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ABSTRACT

The ability to generalize different dynamics is crucial for decision-making in au-
tonomous driving that relies on high-dimensional inputs. The latent world model
provides a promising way to learn policies in a compact latent space for tasks
with high-dimensional observations, however, its generalization across diverse en-
vironments with unseen dynamics remains challenging. Although the recurrent
structure utilized in current advances helps to capture local dynamics, modeling
only state transitions without an explicit understanding of environmental context
limits the generalization ability of the dynamics model. To address this issue,
we propose a Prototypical Context-Aware Dynamics (ProtoCAD) model, which
captures the local dynamics by temporally consistent latent context and enables
dynamics generalization in high-dimensional control tasks. ProtoCAD extracts
useful contextual information with the prototypes clustered over the batch, and it
benefits model-based reinforcement learning in two ways: 1) A temporally con-
sistent prototypes regularizer is utilized, which encourages the prototype assign-
ments produced for different temporal parts of the same latent trajectory to be
temporally consistent instead of comparing the features; 2) A context representa-
tion is designed, which combines both projection embedding of latent states and
aggregated prototypes and can significantly improve the dynamics generalization
ability. Extensive experiments show that ProtoCAD surpasses existing methods in
terms of dynamics generalization.

1 INTRODUCTION

Autonomous driving with high-dimensional observations requires a powerful characterizer to make
sense of the surrounding environment and generalize to new situations. In case autonomous driv-
ing decision-making is modeled as a Reinforcement Learning (RL) problem, different traffic flow
densities, driving styles, road segments, weather, etc. can lead to different dynamics in the Markov
Decision Process (MDP). Thus, RL policies with dynamics generalization capability are critical for
autonomous driving. Latent world models (Ha & Schmidhuber, 2018) summarize an agent’s expe-
rience from high-dimensional observations to facilitate learning complex behaviors in a compact la-
tent space. Current advances (Hafner et al., 2019; 2020; Wang et al., 2022) leverage Recurrent Neu-
ral Networks (RNNs) to extract historical information from high-dimensional observations as com-
pact latent representations and enable imagination in the latent space. It is shown that RNN-based
models that model only latent state transitions have a certain ability to generalize across different
dynamics (Lu et al., 2022). Recently, some works of dynamics generalization on low-dimensional
tasks (Lee et al., 2020; Seo et al., 2020; Guo et al., 2022) demonstrate that extracting environmen-
tal context information from historical trajectories as additional input to the model can benefit both
model learning and policy planning, and can improve the generalization ability among different dy-
namics. An intuitive question is “How to extract effective environmental context information under
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Figure 1: Comparison of different latent world models. We introduce a novel temporally consistent
prototypical regularizer into the RSSM (Hafner et al., 2019) framework. Here, h and z denote
deterministic and stochastic states, respectively, and o denotes observation. The temporal crossover
self-supervised loss provided by this additional regularizer facilitates the extraction of dynamics-
related states by the model, while the learned prototypes summarize the characteristics of the seen
environments in the experience of the agent. Compared to Dreamer (Hafner et al., 2020), which
uses RSSM as a dynamics model, and DreamerPro (Deng et al., 2022), which combines RSSM and
prototypes for representation, ProtoCAD has better generalization performance.

high-dimensional observations if it helps to improve the dynamics generalization of RNN-based la-
tent world models?” Unfortunately, in high-dimensional observation space, it is difficult to simply
apply the aforementioned methods to directly derive environmental context information and rollout
the dynamics model for policy planning. For tasks with high-dimensional sensor inputs, dynamics
generalization remains challenging. Therefore, in this paper, we investigate how to equip the latent
world model with context information about the environment to cope with dynamics generalization.

To reduce the difficulty of extracting contextual information from high-dimensional observations, we
present the Prototypical Context-Aware Dynamics (ProtoCAD) model, which learns context using
data-clustering prototypes. The prototypes summarize the characteristics of dynamics in historical
experience and are flexible to extend to unseen dynamics. Instead of comparing features directly,
we enforce temporal consistency between prototype assignments produced for different time parts
of the same observation sequence. Specifically, we first make two different augmentations from
the historical observation sequence and embed them into latent states. Then, those latent states are
fed into linear projectors to obtain the projection embedding. To extract accurate dynamics-specific
information, we regularize the projections and prototypes to be time consistent in a sequence and
invariant to spatial perturbations by a modified temporal crossover SwAV (Caron et al., 2020) loss.
By calculating the probability that the projections are matched with prototypes, we can obtain an
aggregate prototype by combining the learned prototypes with the probabilities as weights. Finally,
both the projection embedding and aggregated prototypes are combined as the context representation
for policy learning to capture contextual information among different dynamics. Figure 1 illustrates
a brief schematic of ProtoCAD compared to the Recurrent State-Space Model (RSSM), a dynamics
model commonly adopted for high-dimensional input tasks. Works related to this paper are listed in
Appendix A.1. To the best of our knowledge, this is the first approach that addresses the dynamics
generalization problem of high-dimensional inputs. The contributions of this work are listed below.

• We propose ProtoCAD, a Model-Based Reinforcement Learning (MBRL) framework that
brings a temporally consistent prototypical regularizer to the latent world model. The latent
model can learn more efficient representations for dynamics generalization thanks to the
backpropagation gradient provided by this additional structure and the designed temporal
crossover SwAV loss.

• We design a novel context representation that incorporates projection embedding and an
aggregated prototype based on the predicted probabilities. The effectiveness of this repre-
sentation is verified by combining it with the latent state as a complete context-based latent
feature.

• We develop various environments with different transition dynamics to evaluate the perfor-
mance of ProtoCAD, including discrete autonomous driving decision-making with high-
dimensional observations, continuous visual control, and state-input control. Extensive ex-
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periments demonstrate that our approach achieves better zero-shot dynamics generalization
performance.

2 PROBLEM STATEMENT AND PRELIMINARIES

2.1 PROBLEM STATEMENT

Formally, we formulate the problem of high-dimensional autonomous driving as a discrete-time
Partially Observable Markov Decision Process (POMDP), since the underlying state of the environ-
ment cannot be obtained directly from the high-dimensional sensory input. A POMDP is a 7-tuple
M .

= (S,A,O, T,R, P, γ), where S is the set of states, A is the set of actions, and O is the set of
observations. T : S × A → S is the conditional transition probability that action at ∈ A in state
st ∈ S will lead to state st+1. R : S × A → R denotes the reward function and P : S × A → O
denotes the observation probabilities. γ ∈ (0, 1) is a discount factor. The definitions of the observa-
tion, action, and reward function for the autonomous driving task are given in Appendix A.4.1.

Consider a context set C, where different c ∈ C result in different POMDP models. For example, the
mass of a pendulum can be considered contextual information. Same as in previous works (Lee et al.,
2020; Seo et al., 2020; Guo et al., 2022), we assume that a context does not change within an episode,
only between episodes, and the distribution of contexts is uniform across the context set. For the
dynamics generalization problem, the entire set of contexts can be divided into two subsets: Ctrain
and Ctest. In this paper, we focus on zero-shot dynamics generalization, i.e., Ctrain ∩ Ctest = ∅. Given
a context c, we can compute the expected return of policy π with G(π,M|c)

.
= Eπ (

∑∞
t=0 γ

trt),
whereM|c is the POMDP conditioned on c. And for any POMDP M , we can define the expected
return of policy π with G(π,M)

.
= Ec∼p(c) [G(π,M|c)]. The goal is to find a policy trained on

Ctrain that maximizes the expected return on the testing context set: J (π) .= G(π,M|Ctest).

2.2 PRELIMINARIES

Many MBRL approaches first learn a world model and then further exploit it to derive policies.
Typically, the world model provides a mapping of environmental dynamics from the current state
and action to the next state. To extract compact representations from image observation sequences,
RSSM (Hafner et al., 2019) separates states into stochastic and deterministic components, allowing
the model to robustly learn to predict multiple futures. RSSM is commonly made up of the following
components (Hafner et al., 2019; 2021),

Recurrent module: ht = fϕ (ht−1, zt−1, at−1)

Representation module: zt ∼ qϕ (zt |ht, ot)
Transition module: ẑt ∼ pϕ (ẑt |ht) ,

(1)

where ot is the current observation at time step t, ht denotes the deterministic recurrent state, ẑt, as
well as zt, denote the stochastic states of the prior and posterior, respectively, and ϕ is the parameter
of the model. Here, we denote the deterministic output by f , the distribution of samples generated
in the real environment by q, and their approximation by p. The optimization objective of the model
is to reduce the KL distance between the prior and the posterior,

J tRSSM
.
= −βKL [qϕ (zt |ht, ot) ∥ pϕ (ẑt |ht)] , (2)

where β is a hyperparameter controlling the loss scale.

3 METHOD

In this section, we present the model-based reinforcement learning framework ProtoCAD. In order
to learn a context-aware world model that facilitates dynamics generalization and policy training,
the entire process of learning ProtoCAD is divided into three parts, including latent state encod-
ing, prototypical context learning, and policy optimization. Figure 2 provides an overview of the
learning process of the prototypical context-aware dynamics model. First, latent state encoding: the
raw observations are augmented to obtain two different views, and the two augmented historical tra-
jectories are encoded as latent space states through a transition model RSSM; second, prototypical
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Figure 2: The learning process of prototypical context-aware dynamics model (ProtoCAD). Proto-
CAD aims to extract efficient contextual information from high-dimensional observation sequences
with the help of prototypes clustered over batch, which summarize the characteristics of dynamics
in historical experience. Spatially, different augmentations from the same observation sequence can
be dynamics consistent when the augmentations are ensured to be consistent over time steps. Tem-
porally, different segments of the same trajectory share the same dynamics. Thus, we first make
two augmentations from the original observation sequences. Then, the augmented observation se-
quences are encoded into latent states via RSSM. Instead of comparing features directly, we enforce
temporal consistency between prototype assignments produced for different time parts of the same
latent trajectory. Both the projector fθ and the prototypes {ck}Kk=1 are updated by the temporal
crossover loss JTC-SwAV.

context learning: linear projections are implemented on the two latent space states to predict clus-
ter assignments, and we enforce temporal consistency between prototype assignments produced for
different time parts of the same latent trajectory. Then we aggregate the prototypes with the proba-
bilities, and the projections are matched with the prototypes as weights. Finally, the projections and
aggregated prototypes are combined as contextual features as a condition for policy optimization.
The pseudocode of our overall algorithm is shown in Appendix A.2.

3.1 LATENT STATE ENCODING

In this paper, we implement RSSM as the transition model for partially observable environ-
ments. During the training process, a sequence of historical observations ot−M :t−1 and actions
at−M :t−1 are sampled from the experience replay buffer, and we first augment the observations to
two different views o(1)t−M :t−1 and o(2)t−M :t−1 with data augmentation. Following DreamerPro (Deng
et al., 2022), we perform random shifts with bilinear interpolation and ensure consistency of the aug-
mentation across time steps. We assume that this augmentation does not change the dynamics infor-
mation of the sequences. Subsequently, augmented observations, together with an action sequence,
are fed into the RSSM to obtain the latent states s(i)τ

.
= (h

(i)
τ , z

(i)
τ ), τ = t−M, t−M+1, · · · , t−1,

i ∈ {1, 2}.
The deterministic recurrent structure in the transition model combined with stochastic state infer-
ence allows it to encode states that both remember multi-step historical information and include
the ability to capture environmental uncertainty. This mechanism enables the model to have some
generalization capability. However, a simple gradient for latent state updates is insufficient to cap-
ture the rich contextual information provided by the environment (Lee et al., 2020), which in turn
limits the ability of the model to generalize and transfer policies based on it. Therefore, there is an
emerging demand for context-aware dynamics modeling.

3.2 PROTOTYPICAL CONTEXT LEARNING

Self-supervised learning approaches show great potential to learn effective representations from
high-dimensional data. SwAV (Caron et al., 2020), for example, proposes learning embedding by
matching them to a set of learned clusters. Coincidentally, for the generalization problem with a
finite number of dynamics settings, the contextual representations of different environments lie in
some clusters. In contrast to existing algorithms (Yarats et al., 2021a; Mazoure et al., 2022; Deng
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et al., 2022) that introduce SwAV into RL to help state representation, ProtoCAD groups the latent
states intoK sets and combines learned prototypes with projection embeddings to capture contextual
information in different dynamics environments. We now introduce how to extract prototypical
context representations from latent states.

The K trainable prototypes {ck}Kk=1 can be regarded as corresponding to the K potential “situa-
tions” in which RL agents may find themselves (Mazoure et al., 2022). To cluster the latent states
output by RSSM into K prototypes, states s(1)t−M :t−1 are first fed into a linear projector fθ (the
deterministic output is still denoted by f ) and then ℓ2 normalized to obtain projections ut−M :t−1.
Subsequently, a softmax operation is carried out on the dot product of ut−M :t−1 and prototypes,

wt−M :t−1,k = softmax
(ut−M :t−1 · ck

T

)
, k = 1, 2, · · · ,K. (3)

where wt−M :t−1,k is the predicted probability that projections ut−M :t−1 map to cluster k, T is a
temperature parameter, and the prototypes {ck}Kk=1 are also ℓ2 normalized.

To train both the projector and prototypes, we make a copy of the projector, called the target projec-
tor (fθ̄), whose parameters θ̄ are updated by Exponential Moving Average (EMA) of θ, and cluster
its output to compute target projections. The Sinkhorn-Knopp (Knight, 2008) algorithm, which has
been widely used for online clustering to assist RL tasks (Yarats et al., 2021a; Mazoure et al., 2022;
Deng et al., 2022), is adopted because it is ideal to evolve online clustering with the arrival of new
batches of trajectories. As ProtoCAD is an online operation, Sinkhorn-Knopp is better suited for this
task than other clustering methods. Latent states s(2)t−M :t−1 are fed into fθ̄ with ℓ2 normalization to
get target projections ūt−M :t−1, and target probabilities {w̄t−M :t−1,k}Kk=1 are derived by applying
the Sinkhorn-Knopp algorithm to ūt−M :t−1 and {ck}Kk=1.

A fundamental setting of an agent’s dynamics is that it does not change within a trajectory. There-
fore, we design a temporal crossover SwAV loss to encourage the temporal consistency of the
learned features, including projections and prototypes. We divide the above-obtained probabili-
ties w and w̄ into two parts in the time dimension (the sequence length M is set to be even in the
implementation), i.e.,

y(1),k
.
= yt−M :t−M/2−1,k, y(2),k

.
= yt−M/2:t−1,k, y ∈ {w, w̄}, (4)

and then back-propagate the gradient by the following objective,

JTC-SwAV
.
=

1

2

K∑
k=1

(
w̄(1),k · logw(2),k + w̄(2),k · logw(1),k

)
=

1

2

K∑
k=1

t−M/2−1∑
τ=t−M

w̄τ,k logwτ+M/2,k +

t−1∑
τ=t−M/2

w̄τ,k logwτ−M/2,k

. (5)

Here, TC stands for temporal consistency. Up to this point, we can obtain the aggregated pro-
totypes of the latent state among the clusters by projector fθ and prototypes {ck}Kk=1 with et

.
=∑K

k=1 wt,k · ck. Then, we obtain context representations including the projection embedding ut and
aggregated prototypes et. Combined with the latent state st, this yields a complete latent feature:

xt
.
= (st, ut, et). (6)

Considering that the reward function is independent of the environment dynamics (or context), the
original observation and reward are predicted from the latent feature space and the latent state space,
respectively. That is,

Image predictor: ôt ∼ pϕ (ôt |xt) , Reward predictor: r̂t ∼ pϕ (r̂t | st) . (7)

The distributions produced by the image predictor and reward predictor are trained to maximize the
log-likelihood of their corresponding targets,

J tO
.
= ln pϕ(ôt|xt), J tR

.
= ln pϕ(r̂t|st). (8)

To sum up, the overall objective of the prototypical context-aware dynamics model learning is,

JProtoCAD
.
= Epϕ

(∑
t

(
J tRSSM + J tO + J tR

)
+ JTC-SwAV

)
. (9)
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3.3 POLICY LEARNING

We implement the actor-critic architecture for behavior learning. Benefiting from the world model
equipped with prototypes, imagination can be performed in the latent space with context features.
For latent feature xt, the actor and critic models are defined as,

Actor: at ∼ πψ(at|xt), Critic: vξ(xt) ≈ Eπ(·|xt)

(
t+H∑
τ=t

γτ−tr̂τ

)
. (10)

After getting context-aware features of the future through the rollout of the world model, we can
further predict the rewards and values of future states and obtain the target values to train actor and
critic networks (see more details in the supplementary material). For the estimation of target values,
there is a trade-off between model utilization and its prediction accuracy. As the number of model
rollout steps increases, the model provides more data for policy training, resulting in higher sample
efficiency. At the same time, the accuracy of model prediction decreases. Therefore, we weight the
multi-step value estimates to calculate the target value, as in Dreamer,

V iN (xτ )
.
= Epϕ,πψ

(
h−1∑
n=τ

γn−τ r̂n+γ
h−τvξ (xh)

)
with h = min (τ + i, t+H)

Vλ(xt)
.
= (1− λ)

H−1∑
n=1

λn−1V nN (xt)+λ
H−1V HN (xt),

(11)

where τ = t, t+ 1, · · · , t+H . The learning objectives of the actor and critic models are set as

JActor
.
= Epϕ,πψ

(
t+H∑
τ=t

Vλ(xτ )

)
, JCritic

.
= −Epϕ,πψ

(
t+H∑
τ=t

1

2
∥vψ(xτ )− Vλ(xτ )∥2

)
. (12)

4 EXPERIMENTS

4.1 SETUPS

We evaluate our method on a wide range of tasks with varying dynamics, including discrete visual
decision-making on CARLA (Dosovitskiy et al., 2017), continuous visual control on DM-Control
(DMC) (Tunyasuvunakool et al., 2020), and state-input control on MuJoCo (Todorov et al., 2012).
For each task, our evaluation is taken in a zero-shot manner, i.e., we train under some set of dynam-
ics and test under some other unseen dynamics settings. To verify the superiority of the proposed
ProtoCAD model, we compare it with several state-of-the-art (SOTA) model-based and model-
free methods. For tasks with high-dimensional input (CARLA and DMC), our baselines include
Dreamer (Hafner et al., 2020), DreamerPro (Deng et al., 2022), and DrQ (Yarats et al., 2021b).
For tasks with low-dimensional input (MuJoCo), our baselines include Dreamer, CaDM (Lee et al.,
2020), and TMCL (Seo et al., 2020). The specific experimental settings are given in Appendix A.4.

4.2 EVALUATION ON GENERALIZATION ABILITY

Generalization on discrete visual autonomous driving decision-making. In CARLA, we con-
struct the training and testing environments by controlling the density of traffic flow. After the
training is completed, we test the strategies learned by the different algorithms at unseen traffic flow
densities. A total of 200 episodes are tested, and the success rate (the percentage of episodes without
collisions), average speed, average lane change times, average episode time, and average distance
traveled (before a collision occurs) are statistically measured. The result is shown in Table 1. While
the expectation is to have as few lane changes as possible, there is no optimal value for the average
lane changes times metric itself. For example, DreamerPro does not learn to change lanes, which is
clearly not a promising policy. In the rest of the metrics, ProtoCAD achieves the best results among
different methods.

Generalization on continuous visual control. Across diverse DMC tasks, agents trained on
the training parameter set by different methods are evaluated under unseen dynamics settings. The
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Table 1: Results of generalization on discrete visual autonomous driving decision-making.
DrQ Dreamer DreamerPro ProtoCAD (ours)

Average lane change times 0.62 0.18 0.00 1.6
Success Rate ↑ 89.5% 89.5% 92.5% 94.5%
Average speed (km/h) ↑ 29.19 26.11 24.54 31.58
Average episode time (s) ↓ 59.9 67.57 71.88 53.33
Average distance traveled (m) ↑ 373.65 366.45 369.42 378.84

performance comparison results are illustrated in Table 2. For DreamerPro, we maintain the pa-
rameter settings of the original paper with its publicly available code. In all experimental tasks,
ProtoCAD exceeds all model-based baselines with significant improvements. These experimental
results suggest that combining prototypes into the latent world model can substantially improve the
model’s ability to generalize to different transition dynamics. Although DrQ achieves better or com-
parable performance compared to model-based methods among several methods in Finger Spin, its
performance on Hopper Hop, Pendulum Swingup, and Quadruped Run is noticeably worse than
model-based algorithms. Table 2 also demonstrates the overall performance of different methods on
several experimental tasks, from which it can also be seen that the comprehensive performance of
DrQ is inferior to the other methods. The mean and median performance of ProtoCAD on several
experimental tasks is significantly better than the other methods. Specifically, compared to Dreamer,
ProtoCAD improves the mean and median performance by 19.9% and 17.1%, respectively.

Table 2: Results of generalization on continuous visual control (± denotes the standard deviation).
DrQ Dreamer DreamerPro ProtoCAD (ours)

Cheetah Run 471.1±49.0 450.9±57.5 394.3±60.2 537.9±46.7

Finger Spin 592.3±48.4 453.0±58.3 458.5±74.0 585.0±162.1

Hopper Hop 73.7±16.2 112.6±31.2 148.6±77.5 176.6±95.2

Pendulum Swingup 504.0±272.1 712.8±82.7 737.0±49.9 802.0±15.3

Quadruped Run 251.0±184.6 444.1±21.7 502.6±59.3 529.0±36.5

Walker Run 378.7±50.1 392.9±31.1 378.0±34.9 447.1±38.4

Mean (overall) 385.8±71.3 427.7±9.7 436.4±17.2 512.9±31.1

Median (overall) 421.6±57.9 436.9±29.4 423.5±12.9 511.6±40.4

Generalization on state-input control. Here, we evaluate ProtoCAD on state-input tasks with the
same experimental environment setup as RIA (Guo et al., 2022). Since methods like CaDM and
TMCL utilize planning to obtain actions and assume a known reward function on state transitions
during the planning process, they are difficult to deploy in high-dimensional input tasks. Thus, we
compare ProtoCAD with them in this section. The results are given in Table 3. We report the average
rewards of ProtoCAD over 5 seeds (baselines are 3). In all tasks, the dynamics generalization capa-
bility of ProtoCAD is comparable to or surpasses that of CaDM and Dreamer. In the HalfCheetah
task, our approach does not perform as well as TMCL. One possible reason is that the multi-head
dynamics model introduced in TMCL is very effective for this task. We leave the combination of
multi-head dynamics with ProtoCAD for our future work.

Table 3: Results of generalization on state-input control (± denotes the standard deviation).
CaDM TMCL Dreamer ProtoCAD (ours)

Pendulum −713.95±21.1 −691.2±93.4 −575.9±56.6 −525.9±61.6

Ant 1660±57.8 2994.9±243.8 4636.3±412.8 5309.4±537.7

Hopper 845.2±20.41 999.35±22.8 2107.3±36.1 2197.8±83.44

HalfCheetah 5876.6±799.0 9039.6±1065 4701.0±796.2 5409.8±594.1

C HalfCheetah 3656.4±856.2 3998.8±856.2 4445.0±316.4 4125.4±957.9

Slim Humanoid 859.1±24.01 2098.7±109.1 14735±5842.9 16731.6±9595.8

4.3 EVALUATION ON SAMPLE EFFICIENCY

Figure 3 illustrates the performance comparison of ProtoCAD and baselines on different zero-shot
dynamics generalization continuous visual control environments. The evaluation is performed in
environments with unseen dynamics. Solid lines represent the mean score, and shaded areas mark
the standard deviation across 5 seeds. ProtoCAD is comparable to or better than baselines in all
tasks.
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Figure 3: Evaluation on sample efficiency.
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Figure 4: Ablations.

To further validate the effectiveness of ProtoCAD in tasks that do not involve multi-dynamics gen-
eralization, we compare it to DreamerV2 (Hafner et al., 2021), a SOTA model-based approach, on
the standard DMC benchmark (without varying the dynamics). As shown in Figure 8 (see Appendix
A.6.1), ProtoCAD also outperforms DreamerV2 in this benchmark.

4.4 ABLATION STUDY

ProtoCAD integrates learned prototypes based on predicted probabilities, together with the projec-
tion embedding as a context representation, while using the cross-correspondence between predicted
and target probabilities in time sequence to make the context features consistent over a trajectory.
We investigate the contribution of each part of ProtoCAD by removing the individual component
from it.

ProtoCAD without projection embedding (w/o Projection): In this setting, the context represen-
tation is derived from the combination of prototypes and the latent state, i.e., xt = (st, et).
ProtoCAD without prototypes incorporating (w/o Prototypes): In this setting, the context rep-
resentation is combined from the embedding of the projector and the latent state of the RSSM, i.e.
xt = (st, ut).
ProtoCAD without temporal dimensional cross-loss (w/o Temporal Consistency): In this set-
ting, the SwAV loss is calculated from a one-to-one correspondence between the predicted prob-
ability w and the target probability w̄ in time sequence, i.e., replace JTC-SwAV with JSwAV =

1
2

K∑
k=1

(
w̄(1),k · logw(1),k + w̄(2),k · logw(2),k

)
.

We plot the mean and median performance for all tasks in Figure 4. It can be seen that each compo-
sition contributes significantly to the performance of ProtoCAD, combining all of them achieves the
best results across different tasks. In addition, we also visualize the learned features with TSNE.
See Appendix A.6.2 for more results.

5 CONCLUSION

Dynamics generalization with high-dimensional observations is a critical yet challenging problem
in autonomous driving with reinforcement learning. In this paper, we propose a novel model-based
framework, Prototypical Context-Aware Dynamics (ProtoCAD) model, which introduces proto-
types into the latent world model while simultaneously performing latent space representation learn-
ing and temporally consistent context clustering. Evaluations of challenging lane-changing decision-
making and visual control tasks with unseen dynamics demonstrate that our approach achieves state-
of-the-art performance. Our ablation experiments further illustrate that the superiority of ProtoCAD
is attributed to the context representation that combines projections and prototypes as well as the
temporal consistency loss. In addition, extending our framework by incorporating advanced task-
relevant information extraction techniques to further improve the dynamics generalization capability
could be left as our future work.
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A APPENDIX

A.1 RELATED WORKS

Model-based RL with high-dimensional input. Model-based reinforcement learning from high-
dimensional observation aims to learn latent representations and policies with latent dynamics mod-
els. World Model (Ha & Schmidhuber, 2018) maps the high-dimensional observations to latent
space by VAE (Pu et al., 2016) and builds a recurrent latent dynamics model to evolve policy in
latent imagination. PlaNet (Hafner et al., 2019) utilizes a Recurrent State-Space Model (RSSM) to
learn the representation and latent dynamics jointly. The transition probability is modeled on the
latent space instead of the original state space. Dreamer (Hafner et al., 2020) utilizes the RSSM
to perform value gradient propagation through long-term imagination. DreamerV2 (Hafner et al.,
2021) extends the Dreamer agent with discrete world model representations.

Self-supervised representation learning. Recent works in self-supervised learning show great
potential to learn effective representations from high-dimensional data. One class of these methods
learns effective features by comparing positive and negative examples (Oord et al., 2018; Chen
et al., 2020; He et al., 2020). MoCo (He et al., 2020) further improves contrastive training by
generating the representations from a momentum encoder instead of the trained network. However,
these methods necessitate a greater number of negative samples, which demands large batch sizes or
memory banks. To address this challenge, some works propose to learn the representations without
discriminating between samples. BYOL (Grill et al., 2020) introduces a momentum encoder to the
training network to provide target representations. SwAV (Caron et al., 2020) proposes that the
embeddings be learned by matching them to a set of learned prototypes.

RL with auxiliary visual task. Recent works show that self-supervised representation learn-
ing techniques are able to improve the performance of visual reinforcement learning significantly.
CURL (Laskin et al., 2020) exacts effective representations via contrastive learning and improves
sample efficiency significantly over pixel-based methods. DrQ (Yarats et al., 2021b) proposes data-
regularized Q-learning, which regularizes the Q-value over multiple image transformations for ef-
ficient policy learning. Proto-RL (Yarats et al., 2021a) conducts a prototypical self-supervised
framework that ties representational learning with exploration through prototypes. CTRL (Mazoure
et al., 2022) utilizes prototypes to cluster trajectory representations and encourages behavioral simi-
larity between clusters nearby. DreamerPro (Deng et al., 2022) incorporates prototypes into Dreamer
(Hafner et al., 2020) to benefit representation learning and enhance the robustness of reconstruction-
free MBRL agents. Inspired by these prototypes-based RL methods, we construct a prototypical
context learning framework that extracts temporally consistent contextual information to capture
local dynamics efficiently.

Dynamics generalization in RL. Dynamics generalization aims to generalize the policy or the
learned world model across a distribution of environments with varying transition dynamics. Meta-
learning has been proposed to improve the generalization ability of RL agents across dynamics
changes. Gradient-based meta-RL algorithms (Finn et al., 2017; Rothfuss et al., 2019; Liu et al.,
2019; Gupta et al., 2018) learn an effective initialization and adapt policy parameters in new dynam-
ics environments with few policy gradient updates. Context-based meta-RL algorithms (Rakelly
et al., 2019; Zintgraf et al., 2020; Lee et al., 2020; Seo et al., 2020; Fu et al., 2021; Guo et al.,
2022) learn contextual information to explicitly capture local dynamics and show great promise for
generalization tasks in complex environments. However, the above methods are all investigated
for low-dimensional input tasks but lack discussion for high-dimensional input tasks. We take one
step further by developing an effective context-based latent dynamics model to solve the dynamics
generalization problem with high-dimensional input.

A.2 ALGORITHM

The training pseudocode is given in Algorithm 1.

A.3 THE IMAGINATION PROCESS FOR POLICY LEARNING

As shown in Figure 5, with the prototypical context-aware dynamics model, we can imagine the
latent trajectories by model rollout without any interaction with the environment. We can further
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Algorithm 1 Prototypical Context-aware Dynamics (ProtoCAD)
1: Initialization: Number of random seed episodes N , collect interval C, batch size B, sequence

length M , Number of prototypes K, temperature parameter T , imagination horizon H , episode
length L, learning rate α

2: Collect dataset D with N episodes through the interaction with the environment ENV using
random actions

3: Initialize world model parameters ϕ and θ, prototypes {ck}Kk=1, actor network parameters ψ,
critic network parameters ξ

4: Initialize θ̄ = θ
5: while not converged do
6: for c = 1, · · · , C do
7: Sample B data sequences {(aτ , oτ , rτ )}tτ=t−M ∼ D

8: Perform data augmentation to obtain
{(
aτ , o

(i)
τ , rτ

)}t
τ=t−M

, i ∈ {1, 2}

9: Derive RSSM states, h(i)τ = fϕ

(
h
(i)
τ−1, z

(i)
τ−1, aτ−1

)
, z(i)τ ∼ qϕ

(
z
(i)
τ |h(i)τ , o

(i)
τ

)
10: Concatenate states s(i)τ = (h

(i)
τ , z

(i)
τ )

11: Compute uτ = fθ(s
(1)
τ ) and wt−M :t−1,k = softmax

(ut−M:t−1·ck
T

)
, k = 1, 2, · · · ,K

12: Compute ūτ = fθ̄(s
(2)
τ ) and (w̄τ,1, · · · , w̄τ,K) = Sinkhorn-Knopp

(
ūτ , {ck}Kk=1

)
13: Update ϕ, θ and {ck}Kk=1 using JProtoCAD

14: Update θ̄ by exponential moving average of θ
15: Imagine trajectories {(sτ , aτ )}t+Hτ=t , uτ = fθ(sτ ), eτ =

∑K
k=1 wτ,k · ck

16: Concatenate features xτ = (sτ , uτ , eτ ) and compute value estimates Vλ(xτ )
17: Update actor network parameters ψ ← ψ + α∇̂ψJActor

18: Update critic network parameters ξ ← ξ − α∇̂ξJCritic
19: end for
20: o1 ← ENV.reset()
21: for t = 1, · · · , L do
22: Compute ht = fϕ (ht−1, zt−1, at−1), zt ∼ qϕ (zt |ht, ot) from history and st = (ht, zt)

23: Compute ut = fθ(st) and et =
∑K
k=1 softmax

(
ut·ck
T

)
· ck

24: Get latent feature xt = (st, ut, et) and get at ∼ πψ(at|xt) with the actor
25: Add exploration noise to action and execute it to get rt, ot+1 ← ENV.step(at)
26: end for
27: Add experience to dataset D ← D ∪ {(at, ot, rt)}Lt=1
28: end while

predict the rewards and values of future states and obtain the target values based on the context
representation and latent states. The policy is optimized under the actor-critic framework.

RSSM 

Feature  
Extraction

Feature  
Extraction

Projector 

Prototypes

Softmax

Feature Extraction

Feature  
Extraction

Feature  
Extraction

Figure 5: Latent trajectory imagination for policy learning.
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A.4 ENVIRONMENTAL SETTINGS

A.4.1 DISCRETE VISUAL AUTONOMOUS DRIVING DECISION-MAKING ON CARLA

For the autonomous driving environment, we follow the main setting in DMVE (Wang et al., 2022).
The CARLA (Dosovitskiy et al., 2017) simulator’s traffic management tool is used to implement
random traffic flow in the training and test scenarios. Screenshots of the CARLA driving environ-
ment are shown in Figure 6, where the ego vehicle is in black (the red line is the planned path) and
other vehicles are in red. The observations are 64×64×3 images corresponding to a local bird’s eye
view of the ego vehicle’s range of 50m in front and 25m in back. An example of observation is given
in Figure 7. Discrete action space is set as {change lanes left, change lanes right, and stay in the
current lane}, and the reward function is designed to take safety and efficiency into account (Wang
et al., 2022).

Figure 6: The CARLA driving environment (Wang et al., 2022). Figure 7: Observation example.

To construct the generalization environment, we generate traffic flows with different densities during
training and testing. Specifically, during training, we generate 40–80 vehicles within a 1 km range in
front of the ego vehicle and randomly generate 0–40 or 80–120 vehicles during testing. The desired
speed of the ego vehicle is higher than the speed of the other vehicles.

A.4.2 CONTINUOUS VISUAL CONTROL ON DMC

The experimental setup of previous methods (Lee et al., 2020; Seo et al., 2020; Guo et al., 2022)
on the dynamics generalization problem for state inputs provides us with a large number of refer-
ences. In this paper, we follow many of the environment settings in RIA (Guo et al., 2022), with
the difference that we modify the environment parameters in the DM-Control (DMC) (Tunyasuvu-
nakool et al., 2020) benchmark with image-based observations, rather than the standard MuJoCo
engine (Todorov et al., 2012) with state observations. Specifically, we develop our experimental
environments on 6 different visual control tasks, including 1 DMC-Easy benchmark environment
(i.e., Pendulum Swingup) and 5 DMC-Medium benchmark environments (i.e., Cheetah Run, Finger
Spin, Hopper Hop, Quadruped Run, and Walker Run). We modify the mass m or damping d of the
components in these environments and divide all parameter settings into a training set and a testing
set. For training and testing, we sample the environment parameters at the beginning of each episode
and keep them constant throughout that episode’s interaction. The parameter settings during testing
are not included in the training parameter set. As an example, the experiments in RIA vary the
dynamics of HalfCheetah by modifying its rigid link mass and joint damping. Similarly, we achieve
different dynamics in the Cheetah Run using the same training and testing parameters (the Cheetah
environment in DMC versus the HalfCheetah in MuJoCo). In addition, we also supplement several
environments (e.g., Finger and Walker) by referring to existing settings.

The specific environmental parameter settings are listed in Table 4.

A.5 HYPERPARAMETERS

For hyperparameters that are shared with DreamerPro (Deng et al., 2022), we use the default values
suggested in the config file in the official implementation of DreamerPro. With the following two
exceptions: we set the batch size as 16 as in Dreamer, and the number of prototypes K to be task-
specified. The main hyperparameters are listed in Table 5 and Table 6.
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Table 4: The environmental settings.
Training Parameter List Test Parameter List

Cheetah m ∈ {0.75, 0.85, 1.00, 1.15, 1.25}
d ∈ {0.75, 0.85, 1.00, 1.15, 1.25}

m ∈ {0.2, 0.3, 0.4, 0.5,
1.5, 1.6, 1.7, 1.8}

d ∈ {0.2, 0.3, 0.4, 0.5,
1.5, 1.6, 1.7, 1.8}

Finger m ∈ {0.5, 0.75, 1.0, 1.25, 1.5} m ∈ {0.25, 0.375, 1.75, 2.0}
Hopper m ∈ {0.5, 0.75, 1.0, 1.25, 1.5} m ∈ {0.25, 0.375, 1.75, 2.0}

Pendulum m ∈ {0.75, 0.8, 0.85, 0.9, 0.95, 1.0,
1.05, 1.1, 1.15, 1.2, 1.25}

m ∈ {0.2, 0.4, 0.5, 0.7,
1.3, 1.5, 1.6, 1.8}

Quadruped m ∈ {0.85, 0.90, 0.95, 1.00} m ∈ {0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50, 0.55, 0.60}

Walker m ∈ {0.75, 0.85, 1.00, 1.15, 1.25}
d ∈ {0.75, 0.85, 1.00, 1.15, 1.25}

m ∈ {0.2, 0.3, 0.4, 0.5,
1.5, 1.6, 1.7, 1.8}

d ∈ {0.2, 0.3, 0.4, 0.5,
1.5, 1.6, 1.7, 1.8}

Table 5: Hyperparameters setting.
Hyperparameter Meaning Value

OP Optimizer Adam
N Number of random seed episodes 2
B Batch size 16
M Sequence length 50
A Action repeat 2
γ Discount factor 0.99
αw Learning rate of the world model 3× 10−4

αa Learning rate of the actor model 8× 10−5

αc Learning rate of the critic model 8× 10−5

H Imagination horizon 15
D Prototype dimension 32
T Softmax temperature 0.1

SK − itr Sinkhorn-Knopp iterations 3
SK − eps Sinkhorn-Knopp epsilon 0.05

η Momentum update fraction 0.05

A.6 ADDITIONAL RESULTS

A.6.1 STANDARD DMC COMPARISON

Figure 8 shows the performance of our approach versus DreamerV2 (Hafner et al., 2021) on standard
DMC tasks (without dynamics variation). For a fair comparison with DreamerV2, here all our
model-related parameter settings are kept the same as its open-source code. The DreamerV2 results
are from the original open-source repository. ProtoCAD outperforms DreamerV2 by a large margin.
This also indicates that our approach works for different versions of the world model.

Table 6: Hyperparameter setting of the number of prototypes K.
Task Value
Cheetah Run 100
Finger Spin 100
Hopper Hop 50
Pendulum Swingup 100
Quadruped Run 100
Walker Run 50
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Figure 8: Performance comparison of ProtoCAD and DreamerV2 on standard DMC tasks (without
dynamics variation). The mean and standard deviation of ProtoCAD are computed from 3 seeds.

A.6.2 TSNE VISUALIZATION

Our motivation is to extract the environment context information from the state trajectories produced
by RSSM to assist in policy learning. Sinkhorn-Knopp can cluster trajectory data of batch and use
prototypes to fit the different situations encountered in the learning process. The learned prototypes
can characterize the context information. The results from TSNE (see Figure 9 and Figure 10) show
that the learned context representation has some differentiated characterization results for different
parameter settings. Also, the representation can be generalized to new parameter settings when
testing under unseen environments. The learned representation is used as part of the input to the
policy network and the value network so that the policy has some generalization ability in new
environments as well.

Figure 9: TSNE result of the learned feature for training and testing. After the training is completed,
we extract features from the training and test data respectively, which is the concatenate of the
projection output u and the aggregated prototypes based on the prediction probabilities w. We use
TSNE to perform dimensionality reduction on this feature, and the visualization shows that the
representation is in the vicinity of the training representation when tested in unseen environments,
indicating that the context representation can be generalized.
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(a) RSSM State (b) Learned Feature

Figure 10: TSNE results of RSSM state and learned feature for different parameter settings. Com-
pared with the original RSSM state, the context representation has a significant clustering result for
different parameter settings.
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