
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DRILL-DOWN ANALYSIS OF LLM HALLUCINATION
PATTERNS IN TEXT-TO-SQL

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite impressive benchmark scores, Large Language Models (LLMs) can still
produce flawed and incorrect responses for Text-to-SQL tasks. While prior work
has decomposed complex SQL queries in an attempt to improve LLM benchmark
performance, few have systematically analyzed hallucination propagation patterns
within these decomposed structures. We present a drill-down evaluation frame-
work that decomposes complex SQL queries and questions from the BIRD-mini
dataset Li et al. (2023), allowing for a fine-grained analysis of hallucination prop-
agation. Through our analysis, we report three key findings: (1) Recurrent Hal-
lucinations: Many hallucinations persistently propagate from early, structurally
simple sub-queries through to final steps, indicating systematic misalignment. (2)
Final-Step Emergence: Fewer, but specific hallucination types emerge in the final
step, suggesting a distinct failure mode tied to query complexity. (3) History Am-
plifies Recurrence: While contextual information between sub-queries can help
to reduce the frequency of emergent hallucinations, it consequently increases the
recurrence of early-stage hallucinations. This framework establishes a method-
ology to better understand LLM weaknesses and failure modes for Text-to-SQL
systems.

1 INTRODUCTION

Recent advances in Text-to-SQL techniques represents a significant leap forward in human-computer
interaction, promising users the ability to query complex databases using everyday conversational
language instead of structured query syntax. At the heart of this transformative technology are
Large Language Models (LLMs), which have demonstrated remarkable proficiency in this task Li
et al. (2024a); Chen et al. (2024); Hong et al. (2024). By leveraging their vast pre-training on di-
verse text and code corpora, LLMs can grasp the semantic intent behind a natural language question,
understand the underlying database schema, and generate an executable SQL query to retrieve the
correct information. This capability is poised to democratize data access, empowering non-technical
stakeholders to directly interact with data and derive insights without the need for specialized pro-
gramming skills, thereby accelerating the pace of data-driven decision-making. However, hallu-
cinations introduced by the LLM remain a consistent and persistent issue in all Text-to-SQL via
LLM pipelines. These hallucinations are a notorious problem in LLMs and refer to instances where
they generate content that is irrelevant, erroneous, or inconsistent with the user’s requests Huang
et al. (2023); Qu et al. (2024); Zhang et al. (2024). While researchers are aware of hallucinations,
interpreting, explaining, and preventing them remains an open area of research.

Crucially, in a text-to-SQL task, a hallucination isn’t just a factual error but a functional failure that
represents a key challenge for AI alignment. An incorrect query could lead to the wrong business
decisions, faulty reports, or even data corruption if the system is designed to execute the queries
without human oversight. Ensuring the LLM produces safe, reliable, correct and intention-aligned
SQL is a fundamental alignment challenge. Furthermore, users will quickly lose trust in a system
that consistently produces queries that fail to execute or return incorrect data. An aligned system
is one that a user can trust to perform its task reliably. Hallucinations erode this trust, which is a
clear symptom of misalignment. While a human can often catch these errors, a truly aligned system
should minimize the need for a human to constantly debug its output. The goal of text-to-SQL is to
empower non-technical users, but hallucinations make this difficult and require a level of technical
expertise to correct.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Drill-down framework; Decompose the BIRD-mini dataset into progressive sub-queries
and sub-questions and evaluate their hallucination patterns.

We present a drill-down hallucination framework and analysis in the Text-to-SQL domain. First,
we decompose the SQL queries into sub-queries which generates a custom drill-down dataset from
an existing Text-to-SQL dataset (Fig. 1). Second, we create an automated pipeline for annotating
a LLMs hallucinations, with a fine-grained taxonomy which builds temporal abstractions on top of
hallucination categories identified by prior research Qu et al. (2024). This novel analysis enables a
deeper investigation into how different types of hallucinations evolve across multi-step generation
paths for Text-to-SQL. Using these annotated results we analyze for recurrent hallucinations, where
the same erroneous instances persist from earlier steps into final outputs, and emergent hallucina-
tions that appear for the first time in final reasoning steps despite having no prior instances. Since
SQL composition gradually increases in complexity, by defining recurrent and emergent hallucina-
tions is, we can determine whether hallucinations originate from earlier stage conditions or from the
model’s difficulty coordinating the full complexity of the final stage.

Our results reveal interesting insights into hallucination patterns and failure mechanisms that are
consistent across six modern LLMs. Understanding and addressing these patterns would provide a
deeper understanding of these models and provide a path to better alignment. Overall, this paper
evaluates six modern LLMs, two from Anthropic Anthropic (2024; 2025) and four from OpenAI
OpenAI (2023; 2024; 2025) in the Text-to-SQL domain, analyzing their hallucinations to better un-
derstand the weaknesses of these models. Briefly, the contributions of this paper can be summarized
as follows:

1. We leverage the decomposable nature of SQL queries to create a drill-down analysis
pipeline that provides an insight into LLM hallucinations when used in text-to-SQL
pipelines.

2. Our experiments uncover two distinct temporal (w.r.t to the sub-query step) failure patterns,
described as recurrent and emergent hallucinations.

3. We evaluate six closed-source frontier models (Claude and GPT variants) and show that
hallucination patterns are consistent across architectures and vendors.

2 RELATED WORK

Early Text-to-SQL systems almost always adopted a sequence-to-sequence framework in which
both the natural-language question and the target database schema were jointly encoded by neural
models. Early efforts relied on recurrent architectures for this encoding Dong & Lapata (2016); Jia
& Liang (2016), before moving toward graph neural networks that explicitly model schema structure
Bastings et al. (2018); Bogin et al. (2019), and, eventually, to pre-trained transformer encoders Yin
et al. (2020); Yu et al. (2021). More recently, LLMs have become a dominant paradigm due to their

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

strong generalization ability, few-shot learning capacity Brown et al. (2020), in-context reasoning
Xie et al. (2021), and chain-of-thought prompting capabilities Wei et al. (2022). These capabilities
allow LLMs to generate SQL queries from natural language with little to no task-specific fine-tuning.
Although this transition has led to notable performance gains on standard benchmarks, it has also
introduced new challenges, one being hallucinations.

Recent papers have introduced new and unique approaches to improve performance and better align
the Text-to-SQL system with the given task. CHASE-SQL Pourreza et al. (2024) represents a re-
cent methodology that uses a divide-and-conquer strategy to decompose complex problems into
sub-components, addressing each component separately before synthesizing the results into a final
solution Pourreza et al. (2024). This technique shows impressive performance improvements on the
BIRD benchmark’s Li et al. (2023) execution accuracy (EX) metric. Inspired from this framework,
we decompose the complete BIRD-mini dataset Li et al. (2023), breaking it down into sequential
sub-components. However, our approach is different from existing research that leverages decom-
position primarily as a step for benchmark optimization. Instead, we conduct a systematic analysis
of hallucination behaviors and patterns within these decomposed structures.

3 DATASET

BIRD-mini We conduct our experiments on the PostgreSQL The PostgreSQL Global Develop-
ment Group (1996–2025) BIRD-mini dataset, a smaller version of the full BIRD benchmark specif-
ically designed to capture the complexity and diversity of BIRD while keeping the experiments
feasible for resource-constrained researchers. Recent work has used BIRD-mini for multi-turn
Text-to-SQL interaction Meng et al. (2025)(CIKM 2025) and industrial NL2SQL agents Jeon et al.
(2025)(NeurIPS TRL workshop). Applying our hallucination annotation and decomposition frame-
work directly to the full BIRD-dev split would more than double its size, requiring tens of thousands
of additional sub-questions and queries, leading to a prohibitive API cost across six LLMs. Instead
of arbitrarily sub-sampling BIRD-dev, we expand BIRD-mini, which has already been curated by
the BIRD authors as a representative, high-quality, and cost-effective subset for Text-to-SQL devel-
opment Li et al. (2023). We expand BIRD-mini to 1383 instances and evaluate this expanded dataset
across six modern LLMs. This expansion reflects the maximum possible decomposition where each
sub-query remains executable, yielding 1383 systematic question–query pairs.

Our drill-down pipeline can be applied to the full BIRD dataset or other benchmarks with mi-
nor configuration changes. In this work, we use BIRD-mini purely for cost reasons; the framework
itself scales to larger benchmarks. We have also validated the framework’s generality by applying it
to a subset of Spider, confirming that it functions as expected beyond BIRD-mini (Appendix A).

4 HALLUCINATION TAXONOMY

Schema-Based and Logic-Based For a more accurate categorization of these hallucinations, we
adopt the taxonomy featured in Qu et al. (2024). which categorizes hallucinations into two main cat-
egories, schema-based and logic-based. Schema-based hallucinations reflect misunderstandings of
the database structure itself, using incorrect tables/columns or unnecessarily attributes. Logic-based
hallucinations involve errors in how the query is constructed, unnecessary joins, clause abuses, or
incorrect math. We describe these hallucination categories in more detail in Appendix B, Table 1.

Recurrent and Emergent Hallucinations Beyond the taxonomy, we will additionally define two
more hallucination behavior types that capture distinct patterns. The first is recurrent hallucinations,
which we define as a hallucination that occurs somewhere in the drill-down path and reappears in
the final step. These errors demonstrate persistence across multiple steps of the drill-down path,
suggesting a more fundamental misunderstanding. The second is emergent hallucinations, which
we define as a hallucination that only occurs in the final step of the drill-down path. These errors
appear to be triggered specifically by the increased complexity and integration requirements of the
complete problem. These categories can be viewed as temporal abstractions, with respect to the
sub-query steps, over the hallucination categories identified in Qu et al. (2024).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Failure Mechanisms For this paper, we interpret these behavioral distinctions as two different
failure mechanisms occurring with these LLMs. Recurrent hallucinations manifest not only when
confronted with the original complex BIRD-mini question, but they also persist in identical ways
when presented with the decomposed versions of the same problem. Emergent hallucinations, con-
versely, capture a failure mode that occurs uniquely with the full complexity of the question and
query. These failures suggest that models can successfully navigate some components of a complex
problem but fail when required to synthesize the final complexity of the original problem.

5 METHODOLOGY

This section will outline the framework we used to perform our drill-down analysis of hallucination
patterns, consisting of three primary components:

1. Decompose the BIRD-mini dataset into progressive sub-questions and sub-queries.

2. Perform drill-down evaluation on multiple LLMs.

3. Categorize and describe the hallucination patterns (Fig. 1).

Follow Algorithm 1 for each step of our framework.

Algorithm 1 Drill-Down Hallucination Analysis on BIRD-Mini
Input: Original dataset D = {(qi, si)}Ni=1; schema S
Output: Annotated failure setH with hallucination categories
Initialize: P ← ∅,H ← ∅
foreach (qi, si) ∈ D do
{sji}

Ki
j=1 ← DECOMPOSE(si)

for j = 1 to Ki do
qji ← LLM REWORD(qi, s

j
i ,S) P ← P ∪ {(q

j
i , s

j
i , si)}

foreach (q, s∗, sfull) ∈ P do
ŝ← LLM GENERATESQL(q,S, sfull)
if EXECACCURACY(ŝ) = 0 then
C ← CATEGORIZEFAILURE(ŝ, s∗,S) H ← H∪ {(q, ŝ, s∗, C)}

returnH

5.1 DECOMPOSE AND GENERATE DRILL-DOWN DATASET

Progressive Sub-Query Generation The proposed framework begins by decomposing each
query from the BIRD-mini benchmark into multiple progressive queries, using an SQL parser Al-
brecht (2024). By parsing progressively from select through where and subsequent and conditions,
we ensure that each sub-query in the drill-down path represents an executable SQL query. Follow
Fig. 1 for an example.

Sub-Question Generation We additionally pair each of these sub-queries with a sub-question
that captures the contents of the sub-query in natural language (NL). To ensure the reliability of
our expanded benchmark, we adopt an asymmetric design choice: all sub-queries are generated
deterministically via sqlparse, while sub-questions are produced by LLMs (GPT-4o-mini) provided
with the BIRD database schema, original question, and our generated sub-queries. We additionally
regenerate the original question with the same method to maintain alignment with the generated
sub-questions. This choice follows recent evidence that formal language → natural language (SQL-
to-NL) is consistently more reliable than the reverse natural language → formal language (NL-to-
SQL).

For example, Evaluating NL-to-SQL via SQL-to-NL shows that SQL-to-NL achieves stronger
Pass@K performance on Spider and produces paraphrases with higher semantic fidelity and fewer
schema-alignment errors than NL-to-SQL Li et al. (2025). These findings support our claim that
LLM-generated sub-questions faithfully capture the meaning of their corresponding SQL sub-
queries, with lower risk of hallucination compared to direct NL-to-SQL generation. Nevertheless,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

this step may introduce subtle artifacts that could influence the hallucination analysis in Section 6,
and should therefore be considered when interpreting the results.

5.2 DRILL-DOWN AND ANNOTATE HALLUCINATION PATTERNS

Following this process, we construct an incremental sequence of questions and queries that gradually
increases in complexity. We transform and expand the original BIRD-mini dataset into a drill-down
dataset which enables us to pinpoint precisely where hallucinations emerge within these incremen-
tal pathways and determine whether these errors propagate to the final stage. We categorize and
annotate these hallucination types and behaviors. A full description of the heuristics and rules we
used to annotate the hallucination types is shown in Appendix D.

6 EXPERIMENT

We systematically evaluated six LLMs, Claude-3.5-sonnet and Claude-3.7-sonnet from Anthropic
Anthropic (2024; 2025), and GPT-4-turbo, GPT-4o-mini, GPT-4.1-mini, and GPT-4-nano from Ope-
nAI OpenAI (2023; 2024; 2025) on our BIRD-mini drill-down dataset for the Text-to-SQL task us-
ing the default prompt provided by BIRD (Appendix E) Li et al. (2024b). To uncover where and
how hallucinations arise, we perform a structural comparison between predicted SQL, ground-truth
SQL, and the database schema at each step of a progressive question path. Each hallucination is
categorized and annotated through this multistep decomposition.

The experiments are designed to address the following research questions:

Research Question 1 Do hallucinations in Text-to-SQL generation primarily originate from the
complexity of the original question, and/or do they instead emerge earlier due to misunderstand-
ings in simpler steps? This question is inspired by recent research from Qu et al. (2024) positing
that hallucinations often arise when models treat decomposed sub-tasks as entirely novel and must
generalize from scratch, rather than leveraging prior experience.

Research Question 2 What hallucination types emerge uniquely at the final stages of Text-to-
SQL generation, and how are these failures correlated with query complexity? We ask this question
because we wish to better understand what hallucination types are emergent and which are recurrent.
More specifically, for the emergent hallucinations we observe, can we correlate this type with the
query complexity at this final step?

Research Question 3 How does access to contextual history from the drill-down path during Text-
to-SQL generation affect the frequency and severity of recurrent versus emergent hallucinations?
What type of role does context history play for LLMs when processing across a drill-down path,
where the context increases along with the complexity?

6.1 EVALUATION METRICS

We adopt the problem formulation from Qu et al. (2024). Given a natural language question Q =
{q1, . . . , q|Q|} and its associated database schema D = ⟨C, T ⟩, where C = {c1, . . . , c|C|} and
T = {t1, . . . , t|T |} represent the sets of column and table names respectively, the goal of the text-
to-SQL task is to generate a valid SQL query y that faithfully reflects the intent encoded in Q.

Execution Accuracy (EX) We evaluate baseline model performance using two main metrics, the
first being Execution Accuracy (EX) Li et al. (2024a), which measures whether a predicted SQL
query ŷ yields the same execution result as the ground truth query y∗ when both are executed on
the same database instance. Formally, let Exec(y,D) denote the result of executing query y on
database D. Then, the EX score for a single example is defined as:

EX(ŷ, y∗) =

{
1 if Exec(ŷ,D) = Exec(y∗,D)

0 otherwise

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The overall EX score across a dataset of N examples is computed as the average:

EXavg =
1

N

N∑
i=1

EX(ŷ(i), y∗(i))

Soft-F1 Score The second metric we use is the Soft-F1 Score Li et al. (2024a). Unlike Execution
Accuracy, which is binary and requires an exact match in result sets, Soft-F1 provides a graded
assessment by measuring partial overlaps between the execution results of the predicted and ground
truth SQL queries. Let T̂ = Exec(ŷ,D) and T ∗ = Exec(y∗,D) be the predicted and ground truth
result tables, respectively. At the tuple level, treating each tuple as a set of values, define;

• True Positives (TP): T̂ and T ∗

• False Positives (FP): T̂ but not in T ∗

• False Negatives (FN): T ∗ but not in T̂

The Soft-F1 score is then computed as:

Soft-F1 =
2 · TP

2 · TP + FP + FN

6.2 RESULTS

Figure 2: Distribution of hallucination types across all experiments. Schema contradiction and
clause abuse emerge as the dominant categories, indicating that models frequently misinterpret
schema structure or over-apply SQL clauses even in decomposed forms.

To validate our setup, we first report baseline performance on BIRD-mini, showing close alignment
with previously reported scores Li et al. (2024a), as shown in Appendix C, Table 3. Additionally,
Fig. 2 displays the most prominent hallucination types across all of the experiments conducted
(average across all models).

P (In Final Step | Occurs in Earlier Steps) Fig. 3 presents the conditional probabilities of
hallucinations occurring in the final step (original BIRD-mini question) given that the identi-
cal hallucination type manifested earlier in the drill-down path, expressed as P (In Final Step |
Occurs in Earlier Steps). The results reveal that hallucinations are not exclusively confined to the
final, most complex step, but rather demonstrate recurrence patterns throughout earlier stages of the
progressive path. Notably, while Schema-Based: Schema Contradiction and Logic-Based: Clause
Abuse represent the two most common hallucination types in our results Fig. 2), they seem to exhibit
different failure mechanisms. Most hallucination types exhibit relatively high recurrence probabili-
ties, with the exception of Logic-Based: Clause Abuse, see (Fig. 3). The persistence of these errors

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Recurrent hallucinations (b) Emergent hallucinations

Figure 3: Probability of recurrent (a) and emergent (b) hallucinations across categories (exact same
hallucination). Recurrent errors show high persistence once introduced (sometimes >50%), while
emergent errors are rarer, with clause abuse being the main exception. This highlights distinct failure
mechanisms between persistence and final-step emergence.

(a) P(Occurs in Earlier Steps) (b) P(In Final Step)

Figure 4: Unconditional probabilities, P(Occurs in Earlier Steps) (a) and P(In Final Step) (b) by
hallucination types. For (a) We see a more even distribution across all categories with Mathematical
Delusion and Join Redundancy having the highest probabilities. For (b) Mathematical Delusion and
Join Redundancy have the lowest probability while Clause Abuse appears to have one of the highest
probability of being in the final step.

across multiple stages, including the initial steps of the path, indicates fundamental misalignment
issues where LLMs struggle with a task even in their most decomposed forms.

P (In Final Step | Does Not Occur Earlier) Conversely, Fig. 3, shows similar probabilities but
for hallucinations that occur in the final step where the exact same hallucination does not occur
anywhere in the drill-down path, P (In Final Step | Does Not Occur Earlier), we observe a distinctly
different pattern. Most hallucination types exhibit considerably lower emergence probabilities com-
pared to their recurrence rates, except for Logic-Based: Clause Abuse, which has a higher probabil-
ity of emergence compared to recurrence. The lower probabilities suggest that most hallucination
types are more likely to propagate from earlier steps, with the outlier being Clause Abuses.

P (In Final Step) and P (Occurs in Earlier Steps) Fig. 4 shows the unconditional probabilities
of hallucination types occurring; in the final step, or in earlier steps. These results seem to follow
some of the patterns observed for the conditional probabilities. We see that the results for P(In Final
Step) displays a similar distribution to the emergent hallucinations table. However, Clause Abuse is
much less pronounced in this unconditional table. Additionally, the results for P(Occurs in Earlier
Steps) shows much higher and uniform distributions for all hallucination types with Mathematical
Delusion and Join Redundancy having the highest probabilities (>80%). Similar to our conditional
probabilities table P (In Final Step | Occurs in Earlier Steps) we see higher probabilities for the
unconditional P(Occurs in Earlier Steps) table. These results make sense intuitively as we see a
much higher density for our P(Occurs in Earlier Steps) vs P(In Final Step). P(Occurs in Earlier
Steps) allows for more chances of hallucinations of the same type during the multiple steps of the
drill-down path, while P(In Final Step) is restricted to the final step.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Probability of recurrent hallucinations with and without history/context. Providing his-
tory consistently increases recurrence rates across models, showing that context can inadvertently
reinforce early-stage errors rather than correcting them.

Figure 6: Probability of emergent hallucinations with and without history/context. In contrast
to recurrent patterns, history reduces emergence rates, suggesting a protective effect against new
errors but at the cost of amplifying persistent ones.

LLM History Attention Furthermore, examination of the results comparing history attention to
the progressive path versus no attention reveals an interesting duality in hallucination behavior pat-
terns. When models maintain access to conversational history throughout the progressive path, we
observe a significant increase in the probability of recurrent hallucinations across all tested models
compared to the context-free condition (Fig. 5). This suggests that contextual memory can inadver-
tently reinforce hallucination patterns established in earlier steps. In contrast, the presence of history

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

attention demonstrates a more protective effect against emergent hallucinations, reducing the prob-
ability of occurrence (Fig. 6). These results point towards a potential trade-off between emergent
hallucination protection and recurrent hallucination amplification.

Quantitative Analysis The strongest model (GPT-4.1-Mini) achieves 42.8% EX and 46.5% F1,
while the weakest (GPT-4.1-Nano) records 30.0% EX and 33.49% F1. We also notice that per-
formance drops rapidly with query complexity. Even with easy questions, the best EX reaches
59.46%, but drops to only 21.57% on challenging queries. We also find that adding contextual
history decreases EX by ∼1.1 points and F1 by ∼0.6 points. For example, Claude-3.7-Sonnet im-
proves slightly (38.8 → 39.8 EX), whereas GPT-4.1-Mini drops (42.8 → 40.0 EX). Figures 5–6
further demonstrates how recurrent errors seem to dominate and once they occur, they reappear
in the final step with probabilities exceeding 50% for schema contradictions. Whereas, emergent
hallucinations are less frequent for most hallucination types, excluding clause abuses. Finally, his-
tory impacts these distributions, raising recurrence anywhere from ∼2–37% across categories while
reducing emergence by ∼2–11%.

7 THEORETICAL ANALYSIS

In this section, we interpret the patterns identified in our experiments to help explain some of the
mechanisms driving hallucination in Text-to-SQL systems. The goal of this section is to connect
the observed results to broader theoretical principles regarding Text-to-SQL failure formation and
propagation. We now answer the three research questions introduced in Section 6 by examining how
hallucinations originate, evolve, and respond to contextual history across the progressive query path.

Research Question 1 Hallucinations often originate in early sub-queries rather than only at the fi-
nal complex step. High values of P (In Final Step | Occurs in Earlier Steps) for many types indicate
that once a failure appears in a simple sub-query, it is likely to persist. This supports the view that
some failures are driven by misunderstandings already present at low complexity.

Research Question 2 Emergent hallucinations are dominated by Clause Abuse, which appears
primarily in the final query despite being absent in earlier steps. This suggests that certain logic-
based errors arise specifically when the model must decide which global clauses are needed for the
full problem, rather than from earlier misinterpretations. Additionally, the final step introduces the
greatest number of global clauses, making it the stage where clause-related hallucinations are most
likely to appear.

Research Question 3 Contextual history has a dual effect: it amplifies recurrent hallucinations by
repeatedly exposing the model to earlier erroneous patterns, while simultaneously reducing emer-
gent hallucinations by providing more information about prior reasoning and partial successes. This
duality implies that history is beneficial for stabilizing correct patterns but can also stabilize incorrect
ones.

7.1 IMPLICATIONS FOR MITIGATION

Now, we will describe three implications for mitigation of hallucinations in Text-to-SQL based on
our research questions and findings. These implications are not prescriptive but rather conceptual
guides resulting from our experiments on how hallucinations arise, propagate, and interact with
system design choices. Each reflects a distinct structural property of hallucination behavior we
observed.

Early-step verification: This is motivated by the fact that both our conditional and unconditional
probabilities showed a much higher density of hallucination when looking at the progressive paths
before the final step. Because many failures originate in simpler sub-queries and then propagate,
systems should focus on verifying or repairing early steps before allowing the model to build the
full query.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

History usage as a design choice: Based on our results it seems that contextual history is not
uniformly beneficial. For tasks where recurrent schema failures dominate, truncated or selectively
filtered history may be preferable to full history. Conversely, for tasks where emergent clause-related
errors are prevalent, providing history may reduce final-step failures.

Schema alignment as a priority: The dominance and recurrence of Schema Contradiction rein-
force the importance of pre-generation schema alignment, as emphasized by Qu et al. (2024). Our
temporal analysis shows that misaligned schema usage tends to persist even after decomposition.

We further emphasize that these mitigation implications are exploratory insights based on our ex-
periments, not finalized techniques.

8 EXPANDING ON PRIOR WORK

“Before Generation, Align it!” Qu et al. emphasizes the importance of pre-generation alignment
between natural language and schema to mitigate schema-related hallucinations Qu et al. (2024).
Our results support the claim that schema contradiction is one of the most prominent type of halluci-
nations in the Text-to-SQL domain. Furthermore, we have consistent results showing how recurrent
schema hallucinations frequently persist into the final steps for all models tested (Figure 5).

“A Study of In-Context-Learning-Based Text-to-SQL Errors” Shen et al. present a taxonomy
of 29 error types in in-context-learning (ICL) text-to-SQL Shen et al. (2025). This study quantifies
overall error prevalence and repair challenges, we examine how these error types behave over the
course of multi-step drill-down generation. By introducing recurrent and emergent hallucinations,
we provide a new temporal perspective that extends beyond a static categorization.

9 CONCLUSION

Large language models (LLMs) currently demonstrate excellent capabilities in a variety of tasks,
including text-to-SQL. However, hallucinations generated from the outputs of these models pose
serious challenges for interpretability, alignment, and overall adoption into text-to-SQL systems. In
this paper, we conduct a drill-down analysis to trace where in progressive query paths hallucinations
arise. Our findings align with recent research that hallucinations can arise when models misinterpret
the decomposed stages of a task as entirely new challenges Qu et al. (2024). However, we also find
that it is common for hallucinations to reappear from earlier, and much simpler, steps into the final
complex query. Finally, we report an inverse relationship with emergent and recurrent hallucinations
when context to the drill-down path is provided to the LLM. We see a more protective behavior for
emergent hallucinations but inversely an amplifying effect for recurrent hallucinations.

Our experiments reveal interesting nuances of LLM Hallucinations in the Text-to-SQL domain,
providing researchers with a deeper insight into how these models are failing. Our hope is that these
findings can help guide future work to improve Text-to-SQL systems. Ultimately, we aim for these
insights to spur new research and alignment strategies that treat hallucination not as an unpredictable
artifact, but as a diagnosable and preventable failure mode in Text-to-SQL systems.

10 LIMITATIONS

Our analysis, while systematic, has several limitations. First, we conduct all experiments on BIRD-
mini for cost reasons. Second, we evaluate only closed-source frontier LLMs, which could restrict
reproducibility. Third, we rely on LLM-generated sub-questions and this step may introduce subtle
artifacts that influence model behavior. Additionally, our hallucination taxonomy and annotations
use deterministic rule-based heuristics without large-scale human validation. Finally, the mitigation
implications we propose are diagnostic insights derived from observed patterns, not fully developed
or experimentally verified solutions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Andi Albrecht. sqlparse: A non-validating sql parser for python. https://github.com/
andialbrecht/sqlparse, 2024. Accessed: 2025-08-02.

Anthropic. Claude 3.5 sonnet technical overview, 2024. URL https://www.anthropic.
com/news/claude-3-5-sonnet. Accessed: 2025-07-29.

Anthropic. Claude 3.7 (preview). https://www.anthropic.com, 2025. Forthcoming release;
citation will be updated when official report is published.

Jasmijn Bastings, Ivan Titov, Wilker Aziz, and Diego Marcheggiani. Graph neural networks with
generated parameters for relation extraction. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2018.

Boaz Bogin, Joseph Keshet, and Jonathan Berant. Rat-sql: Relation-aware schema encoding and
linking for text-to-sql parsers. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2019.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, G irish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Hong Chen, Ju Fan, Cuiping Li, Renjie Wei, Jing Zhang, Hongyan Pan, Haoyang Li, Xiaokang
Zhang, Hanbing Liu, and Jun Zhu. Codes: Towards building open-source language models for
text-to-sql. Proceedings of the ACM on Management of Data, 2:1 – 28, 2024. URL https:
//api.semanticscholar.org/CorpusId:267938784.

Li Dong and Mirella Lapata. Language to logical form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (ACL), 2016.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql. ArXiv,
abs/2406.08426, 2024. URL https://api.semanticscholar.org/CorpusId:
270391628.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in
large language models: Principles, taxonomy, challenges, and open questions. 2023. Accessed:
2025-07-28.

Aiden Sehun Jeon, Junwoo Lee, and Chris Haotian Li. Leveraging multi-source seeding in genetic
algorithms for efficient test-time reasoning. In NeurIPS 2025 Workshop on Efficient Reasoning,
2025. Evaluates LLM reasoning with BIRD Mini-Dev.

Robin Jia and Percy Liang. Data recombination for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (ACL), 2016.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C.
Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Bird: Big bench for large-scale database
grounded text-to-sql evaluation. arXiv preprint arXiv:2305.03111, 2023. URL https://
arxiv.org/abs/2305.03111.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024a.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin CC Chang, Reynold
Cheng, and Fei Huang. Evaluating nl2sql via sql2nl. arXiv preprint arXiv:2509.04657, 2025.

11

https://github.com/andialbrecht/sqlparse
https://github.com/andialbrecht/sqlparse
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com
https://api.semanticscholar.org/CorpusId:267938784
https://api.semanticscholar.org/CorpusId:267938784
https://api.semanticscholar.org/CorpusId:270391628
https://api.semanticscholar.org/CorpusId:270391628
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaolong Li, Jinyang Li, Ge Qu, Binyuan Hui, Reynold Cheng, and Chenhao Ma. Bird mini-dev
dataset. https://github.com/bird-bench/mini_dev, 2024b. Accessed: 2024.

Xiangfu Meng, Runzhi Liu, Xinyi Yang, Junyi Gao, Pranav Narayan, Matthew Agar-Johnson, Amir-
Hamed Mohsenian-Rad, Rui Zhang, Chuan Lei, and Yu Su. Multi-turn interactions for text-
to-sql with large language models. In Proceedings of the 34th ACM International Conference
on Information and Knowledge Management (CIKM), 2025. Uses BIRD Mini-Dev as a core
benchmark.

OpenAI. Gpt-4 technical report, 2023. URL https://openai.com/research/gpt-4. Ac-
cessed: 2025-07-19.

OpenAI. Gpt-4o: Openai’s new omnimodal model, 2024. URL https://openai.com/
index/gpt-4o. Accessed: 2025-07-25.

OpenAI. Gpt-4.1-mini model. https://openai.com, 2025. Model accessed via OpenAI API
on 2025-07-26. No technical report available at time of writing.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Özcan, and Sercan O. Arık. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in text-to-sql. arXiv preprint arXiv:2410.01943,
2024. doi: 10.48550/arXiv.2410.01943. URL https://arxiv.org/abs/2410.01943.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold Cheng. Before
generation, align it! a novel and effective strategy for mitigating hallucinations in text-to-sql
generation. arXiv preprint arXiv:2405.15307v1, May 2024. URL https://arxiv.org/
abs/2405.15307. Version 1.

Jiawei Shen, Chengcheng Wan, Ruoyi Qiao, Jiazhen Zou, Hang Xu, Yuchen Shao, Yueling Zhang,
Weikai Miao, and Geguang Pu. A study of in-context-learning-based text-to-sql errors. arXiv
preprint arXiv:2501.09310, 2025.

The PostgreSQL Global Development Group. Postgresql, 1996–2025. URL https://www.
postgresql.org/. Version 16.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

Sang Michael Xie, Yao Lu, Aditi Raghunathan, Percy Liang Yin, and Chelsea Finn. Explanation-
based prompting for continual learning. arXiv preprint arXiv:2104.07143, 2021.

Pengfei Yin, Graham Hay, Graham Neubig, Benjamin Van Durme, and Jason Eisner. Tabert: Pre-
training for joint understanding of textual and tabular data. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2020.

Tao Yu, Long Jiang, Rui Wang, Zhe Gan, Xiaoyan Shi, and Ming Zhou. Grappa: Grammar-
augmented pre-training for table semantic parsing. In Proceedings of the 2021 Annual Meeting
of the Association for Computational Linguistics (ACL), 2021.

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun Gao, Lu Chen, Dongfang Lou, and Jinshu
Lin. Finsql: Model-agnostic llms-based text-to-sql framework for financial analysis. Companion
of the 2024 International Conference on Management of Data, 2024. URL https://api.
semanticscholar.org/CorpusId:267061057.

A APPENDIX: SAMPLE SPIDER BENCHMARK RESULTS

[
{

"path": [
{

"question_id": 786,
"db_id": "world_1",

12

https://github.com/bird-bench/mini_dev
https://openai.com/research/gpt-4
https://openai.com/index/gpt-4o
https://openai.com/index/gpt-4o
https://openai.com
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://www.postgresql.org/
https://www.postgresql.org/
https://api.semanticscholar.org/CorpusId:267061057
https://api.semanticscholar.org/CorpusId:267061057

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

"question": "Which unique cities are in Asian countries where Chinese is an
↪→ official language?",

"SQL": "select distinct t3.name from country as t1 join countrylanguage as t2
↪→ on t1.code = t2.countrycode join city as t3 on t1.code = t3.
↪→ countrycode where t2.isofficial = ’t’ and t2.language = ’chinese’ and
↪→ t1.continent = ’asia’",

"predicted_query": "SELECT DISTINCT city.Name FROM city JOIN country ON city.
↪→ CountryCode = country.Code JOIN countrylanguage ON country.Code =
↪→ countrylanguage.CountryCode WHERE country.Continent = ’Asia’ AND
↪→ countrylanguage.Language = ’Chinese’ AND countrylanguage.IsOfficial =
↪→ ’T’",

"evidence": "",
"correct": 1,
"error": null,
"is_original": true

}
]

},
{

"path": [
{

"question_id": 896,
"db_id": "network_1",
"question": "\"Show names of all high school students who are not friends with

↪→ anyone.\"",
"SQL": "SELECT name FROM Highschooler EXCEPT SELECT T2.name FROM Friend AS T1

↪→ JOIN Highschooler AS T2 ON T1.student_id = T2.id",
"predicted_query": "SELECT ’name’ FROM ’Highschooler’ WHERE ’ID’ NOT IN (

↪→ SELECT ’student_id’ FROM ’Friend’) AND ’ID’ NOT IN (SELECT ’
↪→ friend_id’ FROM ’Friend’)",

"evidence": "",
"correct": 0,
"error": null,
"is_original": true,
"hallucination": [

[
"Logic-Based: Clause Abuse",
"Unexpected clause ’SELECT’"

],
[

"Logic-Based: Clause Abuse",
"Unexpected clause ’FROM’"

],
[

"Logic-Based: Clause Abuse",
"Unexpected clause ’WHERE’"

],
}

]
},
{

"path": [
{

"question_id": 1033,
"db_id": "real_estate_properties",
"question": "What are the names of properties?",
"SQL": "SELECT property_name FROM Properties",
"predicted_query": "SELECT ’property_name’ FROM ’Properties’",
"evidence": "",
"correct": 1,
"error": null,
"is_original": false

},
{

"question_id": 1033,
"db_id": "real_estate_properties",
"question": "What are the names of properties that are houses?",
"SQL": "SELECT property_name FROM Properties WHERE property_type_code = ’House

↪→ ’",
"predicted_query": "SELECT ’property_name’ FROM ’Properties’ JOIN ’

↪→ Ref_Property_Types’ ON ’Properties’.’property_type_code’ = ’
↪→ Ref_Property_Types’.’property_type_code’ WHERE ’
↪→ property_type_description’ = ’House’",

"evidence": "",
"correct": 0,
"error": null,
"is_original": false,
"hallucination": [

[
"Schema-Based: Attribute Overanalysis",
"Extra column ’property_type_description’",

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

],
[

"Logic-Based: Clause Abuse",
"Unexpected clause ’ON’"

],
[

"Logic-Based: Join Redundancy",
"1 extra JOIN(s)"

]
]

},
{

"question_id": 1033,
"db_id": "real_estate_properties",
"question": "What are the names of properties that are either houses or

↪→ apartments with room count greater than 1?",
"SQL": "SELECT property_name FROM Properties WHERE property_type_code = ’House

↪→ ’ UNION SELECT property_name FROM Properties WHERE property_type_code
↪→ = ’Apartment’ AND room_count > 1",

"predicted_query": "SELECT ’property_name’ FROM ’Properties’ p JOIN ’
↪→ Ref_Property_Types’ pt ON p.’property_type_code’ = pt.’
↪→ property_type_code’ WHERE pt.’property_type_description’ IN (’house’,
↪→ ’apartment’) AND p.’room_count’ > 1",

"evidence": "",
"correct": 0,
"error": null,
"is_original": true,
"hallucination": [

[
"Schema-Based: Attribute Overanalysis",
"Extra column ’property_type_description’",

],
[

"Logic-Based: Clause Abuse",
"Unexpected clause ’ON’"

],
[

"Logic-Based: Join Redundancy",
"1 extra JOIN(s)"

]
]

}
]

},
{

"path": [
{

"question_id": 599,
"db_id": "tvshow",
"question": "\"What are the contents of TV channels?\"",
"SQL": "SELECT Content FROM TV_Channel",
"predicted_query": "SELECT ’Content’ FROM ’TV_Channel’",
"evidence": "",
"correct": 1,
"error": null,
"is_original": false

},
{

"question_id": 599,
"db_id": "tvshow",
"question": "What is the content of the series named ’Sky Radio’?",
"SQL": "SELECT Content FROM TV_Channel WHERE series_name = ’Sky Radio’ ;",
"predicted_query": "SELECT ’Content’ FROM ’TV_Channel’ WHERE ’series_name’ = ’

↪→ Sky Radio’",
"evidence": "",
"correct": 1,
"error": null,
"is_original": false

},
{

"question_id": 599,
"db_id": "tvshow",
"question": "What is the content of the TV series named ’Sky Radio’?",
"SQL": "SELECT Content FROM TV_Channel WHERE series_name = ’Sky Radio’;’",
"predicted_query": "SELECT ’Content’ FROM ’TV_Channel’ WHERE ’series_name’ = ’

↪→ Sky Radio’",
"evidence": "",
"correct": 1,
"error": null,
"is_original": true

}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

]
},
{

"path": [
{

"question_id": 212,
"db_id": "flight_2",
"question": "How many flights fly from a specific source airport to a specific

↪→ destination airport?",
"SQL": "SELECT count() FROM FLIGHTS AS T1 JOIN AIRPORTS AS T2 ON T1.

↪→ DestAirport = T2.AirportCode JOIN AIRPORTS AS T3 ON T1.SourceAirport =
↪→ T3.AirportCode",

"predicted_query": "SELECT COUNT() FROM ’flights’ WHERE ’SourceAirport’ = ’
↪→ SpecificSourceCode’ AND ’DestAirport’ = ’SpecificDestCode’",

"evidence": "",
"correct": 0,
"error": null,
"is_original": false,
"hallucination": [

[
"Logic-Based: Clause Abuse",
"Unexpected clause SELECT "

],
[

"Logic-Based: Clause Abuse",
"Unexpected clause FROM "

],
[

"Logic-Based: Clause Abuse",
"Unexpected clause ’WHERE’"

]
]

},
{

"question_id": 212,
"db_id": "flight_2",
"question": "How many flights fly from Aberdeen to Ashley?",
"SQL": "SELECT count() FROM FLIGHTS AS T1 JOIN AIRPORTS AS T2 ON T1.

↪→ DestAirport = T2.AirportCode JOIN AIRPORTS AS T3 ON T1.SourceAirport =
↪→ T3.AirportCode WHERE T2.City = ’Ashley’",

"predicted_query": "SELECT COUNT() FROM ’flights’ WHERE ’SourceAirport’ = (
↪→ SELECT ’AirportCode’ FROM ’airports’ WHERE ’City’ = ’Aberdeen’) AND ’
↪→ DestAirport’ = (SELECT ’AirportCode’ FROM ’airports’ WHERE ’City’ = ’
↪→ Ashley’)",

"evidence": "",
"correct": 0,
"error": null,
"is_original": false,
"hallucination": [

[
"Logic-Based: Clause Abuse",
"Unexpected clause SELECT "

],
[

"Logic-Based: Clause Abuse",
"Unexpected clause FROM "

],
[

"Logic-Based: Clause Abuse",
"Unexpected clause ’WHERE’"

]
]

},
{

"question_id": 212,
"db_id": "flight_2",
"question": "How many flights fly from Aberdeen to Ashley?",
"SQL": "SELECT count() FROM FLIGHTS AS T1 JOIN AIRPORTS AS T2 ON T1.

↪→ DestAirport = T2.AirportCode JOIN AIRPORTS AS T3 ON T1.SourceAirport =
↪→ T3.AirportCode WHERE T2.City = ’Ashley’ AND T3.City = ’Aberdeen’",

"predicted_query": "SELECT COUNT() FROM ’flights’ WHERE ’SourceAirport’ = (
↪→ SELECT ’AirportCode’ FROM ’airports’ WHERE ’City’ = ’Aberdeen’) AND ’
↪→ DestAirport’ = (SELECT ’AirportCode’ FROM ’airports’ WHERE ’City’ = ’
↪→ Ashley’)",

"evidence": "",
"correct": 0,
"error": null,
"is_original": true,
"hallucination": [

[
"Logic-Based: Clause Abuse",

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 1: Taxonomy of hallucination types observed in failed SQL generations, originally adopted
from Qu et al. (2024).

Category Description
Schema-Based: Schema Contra-
diction

The predicted query uses invalid or unknown tables,
columns, or aliases not present in the database schema.
Also includes misuse of wildcard or backtick syntax.

Schema-Based: Attribute Over-
analysis

The query introduces valid but unnecessary tables or
columns that are not present in the ground truth, result-
ing in over-specific or redundant retrieval logic.

Schema-Based: Value Misrepre-
sentation

The query mishandles data representation, such as in-
correct or missing type casts, or inconsistent literal val-
ues.

Logic-Based: Join Redundancy The query contains more JOIN operations than the
ground truth, indicating hallucinated or spurious table
relationships.

Logic-Based: Clause Abuse The query includes structural SQL clauses (e.g.,
GROUP BY, LIMIT, ORDER BY) or logical operators
(e.g., AND, OR) that were absent in the ground truth.

Logic-Based: Mathematical Delu-
sion

The query exhibits invalid or misleading numerical rea-
soning, such as uncasted division, misuse of %, im-
proper use of BETWEEN, or syntax errors in arithmetic
expressions.

Table 2: Recurrent vs. emergent hallucination definitions in the drill-down analysis.

Category Description
Recurrent Hallucination A hallucination that occurs somewhere in the drill-

down path and reappears again in the final step.

Emergent Hallucination A hallucination that manifests in the final step of the
drill-down path with no prior instances in earlier steps.

"Unexpected clause SELECT "
],
[

"Logic-Based: Clause Abuse",
"Unexpected clause FROM "

],
[

"Logic-Based: Clause Abuse",
"Unexpected clause ’WHERE’"

]
]

}
]

}
]

B APPENDIX: TAXONOMY OF HALLUCINATION TYPES

C APPENDIX: EXPERIMENT RESULTS (EX, SOFT-F1)

D APPENDIX: HALLUCINATION ANNOTATION RULES

This appendix details the deterministic rule-based procedure we use to annotate hallucination cat-
egories in predicted SQL queries. Each predicted query is compared against its ground-truth SQL
and the corresponding BIRD schema. The rules below correspond exactly to the implementation
used during evaluation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 3: BIRD-mini EX Accuracy (%) and Soft F1-Scores across Difficulty Levels

Model Simple Moderate Challenging Total
Count 148 250 102 500

Claude-3.5-Sonnet 56.08 35.20 23.53 39.00 (EX)
59.39 38.61 31.15 43.24 (F1)

Claude-3.5-Sonnet (+ History) 50.00 34.40 20.59 36.20 (EX)
56.93 37.84 29.01 41.69 (F1)

Claude-3.7-Sonnet 51.35 38.40 21.57 38.80 (EX)
55.09 43.58 29.59 44.13 (F1)

Claude-3.7-Sonnet (+ History) 52.70 38.40 24.51 39.80 (EX)
57.32 42.10 30.78 44.30 (F1)

GPT-4.0-Turbo 58.78 34.00 17.65 38.00 (EX)
60.66 38.45 24.14 42.11 (F1)

GPT-4.0-Turbo (+ History) 55.41 37.60 19.61 39.20 (EX)
57.45 40.48 25.16 42.38 (F1)

GPT-4.0-o-Mini 47.97 31.60 13.73 32.80 (EX)
50.87 34.42 20.63 36.48 (F1)

GPT-4.0-o-Mini (+ History) 47.30 31.20 14.71 32.60 (EX)
48.82 33.57 20.10 35.34 (F1)

GPT-4.1-nano 47.97 26.80 11.76 30.00 (EX)
50.05 29.40 19.49 33.49 (F1)

GPT-4.1-nano (+ History) 50.68 28.40 15.69 32.40 (EX)
52.50 32.16 18.89 35.47 (F1)

GPT-4.1-Mini 59.46 41.60 21.57 42.80 (EX)
61.47 45.04 28.48 46.53 (F1)

GPT-4.1-Mini (+ History) 56.08 39.20 18.63 40.00 (EX)
58.33 42.33 24.09 43.35 (F1)

D.1 ANNOTATION PIPELINE OVERVIEW

For each step in a drill-down path, we execute the following procedure:

1. Parse SQL structure: Extract tables, columns, aliases, alias–column pairs, SELECT ele-
ments, JOIN structures, and literal values from both the ground-truth and predicted queries.

2. Normalize queries: Convert both SQL strings to lowercase and uppercase variants to sup-
port rule-specific pattern matching.

3. Compare predicted SQL to the schema and ground truth: Validate every table, column,
alias, clause, and operator against:

(a) the database schema,

(b) the ground-truth SQL query, and

(c) SQL structural constraints.

4. Assign hallucination categories: Violations are mapped to one of six main hallucination
types.

5. Deduplicate: Each hallucination type is counted at most once per query step, though mul-
tiple subcategories may be recorded.

We adopt the hallucination taxonomy described in the main paper: Schema-Based (Schema Contra-
diction, Attribute Overanalysis, Value Misrepresentation) and Logic-Based (Clause Abuse, Mathe-
matical Delusion, Join Redundancy).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.2 SCHEMA-BASED HALLUCINATIONS

D.2.1 SCHEMA CONTRADICTION

A prediction is labeled as a Schema Contradiction when it violates the database schema in any of
the following ways:

• Unknown tables: Use of tables not present in the database schema.
• Unknown columns: Use of columns that do not appear in any table referenced in the

query.
• Alias errors:

– alias refers to a nonexistent table,
– aliased column does not exist in the referenced table.

• Wildcard or backtick misuse: Presence of patterns such as table.* or MySQL-style
backticks.

• Missing table reference: A column exists in the schema but is used without including its
table in the FROM or JOIN clauses.

D.2.2 ATTRIBUTE OVERANALYSIS

A prediction is labeled as Attribute Overanalysis when it adds valid but unnecessary schema ele-
ments that do not appear in the ground truth:

• Extra columns not used in the ground-truth query.
• Extra tables joined despite not being needed to answer the question.

This captures over-specification rather than invalid schema references.

D.2.3 VALUE MISREPRESENTATION

A prediction is labeled as Value Misrepresentation when it mishandles literal values or type-casting
semantics, such as:

• mismatched or altered literal values in the WHERE clause,
• unnecessary casts present in the prediction but absent in the ground truth,
• missing casts that appear in the ground truth.

D.3 LOGIC-BASED HALLUCINATIONS

D.3.1 CLAUSE ABUSE

A prediction is labeled as Clause Abuse when it introduces structural SQL clauses or logical con-
structs that do not appear in the ground truth, including:

• extra top-level clauses such as GROUP BY, HAVING, ORDER BY, LIMIT, or OFFSET,
• unnecessary logical operators such as OR or extraneous uses of AND,
• introduction of JOIN variants, CTEs, set operations, or vendor-specific syntax not present

in the ground truth.

D.3.2 MATHEMATICAL DELUSION

A prediction is labeled as Mathematical Delusion when it introduces faulty mathematical or oper-
ator semantics, such as:

• integer division without casting,
• misuse of the modulo operator (%) as a percentage,
• inappropriate use of BETWEEN outside valid numeric/date ranges,
• malformed or incomplete operator structures identified through SQL parser errors.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.3.3 JOIN REDUNDANCY

A prediction is labeled as Join Redundancy when it contains more JOIN operations than the ground
truth, indicating hallucinated relational reasoning.

D.4 DEDUPLICATION PROCEDURE

For each query step:

• Each main hallucination type is counted at most once.
• All subcategory descriptions are recorded for fine-grained analysis.
• An annotated list of hallucinations is stored in the evaluation JSON for reproducibility.

This rule-based annotation pipeline ensures that hallucination labels are precise, interpretable, and
fully consistent across all models and all drill-down steps analyzed in the paper.

E APPENDIX: PROMPTS

Prompt 1: Progressive Question Rewriting Prompt

Let’s take this step-by-step.

Given this database schema: {schema prompt}
Given this original question: "{original question}"
Generate a new natural language question that maintains the same
structure and semantics but aligns with the following SQL query:

{partial sql}
Do not include any information in your generated question that is
not directly included in the query. The original question should
be used as reference to generate this question.

Requirements: - The generated question must correspond exactly to
what this SQL retrieves - Maintain the same domain context and
terminology as the original question - The question should be
answerable using only this SQL query

Generate only the natural language question.

Prompt 2: Text-to-SQL Prompt

Using valid {sql dialect} and understanding External Knowledge:
{knowledge}
{base prompt}{knowledge text}, answer the following questions for
the tables provided above. Generate the {sql dialect} for the
above question after thinking step by step:

In your response, you do not need to mention your intermediate
steps.

Do not include any comments in your response.

Do not need to start with the symbol ‘‘

You only need to return the result {sql dialect} SQL code

start from SELECT

19

	Introduction
	Related Work
	Dataset
	Hallucination Taxonomy
	Methodology
	Decompose and Generate Drill-Down Dataset
	Drill-Down and Annotate Hallucination Patterns

	Experiment
	Evaluation Metrics
	Results

	Theoretical Analysis
	Implications for Mitigation

	Expanding on Prior Work
	Conclusion
	Limitations
	Appendix: Sample Spider Benchmark Results
	Appendix: Taxonomy of hallucination types
	Appendix: Experiment Results (EX, Soft-F1)
	Appendix: Hallucination Annotation Rules
	Annotation Pipeline Overview
	Schema-Based Hallucinations
	Schema Contradiction
	Attribute Overanalysis
	Value Misrepresentation

	Logic-Based Hallucinations
	Clause Abuse
	Mathematical Delusion
	Join Redundancy

	Deduplication Procedure

	Appendix: Prompts

