIGN

Despite targeting MOGPs, MOHSM still faces intrinsic limitations in modeling nonstationarity in
contrast to NG-SM. To illustrate this limitation clearly and fairly, we consider scalar observations,
under which the MOGP reduces to a standard GP, and compare the two kernels through theoretical
analysis and empirical validation.

Theoretically, when V = 1, the two-level mixture spectral density of MOHSM is neither guaranteed
to be dense (see analysis in § 3.1) in the dual space nor efficient in parameter size (Altamirano and
Tobar, 2022). Consequently, MOHSM cannot approximate arbitrary nonstationary SOGP kernels,
despite requiring at least P times more parameters than NG-SM. In contrast, NG-SM employs a
dense Gaussian mixture, enabling it to approximate any nonstationary kernel with a relatively small
number of parameters.

Empirically, we compare GP regression models with MOHSM and NG-SM kernels on periodic and
piecewise-periodic data with input-dependent frequency transitions (see Figure 1; simulation settings
and runtimes are in Table 1). The MOHSM-based model fails to represent global input-dependent
transitions, whereas the NG-SM-based model accurately models the data with significantly fewer
parameters and a substantially lower runtime.

3 METHODOLOGY

This section begins by establishing a relaxed duality theorem between the spectral and kernel spaces,
which loosens the conventional constraints on the spectral density. Building on this result, we
introduce a novel nonstationary kernel for MOGPs in § 3.2. Finally, § 3.3 outlines the procedure
for performing MOGP regression inference, later used in the experiments to evaluate the proposed
kernel.

3.1 ADVANCED KAKIHARA THEOREM

As discussed in § 2.3, the core limitation of the MOHSM design is due to the restrictions arising from
the original Kakihara theorem (Appendix A.1). In addition, the spectral density of NG-SM kernel is
constructed using a dense bivariate Gaussian mixture, which cannot be directly adopted in MOGP
setting as it would also be subject to the same limitation. We now examine these restrictions in detail.
For convenience, we define the measure associated with the spectral density Sij as Fij .

1) Fii must be a positive semi-definite (PSD) measure. This requires the diagonal elements of spec-
tral density Sii to be a PSD function, excluding fully flexible choices such as dense bivariate Gaussian
mixtures.

2) Exchangeable within Hermitian symmetry: Fij(ω1,ω2) = F ji(ω2,ω1). In MOHSM, to ensure
the exchangeability, the input of the spectral density is set to ω̂ = ω1 − ω2 and ω̄ = (ω1 + ω2)/2,
which leads to both reduced flexibility and over-parameterization. To observe this, recall that
Sij =

∏P
p=1

∏Q
q=1 p(ω̄) p(ω̂,xp), where we omit its specific functional form for brevity. First, ω̂

and ω̄ are modeled as independent, which removes ω̂, ω̄ interactions and prevents representing
general bivariate spectral densities. Second, as discussed in § 2.2, over-parameterized two-level
spectral mixture is required to model nonstationarity, since a single mixture layer yields only a locally
stationary kernel. This local stationarity arises because, after the Fourier transform, ω̄ = (ω1+ω2)/2
maps to x̄ = (x1 + x2)/2 in the spatial domain, producing a stationary kernel, while ω̂ = ω1 − ω2

maps to x1 − x2, which only appears as a non-negative weighting function.

To address these constraints, we propose an advanced version of Kakihara’s theorem that relaxes the
above conditions, enabling more flexible choices of spectral densities.

4
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Theorem 2 (Advanced Kakihara Theorem). A family of complex-valued functions {kij(x1,x2)}Vi,j=1

on RD serves as the covariance functions of a harmonizable multivariate stochastic process on RD if
and only if they can be represented as:

kij(x1,x2) =
1

4

∫∫
RD×RD

[
exp
(
i(ω⊤

1 x1 − ω⊤
2 x2)

)
+ exp

(
i(ω⊤

2 x1 − ω⊤
1 x2)

)
+exp

(
iω⊤

1 (x1 − x2)
)
+ exp

(
iω⊤

2 (x1 − x2)
)]

dFij(ω1,ω2). (4)

where F(ω1,ω2) = [Fij(ω1,ω2)]
V
i,j=1 is the matrix-valued Lebesgue-Stieltjes bimeasure associated

with some matrix-valued function P(ω1,ω2) = [Pij(ω1,ω2)]
V
i,j=1, which satisfies the Hermitian

symmetry condition: Pij(ω1,ω2) = Pji(ω1,ω2).

Proof. See the proof in Appendix A.1.

Remark 1. We use the symbol P instead of S to denote the spectral density in order to distinguish
MOHSM and our MO-LRN. Moreover, even though using the same notation, the bimeasure F in the
two theorems differs in its functional form and associated integral representation.

With both constraints removed, Theorem 2 implies that a Hermitian symmetric matrix-valued bivariate
spectral density determines a nonstationary MOGP kernel. For flexibility, we can approximate each
entry Pij

1 using a bivariate Gaussian mixture with complex-valued coefficients, while enforcing
Hermitian symmetry (Pij = P ji). Diagonal terms are restricted to real nonnegative coefficients. Since
the linear span of Gaussian atoms is dense (Plataniotis and Hatzinakos, 2000), this parameterization
is, in principle, universal over admissible Hermitian symmetric spectral densities and thus can
approximate any nonstationary MOGP kernel. However, realizing this flexibility requires O(DV 2Q)
parameters, rendering the approach impractical.

3.2 MULTI-OUTPUT LOW-RANK NONSTATIONARY (MO-LRN) KERNEL

Instead of parameterizing each spectral entry with the bivariate Gaussian mixture under Hermitian
symmetry, we introduce a both parameter-efficient and sufficiently expressive design of spectral
density. Specifically, we first assign a latent vector ri ∈ RQ to each output i and define

Pij(ω1,ω2) = rHi rj , (5)

for reducing the number of parameters from O(DV 2Q) to O(DVQ) while automatically enforcing
symmetry (Pij = P ji). This construction closely resembles latent factor models (e.g. Koren et al.,
2009; Mnih and Salakhutdinov, 2007), where pairwise interactions are captured via inner products of
low-dimensional embeddings. From this perspective, the latent embedding ri encodes output-specific
spectral characteristics, while the relative positions of ri and rj in the embedding space determine
the strength and sign of their cross-output spectral interactions.

To retain flexibility, we parameterize the q-th component in the embedding, ri = [r
(1)
i , . . . , r

(Q)
i ]⊤,

as:

r
(q)
i = w

(q)
i N

((
ω1

ω2

) ∣∣∣∣∣
(
µ

(q)
i1

µ
(q)
i2

)
,

[
Σ

(q)
i1 (Σ

(q)
ic )⊤

Σ
(q)
ic Σ

(q)
i2

])
, (6)

where w
(q)
i > 0 is the component weight, µ(q)

i1 ,µ
(q)
i2 ∈ RD are the mean vectors, and the covariance

blocks are diagonal matrices Σ(q)
i1 = diag((σ

(q)
i1 )2), Σ(q)

i2 = diag((σ
(q)
i2 )2), with σ

(q)
i1 ,σ

(q)
i2 ∈ RD.

The cross-covariance is defined as Σ(q)
ic = ρ

(q)
i diag(σ

(q)
i1 ) diag(σ

(q)
i2 ), where ρ

(q)
i ∈ [−1, 1] denotes

the correlation coefficient.

Substituting (6) into (5) yields:

Pij(ω1,ω2) = rHi rj =

Q∑
q=1

z
(q)
ij N

((
ω1

ω2

) ∣∣∣∣∣m(q)
ij , S

(q)
ij

)
, (7)

1For brevity, the input (ω1,ω2) is sometimes omitted.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

which remains a bivariate Gaussian mixture. Here, z
(q)
ij , m

(q)
ij ∈ R2D and S

(q)
ij ∈ R2D×2D

are the scaling factor, mean vector, and covariance matrix of the q-the bivariate Gaussian
density. These quantities are entirely determined by the paired component parameters θ =

{w(q)
k ,µ

(q)
k1 ,µ

(q)
k2 ,σ

(q)
k1 ,σ

(q)
k2 , ρ

(q)
k }k∈{i,j}. Further details on the parameter derivations are given

in Appendix A.2.

To ensure the resulting kernel is real-valued, we set each Pij(ω1,ω2) = 1
2

[
Pij(ω1,ω2) +

Pij(−ω1,−ω2)
]
. By applying the duality relation in Eq. (4) of Theorem 2, we obtain a real-valued

MOGP kernel, whose explicit form is given below.
Definition 1 (Multi-output Low-Rank Nonstationary Kernel). The (i, j)-th element of the MO-LRN
kernel kij(x1,x2) is defined as

=

Q∑
q=1

z
(q)
ij

4

[
cos

(
(m

(q)
ij1)

⊤x1 − (m
(q)
ij2)

⊤x2

)
exp

(
− 1

2
(x⊤

1 S
(q)
ij1x1 − 2x⊤

1 (S
(q)
ijc)

⊤x2 + x⊤
2 S

(q)
ij2x2)

)
+cos

(
(m

(q)
ij2)

⊤x1 − (m
(q)
ij1)

⊤x2

)
exp

(
− 1

2
(x⊤

2 S
(q)
ij1x2 − 2x⊤

1 S
(q)
ijcx2 + x⊤

1 S
(q)
ij2x1)

)
+cos

(
(m

(q)
ij1)

⊤(x1 − x2)
)
exp

(
− 1

2
(x1 − x2)

⊤S
(q)
ij1(x1 − x2)

)
+cos

(
(m

(q)
ij2)

⊤(x1 − x2)
)
exp

(
− 1

2
(x1 − x2)

⊤S
(q)
ij2(x1 − x2)

)]

where each component has parameters
(
z
(q)
ij ,m

(q)
ij ,S

(q)
ij

)
with partitions m(q)

ij = [m
(q)⊤
ij1 ,m

(q)⊤
ij2 ]⊤

and S
(q)
ij =

[
S

(q)
ij1 (S

(q)
ijc)

⊤

S
(q)
ijc S

(q)
ij2

]
, all analytically determined from hyperparameters θ, with the explicit

derivation steps given in Definition 2 in Appendix A.2.
Remark 2. Although each element of the spectral density Pij appears to be modeled as a bivariate
Gaussian mixture, denseness can only be guaranteed for the diagonal terms (i = j), since only
these are independently parameterized. Nevertheless, this construction remains more expressive than
MOHSM, whose diagonal spectral terms are not even guaranteed to be dense, as discussed in § 2.3.

3.3 MULTI-OUTPUT GAUSSIAN PROCESS REGRESSION

The training procedure for MOGP regression parallels that of the SOGP–by maximizing the marginal
log-likelihood of the observed data with respect to the hyperparameters. Formally, we represent each
data point as a pair {(xn,yn)}Nn=1, where xn ∈ RD and yn ∈ RV . Let y = [y⊤

1 , . . . ,y
⊤
N ]⊤ ∈ RNV

denote the vertically stacked outputs.

We assume that the observations y are generated from the inputs X via a noisy MOGP mapping.
Specifically,

y = vec(F) + ϵ, ϵ ∼ N
(
0,Σn

)
, vec(F) ∼ N

(
0,K(X,X)

)
, (8)

where vec(F) denote the vectorized latent function evaluations over all outputs and inputs, K(X,X)
is the MOGP prior covariance matrix, and Σn is the observation noise covariance, taking the form
Σn = IN ⊗ diag(σ2

1 , . . . , σ
2
V ), with σ2

i > 0 is the noise variance specific to the i-th output.

Due to the conjugacy of the Gaussian prior and Gaussian likelihood, we can marginalize out vec(F)
to obtain the marginal log-likelihood:

log p(y | θ) = −1

2
y⊤(K+Σn

)−1
y − 1

2
log
∣∣K+Σn

∣∣− N

2
log 2π, (9)

Maximizing log p(y | θ) yields the maximum likelihood estimates of hyperparameters θ.

4 EXPERIMENTAL RESULTS

This section first presents a detailed comparison between our MO-LRN kernel and the MOHSM kernel
on MOGP regression using synthetic datasets (§ 4.1). We then show that MO-LRN achieves superior
performance on real-world MOGP regression tasks (§ 4.2), as well as on missing-data interpolation
and imputation tasks (§ 4.3) across diverse time-series datasets. Comprehensive experimental
setups are provided in Appendix B, and benchmark implementations in Appendix B.2 and B.3.
Appendix C.2 reports additional regression experiments on other real-world datasets.
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MO-LRN
MOHSM

MO-LRN C.I.
MOHSM C.I.

Test data
Training data

(a) MOGP regression plot
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0.1765
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0.0959

Mean Absolute Error Performance
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Training Time Comparison(s)
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54
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210
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26

Parameter Size Comparison

MOHSM 2P2Q
MOHSM 4P4Q

MOHSM 2P2Q (init)
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Figure 2: MOGP regression results comparing MO-LRN and MOHSM on synthetic data. Panel (a) shows
regression plots, while Panel (b) reports MAE, training time, and parameter size.

Table 2: Comparison of various MOGP kernels. An expressive kernel refers to one whose spectral density is
flexible in the dual space. Here, I denotes the index in the LMC summation over latent processes, with I ≤ V .

Model Able to model
non-stationary pattern

Able to model
stationary pattern

Expressive
kernel #Parameters Reference

MOSM ✗ ✓ ✓ O(DQV ) (Parra and Tobar, 2017)
CONV ✗ ✓ ✗ O(DQV ) (Alvarez and Lawrence, 2008)
LMC-SM ✗ ✓ ✗ O(IDQ) (Wilson and Adams, 2013a)
LMC-NGSM ✓ ✓ ✗ O(IDQ) (Yang et al., 2025)
MOHSM ✓ ✓ ✗ O(PDQV ) (Altamirano and Tobar, 2022)
MO-LRN ✓ ✓ ✓ O(DQV ) This Work

4.1 SYNTHETIC EXAMPLE

In this subsection, we conduct a detailed comparison between the proposed MO-LRN kernel and the
MOHSM kernel on a MOGP regression task. To this end, we construct a two-dimensional output
yn by combining the scalar periodic signal and the piecewise-periodic signal introduced in §2.3
(see more detail in Appendix B.1.1). Collecting {yn}Nn=1 forms the complete dataset, on which we
perform MOGP regression with both kernels.

For MOHSM, performance is highly sensitive to the choice of (P,Q) and requires carefully designed
initialization strategies (Altamirano and Tobar, 2022). We therefore compare our kernel with MOHSM
across multiple settings, evaluating three metrics: test set accuracy measured by the mean absolute
error (MAE), training time, and parameter count. As shown in Figure 2b, our kernel consistently
outperforms MOHSM while requiring substantially fewer parameters and a significantly shorter
training time. By contrast, MOHSM not only delivers inferior accuracy but also remains dependent
on costly initialization and a large parameter budget.

To visualize the performance gap between the two kernels, Figure 2a shows the regression fits obtained
using our kernel and the MOHSM kernel under its lowest-MAE configuration (P = 4, Q = 4 with the
initialization strategy). The results clearly indicate that the MOGP model with our kernel can precisely
fit the data and effectively capture nonstationary patterns. In contrast, although the MOHSM-based
model outperforms a baseline that applies SOGP regression independently to each dimension (as
shown in Figure 1) by leveraging cross-output correlations, it still fails to fully capture nonstationary
patterns due to its limited spectral density design, thus resulting in inferior overall performance.

4.2 ELECTRICAL TRANSFORMER TEMPERATURE DATA

We further evaluate our kernel on a MOGP regression task using the real-world electricity transformer
temperature (ETT) dataset (Zhou et al., 2021), which contains one-week records of oil temperature
and six load-related features We treat time as the input and the oil temperature together with the six
load-related features as the observation vector2. The dataset is randomly split into 70% for training
and 30% for testing.

For fair comparison, we benchmark against both stationary and nonstationary kernels. The stationary
baselines include: (i) the multi-output spectral mixture (MOSM) kernel (Parra and Tobar, 2017), (ii)

2See Appendix B.1.2 for a detailed description of the dataset and preprocessing.
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Figure 3: Runtime comparison on the ETT dataset against a varying number of data points.

Table 3: Comparison of MAE, NMAE, RMSE and NLPD across kernels on the ETT dataset. Each column (OT,
HUFL, HULL, MUFL, MULL, LUFL, LULL) reports the reconstruction accuracy for one output variable, while
the last column (Overall) summarizes the average performance across all outputs. Mean and standard deviation
are computed over five runs. The best result per column is bolded, and the second-best is underlined.

TARGET OT HUFL HULL MUFL MULL LUFL LULL OVERALL

METRIC MAE

CONV 0.276 ± 0.053 0.439 ± 0.140 0.214 ± 0.047 0.455 ± 0.136 0.781 ± 0.119 0.348 ± 0.091 0.220 ± 0.039 0.390 ± 0.073
LMC-SM 0.274 ± 0.007 0.329 ± 0.003 0.223 ± 0.002 0.357 ± 0.004 0.649 ± 0.048 0.410 ± 0.004 0.306 ± 0.037 0.364 ± 0.014
MOHSM 0.289 ± 0.005 0.328 ± 0.003 0.251 ± 0.006 0.365 ± 0.004 0.389 ± 0.007 0.359 ± 0.002 0.290 ± 0.001 0.325 ± 0.001
MOSM 0.295 ± 0.024 0.309 ± 0.036 0.216 ± 0.027 0.333 ± 0.039 0.459 ± 0.017 0.379 ± 0.022 0.210 ± 0.016 0.314 ± 0.014

LMC-NGSM 0.204 ± 0.018 0.271 ± 0.007 0.167 ± 0.010 0.293 ± 0.002 0.303 ± 0.033 0.372 ± 0.014 0.180 ± 0.002 0.256 ± 0.011
MO-LRN 0.148 ± 0.003 0.256 ± 0.017 0.125 ± 0.005 0.287 ± 0.023 0.208 ± 0.008 0.248 ± 0.003 0.133 ± 0.003 0.201 ± 0.006
METRIC NMAE

CONV 0.294 ± 0.038 0.424 ± 0.131 0.229 ± 0.033 0.457 ± 0.118 0.689 ± 0.335 0.468 ± 0.090 0.303 ± 0.119 0.409 ± 0.058
LMC-SM 0.319 ± 0.008 0.369 ± 0.003 0.266 ± 0.002 0.409 ± 0.005 0.771 ± 0.057 0.488 ± 0.005 0.331 ± 0.040 0.422 ± 0.016
MOHSM 0.337 ± 0.006 0.367 ± 0.003 0.299 ± 0.008 0.418 ± 0.004 0.463 ± 0.008 0.428 ± 0.002 0.313 ± 0.001 0.375 ± 0.001
MOSM 0.344 ± 0.028 0.346 ± 0.041 0.258 ± 0.033 0.382 ± 0.044 0.546 ± 0.020 0.452 ± 0.026 0.227 ± 0.017 0.365 ± 0.016

LMC-NGSM 0.238 ± 0.021 0.303 ± 0.008 0.199 ± 0.012 0.336 ± 0.002 0.361 ± 0.039 0.444 ± 0.016 0.194 ± 0.002 0.296 ± 0.013
MO-LRN 0.172 ± 0.003 0.287 ± 0.019 0.149 ± 0.006 0.328 ± 0.027 0.247 ± 0.009 0.296 ± 0.004 0.144 ± 0.003 0.232 ± 0.007
METRIC RMSE

CONV 0.317 ± 0.018 0.453 ± 0.107 0.252 ± 0.014 0.490 ± 0.091 0.754 ± 0.282 0.558 ± 0.169 0.346 ± 0.151 0.453 ± 0.020
LMC-SM 0.340 ± 0.030 0.389 ± 0.035 0.280 ± 0.033 0.439 ± 0.045 0.796 ± 0.079 0.549 ± 0.075 0.376 ± 0.048 0.453 ± 0.045
MOHSM 0.376 ± 0.005 0.407 ± 0.004 0.333 ± 0.005 0.467 ± 0.002 0.574 ± 0.005 0.540 ± 0.001 0.379 ± 0.001 0.440 ± 0.002
MOSM 0.386 ± 0.027 0.387 ± 0.047 0.298 ± 0.032 0.436 ± 0.049 0.679 ± 0.028 0.563 ± 0.026 0.269 ± 0.020 0.431 ± 0.017

LMC-NGSM 0.261 ± 0.019 0.344 ± 0.009 0.226 ± 0.011 0.392 ± 0.003 0.469 ± 0.034 0.522 ± 0.023 0.234 ± 0.001 0.350 ± 0.013
MO-LRN 0.210 ± 0.003 0.334 ± 0.023 0.188 ± 0.004 0.393 ± 0.030 0.412 ± 0.007 0.353 ± 0.003 0.178 ± 0.002 0.295 ± 0.008
METRIC NLPD

CONV 0.384 ± 0.045 0.484 ± 0.034 0.156 ± 0.060 0.647 ± 0.147 1.328 ± 0.023 0.877 ± 0.069 0.748 ± 0.320 0.661 ± 0.069
LMC-SM 0.286 ± 0.021 0.429 ± 0.009 0.066 ± 0.012 0.554 ± 0.008 1.283 ± 0.033 0.889 ± 0.002 0.506 ± 0.198 0.573 ± 0.031
MOHSM 0.733 ± 0.022 0.757 ± 0.019 0.702 ± 0.023 0.809 ± 0.016 0.920 ± 0.011 0.881 ± 0.011 0.740 ± 0.021 0.792 ± 0.018
MOSM 0.473 ± 0.073 0.467 ± 0.118 0.208 ± 0.118 0.586 ± 0.116 1.048 ± 0.038 0.846 ± 0.047 0.103 ± 0.075 0.533 ± 0.043

LMC-NGSM 0.146 ± 0.167 0.365 ± 0.046 -0.019 ± 0.133 0.501 ± 0.020 0.866 ± 0.367 0.771 ± 0.049 0.042 ± 0.172 0.382 ± 0.133
MO-LRN -0.159 ± 0.012 0.334 ± 0.087 -0.271 ± 0.038 0.505 ± 0.097 0.691 ± 0.092 0.385 ± 0.007 -0.323 ± 0.014 0.166 ± 0.031

the convolution (CONV) kernel (Alvarez and Lawrence, 2008), and (iii) the LMC with a spectral
mixture base kernel (LMC-SM) (Álvarez et al., 2010; Wilson and Adams, 2013b). The nonstationary
baselines include: (i) the LMC with a NG-SM base kernel (LMC-NGSM) (Yang et al., 2025; Álvarez
et al., 2010), and (ii) the MOHSM kernel (Altamirano and Tobar, 2022)3. More detailed comparison
can be found in Table 2.

Each kernel is evaluated on the test set over five independent runs, and Table 3 reports the mean and
standard deviation of MAE, normalized MAE (NMAE), RMSE, and negative log predictive density
(NLPD). It can be seen that our proposed MO-LRN kernel outperforms all others across the four
metrics, while LMC-NGSM almost achieves the second-best performance. This implies that the ETT

3See Appendix B.2 for benchmark implementation details.
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Figure 4: Interpolation and Imputation plots on air quality dataset

Table 4: MAE for interpolation and imputation tasks across different kernels on the air quality dataset. Each
column (PM2.5, PM10, SO2, NO2, CO, O3, TEMP, PRES) corresponds to one target variable, and the last
column (Overall) summarizes the average performance across all targets. Mean and standard deviation are
computed over 5 runs. The best (lowest) values are highlighted in bold, and the second-best are underlined.

TARGET PM2.5 PM10 SO2 NO2

Interp. Imput. Interp. Imput. Interp. Imput. Interp. Imput.

MOHSM 0.237 ± 0.024 0.411 ± 0.108 0.244 ± 0.036 0.331 ± 0.103 0.449 ± 0.020 0.375 ± 0.116 0.315 ± 0.056 0.345 ± 0.153
CONV 0.156 ± 0.041 0.148 ± 0.102 0.173 ± 0.036 0.077 ± 0.019 0.401 ± 0.160 0.448 ± 0.093 0.332 ± 0.082 0.448 ± 0.073

LMC-SM 0.116 ± 0.006 0.062 ± 0.030 0.152 ± 0.004 0.051 ± 0.003 0.381 ± 0.109 0.684 ± 0.299 0.317 ± 0.077 0.796 ± 0.354
MOSM 0.241 ± 0.041 0.486 ± 0.357 0.213 ± 0.051 0.161 ± 0.097 0.393 ± 0.103 0.619 ± 0.180 0.285 ± 0.116 0.434 ± 0.123

LMC-NGSM 0.113 ± 0.008 0.093 ± 0.006 0.136 ± 0.001 0.051 ± 0.002 0.468 ± 0.130 0.462 ± 0.116 0.397 ± 0.008 0.486 ± 0.022
MO-LRN 0.122 ± 0.019 0.109 ± 0.079 0.137 ± 0.012 0.103 ± 0.016 0.273 ± 0.035 0.484 ± 0.115 0.187 ± 0.028 0.325 ± 0.041

TARGET CO O3 TEMP PRES Overall

Interp. Imput. Interp. Imput. Interp. Interp. Interp. Imput.

MOHSM 0.310 ± 0.022 0.465 ± 0.048 0.385 ± 0.008 0.982 ± 0.065 0.347 ± 0.015 0.118 ± 0.024 0.301 ± 0.011 0.485 ± 0.036
CONV 0.328 ± 0.044 0.526 ± 0.111 0.421 ± 0.009 0.674 ± 0.015 0.676 ± 0.297 0.041 ± 0.049 0.316 ± 0.042 0.387 ± 0.043

LMC-SM 0.275 ± 0.019 0.196 ± 0.035 0.483 ± 0.170 1.188 ± 0.052 0.135 ± 0.010 0.507 ± 0.446 0.296 ± 0.038 0.496 ± 0.102
MOSM 0.314 ± 0.018 0.497 ± 0.153 0.318 ± 0.040 0.714 ± 0.356 0.450 ± 0.211 0.098 ± 0.022 0.289 ± 0.024 0.485 ± 0.063

LMC-NGSM 0.278 ± 0.009 0.175 ± 0.006 0.449 ± 0.186 0.965 ± 0.138 0.137 ± 0.007 0.020 ± 0.003 0.250 ± 0.007 0.372 ± 0.037
MO-LRN 0.220 ± 0.034 0.360 ± 0.118 0.328 ± 0.016 0.723 ± 0.054 0.132 ± 0.016 0.022 ± 0.005 0.178 ± 0.008 0.351 ± 0.032

dataset naturally contains nonstationary patterns. Consequently, stationary kernels such as MOSM,
LMC-SM, and CONV exhibit inferior performance compared to LMC-NGSM, despite it being a
relatively simple nonstationary MOGP kernel.

For nonstationary kernels, both LMC-NGSM and MOHSM perform worse than our proposed kernel,
as they are theoretically limited in expressiveness from a spectral perspective. From the viewpoint of
spectral density design, MOHSM should, in principle, outperform LMC-NGSM kernel. However, this
is not observed in practice, likely because its large number of parameters makes training substantially
more challenging, potentially leading to convergence to a suboptimal solution and preventing it from
realizing its theoretical advantages.

Figure 3 reports the runtime of the benchmark MOGP kernels on the ETT dataset as the number of
data points increases. Our proposed MO-LRN kernel exhibits computational efficiency comparable to
existing kernels, with the exception of the MOHSM kernel, whose runtime grows rapidly and quickly
approaches the upper limit.

4.3 AIR QUALITY DATA

In this subsection, we evaluate kernel robustness to missing data in two tasks: imputation (recon-
structing large continuous missing segments) and interpolation (predicting at isolated held-out points).
For this purpose, we use data from the Aotizhongxin station of the Beijing multi-site air-quality

9
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dataset (Zhang et al., 2017) for March 1–8, 2013, comprising 184 hourly records of eight outputs: six
pollutants (PM2.5, PM10, SO2, NO2, CO, O3) and two meteorological variables (TEMP, PRES),
with no original missing values (see more detail in Appendix B.1.3). For imputation, we remove
different continuous intervals from each pollutant output; for interpolation, we randomly drop 20% of
isolated points from all outputs. We then train an MOGP regression model on the resulting datasets
containing both types of missing data.

Figure 4 presents the results of imputation and interpolation with associated confidence intervals
using an MOGP model equipped with our MO-LRN kernel. For interpolation, the model accurately
estimates isolated missing values (orange triangles) with narrow confidence bounds. For imputation,
the reconstruction of large continuous missing segments (red squares) yields broad but accurate
confidence intervals that fully cover the ground-truth values. Overall, these results indicate that the
MO-LRN kernel effectively captures both intra- and cross-output correlations.

Table 4 compares the MAE for interpolation and imputation across different kernels, averaged over
five runs. The model with MO-LRN attains the lowest errors in both tasks, excelling in reconstructing
large continuous missing segments and isolated missing values. Stationary kernels—MOSM, LMC-
SM, and CONV—cannot adapt to input-dependent patterns, resulting in weaker performance. Among
non-stationary kernels, LMC-NGSM lacks the capacity to capture cross-output correlations, and
MOHSM is constrained by its spectral design, leading to inferior performance in both tasks compared
with MO-LRN.

5 CONCLUSIONS

In this paper, we introduce the MO-LRN kernel, a novel nonstationary MOGP kernel grounded
in a new spectral–kernel duality that eliminates restrictive structural constraints and, in principle,
permits fully flexible matrix-valued spectral densities. To avoid the quadratic parameter growth of
this unconstrained form, MO-LRN adopts a low-rank spectral density with independent bivariate
Gaussian-mixture factors, reducing complexity to linear in the number of outputs while preserving
sufficient modeling expressiveness. Extensive experiments on synthetic and real-world datasets for
regression, interpolation, and missing-data imputation tasks demonstrate that MO-LRN consistently
outperforms existing MOGP kernels.

10
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Ethics Statement: This work is primarily theoretical, introducing the multi-output low-rank non-
stationary (MO-LRN) kernel for multi-output Gaussian processes. In the spirit of scientific integrity
and transparency, the details of all experiments conducted and the open access datasets used are
thoroughly described in the paper. Despite its theoretical focus, we recognize that any powerful
predictive tool, once deployed, carries potential risks. A key concern is the potential for a model
using our kernel to generate harmful or misleading information, such as perpetuating societal biases
if trained on flawed data. The responsibility thus lies with the practitioner to audit their data and
deployment context, ensuring the application is vetted for fairness and does not lead to negative
societal consequences.

Reproducibility Statement: We provide the source code for a toy example with corresponding
output in the supplementary materials to demonstrate the core functionality of our proposed method.
To replicate our main experimental results, the Appendix B contains all necessary details, including
the specific hyperparameters, descriptions of the datasets, and our data processing pipeline. We
commit to releasing the full, documented codebase on a public repository upon acceptance of the
paper to ensure complete verification and to support future research.
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A ADVANCED KAKIHARA THEOREM AND MULTI-OUTPUT LOW-RANK
NONTATIONARY KERNEL

A.1 PROOF OF THEOREM 2

Before proving Theorem 2, we first recall Kakihara’s Theorem (Kakihara, 1997) and introduce a
lemma that reformulates its conditions on the measure Fij in terms of the spectral density.

Theorem 3 (Kakihara’s Theorem (Kakihara, 1997)). A family of complex-valued covariance functions
{kij(x1,x2)}Vi,j=1 on RD corresponds to a harmonizable multivariate stochastic process if and only
if each function admits the representation

kij(x1,x2) =

∫∫
RD×RD

ei(ω
⊤
1 x1−ω⊤

2 x2) dFij(ω1,ω2), (10)

where F = {Fij(A,B)}Vi,j=1 is a matrix-valued spectral bimeasure such that:

(1) For all i, Fii is a positive semi-definite (PSD) measure;

(2) For all i, j, Fij(A,B) = Fji(B,A) for all measurable sets A,B ⊆ RD.

Lemma 1. Let Fij(A,B) =
∫
A

∫
B
Sij(ω1,ω2) dω2 dω1, where Sij is the spectral density. The two

conditions of Kakihara’s theorem, namely

(1) for all i, Fii is a PSD measure;

(2) for all i, j and measurable A,B ⊆ RD, Fij(A,B) = Fji(B,A),

hold if and only if the spectral matrix S satisfies:

A) Sii is PSD for each diagonal entry;

B) Sij(ω1,ω2) = Sji(ω2,ω1) for all i, j.

Now, we prove Theorem 2 by showing necessity (⇒) and sufficiency (⇐) as below.

Necessity (⇒): From Valid Kernel to the Theorem’s Form.

By Theorem 3 and Lemma 1, {kij(x1,x2)}Vi,j=1 form the covariance functions of a multivariate
harmonizable process if and only if the associated spectral density matrix S satisfies two conditions:
(A) its diagonal entries Sii(ω1,ω2) are PSD functions, and (B) its off-diagonal entries satisfy the
Hermitian symmetry Sij(ω1,ω2) = Sji(ω2,ω1). Accordingly, we construct S as follows:

Sij(ω1,ω2)=
1

4
[Pij(ω1,ω2) + Pij(ω2,ω1) + Pij(ω1)δ(ω2 − ω1) + Pij(ω2)δ(ω1 − ω2)] ,

(11)

where δ is the Dirac delta, Pij(ω1,ω2) = Pji(ω1,ω2) is a joint density function, and
Pij(ω1), Pij(ω2) are marginal distributions. Moreover, we denote the corresponding Lebesgue-
Stieltjes measure as FP

ij . By replacing the Eq. (11) into the duality given by Eq. (10) and Lemma 1,
we have

kij(x1,x2) =

∫∫
RD×RD

ei(ω
⊤
1 x1−ω⊤

2 x2)Sij(ω1,ω2) dω1dω2

=
1

4

∫∫
Pij(ω1,ω2)e

i(ω⊤
1 x1−ω⊤

2 x2) dω1dω2 +
1

4

∫∫
Pij(ω2,ω1)e

i(ω⊤
1 x1−ω⊤

2 x2) dω1dω2

+
1

4

∫∫
Pij(ω1)δ(ω2 − ω1)e

i(ω⊤
1 x1−ω⊤

2 x2) dω1dω2

+
1

4

∫∫
Pij(ω2)δ(ω1 − ω2)e

i(ω⊤
1 x1−ω⊤

2 x2) dω1dω2
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(Swap ω1 ↔ ω2 in 2nd term, integrate δ in 3rd and 4th terms)

=
1

4

∫∫
Pij(ω1,ω2)e

i(ω⊤
1 x1−ω⊤

2 x2) dω1dω2 +
1

4

∫∫
Pij(ω1,ω2)e

i(ω⊤
2 x1−ω⊤

1 x2) dω1dω2

+
1

4

∫
Pij(ω1)e

iω⊤
1 (x1−x2) dω1 +

1

4

∫
Pij(ω2)e

iω⊤
2 (x1−x2) dω2

(Replacing the marginal density by the joint density for factorization)

=
1

4

∫∫ [
ei(ω

⊤
1 x1−ω⊤

2 x2) + ei(ω
⊤
2 x1−ω⊤

1 x2) + eiω
⊤
1 (x1−x2) + eiω

⊤
2 (x1−x2)

]
× Pij(ω1,ω2) dω1dω2.

Finally, by setting the FP
ij as Lebesgue-Stieltjes measures associated with the spectral density

functions Pij(ω1,ω2), we can express the kernel as :

kij(x1,x2) =
1

4

∫∫
[exp(i(ω1x1 − ω2x2)) + exp(i(ω2x1 − ω1x2)) (12)

+ exp(iω2(x1 − x2)) + exp(iω1(x1 − x2))]dF
P
ij (ω1,ω2) (13)

where Pij(ω1,ω2) = Pji(ω1,ω2). This result is aligned with Theorem 2.

Sufficiency (⇐): From the Theorem’s Form to a Valid Kernel.

Suppose we construct the (i, j)-th element of kernel kij(x1,x2) using the formula:

kij(x1,x2) =
1

4

∫∫ [
ei(ω

⊤
1 x1−ω⊤

2 x2) + ei(ω
⊤
2 x1−ω⊤

1 x2) + eiω
⊤
1 (x1−x2) + eiω

⊤
2 (x1−x2)

]
dFP

ij (ω1,ω2)

where the measure FP
ij is associated with a density Pij such that dFP

ij (ω1,ω2) =

Pij(ω1,ω2) dω1dω2, where Pij(ω1,ω2) = Pji(ω1,ω2).

To establish that kij defines a valid kernel for a harmonizable multivariate stochastic process, it
suffices to verify that the constructed kernel satisfies conditions (A) and (B) in Lemma 1.

Step 1: Proof of Conditions (A).

By reversing the factorization from the necessity proof, we can write kij as the Fourier transform of a
spectral density Sij .

kij(x1,x2) =
1

4

∫∫
Pij(ω1,ω2)e

i(ω⊤
1 x1−ω⊤

2 x2) dω1dω2

+
1

4

∫∫
Pij(ω2,ω1)e

i(ω⊤
1 x1−ω⊤

2 x2) dω1dω2

+
1

4

∫∫
Pij(ω1)δ(ω2 − ω1)e

i(ω⊤
1 x1−ω⊤

2 x2) dω1dω2

+
1

4

∫∫
Pij(ω2)δ(ω1 − ω2)e

i(ω⊤
1 x1−ω⊤

2 x2) dω1dω2.

We can then express kij(x1,x2) =
∫∫

ei(ω
⊤
1 x1−ω⊤

2 x2)Sij(ω1,ω2) dω1dω2, where the spectral
density is:

Sij(ω1,ω2) =
1

4
[Pij(ω1,ω2) + Pij(ω2,ω1) + Pij(ω1)δ(ω2 − ω1) + Pij(ω2)δ(ω1 − ω2)] ,

which is a PSD function for Sii, and thus condition (A) is satisfied.

Step 2: Proof of Conditions (B).
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It remains to verify the Hermitian symmetry Sij(ω1,ω2) = Sji(ω2,ω1). We start from the right-
hand side:

Sji(ω2,ω1) =
1

4

[
Pji(ω2,ω1) + Pji(ω1,ω2) + Pji(ω2)δ(ω1 − ω2) + Pji(ω1)δ(ω2 − ω1)

]
.

Using our core assumption that Pij(ω1,ω2) = Pji(ω1,ω2), this implies for the marginals that
Pij(ω) = Pji(ω). Substituting these into the expression for Sji(ω2,ω1):

Sij(ω2,ω1) =
1

4
[Pij(ω1,ω2) + Pij(ω2,ω1) + Pij(ω2)δ(ω1 − ω2) + Pij(ω1)δ(ω2 − ω1)]

= Sji(ω2,ω1).

The Hermitian condition (B) holds.

Since the constructed kernel kij possesses a spectral density Sij that satisfies the conditions given by
Lemma 1, kij is a valid covariance kernel for a a harmonizable multivariate stochastic process. This
completes the proof.

A.2 DERIVATION OF THE MULTI-OUTPUT LOW-RANK NONSTATIONARY KERNEL

Before detailing the kernel construction, we first introduce two mathematical identities that are
essential for the derivation.
Identity 1 (Product of Gaussian). Let pi(w) and pj(w) be two 2D-dimensional multivariate normal
distributions:

pi(w) =
1

(2π)D|Σ|1/2i

exp

(
−1

2
(w − µi)

⊤Σ−1
i (w − µi)

)
,

pj(w) =
1

(2π)D|Σ|1/2j

exp

(
−1

2
(w − µj)

⊤Σ−1
j (w − µj)

)
.

Then, the product of these two densities is proportional to another multivariate normal distribution:

pi(w)pj(w) = zij N (w | mij ,Sij),

where the resulting mean, covariance, and normalizing constant are

Sij = (Σ−1
i +Σ−1

j )−1, mij = Sij(Σ
−1
i µi +Σ−1

j µj),

zij = (2π)
−D|Σi +Σj |−

1
2 exp

{
−1

2
(µi − µj)

⊤(Σi +Σj)
−1(µi − µj)

}
.

Identity 2 (Characteristic Function). For a random vector z ∼ N (µ,Σ), its characteristic function
is

ϕ(t) = E[eiz
⊤t] =

∫
eiz

⊤t N (z|µ,Σ) dz = exp

(
iµ⊤t− 1

2
t⊤Σt

)
.

This formula enables us to bypass direct integration and obtain a closed-form analytical result.

Step 1: Spectral Density Construction.

As discussed in § 3.2, we propose a spectral density design that is both parameter-efficient and
expressive. For each output i, we assign a latent vector ri ∈ RQ and define Pij(ω1,ω2) = rHi rj .

And each component r(q)i of ri is modeled as a bivariate Gaussian distribution:

r
(q)
i (ω1,ω2) = w

(q)
i N

((
ω1

ω2

)∣∣∣∣ µ(q)
i ,Σ

(q)
i

)
,

where w
(q)
i ∈ R+ is a positive weight, and the mean vector and covariance matrix are partitioned as:

µ
(q)
i =

(
µ

(q)
i1

µ
(q)
i2

)
, Σ

(q)
i =

[
Σ

(q)
i1 (Σ

(q)
ic )⊤

Σ
(q)
ic Σ

(q)
i2

]
.
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The covariance matrices are parameterized by Σ
(q)
i1 = diag((σ

(q)
i1 )2), Σ(q)

i2 = diag((σ
(q)
i2 )2), and the

cross-covariance by Σ
(q)
ic = ρ

(q)
i diag(σ

(q)
i1 ) diag(σ

(q)
i2 ), where σ

(q)
i1 ,σ

(q)
i2 ∈ RD, and ρ

(q)
i ∈ [−1, 1]

denotes the correlation coefficient.

By Identity 1, the spectral density has the following form:

Pij(ω1,ω2) =rHi rj =

Q∑
q=1

r
(q)
i r

(q)
j

=

Q∑
q=1

P
(q)
ij (ω1,ω2) =

Q∑
q=1

z
(q)
ij N

((
ω1

ω2

)∣∣∣m(q)
ij , S

(q)
ij

)
,

where the parameters of each mixture component are derived as:

S
(q)
ij =

(
(Σ

(q)
i )−1 + (Σ

(q)
j )−1

)−1

,

m
(q)
ij = S

(q)
ij

(
(Σ

(q)
i )−1µ

(q)
i + (Σ

(q)
j )−1µ

(q)
j

)
,

z
(q)
ij = w

(q)
i w

(q)
j (2π)−D|Σ(q)

i +Σ
(q)
j |− 1

2 exp

{
−1

2
(µ

(q)
i − µ

(q)
j )⊤(Σ

(q)
i +Σ

(q)
j )−1(µ

(q)
i − µ

(q)
j )

}
.

Since we only focus on real-valued kernels, we eliminate the imaginary part by enforcing a symmetric
spectral density:

P symm
ij (ω1,ω2) =

Q∑
q=1

P
symm,(q)
ij (ω1,ω2)

=

Q∑
q=1

1

2

[
P

(q)
ij (ω1,ω2) + P

(q)
ij (−ω1,−ω2)

]

=

Q∑
q=1

zqij
2

[
N
((

ω1

ω2

)∣∣∣m(q)
ij ,S

(q)
ij

)
+N

((
ω1

ω2

)∣∣∣−m
(q)
ij ,S

(q)
ij

)]
.

Step 2: Transform Spectral Density to the Kernel Domain.

We now transform spectral density into the kernel domain by Theorem 2, yielding the (i, j)-th element
of kernels kij(x1,x2)

=
1

4

∫∫ [
ei(ω

⊤
1 x1−ω⊤

2 x2) + ei(ω
⊤
2 x1−ω⊤

1 x2) + eiω
⊤
1 (x1−x2) + eiω

⊤
2 (x1−x2)

]
P symm
ij dω1dω2

=

Q∑
q=1

[
1

4

∫∫ [
ei(ω

⊤
1 x1−ω⊤

2 x2)+ei(ω
⊤
2 x1−ω⊤

1 x2)+eiω
⊤
1 (x1−x2)+eiω

⊤
2 (x1−x2)

]
P

symm,(q)
ij dω1dω2

]

=

Q∑
q=1

[
1

4

∫∫
ei(ω

⊤
1 x1−ω⊤

2 x2)P
symm,(q)
ij dω1dω2︸ ︷︷ ︸

Term 1 (I(q)
1 )

+
1

4

∫∫
ei(−ω⊤

1 x2+ω⊤
2 x1)P

symm,(q)
ij dω1dω2︸ ︷︷ ︸

Term 2 (I(q)
2 )

+
1

4

∫∫
eiω

⊤
1 (x1−x2)P

symm,(q)
ij dω1dω2︸ ︷︷ ︸

Term 3 (I(q)
3 )

+
1

4

∫∫
eiω

⊤
2 (x1−x2)P

symm,(q)
ij dω1dω2︸ ︷︷ ︸

Term 4 (I(q)
4 )

]
.
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In fact, terms 1–4 correspond to the characteristic function of a Gaussian distribution. Specifically,
we can derive their general analytic form by setting ω =

(
ω1

ω2

)
and t =

(
t1
t2

)
.∫

eiω
⊤tP

symm,(q)
ij (ω) dω =

∫
eiω

⊤t
z
(q)
ij

2

[
N (ω|m(q)

ij ,S
(q)
ij ) +N (ω| −m

(q)
ij ,S

(q)
ij )
]
dω

=
z
(q)
ij

2

[∫
eiω

⊤tN (ω|m(q)
ij ,S

(q)
ij )dω +

∫
eiω

⊤tN (ω| −m
(q)
ij ,S

(q)
ij )dω

]
=

z
(q)
ij

2

[
exp

(
i(m

(q)
ij )⊤t− 1

2
t⊤S

(q)
ij t

)
+ exp

(
−i(m

(q)
ij )⊤t− 1

2
t⊤S

(q)
ij t

)]
(By Identity 2)

= z
(q)
ij cos

(
(m

(q)
ij )⊤t

)
exp

(
−1

2
t⊤S

(q)
ij t

)
.

Thus, we can use this result to derive the analytic form of terms 1–4 as following.

Term 1: By setting t =
(

x1

−x2

)
, The result is:

I
(q)
1 =

z
(q)
ij

4
cos
(
(m

(q)
ij1)

⊤x1 − (m
(q)
ij2)

⊤x2

)
exp

(
−1

2
(x⊤

1 S
(q)
ij1x1 − 2x⊤

1 (S
(q)
ijc)

⊤x2 + x⊤
2 S

(q)
ij2x2)

)
.

Term 2: By setting t =
(−x2

x1

)
. The result is:

I
(q)
2 =

z
(q)
ij

4
cos
(
(m

(q)
ij2)

⊤x1 − (m
(q)
ij1)

⊤x2

)
exp

(
−1

2
(x⊤

2 S
(q)
ij1x2 − 2x⊤

1 S
(q)
ijcx2 + x⊤

1 S
(q)
ij2x1)

)
.

Term 3: By setting t =
(
x1−x2

0

)
. The result is:

I
(q)
3 =

z
(q)
ij

4
cos
(
(m

(q)
ij1)

⊤(x1 − x2)
)
exp

(
−1

2
(x1 − x2)

⊤S
(q)
ij1(x1 − x2)

)
.

Term 4: By setting t =
(

0
x1−x2

)
. The result is:

I
(q)
4 =

z
(q)
ij

4
cos
(
(m

(q)
ij2)

⊤(x1 − x2)
)
exp

(
−1

2
(x1 − x2)

⊤S
(q)
ij2(x1 − x2)

)
.

where m
(q)
ij =

(m(q)
ij1

m
(q)
ij2

)
and S

(q)
ij =

[
S

(q)
ij1 (S

(q)
ijc)

⊤

S
(q)
ijc S

(q)
ij2

]
.

Thus, the explicit form of the q-th component of kij(x1,x2) can be derived by combining four terms.
Finally, summing over all Q components yields the MO-LRN kernel as below.
Definition 2 (Multi-output Low-Rank Nonstationary Kernel). The MO-LRN kernel for Multi-output
Gaussian Process with component parameters (z(q)ij ,m

(q)
ij ,S

(q)
ij ) for q ∈ {1, . . . , Q}. The parameters

are partitioned as:

m
(q)
ij =

(
m

(q)
ij1

m
(q)
ij2

)
and S

(q)
ij =

[
S

(q)
ij1 (S

(q)
ijc)

⊤

S
(q)
ijc S

(q)
ij2

]
.

The resulting cross-covariance kernel kij(x1,x2) is given by the explicit formula:

kij(x1,x2) =

Q∑
q=1

z
(q)
ij

4

[
cos
(
α
(q)
1

)
exp

(
−1

2
β
(q)
1

)
+ cos

(
α
(q)
2

)
exp

(
−1

2
β
(q)
2

)

+ cos
(
α
(q)
3

)
exp

(
−1

2
β
(q)
3

)
+ cos

(
α
(q)
4

)
exp

(
−1

2
β
(q)
4

)]
.
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where the auxiliary functions α(q)
k and β

(q)
k are defined for each component q as:

α
(q)
1 = (m

(q)
ij1)

⊤x1 − (m
(q)
ij2)

⊤x2,

β
(q)
1 = x⊤

1 S
(q)
ij1x1 − 2x⊤

1 (S
(q)
ijc)

⊤x2 + x⊤
2 S

(q)
ij2x2,

α
(q)
2 = (m

(q)
ij2)

⊤x1 − (m
(q)
ij1)

⊤x2,

β
(q)
2 = x⊤

2 S
(q)
ij1x2 − 2x⊤

1 S
(q)
ijcx2 + x⊤

1 S
(q)
ij2x1,

α
(q)
3 = (m

(q)
ij1)

⊤(x1 − x2),

β
(q)
3 = (x1 − x2)

⊤S
(q)
ij1(x1 − x2),

α
(q)
4 = (m

(q)
ij2)

⊤(x1 − x2),

β
(q)
4 = (x1 − x2)

⊤S
(q)
ij2(x1 − x2).

The parameters of the kernel are ultimately determined by the set of hyperparameters θ ={
w

(q)
i ,µ

(q)
i1 ,µ

(q)
i2 ,σ

(q)
i1 ,σ

(q)
i2 , ρ

(q)
i

}Q,V

q=1,i=1
.

B EXPERIMENTAL DETAILS

B.1 DATASET DESCRIPTION

This subsection details the datasets employed in our experiments and the comprehensive preprocessing
method.

B.1.1 SYNTHETIC DATASET

The synthetic data is generated from two functions that exhibit input-dependent variation:

1) Piecewise Function:

f (1)(x) =


sin(2πx) + ϵ if x < −1

sin(4πx) + ϵ if − 1 ≤ x < 1

0.5x(sin(6πx) + sin(2πx)) + ϵ if x ≥ 1

(14)

2) Periodic Function:
f (2)(x) = A(x) sin(2π · f(x) · x) + ϵ, (15)

where A(x) = 0.5 + 1.5 · x
6 is the amplitude function that increases with x, f(x) = 3− 2 · x

6 is the
frequency function that decreases with x, and ϵ ∼ N (0, 0.1) represents Gaussian noise.

The final dataset comprises 400 input–output pairs over the domain x ∈ [0, 5], where each input xn

is associated with the two-dimensional output yn = [f (1)(xn), f
(2)(xn)]

⊤. We randomly split the
dataset into 70% for training and 30% for testing, and standardize both output dimensions before
model fitting.

B.1.2 ELECTRICITY TRANSFORMER TEMPERATURE (ETT)

The electricity transformer temperature (ETT) dataset4 (Zhou et al., 2021) records transformer data
over two years (July 2016–June 2018) at 15-minute intervals, yielding 69,680 samples with seven
variables: oil temperature and six power load measurements. For our experiments, we selected a
one-week subset (July 1–7, 2016), giving 670 samples across all seven variables. We randomly split
the data into training (70%) and test (30%) sets with shuffling. All variables were standardized to zero
mean and unit variance. The timestamps were converted into minutes and rescaled to [0, 600] using
min–max normalization, preserving relative time intervals while reducing scale. Each standardized
variable was treated as an output channel, enabling multi-output modeling and joint prediction of all
seven transformer metrics.

4https://github.com/zhouhaoyi/ETDataset
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Table 5: Hyperparameter settings for the MO-LRN kernel.

Kernel Setup

Parameters Synthetic Data ETT Air Quality

# Mixture densities (Q) 2 4 4

Optimizer Setup (Adam)

Parameters Synthetic Data ETT Air Quality

Learning rate 0.10 0.02 0.01

Weight decay 10−5 N/A N/A
# Iterations 500 4000 4000

Table 6: Consolidated hyperparameter settings for the ETT and Airquality datasets across various models.

ETT Dataset

Model I P Q lr # Iterations

LMC-NGSM 4 N/A 4 0.02 4000
LMC-SM 4 N/A 4 0.02 4000
CONV N/A N/A 4 0.02 4000
MOSM N/A N/A 4 0.02 4000
MOHSM N/A 4 4 0.02 4000

Airquality Dataset

Model I P Q lr # Iterations

LMC-NGSM 4 N/A 4 0.01 4000
LMC-SM 4 N/A 4 0.01 4000
CONV N/A N/A 4 0.01 4000
MOSM N/A N/A 4 0.01 4000
MOHSM N/A 4 4 0.01 4000

B.1.3 AIR QUALITY

The air quality dataset5 (Zhang et al., 2017) contains hourly measurements from Beijing monitoring
stations between 2013 and 2017. We used one week of data (March 1–8, 2013) from the Aotizhongxin
station, yielding 168 hourly samples with eight features: PM2.5, PM10, SO2, NO2, CO, O3,
temperature, and pressure. Timestamps were converted to hours since March 1, 2013, and rescaled
to [0, 160] using min–max normalization. All features were standardized to zero mean and unit
variance. For interpolation, we randomly removed 20% of the data points across all variables. For
imputation, we removed contiguous intervals in different channels: PM2.5 (0–20h), PM10 (25–45h),
SO2 (50–70h), NO2 (75–95h), CO (100–120h), and O3 (125–145h).

B.2 BENCHMARK METHODS

We present a detailed discussion of the theoretical foundations of the benchmark methods summarized
in Table 2. For implementation, we rely on the MOGP Toolkit (MOGPTK)6 (de Wolff et al., 2021).

5https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+
quality+data

6https://github.com/GAMES-UChile/mogptk
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B.2.1 LINEAR MODEL OF COREGIONALIZATION

The linear model of coregionalization (LMC) (Goovaerts, 1997) represents each output fv(x) as a
linear combination of latent Gaussian processes:

fv(x) =

I∑
i=1

Ji∑
j=1

ajv,iu
j
i (x). (16)

Here:

• uj
i (x) are independent latent Gaussian processes within the same group i share the same

covariance function ki(·, ·).
• ajv,i are the scalar coefficients that mix the latent functions to create the observed output
fv(x).

• I is the number of latent process groups (each associated with a different covariance
function), and Ji is the number of latent processes within each group i.

From the perspective of MOGP, the kernel function of LMC is given by:

K(x1,x2) = cov[f(x1), f(x2)] =

I∑
i=1

Biki(x1,x2). (17)

where Bi is a V × V positive semi-definite matrix determined by the coefficients ajv,i. It captures the
correlations between the outputs that are explained by the i-th group of latent functions. The rank of
Bi is Ji, which controls the complexity of the correlation structure for that component.

B.2.2 CONVOLUTION PROCESS

The process convolution method (Boyle and Frean, 2004) offers an alternative way to generate
correlated outputs. Each output fv(x) is obtained by convolving a shared latent GP u(x) with a
smoothing kernel Gv(x). Intuitively, this corresponds to taking a single underlying random process
and “smoothing” it differently to produce the observed outputs.

Formally, the model for the v-th output is expressed as a convolution integral:

fv(x) =

∫
X
Gv(x− z)u(z)dz, (18)

where

• u(x) is a shared latent GP with a kernel function k(·, ·).
• Gv(x) is the smoothing kernel specific to the v-th output.

Based on this convolutional structure, the cross-covariance between fvi(xp) and fvj (xq), (i.e.,
kij(xp,xq)) is given by

kij(xp,xq) = cov[fvi(xp), fvj (xq)] =

∫
X

∫
X
Gvi(xp − z)Gvj (xq − z′)k(z, z′)dzdz′. (19)

B.2.3 MULTI-OUTPUT SPECTRAL MIXUTRE (MOSM) KERNEL

The multi-output spectral mixture (MOSM) (Parra and Tobar, 2017) kernel is constructed by designing
the spectral density and then mapping it back to the kernel space via the well-established duality for
stationary MOGP kernel. Its form is given by:

kij(τ ) =

Q∑
q=1

α
(q)
ij exp

(
−1

2
(τ + θ

(q)
ij )⊤Σ

(q)
ij (τ + θ

(q)
ij )

)
cos
(
(τ + θ

(q)
ij )⊤µ

(q)
ij + ϕ

(q)
ij

)
. (20)

where α
(q)
ij = w

(q)
ij (2π)n/2|Σ(q)

ij |1/2 and the superindex (·)(q) denotes the parameter of the qth

component of the spectral mixture.
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Figure 5: Model performance and computational cost with varying numbers of spectral components Q in
MO-LRN. The left y-axis shows the NMAE, and the right y-axis shows the corresponding runtime.

B.3 HYPERPARAMETER SETTINGS

To select a reasonable value for Q, we evaluate both runtime and NMAE on the GOUN dataset as Q
varies (see Appendix C.1 for details), and present the results in Figure 5. As Q increases, the model
achieves slightly better predictive accuracy (lower NMAE), but at the cost of substantially longer
computation time. Particularly, the accuracy gain beyond Q = 4 is marginal, whereas the runtime
grows rapidly, suggesting that Q = 4 provides a favorable balance between accuracy and efficiency.

In addition, to ensure a fair comparison, we set the number of mixture components to the same value
across all competitors. Moreover, in the toy example, MOHSM is also optimized for 500 iterations
for consistency. The configurations for our model and the baselines are summarized in Table 5 and
Table 6, respectively.

C ADDITIONAL EXPERIMENTS

In this section, we evaluate the proposed MO-LRN kernel on MOGP regression tasks using additional
datasets, all obtained from the MOGPTK package (de Wolff et al., 2021). We further include a
runtime analysis on the ETT dataset with varying sample sizes to demonstrate the efficiency of our
model.

C.1 DATASET DESCRIPTION

We first provide a brief description of the datasets and then present the corresponding results.

GONU dataset: A real-world financial dataset consisting of weekly prices for gold, Brent crude oil,
the NASDAQ composite index, and a broad USD index (de Wolff et al., 2020). Details are as follows:

• Oil (USD): Europe Brent spot price from the U.S. energy information administration (EIA).

• USD Index: Federal Reserve trade-weighted nominal broad U.S. dollar index (FRED).

• Gold (USD): London bullion market association (LBMA) gold price at 10:30 a.m. London
time, distributed via FRED.

• NASDAQ: Adjusted daily closing prices of the NASDAQ Composite index (symbol ÎXIC,
Yahoo Finance).

EEG dataset: Electroencephalography (EEG) recordings from human neonates. Multi-channel EEG
was recorded from 79 term neonates admitted to the neonatal intensive care unit (NICU) at the
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Helsinki University Hospital. The median recording duration was 74 minutes (IQR: 64 to 96 minutes).
For our experiments, we use eight of the available twenty-two sensors as outputs: Fp1, Fp2, Fz, Cz,
T3, T4, O1, and O2. These correspond to standard electrode positions in the international 10–20 EEG
system, covering frontal, central, temporal, and occipital regions. This results in an eight-dimensional
multi-output regression task, enabling the study of cross-correlations between EEG channels.

Currency dataset: Daily currency exchange rates with respect to the U.S. dollar, collected over
the two-year period 2017–2018. We consider ten major currencies in addition to the U.S. dollar
reference: Canadian dollar (CAD), Euro (EUR), Japanese yen (JPY), British pound sterling (GBP),
Swiss franc (CHF), Australian dollar (AUD), Hong Kong dollar (HKD), New Zealand dollar (NZD),
South Korean won (KRW), and Mexican peso (MXN).

Bramble dataset: A real-world environmental dataset of tidal height measurements from four coastal
weather stations in South England: Bramblemet, Cambermet, Chimet, and Sotonmet. The stations
have been continuously recording since April 2012, with measurements every five minutes. For
our experiments, we use the tidal height data from a one-week period in June 2020. To improve
trainability, the data are detrended before model fitting, and 90% of the data points are randomly
removed to accelerate training and reduce memory requirements.

C.2 EXPERIMENT RESULTS

All datasets are randomly partitioned into 70% training and 30% testing splits. Evaluation is
conducted on the test set over five independent runs. Table 7 reports the NMAE results on the GONU
dataset, with corresponding regression plots shown in Figures 6–11. Results on the EEG dataset
are summarized in Table 8 with regression plots in Figures 12–17. For the currency dataset, NMAE
scores are presented in Table 9, 10 and regression plots in Figures 18–23. Finally, Table 11 provides
the NMAE results on the Bramble dataset, with regression plots in Figures 24–29.

The proposed MO-LRN kernel consistently outperforms all baselines on the cross-domain multi-
output datasets, attaining the lowest overall NMAE and delivering superior or comparable accuracy
across individual outputs. The LMC-NGSM kernel typically emerges as the second-best performer.
These findings indicate that non-stationary patterns are widespread in time-series data, and capturing
them is essential for effective regression. In contrast, stationary kernels such as MOSM, LMC-SM,
and CONV show inferior performance, as they lack the ability to capture non-stationary patterns.

Among the non-stationary kernels, both LMC-NGSM and MOHSM fall short compared to our
proposed approach, as their spectral formulations inherently restrict expressiveness. In particular,
LMC-NGSM constructs kernels as linear combinations of NG-SM components, forcing auto- and
cross-covariances to share the same structure. This restriction limits its ability to capture complex
cross-output interactions. Although MOHSM is theoretically more flexible than LMC-NGSM, its
excessive parameterization makes training difficult, often leading to suboptimal convergence and
weaker empirical performance.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) only for language polishing and readability improvements.

E FUTURE WORK

In flexible MOGP kernels (Parra and Tobar, 2017; Altamirano and Tobar, 2022), scalability remains an
open challenge. One potential direction is the use of inducing point methods, which offer substantial
computational savings. However, a key limitation is that they often overlook redundancy from
repeated input locations across outputs, leading to inefficient representations and possible numerical
instability. Another promising approach is random Fourier features (RFFs). While RFFs provide a
straightforward route to linear-time approximations, applying them to complex MOGP kernels poses
difficulties, particularly in ensuring the positive definiteness of the joint kernel matrix. In future work,
we plan to address these issues to enhance the scalability of flexible MOGP kernels including our
MO-LRN and extend their applicability to a broader range of tasks.
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Table 7: Comparison of NMAE across kernels on four outputs (Oil, Gold, NASDAQ, USD) of GONU dataset.
Mean and standard deviation are computed over five runs. Best (lowest) is bold, second-best is underlined.

MODEL Oil Gold NASDAQ USD OVERALL

METRIC NMAE

CONV 0.02333 ± 0.00035 0.06135 ± 0.00092 0.03221 ± 0.00050 0.008239 ± 0.00012 0.03128 ± 0.00047
LMC-SM 0.02057 ± 0.00031 0.05301 ± 0.00080 0.01966 ± 0.00029 0.009844 ± 0.00015 0.02577 ± 0.00039
MOHSM 0.04836 ± 0.00073 0.12455 ± 0.00187 0.04644 ± 0.00070 0.020996 ± 0.00032 0.06059 ± 0.00091
MOSM 0.01363 ± 0.00020 0.05293 ± 0.00079 0.02515 ± 0.00038 0.005669 ± 0.00009 0.02485 ± 0.00037

LMC-NGSM 0.01747 ± 0.00026 0.02519 ± 0.00038 0.01559 ± 0.00023 0.005906 ± 0.00009 0.01654 ± 0.00024
MO-LRN 0.01218 ± 0.00023 0.02513 ± 0.00195 0.01439 ± 0.00278 0.004996 ± 0.000632 0.01467 ± 0.00723

Table 8: Comparison of NMAE across kernels on the eight outputs (Fp1, Fp2, Fz, Cz, T3, T4, O1, O2) of EEG
dataset. Mean and standard deviation over five runs. Best (lowest) in bold; second-best underlined.

MODEL Fp1 Fp2 Fz Cz T3 T4 O1 O2 OVERALL

METRIC NMAE

CONV 0.831 ± 0.005 0.885 ± 0.007 0.843 ± 0.013 0.882 ± 0.005 0.694 ± 0.003 0.742 ± 0.003 0.944 ± 0.009 0.736 ± 0.006 0.820 ± 0.006
LMC-SM 0.846 ± 0.006 0.876 ± 0.007 0.777 ± 0.013 0.986 ± 0.005 0.593 ± 0.003 0.704 ± 0.003 0.928 ± 0.009 0.613 ± 0.006 0.791 ± 0.006
MOHSM 0.862 ± 0.006 0.820 ± 0.006 0.812 ± 0.013 0.702 ± 0.005 0.689 ± 0.003 0.670 ± 0.003 0.735 ± 0.008 0.670 ± 0.005 0.745 ± 0.007
MOSM 0.876 ± 0.006 0.833 ± 0.007 0.770 ± 0.013 0.610 ± 0.005 0.702 ± 0.003 0.654 ± 0.003 0.750 ± 0.008 0.652 ± 0.005 0.731 ± 0.007

LMC-NGSM 0.548 ± 0.004 0.551 ± 0.004 0.714 ± 0.010 1.313 ± 0.009 0.390 ± 0.003 0.302 ± 0.003 0.803 ± 0.008 0.267 ± 0.003 0.611 ± 0.006
MO-LRN 0.502 ± 0.004 0.503 ± 0.004 0.579 ± 0.009 0.468 ± 0.004 0.527 ± 0.004 0.354 ± 0.003 0.517 ± 0.005 0.259 ± 0.003 0.464 ± 0.005

Table 9: Comparison of NMAE across kernels on five currency outputs (EUR, CAD, JPY, GBP, CHF). Mean
and standard deviation over five runs. Best (lowest) in bold; second-best underlined.

MODEL EUR/USD CAD/USD JPY/USD GBP/USD CHF/USD

METRIC NMAE

CONV 0.00563 ± 0.00017 0.00683 ± 0.00020 0.00721 ± 0.00022 0.00770 ± 0.00023 0.00593 ± 0.00018
LMC-SM 0.00653 ± 0.00020 0.00857 ± 0.00026 0.00742 ± 0.00022 0.00732 ± 0.00022 0.00702 ± 0.00021
MOHSM 0.29028 ± 0.00871 3.51393 ± 0.10542 0.01158 ± 0.00035 0.07513 ± 0.00225 0.08108 ± 0.00243
MOSM 0.00411 ± 0.00012 0.01326 ± 0.00040 0.01415 ± 0.00042 0.00917 ± 0.00028 0.00629 ± 0.00019

LMC-NGSM 0.00548 ± 0.00016 0.00445 ± 0.00013 0.00713 ± 0.00021 0.00921 ± 0.00028 0.00386 ± 0.00012
MO-LRN 0.00239 ± 0.00007 0.00989 ± 0.00030 0.00923 ± 0.00028 0.00731 ± 0.00022 0.00221 ± 0.00007

Table 10: Comparison of NMAE across kernels on five currency outputs (AUD, HKD, NZD, KRW, MXN) plus
OVERALL. Mean and standard deviation are computed over five runs. Best (lowest) in bold; second-best
underlined.

MODEL AUD/USD HKD/USD NZD/USD KRW/USD MXN/USD OVERALL

METRIC NMAE

CONV 0.00672 ± 0.00020 0.00036 ± 0.00001 0.00669 ± 0.00020 0.00635 ± 0.00019 0.01344 ± 0.00040 0.00669 ± 0.00007
LMC-SM 0.00733 ± 0.00022 0.00136 ± 0.00004 0.00836 ± 0.00025 0.00834 ± 0.00025 0.00525 ± 0.00016 0.00675 ± 0.00007
MOHSM 0.77411 ± 0.02322 0.00237 ± 0.00007 0.01992 ± 0.00060 0.01785 ± 0.00054 0.02673 ± 0.00080 0.48130 ± 0.00472
MOSM 0.00530 ± 0.00016 0.00026 ± 0.00001 0.00595 ± 0.00018 0.00304 ± 0.00009 0.00686 ± 0.00021 0.00684 ± 0.00007

LMC-NGSM 0.00543 ± 0.00016 0.00034 ± 0.00001 0.00812 ± 0.00024 0.00774 ± 0.00023 0.00685 ± 0.00021 0.00586 ± 0.00006
MO-LRN 0.00513 ± 0.00024 0.00012 ± 0.00003 0.00326 ± 0.00010 0.01084 ± 0.00033 0.00515 ± 0.00015 0.00555 ± 0.00006

Table 11: Comparison of NMAE across kernels on the four outputs (Bramble, Camber, Chi, Soton) of bramble
dataset. Mean and standard deviation are computed over five runs, the best (lowest) value is bold, and the
second-best is underlined.

MODEL Bramble Camber Chi Soton OVERALL

METRIC NMAE

CONV 0.0825 ± 0.0025 0.0621 ± 0.0019 0.0599 ± 0.0018 0.1071 ± 0.0033 0.0779 ± 0.0024
LMC-SM 0.0791 ± 0.0024 0.0651 ± 0.0020 0.0590 ± 0.0018 0.1055 ± 0.0032 0.0772 ± 0.0024
MOHSM 211.530 ± 2.115 4.027 ± 0.040 0.609 ± 0.006 1.269 ± 0.013 54.858 ± 0.556
MOSM 0.0831 ± 0.0025 0.0617 ± 0.0019 0.0594 ± 0.0018 0.1082 ± 0.0032 0.0781 ± 0.0024

LMC-NGSM 0.0504 ± 0.0015 0.0612 ± 0.0018 0.0690 ± 0.0021 0.0642 ± 0.0019 0.0612 ± 0.0018
MO-LRN 0.0497 ± 0.0015 0.00977 ± 0.00029 0.0150 ± 0.00045 0.0183 ± 0.00055 0.0237 ± 0.00071
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Figure 6: MOGP regression plots on the GONU dataset with the MO-LRN kernel.
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Figure 7: MOGP regression plots on the GONU dataset with the MOHSM kernel.
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Figure 8: MOGP regression plots on the GONU dataset with the MOSM kernel.
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Figure 9: MOGP regression plots on the GONU dataset with the LMC-NGSM kernel.
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Figure 10: MOGP regression plots on the GONU dataset with the LMC-SM kernel.
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Figure 11: MOGP regression plots on the GONU dataset with the CONV kernel.
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Figure 12: MOGP regression plots on the EEG dataset with the MO-LRN kernel.
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Figure 13: MOGP regression plots on the EEG dataset with the MOHSM kernel.
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Figure 14: MOGP regression plots on the EEG dataset with the MOSM kernel.
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Figure 15: MOGP regression plots on the EEG dataset with the LMC-NGSM kernel.
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Figure 16: MOGP regression plots on the EEG dataset with the LMC-SM kernel.
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Figure 17: MOGP regression plots on the EEG dataset with the CONV kernel.
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Figure 18: MOGP regression plots on the currency dataset with the MO-LRN kernel.
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Figure 19: MOGP regression plots on the currency dataset with the MOHSM kernel.
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Figure 20: MOGP regression plots on the currency dataset with the MOSM kernel.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Train data Test data Prediction 95% Confidence

01 02 03 04 05 06 07 08 09 10 11 12

01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12

Figure 21: MOGP regression plots on the currency dataset with the LMC-NGSM kernel.
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Figure 22: MOGP regression plots on the currency dataset with the LMC-SM kernel.
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Figure 23: MOGP regression plots on the currency dataset with the CONV kernel.
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Figure 24: MOGP regression plots on the bramble dataset with the MO-LRN kernel.
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Figure 25: MOGP regression plots on the bramble dataset with the MOHSM kernel.
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Figure 26: MOGP regression plots on the bramble dataset with the MOSM kernel.
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Figure 27: MOGP regression plots on the bramble dataset with the LMC-NGSM kernel.
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Figure 28: MOGP regression plots on the bramble dataset with the LMC-SM kernel.
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Figure 29: MOGP regression plots on the bramble dataset with the CONV kernel.
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