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FLAC: Fairness-Aware Representation Learning by
Suppressing Attribute-Class Associations

Toannis Sarridis

Abstract—Bias in computer vision systems can perpetuate or
even amplify discrimination against certain populations. Consid-
ering that bias is often introduced by biased visual datasets, many
recent research efforts focus on training fair models using such
data. However, most of them heavily rely on the availability of
protected attribute labels in the dataset, which limits their applica-
bility, while label-unaware approaches, i.e., approaches operating
without such labels, exhibit considerably lower performance. To
overcome these limitations, this work introduces FLAC, a method-
ology that minimizes mutual information between the features
extracted by the model and a protected attribute, without the use
of attribute labels. To do that, FLAC proposes a sampling strat-
egy that highlights underrepresented samples in the dataset, and
casts the problem of learning fair representations as a probability
matching problem that leverages representations extracted by a
bias-capturing classifier. It is theoretically shown that FLAC can
indeed lead to fair representations, that are independent of the
protected attributes. FLAC surpasses the current state-of-the-art
on Biased-MNIST, CelebA, and UTKFace, by 29.1%, 18.1%, and
21.9%, respectively. Additionally, FLAC exhibits 2.2% increased
accuracy on ImageNet-A and up to 4.2% increased accuracy on
Corrupted-Cifar10. Finally, in most experiments, FLAC even out-
performs the bias label-aware state-of-the-art methods.

Index Terms—Bias mitigation, fairness, mutual information.

I. INTRODUCTION

URING the past decade, Al models have demonstrated
D exceptional performance in a growing number of appli-
cation areas; however, there have also been numerous incidents
where failures in the Al systems have disproportionately affected
certain individuals or groups of people [1]. Bias in Artificial
Intelligence (AI) typically refers to Al systems that demonstrate
discriminatory behavior (e.g., high errors) against groups or
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populations w.r.t. certain protected or sensitive attributes that in
several jurisdictions are legally protected from discrimination,
e.g., race, gender, age, and religion. This makes fairness and
non-discrimination an important ethical and often legal require-
ment for Al models, and a prerequisite for their wide adoption
and use in many real-world applications [2], [3], [4], [S].

Bias can emerge in several Computer Vision (CV) systems,
often in applications involving the processing of face images but
also in other domains where visual data is involved [6]. Many
research efforts focusing on face verification fairness [7], [8],
[9] highlight that AI models tend to be inaccurate for black
people, especially for black women [10]. In addition, similar
biased behavior against under-represented groups has been no-
ticed in Al systems for face recognition [10], facial expression
recognition [11], and facial attribute analysis [12].

Taking into account the importance of fairness in Al, several
approaches for learning fair representations have been proposed
in recent years. The underlying idea of such approaches is that
if the representations of samples belonging to different groups
w.r.t. a protected attribute are similar, then the classifier built
on top of them will inevitably make decisions irrespective of
the group to which the samples belong. This serves as a means
for achieving demographic parity (statistical parity) between
the groups of different protected attribute values [13]. Many
approaches make use of the protected attribute labels (also
known as bias labels in the literature) provided in the training
set [14], [15], [16], [17]. We refer to those as Bias Label-Aware
(BL-A) methods. Despite the effectiveness of such methods
in terms of bias mitigation, they can only be applied in a
narrow range of problems and datasets, due to their reliance
on the availability of protected attribute labels. To overcome
this limitation, several recent efforts employ the representations
derived by a bias-capturing classifier for mitigating the bias
without being aware of the protected attribute labels [18], [19],
[20], [21]. We refer to these methods as Bias Label-Unaware
(BL-U). The bias-capturing classifier is a model that attempts to
encapsulate information for the protected attribute. In addition,
BL-U approaches can be applied in cases where bias is not
categorical. For instance, representations with texture bias can
be derived by a CNN with small receptive fields [20]. However,
the performance of BL-U approaches has been shown to lag
considerably behind the one of BL-A methods [16], [17].

Mutual Information (MI) can be used to measure the depen-
dence between the representation provided by the main model
and the protected attribute values. By minimizing MI during
representation learning, one can deter the main model from using
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Fig. 1. Distances between the central sample and the rest of the samples
belonging to Biased-MNIST, a dataset that demonstrates a strong association
between the target labels (i.e., digits) and the protected attributes (i.e., colors).
Subfigure on the left shows that using the standard task-specific loss introduces
bias to the representations which FLAC, the proposed approach, can effectively
mitigate as shown on the right. In particular, FLAC focuses on situations where
task-specific losses are susceptible to data bias, namely pairs with the same target
label but different protected attribute values (i.e., A1¢) and pairs with different
target labels and the same protected attribute value (i.e., Ag1).

a given protected attribute to predict the label. In this way, fair-
ness can be achieved through a group-invariant representation,
which is known to guarantee accuracy parity between the groups
defined by the protected attribute [13]. However, solving the
above MI minimization problem would require access to the
protected attributes (i.e., would need a BL-A method). In this
paper we introduce FLAC, a BL-U approach that leverages the
representations of a bias-capturing classifier to force an initial
potentially biased model to learn fairer representations. In partic-
ular, we cast the reduction of the MI minimization problem into
a simpler probability matching problem between the similarity
distributions of the main model and the bias-capturing classifier.
This turns out to be an effective means of disassociating the target
representation from the bias-capturing model and, as a result,
from the protected attributes. To this end, the proposed method
leverages the pairs of samples for which a typical task-specific
loss is prone to bias, namely samples sharing either only targets
or only protected attributes (see Fig. 1). This is not the case
for previous BL-U methods that ignore the importance of a
proper selection process, thereby impeding the bias mitigation
effectiveness. Furthermore, it is theoretically justified that FLAC
can minimize the mutual information between the main model
representation and protected attribute.

In summary, the main contributions of this paper are the

following:

e A fairness-aware representation learning approach that
enables a model to learn fair representations w.r.t. a pro-
tected attribute by leveraging the representations of a bias-
capturing classifier, without using the protected attribute
labels.

® A condition for selecting the under-represented sample
pairs that can contribute most effectively to the bias miti-
gation procedure.

e A wide comparative analysis involving 9 state-of-the-
art approaches, 5 benchmark datasets, namely Biased-
MNIST [20], CelebA [22], UTK-Face [23], Corrupted-
Cifar10 [24] and 9-Class ImageNet [20]. In all the con-
ducted experiments, FLAC surpasses the current BL-U
state-of-the-art by achieving +29.1%, +18.1%, +21.9%,
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+4.2%, and +2.2% accuracy on Biased-MNIST, CelebA,
UTKFace, Corrupted-Cifar10, and 9-Class ImageNet, re-
spectively. Moreover, in most experiments, FLAC even
outperforms the BL-A state-of-the-art.

The code is available at https://github.com/gsarridis/FLAC.

II. RELATED WORK

Inrecent years, many approaches have emerged for mitigating
bias in neural networks. Some approaches focus on debiasing the
training data by balancing the available data across the different
groups of interest [25], using more data sources [26], applying
data augmentation [27], and collecting more data [28], [29].
However, such data-oriented approaches do not provide the flexi-
bility required in cases where fairness requirements are not static
(e.g., the need for considering a new protected attribute), while
data availability may also be limited. To address these shortcom-
ings, many efforts focus on developing approaches to mitigate
bias while training a model using biased data (i.e., in-processing
approaches [30]). To achieve this, many works propose ensem-
bling [18], [31] or adversarial frameworks [14], [32], [33], [34],
[35], [36], contrastive learning-based approaches [16], [17], and
regularization terms [15], [16], [19]. These in-processing bias
mitigation approaches can be divided into two primary cate-
gories that significantly impact their range of applicability and
performance: methods that necessitate access to the protected
attribute labels, i.e., BL-A, and methods that do not require such
labels, i.e., BL-U.

a) Bias mitigation with protected attribute labels: In [14]
an adversarial approach is proposed, namely Learning Not to
Learn (LNL), based on the MI between feature embeddings and
protected attribute labels, that penalizes the model if it is capa-
ble of predicting the protected attributes. Domain-Independent
(DI) [31] suggests multiple classifier heads, one per domain
(i.e., bias type), for mitigating the bias in the feature space. The
approach of Entangling and Disentangling deep representations
(EnD) [15] proposes a regularization process that tries to entan-
gle the feature vectors of samples with the same target class and
disentangle the features representations of samples that share the
same protected attribute label. Given the representations derived
by the main model, FairKL [17] aims to match the distances
of positive (negative) bias-conflicting and bias-aligned samples
from the anchor, where bias-conflicting and bias-aligned denote
the under-represented and the over-represented groups, respec-
tively. When protected attribute labels are not available, the
similarities between the biased features are utilized to assign
weights to the FairKL regularizer. By contrast to FairKL, FLAC
solves a probability matching problem between the representa-
tions of a bias-capturing classifier and the main model. Finally,
the Bias-Contrastive and Bias-Balance (BC-BB) method [16]
constitutes a contrastive learning-based approach for bias mit-
igation. Bias-Contrastive (BC) encourages the main model to
pull the samples with the same target but different protected
attributes closer in the feature space while ignoring the bias-
aligned samples with different target labels. Bias-Balance (BB)
can be used in combination with BC to further mitigate the bias
by optimizing the model toward the data distribution. Although
these methods demonstrate state-of-the-art performance in bias
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mitigation, they require the protected attribute labels to work.
This constitutes a crucial limitation, as they can not be applied
in many real-world settings, where protected attribute labels are
not available, or even worse, in cases where the bias is introduced
by non-categorical visual attributes (e.g., texture).

b) Bias mitigation without protected attribute labels: The sig-
nificant limitation described above, led the research community
to explore methods that can address bias without being aware
of the protected attribute labels. In [18], the Learned-Mixin
(LM) approach is introduced, which proposes training the main
model in an ensemble with the bias-capturing model in order
to discourage the main model to encode the information that
has been already captured by the bias-capturing model. Fur-
thermore, Rubi [19] suggests a regularization term for adjusting
the weighting of logits, thereby reducing the influence of biases
during the training process. ReBias [20] is a framework that
aims at the independence between the representations of the
main model and the bias-capturing model using the Hilbert-
Schmidt Independence Criterion [37]. The authors of [21] sug-
gest an approach, namely Learning from Failure (LfF), that
uses the generalized Cross-Entropy (CE) loss for training the
bias-capturing model to focus on simple samples that are likely
to be aligned with the bias and in parallel, the training procedure
followed for the main model encourages it to focus on the
samples that the bias-capturing model fails to learn, which are
expected to be bias-conflicting. The Spread Spurious Attribute
(SSA) approach [38] leverages a limited set of bias-labeled
samples to train a bias-capturing classifier. Subsequently, the
predictions from this classifier are utilized to train a fair model
through the minimization of the worst-group loss. In the same
direction, the Confidence-based Group Label (CGL) [39] as-
signment methodology utilizes a protected attribute classifier to
assign pseudo-protected attribute labels, while assigning random
labels to low confidence samples. Then, CGL is combined
with existing state-of-the-art approaches to improve their per-
formance in terms of fairness. An approach for diversifying the
bias-conflicting samples through augmentation in the feature
space (DistEnt) is proposed in [40]. Moreover, the BiasEnsemble
(BE) [41] method proposes an unsupervised technique to discard
the bias-conflicting samples from the training dataset. Empirical
evidence indicates that this strategy can significantly improve
the efficacy of multiple fairness-aware approaches. Finally, the
Soft-Contrastive (SoftCon) method [16] constitutes an exten-
sion of the BiasCon [16] that makes use of the similarities of
the representations extracted by the bias-capturing model in
order to enable BiasCon to be employed in scenarios where
the protected attribute labels are not available. Although these
methods successfully address the lack of protected attribute
labels, they exhibit considerably lower performance compared to
BL-A methods, as they do not consider appropriate mechanisms
for focusing only on the samples that can effectively contribute
to the bias mitigation, thus adding noise and preventing the
model from learning fairer representations. In contrast, FLAC
is a BL-U method that minimizes the MI between the learned
model and the protected attributes. This is achieved through the
use of a representation derived by a bias-capturing classifier
(instead of the attribute labels) and a sampling strategy with
optimality guarantees.
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¢) Mutual Information: MI has been used in various tasks,
such as knowledge distillation for preserving the teacher model’s
knowledge [42], [43], [44], feature selection for selecting the fea-
tures that are most related to the desired outcome [45], clustering
for assessing the clustering quality [46], and generative models
for guiding generators in learning different manifolds [47].
LnL [14] proposed using MI in an adversarial framework for
bias mitigation, but its performance is considerably lower than
most of the bias mitigation approaches, due to the instability
that adversarial approaches exhibit. Moreover, [48] introduces
a statistical framework that penalizes the MI between the target
labels and the protected attribute labels. An effort of converting
the Quadratic Mutual Information (QMI) [49] problem to a
probability matching problem for the knowledge distillation task
is presented in [43]. Inspired by this idea, we propose in this
paper a method that leverages the capabilities of MI in order to
effectively mitigate the bias, even in extreme data bias scenarios.

III. METHODOLOGY

In this section, we introduce the FLAC approach, which is
based on correcting bias by focusing on sample representations
where bias is identified. As illustrated in Fig. 1, these samples
exhibit high (low) similarity for pairs with different (same) target
labels and different (same) protected attribute labels, due to
the attribute-class associations in the training data. A model
demonstrating such behavior can function as a bias-capturing
classifier, such as the Vanilla model or a model trained for
protected attribute prediction. FLAC utilizes this insight, forcing
the main model to showcase the converse behavior, specifically
for these certain sample pairs (see Fig. 1). To this end, FLAC
(1) suggests a sampling mechanism for the identification of
relevant samples and (ii) solves a probability matching problem
that encourages the main model to exhibit contrary behavior
in terms of pairwise similarities to the bias-capturing model
for the chosen sample pairs. Subsequent subsections detail the
methodology and provide a theoretical analysis that justifies that
minimizing the FLAC loss results in fair representations, that are
independent of the protected attributes.

A. Problem Formulation

The problem of mitigating bias in network representations
can be formulated as follows. Let (X;,y;) be the i-th training
sample of the dataset D, where X, is the input image, y; € ) the
target, h(+) the model that we are interested to improve in terms
of bias, and b(+) the bias-capturing model. Model h(-) is trained
on the main task with targets ), while the bias-capturing model,
b(-), is trained to predict protected attributes ¢; € T towards
which the data (and consequently the model) is biased. Note
that ¢; is not provided by D, thus b(-) is trained on a different
dataset (cf. Section III-B). The representations extracted by
the penultimate layer of the network are denoted as h;, while
the corresponding bias-capturing classifier representations are
denoted as b;. If the dataset D consists of samples that exhibit
strong dependence between ) and 7, then training the model
h(-) using only the task-specific loss function (e.g. CE for the
multi-class classification task or a contrastive loss) will introduce
bias into the model since it will rely on features that encapsulate
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TABLE I
SCENARIOS WHERE FLAC VARIATIONS CAN BE APPLIED COMPARED TO
OTHER BL-A AND BL-U APPROACHES

bias labels unavailable . .
method non-categorical bias
D D’
BL-A X n.a. X
BL-U v v v
FLAC v X X
FLAC-B | v/ v v

information about ¢; for predicting y;. Therefore, the goal is to
eliminate the dependencies between representations h and b.

B. Bias-Capturing Classifier

In many real-world scenarios, the attributes introducing bias
are not categorical or the corresponding labels are not available.
To address this issue, we make use of a bias-capturing classifier,
as in [16], [17], [20]. This acts as a feature extractor that
encapsulates information related to the attributes that introduce
bias to A(-).

If the protected attributes are categorical, the b(-) is trained on
adataset D’ = {(XJ, ¢;)} in which the protected attribute t; € T
is provided (unlike D). For instance, if gender is the attribute
related to bias, the bias-capturing classifier is trained to predict
genders. In some cases, the model is biased towards attributes
that are not categorical (e.g., texture or background) or there are
no available datasets providing protected attribute annotations to
train a bias-capturing model. Following previous literature [16],
[17], [20], we opt for models trained on D that predict the task-
specific targets ). For these networks, the penultimate layer is
expected to adequately capture the attributes of interest [20]. To
maintain clarity, when a Vanilla model is employed as a bias-
capturing model, we label it as FLAC-B. Table I outlines the
applicability characteristics of FLAC variations in comparison
to other BL-A and BL-U methods.

C. FLAC

Discouraging the main model from learning to predict the pro-
tected attribute labels can be achieved by minimizing Z(h;, ¢;),
where Z(+, ) denotes MI. However, this is a task of high com-
plexity and additionally it would require access to the protected
attribute labels 7. Instead, we propose to use the pairwise sim-
ilarity between the model representation and the representation
derived by a bias-capturing classifier, i.e., a predictor of ¢;, to
minimize Z(h;,t;). More specifically, the target is to match
the probability distributions of distances derived by the bias-
capturing classifier features with the distributions of similarities
derived by the representations of the main model for a certain
subset of sample pairs. By doing so, we bring the samples with
different protected attribute labels (i.e., t; # ¢;) and the same
target label (i.e., y; = y;) closer to each other while increasing
the distance between samples with the same protected attribute
label (i.e., t; = t;) and different target labels (i.e., y; # y;). For
all possible pairs of batch samples’ indices (i, j) we define the
following sets:

Ao ={(4,7) | ys = y; Nt # 5}

1151

Aot ={(i,4) | yi # yj Ati =t}

A ={(6,4) | yi = y5 ANt = t5,0 # 5}

Aoo = {(i,4) | yi # yj Ati # £}
A= Ao U Ay U A U Ay

Then, involved pairs of samples should satisfy the following
condition:

(yi:yj/\ti?étj)v(yi#yj/\ti:tj) M

forming the set S = Aj9 U . Ap1. Note that involving all the
possible sample pairs could have an adverse effect on the main
model as it would lead to reducing (increasing) the similarity
of samples with the same (different) target labels (see Section
III-D). However, T labels are not available, thus a criterion needs
to be defined for inferring whether two samples share the same
protected attribute label. Let K (-) be a kernel function and .4
the set of all the possible pairs of samples, then the protected
attribute equality is determined by:

max K (b,,b,) + min K (b,,b,)

uU,VE u,veA

K(b“bj) > D) =

—ti=t;, (i,j) €A )

otherwise ¢; # t;. It should be noted that the proposed method-
ology will not be negatively impacted even if K (b;, b;) falls
below or exceeds this threshold for (¢, j) witht; = t; ort; # t;,
respectively. This is because the objective remains to enhance
the similarity of (¢, j) where y; = y; or reduce it when y; # ;.
Then, the task-specific network’s, h(-), probability distribu-
tions of the pairwise similarities can be defined as follows:

(h) _ K (hi, hy)
il Zk:(k,j)esK(hkﬂhJ)
Accordingly, for the bias-capturing model, we calculate the
probability distributions of dissimilarities (i.e., (1 — K(+)):
p(|bj) _ 1—K (b;,bj)
! Zk:(k,j)es 1-K (bivbj)
As regards the similarity kernel function, in this work we opted

for the student’s t kernel that demonstrates good performance
on classification tasks [42]:

p €[0,1, (i,j)es. 3

€01, (i,j)eS. ¥

1

K(ab)= ——.
@b) = T =Bl

(&)
Having calculated the probability distributions of (3) and (4)
for the pairs of samples in S, our goal is to train a model
that demonstrates high (low) similarity for the sample pairs
that the bias-capturing classifier exhibit low (high) similarity.
The divergence between these distributions can be calculated
using Jeffreys divergence [50], a symmetric version of Kullback-
Leibler divergence:

b h b h
Lorac= > (o) =) - (logpl)) —108p) . (©)
(i,5)€S
Then, the final loss can be defined as follows:

L=Ligsk +a-Lrrac, @)
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9]
>
@©
e g--------- ST —
= )
. 9 !
—» Main model - P> Liask
h(") 2 ;
Data ® -
D T~
T~ L
Ly Bias-capturing Lrrac -
Model b
<d- - - - Gradients
b(2 ,,,,,,,,, — Data
Fig. 2. Illustration of the proposed framework.

where « is a hyperparameter and Ly, is the cost function of
the task (e.g., the CE or a contrastive loss). Note that FLAC fits
better with pairwise losses as Ly, due to its dependency on
pairwise similarities. Fig. 2 presents the proposed framework.

D. Theoretical Analysis

Let us denote with B = {X;}¥ | a batch with N samples.
Following the notation of Section III-C, we additionally consider
the set €2 as a placeholder variable that upon declaration equals
either S or A. Finally, we assume that for a well-trained bias
capturing classifier Je > 0, such that V(7, j) € Q:

t; 7& tj = K(bl,bj) S [0,6)
t; :tj :>K(b“bj) S (1—6,1}

®)
(€))

When the contrastive loss, denoted by L;ys, iS mini-
mized after training, then 3019, do1, 011,000, € > 0 with € <
610,001, 011, 6oo, such that:!

(1 =010 —€,1 =610+ €],if(i,j) € Ao
[(501 — 6/, do1 + 6,), lf(l,J) € Aoy
(1 — (511 — 6/, 1-— 511 + EI], 1f(17.]) S A11
[d00 — €', 000 + €'),if(1,]) € Aoo

K (hi,hj) €

(10)

However, in cases of existing bias in which the model has
learned unwanted shortcuts (i.e., h; [ ¢;), the magnitude of
410, dp1 monotonically depends on the amount of shared infor-
mation between h; and #;,> while the magnitude of 811, 6o not.

'Tt has been shown that optimizing the standard cross-entropy loss: (i)
corresponds to an approximate bound-optimizer of an underlying pairwise
loss [51] and (ii) produces a feature space with inter-class distances being greater
than intra-class ones [52]. Nevertheless, accomplishing low 610, 901, 911, d00
applying to all ¢, j is hardly possible. Hence, adopting the cross-entropy will
only approximate the optimality derived by the contrastive loss.

2If the shared information level is low, then there exist very small 10, do1-
If the shared information level is high, then the §1¢, dp1 can indeed be high but
the cardinality of A1 and A1 is very small, much smaller than the cardinality
of Aj1 and Agg (cf. Section VI & Fig. 5).
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This indicates the need to control d1¢, dg1 With an additional loss
term that acts at least on (4,5) € S.> To this end, in this work
we propose the consideration of an additional loss term, namely
Lrrac, defined by (6), which will be minimized jointly with
Liask- This, then implies the following:

Lrrac=0=
b h b h
= (olf) = #lf) =0) v (toglf) - logplfy = 0) =

S ) = p

/ =
il

N K(h;,h;) _ 1— K(b;,b,) N
Do en K hy) 30 4 5eq 1l — K(bk, by)
= K (hj,h;) =a(j)- (1 - K (b;;by))  (11)
where (i, j) € (2. Considering for simplicity € &~ € & 11 = doo
~ 0 and 619 ~ dp1 def 6§, based on (10) we get:
a(j) _ Zk:(k,j)eﬂ K(hkahj) _
Zk:(k,j)eﬂ 1 — K(by, bj)
_ Zk:(k,j)€A10UA01UA11 K(hk’ hJ) _
Zk:(k,j)GAlouAgo ]' - K(bk’bJ)
(L0 [ Ay [0 [ Ay | [ AL |
| Ao [+ | Ao |
| Ao |+ 1AL [+3- (141 = 1 Ay 1)
| Ao | +1 Ago |

where A7 = {k | (k,j) € Ayy} and u,v € {0,1}.
Additionally, based on the (8), (9) and (11), minimizing (6)
results in:

a(j) if (i,7) € Ao

ny_J0 Lif (i,7) € Ao
Khihi) =90 i 5) e Ay 3)

a(j) if (4,7) € Ao

So, if Q = S, then | A], |=| A, |= 0 implying a(j) = 1 (cf.
(12)),* which results in an ideal form of (13), namely:

1L, g) € Arg
K (hi,h;) = {0 Lif (7, 5) € Am

accomplishing the very small and independent 19, dg1 exis-
tence. In contrast, if ) = A, then:

| A1y [>0

(14)

| Ao [0

so depending on the sizes of the above sets «(j) can greatly
vary. Moreover, not only the 3rd branch of (13) forces pairs

3 An analysis showing that acting only on & is the best option in comparison
to acting on the whole space A, is considered below.

“Note that when bias is uniformly distributed across classes | A7, |=| .47, |,
which is the case in all experiments of this work. We consider exploring atypical
cases of non-uniform bias distribution across classes as out of this works scope
and leave it for future work.
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(,7) € Aq1 to have dissimilar embeddings h; and h; -thus
lowering the accuracy-, but also the training becomes highly
unstable with each batch imposing different «(j) (and conse-
quently K (h;, h;)) values. Thus, we opt for considering Lrr, ¢
acting on 2 = S to address bias and achieve higher accuracy
levels.

By doing so, we argue that minimizing the total loss (i.e.,
(7)) minimizes mutual information between the main model’s
representations h and the corresponding protected attributes .
In order to prove this, we consider the definition of QMI as
defined in [49], namely (15):

Z(h,t) Z/ htdh+Z/
=23 [ pin0pp

whose 3 terms are called information potentials and are denoted
by Vin, Varr, and Ve, respectively. Then, the information
potentials can be estimated as follows:

)2dh—

(t)dh, (15)

1 N. Jp Jp
Viv = 53 > K(hyp, hy), (16)
p=1k=11=1
1 N, J 2 N N
VaLL = —5 <]§> S>> Kby hy), (A7)
p=1 k=11=1
1 ey, X
Vrw = 53 2w 2. ) Ky hy),  (8)
p=1 Jj=1k=1

where N, N, and J), are the number of samples, classes, and
samples belonging to the class p, respectively. Note that .J, is
equal to N% as QMI should be calculated on balanced data. V;
consists of the interactions between pairs within each protected
attribute class, V41 consists of the interactions between all
pairs, and Ve consists of interactions between samples of
each protected attribute class against all samples. Consider-
ing the optimal scenario with Liysx = 0 and Lppac = 0, the
(10) holds for very small 619, d19, 011, dgo (for simplicity we
consider 019 ~ 019 = 011 ~ 0gg ~ € = 0) and the information
potentials, Vi, Varr, and Ve, result in the following:

1
Vin = e | A1 |, (19)
1 N. J 2
Varr = ﬁ; (;) (| A |+ Aw]) =
J=d 1
=" N2 N (| A [+ Ao ]), (20)
1 Jp | A |+ | Ao |
Verw = W;NT
Jp=7 1
= N (| Air |+ [ Ao |)- (21)
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Finally, given that | Ay |= (N. —1)- | A1 |, in the optimal
scenario of £ = 0 the QMI between the representations h and
the corresponding protected attributes ¢, is calculated as:

IZ(h,t) =Vin+Varr —2Verw = Vin — Verw =

1 A |+ A
2(A11|| nl+] 10>

Ne
A |+ 1] A
| A | - | Au | (Nc )| 11):

e
2( |A1Cl| (M—?\){J «411|>:
(

N2 (1—)|A11|—(N3V61)| A11|>_

Thus, FLAC can indeed lead to fair representations, that are
independent of the protected attributes.

\ -

ZHZ

(22)

IV. EXPERIMENTAL SETUP
A. Datasets

a) Datasets with Artificially Injected Bias: Biased-MNIST
constitutes a biased version of the original MNIST dataset [53],
introduced in [20] as a standard benchmark for evaluating the
effectiveness of bias mitigation methods. It consists of digits
with colored backgrounds (10 colors in total). The bias is in-
troduced through the association of each digit with a certain
color. The probability of a digit having biased background is
denoted as ¢, while a random background color is assigned with
probability 1 — ¢. This way, higher ¢ values lead to a stronger
association between digits and colors and thus more biased data.
Following previous works using this dataset, here we consider
four variations of the Biased-MNIST w.r.t. values of ¢, namely
0.99, 0.995, 0.997, and 0.999.

b) Established computer vision datasets: We also evaluate
the proposed approach on three established computer vision
datasets, namely CelebA [22], UTK-Face [23], and 9-Class Im-
ageNet [20]. As regards the CelebA dataset that consists of more
than 200,000 facial images annotated with 40 binary attributes,
the gender is the protected attribute, while the HeavyMakeup
and the BlondHair constitute the two target labels, as in [16]. For
the UTKFace, which is a dataset consisting of over 20,000 facial
images with gender, race, and age labels, we consider the gender
as the target label, while race and age as the protected attributes.
For UTKFace, we enforce a dependence of 90% between the
target and the protected attribute following the experimental
setup of [16]. The Corrupted-Cifar10 [24] dataset consists of
10 classes with texture biases evident in the training data and it
offers four correlation ratios: 0.95, 0.98, 0.99, and 0.995. The 9-
Class ImageNet, a subset of the ImageNet dataset [54] consisting
of 9 super-classes, is employed to evaluate the proposed method
in settings where bias is not explicitly associated with a given
attribute (e.g., texture bias). In addition, the ImageNet-A [55],
which comprises ImageNet samples that Vanilla models often
fail to classify, is also involved in the experiments as a test set.
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B. Model Architectures

For the controlled experiments conducted for Biased-MNIST,
we employ the CNN architecture proposed in [20], namely
SimpleConvNet that consists of four convolutional layers with
7 x 7 kernels and a fully connected layer with 128 neurons.
For the CelebA, UTKFace, Corrupted-Cifar10, and 9-Class Im-
ageNet, we employ the Resnet-18 [56] architecture for both the
main and the bias-capturing models, except for the 9-Class Im-
ageNet, where we use the BagNet-18 [57] as the bias-capturing
model following the practice of [16], [17], [20]. BagNets mainly
consistof 1 x 1 convolutions and they are found to be more prone
to texture bias [20]. Note that all model selections are based on
the previous literature to ensure comparability.

C. Baseline Methods

The proposed method is compared to 9 state-of-the-art ap-
proaches. Of those, BL-U approaches include the LM [18],
Rubi [19], ReBias [20], LfF [21], and SoftCon [16]. The BL-
A approaches considered in our comparative study are the
LNL [14], EnD [15], DistEnt [40], BE [41], BC-BB [16], and
FairKL [17]. More details about the competing methods can be
found in Section II. For ensuring a fair comparison between the
approaches, it should be highlighted that:

e FLAC combined with a Vanilla biased model as a bias-
capturing model (i.e., FLAC-B) allows for a direct com-
parison with BL-U approaches, devoid of any reliance on
protected attribute labels.

® Conversely, FLAC combined with a bias-capturing model
trained using attribute labels of D’ holds an advantage
over BL-U methods that do not use any extra data and a
disadvantage compared to BL-A methods due to the error
of the bias-capturing models in predicting the protected
attributes.

D. Implementation Details and Evaluation Protocol

We employ the Adam optimizer for all the experiments with
an initial learning rate of 0.001 that decays by a factor of 0.1 at
1/3 and 2/3 of the total training epochs, the weight decay is equal
to 10~% and the batch size is set to 128, unless stated otherwise.
For the Biased-MNIST, models are trained for 80 epochs. The
values of « for each BiasedMNIST variant, 0.99, 0.995, 0.997,
and 0.999 are 110, 1500, 2000, and 10,000 respectively. Note
that such large values of o were selected due to the large
discrepancy between the values of Lppac and Liqs,. The o
values were chosen following an initial grid search. There is a
possibility that a more comprehensive hyperparameter tuning
process could lead to improved outcomes. Additionally, it has
been noticed that small o can lead to unstable training behavior.
The augmentations applied for the established computer vision
datasets (i.e., CelebA, UTKFace, and 9-Class ImageNet) are
the random resized crop and random horizontal flip. For the
CelebA, models are trained for 40 epochs with « equal to
20,000 for the HeavyMakeup classification task, while 10 train-
ing epochs with « equal to 30,000 are used for the BlondHair
classification task. The images are resized to 224 x 224. For
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UTKFace, models are trained for 20 epochs, « is set to 1,000
and image size to 64 x 64. For the experiments leveraging
bias-capturing models trained with the protected attributes as
targets, we utilized the FairFace dataset which provides gender,
race, and age annotations. Specifically, the models for race, age,
and gender demonstrate 89.86%, 98.80%, and 95.79% accuracy
on UTKFace and CelebA, respectively. For Corrupted-Cifar10,
the models are trained for 100 epochs using a cosine annealing
scheduler, « is equal to 100,000, and image size is 32 x 32. For
9-Class ImageNet, the cosine annealing learning rate scheduler
is used, the number of training epochs is equal to 250, v is set to
1,000, and image size to 224 x 224. As L), we consider both
the Supervised Contrastive (SupCon) [58] and the CE loss across
all the experiments in order to provide a fair comparison between
the competing bias mitigating methods. In addition, only subtle
performance discrepancies have been noticed when assigning
a weight to this loss. All the experiments were conducted on a
single NVIDIA RTX-3090 GPU and repeated for 5 different
random seeds (all results reported in Section V refer to the
corresponding mean scores).

The test set used for BiasedMNIST evaluation has ¢ = 0.1
in order to be unbiased (i.e., no association between digits and
colors). For CelebA and UTKFace, we use the unbiased and
bias-conflict test sets provided by [16] for the evaluation. For
Corrupted-Cifarl0, the official unbiased test set is considered.
Finally, for the 9-Class ImageNet experiments, two test sets
are involved, (a) the official 9-Class ImageNet test set and (b)
the ImageNet-A. For all the above, accuracy is employed as
an evaluation metric. In addition, we measure the unbiased
accuracy on 9-Class ImageNet test set by using the texture
bias annotations provided by [20] and averaging the accuracy
calculated for each one of the texture groups. Furthermore,
apart from the typical performance metric (i.e, accuracy) we
also report the performance of FLAC in terms of three fairness
metrics for disparate impact and disparate mistreatment, namely
p% rule [59], Difference in False Positive Rates (DFPR), and
Difference in False Negative Rates (DFNR) [60], [61].

V. RESULTS

A. Controlled Experiments

Table II presents the performance comparison of the proposed
approach against 5 BL-U and 4 BL-A methods. Vanilla refers
to the model performance using only the CE loss without con-
sidering any bias mitigation algorithm. According to Table II,
the proposed method consistently outperforms all competing
methods, even the BL-A ones. In particular, FLAC enhances
the accuracy by 0.1%-0.6% for the different ¢ values com-
pared to the best performing BL-A method and by 3.5%-29.1%
compared to the best performing BL-U approach. Furthermore,
it is worth noting that while ¢ increases, FLAC is capable
of maintaining very high accuracy, which is not the case for
most of the compared methods. For instance, for the extreme
q value of 0.999, FLAC achieves 94.1% accuracy, while the
best-performing BL-U method achieves 65%. In addition, note
that FLAC combined with CE loss significantly outperforms
the corresponding competing methods that use CE as L;qs%. As
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(a) Distributions of Equation (3) for Vanilla and FLAC trained on
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Biased-MNIST with ¢ = 0.99 and achieves 88.9% and 96.9%
accuracy, respectively. Using FLAC, the similarity between samples
with the same or different label is increased or decreased respectively,
compared to Vanilla.

Fig. 3.
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(b) Distributions of Equation (3) for Vanilla (11.8% acc.) and FLAC
(89.3% acc.) trained on Biased-MNIST with ¢ = 0.999. In this
evaluation setup, Vanilla results in an extremely biased model that
exhibits high (low) similarities for samples with the same (different)
protected attribute label and different (same) target. Here, the FLAC’s
impact is significant as it manages to flip the distributions.

The distributions of similarities or/and distances for the samples that satisfy (1). Red color represents the sample pairs with the same target, but different

protected attribute label, while blue depicts the pairs with different target, but the same protected attribute labels.

TABLE II
EVALUATION ON BIASED-MNIST FOR DIFFERENT BIAS LEVELS

q

methods Ltast | BL-U —5g 0.995 0.997 0.999

Vanilla CE v [ 908403 | 79540.1 | 62542.9 | 118407
LNL CE X | 860402 | 725409 | 572422 | 182+12
EnD CE X | 948403 | 94.040.6 | 827403 | 59.5+23
BC-BB Cont | X | 981201 | 977401 | 973%0.1 | 94.0+£06
FairKL CE X | 959402 | 948405 | 93.9+1.1 | 79.9+43
FairKL Con. | X | 979400 | 97.0400 | 962402 | 90.5+15
LM CE v | 915404 | 809409 | 56043 | 105406
Rubi CE /| 859401 | 718405 | 49615 | 10.6:+0.5
ReBias CE v | 884406 | 754410 | 658+£03 | 265+14
LiF CE v | 951401 | 903+14 | 6374203 | 153429
DisEnt® CE v | 961404 | 915£03 | 819463 | 383+20.1
DisEnt + BES | CE v | 940417 | 908430 | 80.9+112 | 264424
SoftCon Con. | v | 952404 | 93.1402 | 88.6+1.0 | 650432
FLAC CE v [ 969400 | 949405 | 941405 | 893+13
FLAC Con. | v | 979401 | 968400 | 958402 | 89.4-+038
FLAC Con® | v | 987400 | 982+0.1 | 97.8+£0.1 | 94.1+1.1

Underlined and dotted-underlined values refer to the second best performing BL-U
and the best performing BL-A methods, respectively. Con. Refer to contrastive losses.
* refers to the performance with color-jittering (i.e., randomly changing the brightn-
ess, contrast, saturation, and hue of images).

regards the selection of L, as expected opting for a pairwise
loss (i.e., SupCon) results in improved accuracy as justified in
Section III-D.

As shown in Fig. 3(a), which presents the distributions
(with ¢ = 0.99) derived by (3) for Vanilla and FLAC the
proposed method increases (decreases) the similarities of sam-
ples with the same (different) target labels and different
(same) protected attribute labels compared to Vanilla. Further-
more, for ¢ = 0.999, where Vanilla results in a model that
learned the background colors instead of the digits, FLAC
is capable of learning the proper distributions as depicted in
Fig. 3(b).

TABLE III
EVALUATION OF THE PROPOSED METHOD ON CELEBA FOR TWO DIFFERENT
TARGET ATTRIBUTES, NAMELY HEAVYMAKEUP AND BLONDHAIR, WITH
GENDER AS THE PROTECTED ATTRIBUTE

target
methods | Lygsr | BL-U BlondHair HeavyMakeup
unbiased | bias-conflict | unbiased | bias-conflict

Vanilla CE v 79.040.1 59.04+0.1 76.0+0.8 55.2+1.9
LNL CE X 80.1+£0.8 61.2£1.5 764423 57.24+4.6
DI CE X 90.940.3 86.3+0.4 74.3%1.1 53.8+1.6
EnD CE X 86.9£1.0 76.4+1.9 74.8+1.8 53.31+3.6
BC-BB Con X 91.4+0.0 87.240.2 78.6+1.8 63.5+3.7
FairKL? Con X 81.7+1.7 69.9+2.4 77.4+1.1 57.2+1.6
LfF CE v 84.24+0.3 81.2+14 66.2+1.2 45.5+4.3
SoftCon Con v 84.1 744 774 61.0
FLAC CE v 90.1+0.3 87.6+0.6 85.4+1.9 79.1+4.1
FLAC Con v 91.24+0.3 88.7+0.5 84.7+1.7 78.84+4.6
FLAC-B Con. v 87.0+0.6 84.9+2.2 82.6+3.0 79.4+4.1

B. Evaluation on Established Datasets

Table ITI compares® the methods for the two tasks of CelebA,
namely predicting BlondHair and HeavyMakeup. The unbiased
and the bias-conflict refer to test sets that have balance bias-
aligned and bias-conflict samples and only bias-conflict sam-
ples, respectively. As regards the BlondHair prediction task, the
proposed method outperforms the best competing BL-U method
by 7% and 7.5% on the unbiased and the bias-conflict test sets,
respectively. In addition, FLAC manages to outperform even the
best competing BL-A method by 1.5% on the bias-conflict test
set, while demonstrating competitive performance on the unbi-
ased test set (i.e., -0.2%). It should be stressed that FLAC attains
this competitive performance despite the bias-capturing model’s
errors, unlike BL-A methods which directly utilize bias labels.
As regards the most challenging task, namely HeavyMakeup, the

SReimplemented based on the code provided by the authors.
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(a) Method: Vanilla, Query image: non-white male

Fig. 4.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 47, NO. 2, FEBRUARY 2025

(b) Method: FLAC, Query image: non-white male

The top 8 images that are most similar to queries representing a minority group of UTKFace (i.e., non-white males) based on the representations derived

by Vanilla and FLAC approaches. Images with green borders denote the query samples.

TABLE IV
EVALUATION OF THE PROPOSED METHOD ON UTKFACE FOR 2 DIFFERENT
PROTECTED ATTRIBUTES, NAMELY RACE AND AGE, WITH GENDER AS THE

TARGET ATTRIBUTE
bias

methods Liqsk | BL-U race age

unbiased | bias-conflict | unbiased | bias-conflict
Vanilla CE v 87.440.3 79.1+0.3 72.34+0.3 46.5+0.2
LNL CE X 87.3£0.3 78.8+0.6 72.940.1 47.0+0.1
DI CE X 88.9+1.2 89.1£1.6 75.6+0.8 60.0+0.2
EnD CE X 88.4+0.3 81.6+0.3 73.240.3 47.940.6
BC-BB Con. X 91.0+0.2 89.240.1 79.1£0.3 71.7£0.8
FairKL° Con. X 85.5£0.7 80.4£1.0 72.7£0.2 48.6+0.6
SoftCon Con. v 87.0 80.2 74.6 59.2
FLAC CE v 90.9+0.3 90.24+0.4 78.7+1.3 81.1£1.6
FLAC Con. v 92.0£0.2 92.24+0.7 80.6+0.7 71.6£2.6
FLAC-B Con. v 91.440.2 93.24+0.3 80.71+0.7 77.0+3.7

proposed method significantly outperforms both the BL-A and
the BL-U approaches. In particular, FLAC achieves 85.4% and
79.1% accuracy on the unbiased and the bias-conflict test sets,
while the best performing BL-A method only manages to get
78.6% and 63.5% in terms of accuracy, respectively. Here, FLAC
with CE demonstrates higher performance compared to FLAC
combined with SupCon loss. Finally, the FLAC’s performance
when employing the Vanilla model as a bias capturing classifier
is reported as FLAC-B in Table III. It can be easily noticed
that FLAC-B demonstrates significantly improved performance
compared to the rest of BL-U approaches while being completely
blind to the protected attribute labels. Moreover, for the Heavy-
Makeup task, FLAC-B notably outperforms the BL-A methods
across both unbiased and bias-conflict samples.

Table IV presents the results of FLAC compared to other
methods on the UTKFace dataset with race and age as protected
attributes. For both protected attributes, the proposed method
surpasses the best performing competing methods on both the
unbiased (i.e., +1% and +1.6%) and bias-conflict test sets (i.e.,
4% and 9.4%), while it outperforms the state-of-the-art BL-U

methods by 5%-6.1% and 13%-21.9% on the unbiased and
bias-conflict test sets, respectively. Here, it is noteworthy that
FLAC exhibits very high accuracy (i.e., 81.1%) on the most
challenging test set (i.e., bias-conflict test set with age as the
protected attribute), whereas the best BL-A method achieves
71.7%. In addition, FLAC-B not only maintains high unbiased
accuracy but also achieves notable improvements in the perfor-
mance on bias-conflicting samples, even though it employs the
Vanilla model as a bias-capturing model.

Furthermore, Fig. 4 visualizes the 8 most similar samples
to a query image that represents a minority group for Vanilla
and FLAC. In this example, we employed the biased UTKFace
dataset with gender as target and race as protected attribute,
where the minority group is the non-white males, due to the
high correlation between the males and the white race in the
training data. By inspecting Fig. 4(a) and (b), we may ob-
serve that given a query depicting a non-white male, Vanilla’s
similar representations correspond mostly to people of color
(both males and females) while retrieved images based on the
FLAC’s representations depict males of various races, i.e., they
do not encode racial information. The visualization provided in
Fig. 4 indicates the effectiveness of FLAC in (i) disassociating
the representations from the race attribute and (ii) bringing the
representations with the same gender closer to each other.

The last evaluation scenario does® not refer to societal biases,
but biases that are introduced from the image’s background or
texture. The results on the Corrupted-Cifar10 for 4 different
correlation ratios are presented in Table V. It is noteworthy
that FLAC consistently outperforms the second best performing
method for all the different correlation ratios, namely 2.9%,
4.2%,2.8%, and 4.1% for g equal to 0.95, 0.98, 0.99, and 0.995,
respectively. Table VI presents the results of the experiments
conducted on the 9-Class ImageNet dataset. In this scenario, the

%Reimplemented based on the code provided by the authors.
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TABLE V
EVALUATION ON CORRUPTED-CIFAR 10

methods Liqsk | BL-U g

0.95 0.98 0.99 0.995
Vanilla CE v 39.440.6 | 30.140.7 | 258403 | 23.1%1.2
EnD CE X 36.644.0 | 34.14+4.8 | 23.1+1.1 | 194+1.4
FairKL Con. X 50.7+£0.9 | 41.5+0.4 | 36.5+0.4 | 33.3+04
HEX CE v 16.040.6 | 15.240.5 | 14.840.4 | 13.9£0.0
ReBias CE v 434404 | 31.740.4 | 25.740.2 | 22.3+£04
LfF CE v 50.34+1.6 | 39.940.3 | 33.14+0.8 | 28.6+1.3
DisEnt CE v 511413 | 41.842.3 | 36.5+£1.8 | 30.040.7
FLAC-B | Con. v 53.0+0.7 | 46.0+0.2 | 39.3+0.4 | 34.1+0.5

Underlined and dotted-underlined values refer to the second best performing BL-U
and the best performing BL-A methods, respectively. Con. Refer to contrastive losses.

TABLE VI
EVALUATION OF THE PROPOSED METHOD ON THE BIASED AND THE UNBIASED
9-CLASS IMAGENET TEST SETS AND THE IMAGENET-A

methods Liask biased unbiased | ImageNet-A
Vanilla CE 94.040.1 | 92.7+0.2 30.54+0.5
LM CE 79.24+1.1 | 76.6£1.2 19.0+1.2
Rubi CE 93.940.2 | 92.540.2 31.040.2
ReBias CE 94.0+0.2 | 92.740.2 30.54+0.2
LfF CE 91.24+0.1 | 89.64+0.3 29.440.8
SoftCon Con. 95.3£0.2 | 94.1+0.3 34.14+0.6
FairKL-1u Con. 95.1£0.1 | 94.8+0.3 35.74+0.5
FLAC-B CE 95.540.2 | 95.2+0.2 37.6+0.6
FLAC-B Con. 95.7+0.2 | 95.2+0.2 37.9+0.9

FairKL-lu refers to the BL-U version of FairKL.

bias is not categorical, thus only BL-U methods can be applied.
As presented in Table VI, FLAC outperforms the state-of-the-art
on all three test sets. As in previous experiments, FLAC demon-
strates 2.2% improvements in terms of accuracy on the most
challenging test set (i.e., ImageNet-A).

VI. ABLATION STUDY

FLAC is designed to be applied only on the meaningful pairs
of samples (see Section III-D), which is not the case for other
BL-U approaches. Particularly, other works [16], [17] involve
all the possible sample pairs by assigning weights based on
their similarities. However, the meaningful pairs of samples are
only a very small subset of the set of all the possible pairs,
especially in extremely biased data, such as the Biased-MNIST
with ¢ = 0.999 or the CelebA with HeavyMakeup as target. As
presented in Fig. 5, the maximum number of sample pairs in
the Biased-MNIST with ¢ = 0.99 that satisfy (1) is 366 (i.e.,
only 0.022% of all pairs), while the number of all the possible
sample pairs is 1282. Involving all sample pairs in the bias
mitigation procedure makes competing BL-U methods much
more sensitive to scenarios where only few sample pairs in the
dataset are responsible for the emergence of bias. Table VII
compares the performance of FLAC and two state-of-the-art
BL-U approaches, namely SoftCon [16] and FairKL-lu [17],
w/ and w/o leveraging the sampling based on (1). It becomes
obvious that using (1) can significantly improve the performance
of other BL-U methods, while FLAC w/ (1) still exhibits the
best performance. Furthermore, the importance of involving
both terms of (1) as analyzed in Section III-D is experimentally

1157
mm g=0.99
200 + g=0.995
q=0.997
1751 s g =0.999
150 A
T 1251
=
[
3
g 100 A
E
751
50 1
2541
0.000 0.005 0.010 0.015 0.020
#pairs satisfying Eq. 1/#total pairs
Fig. 5. The frequency of the number of sample pairs belonging to S per

batch (N = 128) for Biased-MNIST training set with p € {0.99, 0.995, 0.997,
0.999}.

TABLE VII
PERFORMANCE OF STATE-OF-THE-ART BL-U METHODS W/O OR W/ ADOPTING
(1)

method Liask | accuracy w/o Eq. (1) | accuracy w/ Eq. (1)
SoftCon Con. 65.0 84.0
FairKL-1u Con. 13.7 73.9
FLAC CE 24.1 89.3
FLAC Con. 28.2 94.1

Results pertain to BiasedMNIST with ¢ = 0.999

TABLE VIII
THE IMPACT OF THE TWO TERMS OF (1) ON THE PERFORMANCE OF FLAC

Equation (1) variants acc. (CE) | acc. (Con.)
Yi # Yy Nty =15 10.1 29.1
Yi = yj ANl £t 10.5 20.6
(yi =y Ni; #* tj) \Y (yi #* Y Nty = t]') 89.3 94.1

Results pertain to BiasedMNIST with ¢ = 0.999

TABLE IX
THE IMPACT OF KERNEL FUNCTION ON THE PERFORMANCE OF FLAC

kernel accuracy (CE) | accuracy (Con.)

cosine 60.4 82.8

RBF 83.4 90.7
student’s t 89.3 94.1

Results pertain to BiasedMNIST with ¢ = 0.999

confirmed in Table VIII, which presents the performance of
FLAC using only the first (i.e., pairs with the same target and
different protected attribute label) or the second term (i.e., pairs
with different target and same protected attribute label) of (1).
Table IX presents the impact of several kernel functions on the
performance of the proposed method. The kernel function should
be carefully selected as it can significantly affect the model’s
performance. For instance, although the cosine kernel fits well
in retrieval tasks, it is not effective enough on classification tasks
as previous studies have noticed [42], which is also reflected in
Table IX. Furthermore, Radial Basis Function (RBF) kernels
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TABLE X
PERFORMANCE OF FLAC WITH MSE, KULLBACK-LEIBLER, AND JEFFREYS
DIVERGENCE AS LOSS FUNCTIONS

loss accuracy (CE) | accuracy (Con.)

MSE 12.1 85.6
Kullback-Leibler divergence 85.2 89.2
Jeffreys divergence (Eq. (6)) 89.3 94.1

Results pertain to BiasedMNIST with ¢ = 0.999

TABLE XI
THE IMPACT OF FLAC WHEN THE TRAINING DATA 1S UNBIASED
method accuracy (CE) | accuracy (Con.)
Vanilla 99.3 -
FLAC@a=1 99.4 99.3
FLAC@a=100 99.1 99.1
FLAC@a=1000 98.2 98.9

Results for BiasedMNIST with ¢ = 0.1

constitute a common kernel option, but tuning them is often
difficult. Finally, the student’s t kernel, which is considered as
a good option for classification tasks, is shown to achieve the
best performance compared to other kernels in the conducted
experiments.

Table X presents the evaluation of FLAC using different loss
functions, namely the MSE, Kullback-Leibler divergence, and
Jeffreys divergence. As expected, using a common regression
loss, such as MSE, is not a good choice to mitigate bias, while
Kullback-Leibler and Jeffreys divergences lead to highly accu-
rate models, with Jeffreys divergence leading to the best results.

In order to investigate whether the proposed method can have
anegative impact on the model’s performance when the training
data is unbiased, we further evaluate the proposed method on
a dataset that does not suffer from any attribute-label associa-
tions (i.e., Biased-MNIST with ¢ = 0.1). Table XI presents the
performance of FLAC for o € {1,100,1000}: for « = 1 and
a = 100 FLAC does not affect the model’s performance, while
for the extreme value o = 1000 only a small drop in accuracy
is noticed.

VII. CONCLUSION

In this paper, we introduce FLAC, a bias mitigation approach
that leverages the representations of a bias-capturing classifier
for enabling the main model to learn fair representations with-
out being aware of the protected attribute labels. In particular,
FLAC aims to minimize the MI between the main model’s
representations and the protected attribute without taking ad-
vantage of the protected attribute labels. To this end, FLAC
only leverages the under-represented samples that can effec-
tively contribute to minimizing MI. By doing so, the derived
fair representations do not capture any information related to
the protected attributes. The proposed approach demonstrates
superior performance compared to state-of-the-art in a wide
range of experiments on both datasets with artificially injected
bias and established computer vision datasets. As regards the
limitations of the proposed approach, it should be highlighted
that FLAC necessitates the presence of some bias-conflicting
samples in the training data and thus cannot be applied in 100%
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correlation scenarios. Furthermore, its effectiveness diminishes
for batch sizes equal to or lower than 32, and it does not
account for multiple sources of bias. Thus, as a future work,
we consider enabling FLAC to be applied in a multi-attribute
fairness scenario. Furthermore, taking into account that bias
is uniformly distributed across classes in the existing fairness
benchmarks, another future work could be the exploration of
fairness-aware approaches performance on datasets with non-
uniform bias distribution. Finally, using FLAC for tasks beyond
classification (e.g., retrieval), is a potential subject for future
work.
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