Under review as a conference paper at ICLR 2026

DRILL-DOWN ANALYSIS OF LLM HALLUCINATION
PATTERNS IN TEXT-TO-SQL

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite impressive benchmark scores, Large Language Models (LLMs) can still
produce flawed and incorrect responses for Text-to-SQL tasks. While prior work
has decomposed complex SQL queries in an attempt to improve LLM benchmark
performance, few have systematically analyzed hallucination propagation patterns
within these decomposed structures. We present a drill-down evaluation frame-
work that decomposes complex SQL queries and questions from the BIRD-mini
dataset|L1 et al.|(2023), allowing for a fine-grained analysis of hallucination prop-
agation. Through our analysis, we report three key findings: (1) Recurrent Hal-
lucinations: Many hallucinations persistently propagate from early, structurally
simple sub-queries through to final steps, indicating systematic misalignment. (2)
Final-Step Emergence: Fewer, but specific hallucination types emerge in the final
step, suggesting a distinct failure mode tied to query complexity. (3) History Am-
plifies Recurrence: While contextual information between sub-queries can help
to reduce the frequency of emergent hallucinations, it consequently increases the
recurrence of early-stage hallucinations. This framework establishes a method-
ology to better understand LLM weaknesses and failure modes for Text-to-SQL
systems.

1 INTRODUCTION

Recent advances in Text-to-SQL techniques represents a significant leap forward in human-computer
interaction, promising users the ability to query complex databases using everyday conversational
language instead of structured query syntax. At the heart of this transformative technology are
Large Language Models (LLMs), which have demonstrated remarkable proficiency in this task [Li
et al.[(2024a); (Chen et al.| (2024); [Hong et al.| (2024). By leveraging their vast pre-training on di-
verse text and code corpora, LLMs can grasp the semantic intent behind a natural language question,
understand the underlying database schema, and generate an executable SQL query to retrieve the
correct information. This capability is poised to democratize data access, empowering non-technical
stakeholders to directly interact with data and derive insights without the need for specialized pro-
gramming skills, thereby accelerating the pace of data-driven decision-making. However, hallu-
cinations introduced by the LLM remain a consistent and persistent issue in all Text-to-SQL via
LLM pipelines. These hallucinations are a notorious problem in LLMs and refer to instances where
they generate content that is irrelevant, erroneous, or inconsistent with the user’s requests [Huang
et al.| (2023); |Qu et al.| (2024); [Zhang et al.| (2024). While researchers are aware of hallucinations,
interpreting, explaining, and preventing them remains an open area of research.

Crucially, in a text-to-SQL task, a hallucination isn’t just a factual error but a functional failure that
represents a key challenge for Al alignment. An incorrect query could lead to the wrong business
decisions, faulty reports, or even data corruption if the system is designed to execute the queries
without human oversight. Ensuring the LLM produces safe, reliable, correct and intention-aligned
SQL is a fundamental alignment challenge. Furthermore, users will quickly lose trust in a system
that consistently produces queries that fail to execute or return incorrect data. An aligned system
is one that a user can trust to perform its task reliably. Hallucinations erode this trust, which is a
clear symptom of misalignment. While a human can often catch these errors, a truly aligned system
should minimize the need for a human to constantly debug its output. The goal of text-to-SQL is to
empower non-technical users, but hallucinations make this difficult and require a level of technical
expertise to correct.

Under review as a conference paper at ICLR 2026

"Generate the SQL for the
above question after thinking
step by step..

Gold SQL

SQL Parser

S
Decomposed ||
Gold SQL

Gold NL Question

Evaluate Text-to-SQL
»
Performance Across
Drill-Down Path BIRD DB

lVVV

Categorize
Hallucination Patterns
Across the
Drill-Down Path
Recurrent
Hallucination

DB Sc
o

Ferm e ill
T

hema
S ()
.......... >
7

"Generate a new natural language
question that maintains the same

Decomposed
Gold NL Question

Emergent
Hallucination

structure and semantics but aligns
with the following partial SQL query.

Figure 1: Drill-down framework; Decompose the BIRD-mini dataset into progressive sub-queries
and sub-questions and evaluate their hallucination patterns.

We present a drill-down hallucination framework and analysis in the Text-to-SQL domain. First,
we decompose the SQL queries into sub-queries which generates a custom drill-down dataset from
an existing Text-to-SQL dataset (Fig. [I). Second, we create an automated pipeline for annotating
a LLMs hallucinations, with a fine-grained taxonomy which builds temporal abstractions on top of
hallucination categories identified by prior research |Qu et al.|(2024). This novel analysis enables a
deeper investigation into how different types of hallucinations evolve across multi-step generation
paths for Text-to-SQL. Using these annotated results we analyze for recurrent hallucinations, where
the same erroneous instances persist from earlier steps into final outputs, and emergent hallucina-
tions that appear for the first time in final reasoning steps despite having no prior instances. Our
results reveal interesting insights into hallucination patterns and failure mechanisms that are consis-
tent across six modern LLMs. Understanding and addressing these patterns would provide a deeper
understanding of these models and provide a path to better alignment. Overall, this paper evaluates
six modern LLMs, two from Anthropic |Anthropic| (2024} |2025) and four from OpenAl |OpenAl
(20235 12024; [20235)) in the Text-to-SQL domain, analyzing their hallucinations to better understand
the weaknesses of these models.

Briefly, the contributions of this paper can be summarized as follows:

1. We leverage the decomposable nature of SQL queries to create a drill-down analysis
pipeline that provides an insight into LLM hallucinations when used in text-to-SQL
pipelines.

2. Our experiments uncover two distinct temporal (w.r.t to the sub-query step) failure patterns,
described as recurrent and emergent hallucinations.

3. We evaluate six closed-source frontier models (Claude and GPT variants) and show that
hallucination patterns are consistent across architectures and vendors.

2 RELATED WORK

Early Text-to-SQL systems almost always adopted a sequence-to-sequence framework in which
both the natural-language question and the target database schema were jointly encoded by neural
models. Early efforts relied on recurrent architectures for this encoding |Dong & Lapatal (2016)); Jia
& Liang (2016)), before moving toward graph neural networks that explicitly model schema structure
Bastings et al.|(2018)); [Bogin et al.| (2019), and, eventually, to pre-trained transformer encoders Yin
et al.| (2020); Yu et al.[(2021). More recently, LLMs have become a dominant paradigm due to their
strong generalization ability, few-shot learning capacity Brown et al.|(2020), in-context reasoning
Xie et al.| (2021)), and chain-of-thought prompting capabilities [Wei et al.|(2022). These capabilities
allow LLMs to generate SQL queries from natural language with little to no task-specific fine-tuning.

Under review as a conference paper at ICLR 2026

Table 1: Taxonomy of hallucination types observed in failed SQL generations, originally adopted
from Qu et al.|(2024).

Category Description

Schema-Based: Schema Contra- The predicted query uses invalid or unknown tables,
diction columns, or aliases not present in the database schema.
Also includes misuse of wildcard or backtick syntax.

Schema-Based: Attribute Over- The query introduces valid but unnecessary tables or
analysis columns that are not present in the ground truth, result-
ing in over-specific or redundant retrieval logic.

Schema-Based: Value Misrepre- The query mishandles data representation, such as in-

sentation correct or missing type casts, or inconsistent literal val-
ues.

Logic-Based: Join Redundancy The query contains more JOIN operations than the
ground truth, indicating hallucinated or spurious table
relationships.

Logic-Based: Clause Abuse The query includes structural SQL clauses (e.g.,

GROUP BY,LIMIT,ORDER BY) or logical operators
(e.g., AND, OR) that were absent in the ground truth.

Logic-Based: Mathematical Delu- The query exhibits invalid or misleading numerical rea-

sion soning, such as uncasted division, misuse of %, im-
proper use of BETWEEN, or syntax errors in arithmetic
expressions.

Table 2: Recurrent vs. emergent hallucination definitions in the drill-down analysis.

Category Description

Recurrent Hallucination A hallucination that occurs somewhere in the drill-
down path and reappears again in the final step.

Emergent Hallucination A hallucination that manifests in the final step of the
drill-down path with no prior instances in earlier steps.

Although this transition has led to notable performance gains on standard benchmarks, it has also
introduced new challenges, one being hallucinations.

Recent papers have introduced new and unique approaches to improve performance and better align
the Text-to-SQL system with the given task. CHASE-SQL |Pourreza et al.| (2024) represents a re-
cent methodology that uses a divide-and-conquer strategy to decompose complex problems into
sub-components, addressing each component separately before synthesizing the results into a final
solution |Pourreza et al.| (2024). This technique shows impressive performance improvements on the
BIRD benchmark’s |Li et al.|(2023) execution accuracy (EX) metric. Inspired from this framework,
we decompose the complete BIRD-mini dataset [Li et al.| (2023)), breaking it down into sequential
sub-components. However, our approach is different from existing research that leverages decom-
position primarily as a step for benchmark optimization. Instead, we conduct a systematic analysis
of hallucination behaviors and patterns within these decomposed structures.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

We adopt the problem formulation from [Qu et al|(2024). Given a natural language question Q =
{q1,...,9,0)} and its associated database schema D = (C,T), where C = {c1,...,c|c|} and
T = {t1,...,t}7|} represent the sets of column and table names respectively, the goal of the text-
to-SQL task is to generate a valid SQL query y that faithfully reflects the intent encoded in Q.

Under review as a conference paper at ICLR 2026

3.2 EVALUATION METRICS

Execution Accuracy (EX) We evaluate baseline model performance using two main metrics, the
first being Execution Accuracy (EX) |L1 et al,| (2024a), which measures whether a predicted SQL
query gy yields the same execution result as the ground truth query y* when both are executed on
the same database instance. Formally, let Exec(y, D) denote the result of executing query y on
database D. Then, the EX score for a single example is defined as:

- 1 ifExec(y,D) = Exec(y*,D

0 otherwise

The overall EX score across a dataset of N examples is computed as the average:

N
1 ~ (1 * (2
EXavg = NZEX(Z/()ay ())
=1

Soft-F1 Score The second metric we use is the Soft-F1 Score|Li et al.|(2024a)). Unlike Execution
Accuracy, which is binary and requires an exact match in result sets, Soft-F1 provides a graded
assessment by measuring partial overlaps between the execution results of the predicted and ground

truth SQL queries. Let 7' = Exec(§, D) and T* = Exec(y*, D) be the predicted and ground truth
result tables, respectively. At the tuple level, treating each tuple as a set of values, define:

* True Positives (TP): tuples in both T and T
* False Positives (FP): tuples in 7 but not in T*

* False Negatives (FN): tuples in 7 but not in T

The Soft-F1 score is then computed as:

2-TP
2-TP +FP +FN

Soft-F1 =

3.3 DATASET

BIRD-mini We conduct our experiments on the BIRD-mini dataset, a smaller version of the full
BIRD dataset specifically designed to capture the full complexity of the entire dataset thereby mak-
ing text-to-SQL experiments possible for resource-constrained researchers. While the full BIRD-
dev dataset is very comprehensive, applying our hallucination annotation/decomposition framework
across its entire scale would more than double its size, requiring us to generate over 25,500 subques-
tions, resulting in a prohibitive analysis cost. Instead of arbitrarily selecting a subset of BIRD-dev
we think would be representative, we expand the BIRD-mini dataset which has already been de-
signed to be a good representation of the full BIRD-dev dataset. We expand BIRD-mini to 1383
instances, and evaluate this expanded dataset across six modern LLMs. This expansion reflects the
maximum possible decomposition of BIRD-mini where each sub-query remains executable, yield-
ing 1383 systematic question—query pairs.

4 HALLUCINATION TAXONOMY

Schema-Based and Logic-Based For a more accurate categorization of these hallucinations, we
adopt the taxonomy featured in|Qu et al.[(2024). which categorizes hallucinations into two main cat-
egories, schema-based and logic-based. Schema-based hallucinations reflect misunderstandings of
the database structure itself, using incorrect tables/columns or unnecessarily attributes. Logic-based
hallucinations involve errors in how the query is constructed, unnecessary joins, clause abuses, or
incorrect math. We describe these hallucination categories in more detail in Table

Under review as a conference paper at ICLR 2026

Recurrent and Emergent Hallucinations Beyond the taxonomy, we will additionally define two
more hallucination behavior types that capture distinct patterns. The first is recurrent hallucinations,
which we define as a hallucination that occurs somewhere in the drill-down path and reappears in
the final step. These errors demonstrate persistence across multiple steps of the drill-down path,
suggesting a more fundamental misunderstanding. The second is emergent hallucinations, which
we define as a hallucination that only occurs in the final step of the drill-down path. These errors
appear to be triggered specifically by the increased complexity and integration requirements of the
complete problem. These categories can be viewed as temporal abstractions, with respect to the
sub-query steps, over the hallucination categories identified in |Qu et al.|(2024).

Failure Mechanisms We argue that these behavioral distinctions are crucial because they repre-
sent two fundamentally different failure mechanisms operating within LLMs. Recurrent hallucina-
tions appear to be tied more closely to systematic misalignment or fundamental knowledge gaps
within the model’s understanding. These failures manifest not only when confronted with the origi-
nal complex BIRD-mini question and query, but also persist in identical ways even when presented
with the decomposed versions of the same problem. Emergent hallucinations, conversely, capture a
failure mode that appears to be more closely related to the cognitive load and integration challenges
posed by the full complexity of the question and query. These failures suggest that models can
successfully navigate some components of a complex problem but fail when required to synthesize
multiple pieces of information together.

5 METHODOLOGY

This section will outline the framework we used to perform our analysis of hallucination patterns,
consisting of three primary components: (1) Decompose the BIRD-mini dataset into progressive
sub-questions and sub-queries, (2) Perform drill-down evaluation on multiple LLMs, (3) Categorize
and describe the hallucination patterns (Fig. [I). Follow Algorithm [I] (Appendix A) for each step of
our framework.

5.1 DECOMPOSE AND GENERATE DRILL-DOWN DATASET

Progressive Sub-Query Generation The proposed framework begins by decomposing each
query from the BIRD-mini benchmark into multiple progressive queries, using an SQL parser |Al-
brecht|(2024). By parsing progressively from select through where and subsequent and conditions,
we ensure that each sub-query in the drill-down path represents an executable SQL query. Follow
Fig.[I]for an example.

Sub-Question Generation We additionally pair each of these sub-queries with a sub-question that
captures the contents of the sub-query in natural language (NL). To ensure the reliability of our ex-
panded benchmark, we adopt an asymmetric design choice: all sub-queries are generated determin-
istically via sqlparse, while sub-questions are produced by LLMs provided with the BIRD database
schema, original question, and our generated sub-queries. We additionally regenerate the original
question with the same method to maintain alignment with the generated sub-questions. This choice
follows recent evidence that formal language — natural language (SQL-to-NL) is consistently more
reliable than the reverse natural language — formal language (NL-to-SQL). For example, Evaluating
NL-to-SQL via SQL-to-NL shows that SQL-to-NL achieves stronger Pass@K performance on Spi-
der and produces paraphrases with higher semantic fidelity and fewer schema-alignment errors than
NL-to-SQL |Li et al.| (2025). These findings support our claim that LLM-generated sub-questions
faithfully capture the meaning of their corresponding SQL sub-queries, with lower risk of halluci-
nation compared to direct NL-to-SQL generation.

5.2 DRILL-DOWN AND ANNOTATE HALLUCINATION PATTERNS

Following this process, we construct an incremental sequence of questions and queries that gradually
increases in complexity. We transform and expand the original BIRD-mini dataset into a drill-down
dataset which enables us to pinpoint precisely where hallucinations emerge within these incremen-
tal pathways and determine whether these errors propagate to the final stage. We categorize and
annotate these hallucination types and behaviors like the example in Fig. [6| (Appendix A).

Under review as a conference paper at ICLR 2026

6 EXPERIMENT

We systematically evaluated six LLMs, Claude-3.5-sonnet and Claude-3.7-sonnet from Anthropic
Anthropic| (2024} [2025)), and GPT-4-turbo, GPT-40-mini, GPT-4.1-mini, and GPT-4-nano from Ope-
nAI|OpenAl| (2023} 2024; [20235)) on our BIRD-mini drill-down dataset for the Text-to-SQL task us-
ing the default prompt provided by BIRD (Appendix A: Prompt 2) (2024b). To uncover
where and how hallucinations arise, we perform a structural comparison between predicted SQL,
ground-truth SQL, and the database schema at each step of a progressive question path. Each hal-
lucination is categorized and annotated through this multistep decomposition. The experiments are
designed to address the following research questions:

Research Question 1 Do hallucinations in Text-to-SQL generation primarily originate from the
complexity of the original question, or do they instead emerge earlier due to systematic misunder-
standing in simpler steps?

Research Question2 What hallucination types emerge uniquely at the final stages of Text-to-SQL
generation, and how are these failures correlated with query complexity?

Research Question3 How does access to contextual history from the drill-down path during Text-
to-SQL generation affect the frequency and severity of recurrent versus emergent hallucinations?

Most Prominent Hallucination Types (Avg. Across All Models)

o © o o o o o
o B2 e NN W W
o o u o wu o u
o
w
w

Proportion of Total Hallucinations

o
=)
o

S w2 o A
O AoV e W o o
Es \G\D‘\ O Px““ e

@
o
e

Figure 2: Distribution of hallucination types across all experiments. Schema contradiction and
clause abuse emerge as the dominant categories, indicating that models frequently misinterpret
schema structure or over-apply SQL clauses even in decomposed forms.

Probability of Recurrent Hallucination into Final Step (Exact Hallucination) Probability of Emergent Hallucination in Final Step (Exact Hallucination)

o

= Claude-3.5-sonnet = Claude-3.5-sonnet

e Claude-3.7-sonnet
= GPT-4.1-mini
= GPT-4.0-turbo
= GPT-d0-mini
GPT-4.1-nano

e Claude-3.7-sonnet
W GPT-4.1-mini
= GPT-4.0-turbo
= GPT-do-mini
GPT-4.1-nano

o
®

P(In Final | Occured Before)
s o
= 5

o
N
P(In Final | No Prior Instance)

(a) Recurrent hallucinations (b) Emergent hallucinations

Figure 3: Probability of recurrent (a) and emergent (b) hallucinations across categories. Recurrent
errors show high persistence once introduced (sometimes >50%), while emergent errors are rarer,
with clause abuse being the main exception. This highlights distinct failure mechanisms between
persistence and final-step emergence.

Under review as a conference paper at ICLR 2026

Table 3: BIRD-mini EX Accuracy (%) and Soft F1-Scores across Difficulty Levels

Model Simple Moderate Challenging Total
Count 148 250 102 500
Claude-3.5-Sonnet 56.08 35.20 23.53 39.00 (EX)
59.39 38.61 31.15 43.24 (F1)
Claude-3.5-Sonnet (+ History) ~ 50.00 34.40 20.59 36.20 (EX)
56.93 37.84 29.01 41.69 (F1)
Claude-3.7-Sonnet 51.35 38.40 21.57 38.80 (EX)
55.09 43.58 29.59 44.13 (F1)
Claude-3.7-Sonnet (+ History) ~ 52.70 38.40 24.51 39.80 (EX)
57.32 42.10 30.78 44.30 (F1)
GPT-4.0-Turbo 58.78 34.00 17.65 38.00 (EX)
60.66 38.45 24.14 42.11 (F1)
GPT-4.0-Turbo (+ History) 55.41 37.60 19.61 39.20 (EX)
57.45 40.48 25.16 42.38 (F1)
GPT-4.0-0-Mini 47.97 31.60 13.73 32.80 (EX)
50.87 34.42 20.63 36.48 (F1)
GPT-4.0-0-Mini (+ History) 47.30 31.20 14.71 32.60 (EX)
48.82 33.57 20.10 35.34 (F1)
GPT-4.1-nano 47.97 26.80 11.76 30.00 (EX)
50.05 29.40 19.49 33.49 (F1)
GPT-4.1-nano (+ History) 50.68 28.40 15.69 32.40 (EX)
52.50 32.16 18.89 35.47 (F1)
GPT-4.1-Mini 59.46 41.60 21.57 42.80 (EX)
61.47 45.04 28.48 46.53 (F1)
GPT-4.1-Mini (+ History) 56.08 39.20 18.63 40.00 (EX)
58.33 42.33 24.09 43.35 (F1)

6.1 RESULTS

To validate our setup, we first report baseline performance on BIRD-mini, showing close alignment
with previously reported scores [Li et al.| (2024a), as shown in Table E}

P(In Final Step | Occurs in Earlier Steps) Fig. [3| presents the conditional probabilities of
hallucinations occurring in the final step (original BIRD-mini question) given that the identi-
cal hallucination type manifested earlier in the drill-down path, expressed as P(In Final Step |
Occurs in Earlier Steps). The results reveal that hallucinations are not exclusively confined to the
final, most complex step, but rather demonstrate recurrence patterns throughout earlier stages of the
progressive path. Notably, while Schema-Based: Schema Contradiction and Logic-Based: Clause
Abuse represent the two most common hallucination types in our results (Fig. [2), they seem to
exhibit different failure mechanisms. Most hallucination types exhibit relatively high recurrence
probabilities, with the exception of Logic-Based: Clause Abuse, see (Fig. [3). The persistence of
these errors across multiple stages, including the initial steps of the path, indicates fundamental
misalignment issues where LLMs struggle with a task even in their most decomposed forms.

P(In Final Step | Does Not Occur Earlier) Conversely, Fig. [3l shows similar probabilities but
for hallucinations that occur in the final step where the exact same hallucination does not occur
anywhere in the drill-down path, P(In Final Step | Does Not Occur Earlier), we observe a distinctly
different pattern. Most hallucination types exhibit considerably lower emergence probabilities com-
pared to their recurrence rates, except for Logic-Based: Clause Abuse, which has a higher probabil-
ity of emergence compared to recurrence. The lower probabilities suggest that most hallucination
types are more likely to propagate from earlier steps, with the outlier being Clause Abuses.

LLM History Attention Furthermore, examination of the results comparing history attention to
the progressive path versus no attention reveals an interesting duality in hallucination behavior pat-
terns. When models maintain access to conversational history throughout the progressive path, we

Under review as a conference paper at ICLR 2026

observe a significant increase in the probability of recurrent hallucinations across all tested models
compared to the context-free condition (Fig.). This suggests that contextual memory can inadver-
tently reinforce hallucination patterns established in earlier steps. In contrast, the presence of history
attention demonstrates a more protective effect against emergent hallucinations, reducing the prob-
ability of occurrence (Fig. [5). These results point towards a potential trade-off between emergent
hallucination protection and recurrent hallucination amplification.

@ No History O + History
Schema Attribute Value
Contradiction Overanalysis Misrepresentation
+0.37 +0.11 +0.11
GPT-4.1-nanoq —ooomommTooos E--t i
+0.19 +0.1. +0.1.
GPT-40-mini 4 =8 ° ‘h [1]
+0,03 +0.1
GPT-4.0-turbo - Qﬂ .--b
+0.0; +0.
GPT-4.1-mini 4 .--& ®--
+0.05 +0,01
Claude-3.7-sonnet 4
+0.27 +0 +0.11
Claude-3.5-sonnet{ ~ @-==-=--- B .-E .---ij
Clause Mathematical Join
Abuse Delusion Redundancy
+0.13 +0.05 +0.19
GPT-4.l-nanoq —---- - e e Y e
+0. +0,00 +0.26
GPT-40-mini - L) w L a
+0. +0, +0
GPT-4.0-turbo 4 o-| .&6 .&5
+0.1, +0.03 +0.17
GPT-4.1-mini e o5
+0.06 .02 +0.11
Claude-3.7-sonnet 4
+0.1 +0 +0.
Claude-3.5-sonnet { .---E .&5 o

0.0

10

0.0 0.2 0.4 0.6

P(In Final | Occurred Before)

0.8

1.0

0.0 0.2 0.4 0.6 0.8 10

Figure 4: Probability of recurrent hallucinations with and without history/context.
Providing history consistently increases recurrence rates across models, showing that
context can inadvertently reinforce early-stage errors rather than correcting them.

® No History O+ History
Schema Attribute Value
Contradiction Overanalysis Misrepresentation
-0.09 -0.12 -0.07
GPT-4.1-nano - £=3 +=-9 -9
Praomini{ % 3% A3
GPTa0turbo | &€ &3 k-3
0,03 -0.03 0,00
ePralmini| U5 =3 W
0,04 -0.08 0,02
Claude-3.7-sonnet 1
-0.10 0,05 0,03
Caude 35sonnet| Cho® &% =3
Clause Mathematical join
Abuse Delusion Redundancy
-0.06 .00 0.04
GPT-4.1-nano 9 EL
GPT-40-mini | &9 8! 8’
.08 2 2
GPT-4.0-turbo + -9 g B
GPT-4.1-mini - =3 I 8
-0.10 01 0.03
Claude-3.7-sonnet
Claude-3.5-sonnet ot o 1=
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1o

P(In Final | No Prior Instance)

Figure 5: Probability of emergent hallucinations with and without history/context. In
contrast to recurrent patterns, history reduces emergence rates, suggesting a protec-
tive effect against new errors but at the cost of amplifying persistent ones.

The strongest model (GPT-4.1-Mini) achieves 42.8% EX and 46.5% F1, while the weakest (GPT-
4.1-Nano) records 30.0% EX and 33.49% F1. We also notice that performance drops rapidly with
query complexity. Even with easy questions, the best EX reaches 59.46%, but drops to only 21.57%
on challenging queries. We also find that adding contextual history decreases EX by ~1.1 points and
F1 by ~0.6 points. For example, Claude-3.7-Sonnet improves slightly (38.8 — 39.8 EX), whereas

Under review as a conference paper at ICLR 2026

GPT-4.1-Mini drops (42.8 — 40.0 EX). Figures fH5| further demonstrates how recurrent errors seem
to dominate and once they occur, they reappear in the final step with probabilities exceeding 50%
for schema contradictions. Whereas, emergent hallucinations are less frequent for most hallucina-
tion types, excluding clause abuses. Finally, history impacts these distributions, raising recurrence
anywhere from ~2-37% across categories while reducing emergence by ~2-11%.

7 ALIGNMENT WITH PRIOR WORK

Alignment with “Before Generation, Align it!” Qu et al. emphasizes the importance of pre-
generation alignment between natural language and schema to mitigate schema-related hallucina-
tions |Qu et al.| (2024). Our results support the claim that schema contradiction is one of the most
prominent type of hallucinations in the Text-to-SQL domain. Furthermore, we have consistent re-
sults showing how recurrent schema hallucinations frequently persist into the final steps for all
models tested (Figure).

Alignment with “A Study of In-Context-Learning-Based Text-to-SQL Errors” Shen et al.
present a taxonomy of 29 error types in in-context-learning (ICL) text-to-SQL [Shen et al| (2025).
This study quantifies overall error prevalence and repair challenges, we examine how these error
types behave over the course of multi-step drill-down generation. By introducing recurrent and
emergent hallucinations, we provide a new temporal perspective that extends beyond a static cate-
gorization.

8 CONCLUSION

Large language models (LLMs) currently demonstrate excellent capabilities in a variety of tasks,
including text-to-SQL. However, hallucinations generated from the outputs of these models pose
serious challenges for interpretability, alignment, and overall adoption into text-to-SQL systems. In
this paper, we conduct a drill-down analysis to trace where in progressive query paths hallucinations
arise. Our findings align with recent research that hallucinations can arise when models misinterpret
the decomposed stages of a task as entirely new challenges |Qu et al.| (2024). However, we also
find that it is common for hallucinations to reappear from earlier, and much simpler, steps into
the final complex query. Finally, we report an inverse relationship with emergent and recurrent
hallucinations when context to the drill-down path is provided to the LLM. We see a more protective
behavior for emergent hallucinations but inversely an amplifying effect for recurrent hallucinations.
Our experiments reveal interesting nuances of LLM Hallucinations in the Text-to-SQL domain,
providing researchers with a deeper insight into how these models are failing.

REFERENCES

Andi Albrecht. sqlparse: A non-validating sql parser for python. https://github.com/
andialbrecht/sqglparse, 2024. Accessed: 2025-08-02.

Anthropic. Claude 3.5 sonnet technical overview, 2024. URL https://www.anthropic.
com/news/claude-3-5-sonnet. Accessed: 2025-07-29.

Anthropic. Claude 3.7 (preview). https://www.anthropic. com, 2025. Forthcoming release;
citation will be updated when official report is published.

Jasmijn Bastings, Ivan Titov, Wilker Aziz, and Diego Marcheggiani. Graph neural networks with
generated parameters for relation extraction. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2018.

Boaz Bogin, Joseph Keshet, and Jonathan Berant. Rat-sql: Relation-aware schema encoding and
linking for text-to-sql parsers. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2019.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, G irish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

https://github.com/andialbrecht/sqlparse
https://github.com/andialbrecht/sqlparse
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com

Under review as a conference paper at ICLR 2026

Hong Chen, Ju Fan, Cuiping Li, Renjie Wei, Jing Zhang, Hongyan Pan, Haoyang Li, Xiaokang
Zhang, Hanbing Liu, and Jun Zhu. Codes: Towards building open-source language models for
text-to-sql. Proceedings of the ACM on Management of Data, 2:1 — 28, 2024. URL https:
//api.semanticscholar.org/CorpusId:267938784.

Li Dong and Mirella Lapata. Language to logical form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (ACL), 2016.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql. ArXiv,
abs/2406.08426, 2024. URL https://api.semanticscholar.org/CorpusId:
270391628\

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in
large language models: Principles, taxonomy, challenges, and open questions. 2023. Accessed:
2025-07-28.

Robin Jia and Percy Liang. Data recombination for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (ACL), 2016.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Bird: Big bench for large-scale database
grounded text-to-sql evaluation. arXiv preprint arXiv:2305.03111, 2023. URL https://
arxiv.org/abs/2305.03111.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for

large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024a.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin CC Chang, Reynold
Cheng, and Fei Huang. Evaluating nl2sql via sql2nl. arXiv preprint arXiv:2509.04657, 2025.

Xiaolong Li, Jinyang Li, Ge Qu, Binyuan Hui, Reynold Cheng, and Chenhao Ma. Bird mini-dev
dataset. https://github.com/bird-bench/mini_dev, 2024b. Accessed: 2024.

OpenAl. Gpt-4 technical report, 2023. URL https://openai.com/research/gpt-4L Ac-
cessed: 2025-07-19.

OpenAl. Gpt-40: Openai’s new omnimodal model, 2024. URL https://openai.com/
index/gpt-4ol Accessed: 2025-07-25.

OpenAl. Gpt-4.1-mini model. https://openai.com, 2025. Model accessed via OpenAl API
on 2025-07-26. No technical report available at time of writing.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O. Arik. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in text-to-sql. arXiv preprint arXiv:2410.01943,
2024. doi: 10.48550/arXiv.2410.01943. URL https://arxiv.org/abs/2410.01943.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold Cheng. Before
generation, align it! a novel and effective strategy for mitigating hallucinations in text-to-sql
generation. arXiv preprint arXiv:2405.15307v1, May 2024. URL https://arxiv.org/
abs/2405.15307. Version 1.

Jiawei Shen, Chengcheng Wan, Ruoyi Qiao, Jiazhen Zou, Hang Xu, Yuchen Shao, Yueling Zhang,

Weikai Miao, and Geguang Pu. A study of in-context-learning-based text-to-sql errors. arXiv
preprint arXiv:2501.09310, 2025.

10

https://api.semanticscholar.org/CorpusId:267938784
https://api.semanticscholar.org/CorpusId:267938784
https://api.semanticscholar.org/CorpusId:270391628
https://api.semanticscholar.org/CorpusId:270391628
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://github.com/bird-bench/mini_dev
https://openai.com/research/gpt-4
https://openai.com/index/gpt-4o
https://openai.com/index/gpt-4o
https://openai.com
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

Sang Michael Xie, Yao Lu, Aditi Raghunathan, Percy Liang Yin, and Chelsea Finn. Explanation-
based prompting for continual learning. arXiv preprint arXiv:2104.07143, 2021.

Pengfei Yin, Graham Hay, Graham Neubig, Benjamin Van Durme, and Jason Eisner. Tabert: Pre-
training for joint understanding of textual and tabular data. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2020.

Tao Yu, Long Jiang, Rui Wang, Zhe Gan, Xiaoyan Shi, and Ming Zhou. Grappa: Grammar-
augmented pre-training for table semantic parsing. In Proceedings of the 2021 Annual Meeting
of the Association for Computational Linguistics (ACL), 2021.

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun Gao, Lu Chen, Dongfang Lou, and Jinshu
Lin. Finsql: Model-agnostic llms-based text-to-sql framework for financial analysis. Companion
of the 2024 International Conference on Management of Data, 2024. URL https://api.
semanticscholar.org/CorpusId:267061057.

A APPENDIX

al Questic

Example: Sub-Questions / Sub-Queries Ground of tes m Fresno schools that opened between 1/1/1980 and
Truths i

° SELECT AVG(T1.NumTstTakr) FROM satscores AS T1 INNER JOIN schools AS T2 ON T1.cds = T2.CDSCode

" 1y = v 9 ‘'Sub-Question 1:
° 'WHERE TO_CHAR(CAST(T2.0penDate AS TIMESTAMP), 'YYYY') = '1980' 'What is the average number of test takers for schools?
(Ground Truth:
AND T2.County = Fresno’ “BIRD-mini question_id 39 ISELECT AVG(TLNumTstTakr) FROM satscores AS T1 INNER JOIN schools AS T2 ON T1.cds = T2CDSCode
i B SELECT 3 ISELECT AV
o Sub-Query 1
Sub-Question 1 U=y LJOIN schools ON satscores.cds = schools.cdscode |average.num_test takers FROM satscores s JOIN

- SELECT AVG(T1.NumTstTakr) FROM satscores AS T1 INNER / [sehoots se ON s.cds = scedscode
iz ey e e e JOIN schools AS T2 ON T1.cds = T2CDSCode Sub-Question2:

schools? Whatis the of hoot the year 19807
Ground Truth:
ISELECT AVG(T1 NumTstTakr) FROM satscores AS T1INNER JOIN schools AS T2 ON T1.cds = T2.CDSCode
WHERE TO_CHAR(CAST(T2.OpenDate AS TIMESTAMP), 'YYYY') = ‘1980
'SELECT. [SELECT AV

Sub-Question 2 g Sub-Query2 LJOIN schools ON satscores.cds = schools.cdscode javerage_num_test_takers FROM satscores s JOIN
ECT AVG(TL NumTstTake) FROM satscores ASTLINNER | |WHERE EXTRACT(YEAR FROM schools opendate) = schools sc N s.cds - c.cdscode WHERE sc opendate
What is the average number of test takers from JOIN schools AS T2 ON T1.cds = T2CDSCode WHERE
schools that opened in the year 19807 TO_CHAR(CAST(T2.OpenDate AS TIMESTAMP), YYYY') = X
'1980" Original Question
whatis oftesttakers 111980 and
1273129807
Ground Truth:
ISELECT AVG(TL NumTtTakr) FROM satscores AS TLINNER JOIN schools AS T2 ON T1.cds - T2CDSCode
Sub-Question 3 Q ST WHERE TO_CHAR(CAST(T2.OpenDate AS TIMESTAMP), 'YYYY') = '1980" AND T2.County = Fresno’
ECT AVG(T1.NumTstTakr) FROM satscores AS T1 INNER \SELECT DISTINCT AVG(satscores.numtsttakr) FROM |SELECT AVG(s.numtesttaker) AS.
What s the average number of test takers from _JOINSchools AST2 ON TLcds =T2CDSCode WHERE satscores JOIN schools ON satscores.cds = Javerage_num.test takers FROM satscores s JOIN
TO_CHAR(CAST(T2.OpenDate AS TIMESTAMP), 'YYYY') = school = 'Fresno = sch.
Fresno schools that opened between 1/1/1980 and DBy AND FROM - 1980 BETWEEN '1980-01-01 AND '1980-12-31
12/31/1980? X |AND sch.county = ‘Fresno™ X
@ (b)
Type: Logic-Based: Clause Abuse Type: Schema-Based: Schema Contradiction
Behavior: Emergent Hallucination Behavior: Recurrent Hallucination

Figure 6: (left) Example of how the original BIRD-mini question is decomposed into sub-
questions and sub-queries. (right) Example depicting the differences between a recurrent and
emergent hallucination.

Algorithm 1 Drill-Down Hallucination Analysis on BIRD-Mini

Original dataset D = {(gi, 5;)}/_1; schema S Annotated failure set % with hallucination categories
Initialize: P < 0, H < 0

(¢i,5:) € D {s]}}"; + DECOMPOSE(s;)

j=1K;q < LLM_REWORD(g;,s],S) P+ PU{(¢l,s],si)}

(g,s", sran) € P 8 < LLM_GENERATESQL(q, S, Sfun)

EXECACCURACY(S) = 0 C <~ CATEGORIZEFAILURE(S, s*,S) H + HU{(q,8,s",C)}

H

Prompt 1: Progressive Question Rewriting Prompt

11

https://api.semanticscholar.org/CorpusId:267061057
https://api.semanticscholar.org/CorpusId:267061057

Under review as a conference paper at ICLR 2026

Let’s take this step-by-step.
Given this database schema: {schema_prompt}
Given this original question: "{original_question}"

Generate a new natural language question that maintains the same
structure and semantics but aligns with the following SQL query:

{partial_sql}

Do not include any information in your generated question that is
not directly included in the query. The original question should
be used as reference to generate this question.

Requirements: - The generated question must correspond exactly to
what this SQL retrieves - Maintain the same domain context and
terminology as the original question - The question should be
answerable using only this SQL query

Generate only the natural language question.

Prompt 2: Text-to-SQL Prompt

Using valid {sgl.dialect} and understanding External Knowledge:
{knowledge}

{base_prompt }{knowledge_text}, answer the following questions for
the tables provided above. Generate the {sql,dialect} for the
above question after thinking step by step:

In your response, you do not need to mention your intermediate
steps.

Do not include any comments in your response.

Do not need to start with the symbol !

You only need to return the result {sgl-dialect} SQL code
start from SELECT

12

	Introduction
	Related Work
	Preliminaries
	Problem Definition
	Evaluation Metrics
	Dataset

	Hallucination Taxonomy
	Methodology
	Decompose and Generate Drill-Down Dataset
	Drill-Down and Annotate Hallucination Patterns

	Experiment
	Results

	Alignment with Prior Work
	Conclusion
	Appendix

