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Abstract

Language models strongly rely on frequency001
information because they maximize the likeli-002
hood of tokens during pre-training. As a conse-003
quence of this objective, language models tend004
to not generalize well to tokens rarely seen dur-005
ing training. Our work introduces a method for006
quantifying the frequency bias of a language007
model: the degree to which a language model is008
influenced by token frequency when determin-009
ing the grammatical acceptability of sentences.010
We then present a method for pre-training a011
language model to remove the frequency bias012
by adjusting the objective function to distribute013
the learning signal to syntactically similar to-014
kens, inducing a syntactic prior over the token015
embeddings. Our method, which we call POS016
Smoothing, results in better performance on in-017
frequent tokens without degrading the model’s018
general ability on downstream language under-019

standing tasks. 1
020

1 Introduction021

Pre-trained transformer models have proven022

tremendously capable of solving a wide array of023

language understanding tasks (Touvron et al., 2023;024

Chowdhery et al., 2023). Part of the success of pre-025

trained language models can be attributed to the026

pre-training objective. Despite differences in ar-027

chitecture, the vast majority of language models028

are pre-trained to maximize the log-likelihood of a029

word, given the surrounding context (Devlin et al.,030

2019; Brown et al., 2020; Chowdhery et al., 2023;031

Touvron et al., 2023). While the performance of032

language models has increased on a variety of lan-033

guage understanding benchmarks (Zellers et al.,034

2019; Hendrycks et al., 2020), it remains an open035

challenge to improve their performance on rare and036

specialized domains without resorting to perpetual037

increases of data and model size.038

1Our code is available (CC BY-SA): anonymized

Figure 1: Illustration of the BLiMP frequency bias cal-
culation for our baseline model.

The fact that language follows a Zipfian dis- 039

tribution (Zipf, 1935) means that language mod- 040

els are exposed to frequent tokens exponentially 041

more often than rare ones during pre-training. 042

When focusing on cumulative evaluation scores, 043

a language model’s weak performance on low- 044

frequency words is often overlooked. 045

To increase the generalization abilities of lan- 046

guage models, it is essential to improve the per- 047

formance on low-frequency tokens. Current ap- 048

proaches to modeling long tail distributions require 049

large model sizes, limiting the scalability of these 050

methods (Feldman, 2020; Haviv et al., 2023). 051

In this work, we propose POS Smoothing: a 052

new method for improving representation learning 053

in small language models. We smoothly distribute 054

the backpropagation signal over syntactically simi- 055

lar tokens using a similarity metric based on part-of- 056

speech tag distributions. Using this method, tokens 057

that are rarely seen during training can fall back 058

on a syntactically plausible initialization, taking on 059
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representations of more frequent tokens that serve060

similar syntactic roles. We evaluate our method061

using a new metric for quantifying the frequency062

bias of language models (illustrated in fig. 1) and063

find that POS Smoothing improves the generaliza-064

tion capabilities of a small language model without065

affecting perplexity and downstream capabilities.066

2 Representing Rare Tokens067

Current approaches to language modeling rely on068

the memorization of infrequent words to perform069

well on generalization tasks (Feldman, 2020). How-070

ever, models trained as likelihood maximizers tend071

to yield degenerate representations for rare words072

(Gao et al., 2019). To address this problem, Gong073

et al. (2018) introduces an adversarial training ob-074

jective to push the embeddings of frequent and in-075

frequent words to occupy a similar semantic space.076

Gao et al. (2019) proposes a novel regularization077

term to the standard log-likelihood objective to078

better distribute the representation of rare words079

in semantic space. Other approaches have shown080

promising results on rare word performance by con-081

structing token embeddings that take into account a082

word’s surface form as well as surrounding context083

(Schick and Schütze, 2019, 2020).084

Memorization Effects Recent analytical work085

has shown that certain layers of transformer086

models implicitly encode frequency information087

(Kobayashi et al., 2023), while others store mem-088

orized long-tail data (Haviv et al., 2023). Feld-089

man and Zhang (2020) demonstrate that models090

memorize atypical examples to achieve the highest091

accuracy on long-tailed data samples. This mem-092

orization hack, however, has only been shown to093

work well with over-parameterized models, when094

the number of weights surpasses the number of095

training samples (Belkin et al., 2019). These find-096

ings suggest that with the current limited training097

objectives, generalization can only be achieved by098

large models trained on noisy datasets with suffi-099

cient long-tail samples (Zheng and Jiang, 2022).100

Integrating Linguistic Information In a sepa-101

rate line of work, researchers have explored the102

integration of morphological and orthographic in-103

formation in word embeddings (Salle and Villav-104

icencio, 2018; Vulić et al., 2017; Cotterell and105

Schütze, 2015; Bhatia et al., 2016; Botha and Blun-106

som, 2014). Others have proposed syntactically-107

motivated objective functions, such as predicting108

Figure 2: Part-of-speech distributions and similarities
distributions for the subword tokens “blind” and “the”.
Similarities are computed against every other word in
the vocabulary and sorted.

constituency labels (Wang et al., 2023), hypernyms 109

(Bai et al., 2022), dependency tags (Cui et al., 2022) 110

and POS tags (Martinez et al., 2023) to implicitly 111

encode syntactic information in word representa- 112

tions. 113

Here, we propose a new method for improv- 114

ing the representation of rare words by integrat- 115

ing linguistic information. This method aims to 116

increase generalization without needing to scale up 117

the model or data. 118

3 POS Smoothing 119

The guiding hypothesis for our method is that 120

words that serve similar syntactic roles should re- 121

ceive similar gradient update steps. When any par- 122

ticular token is updated during training, part of 123

the signal is distributed to all syntactically similar 124

words using a syntactic similarity metric (opera- 125

tionalized below). This results in the representation 126

of rare words approaching the average representa- 127

tion of all words that serve a similar syntactic func- 128

tion (see appendix D for an analytic explanation). 129

Our method consists of two components; (1) a 130

similarity metric that uses part-of-speech distribu- 131

tions as a coarse proxy for syntactic similarity, and 132

(2) an adjustment to the loss function that uses this 133

similarity metric to smooth backpropagation over 134

similar tokens during pre-training. 135

3.1 Syntactic Similarity Score 136

The syntactic similarity between two tokens can be 137

measured in multiple ways, e.g., by using surface 138

features, dependency labels, or even the predictions 139

of a parent language model (Hinton et al., 2015). 140

Here, we present a simple measure that considers 141

two tokens to be similar if they have a similar dis- 142

tribution of part-of-speech tags in the training set. 143

We use the part-of-speech tagger from the NLTK
package (Bird et al., 2009) to assign each word to
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one of the 12 universal POS tags (Petrov et al.,
2012). As words can take on a different part of
speech depending on the context, we count the num-
ber of times each subword token in our vocabulary
V appears as each part-of-speech tag in the train-
ing data, producing a 12-valued vector. Subword
tokens are assigned the part-of-speech tag of their
parent word in each occurrence. This results in
a matrix M ∈ R∣V ∣×12 containing the distribution
over part-of-speech tags for each token. Finally, we
can compute the similarity of two tokens Vi and Vj

using the cosine similarity of their part-of-speech
distributions:

POS Similarity(i, j) =
M

T
i Mj

∣∣Mi∣∣ ⋅ ∣∣Mj∣∣
.

This similarity metric acts as a coarse approx-144

imation for syntactic similarity. We provide the145

part-of-speech distributions and similarity distribu-146

tions for the example tokens “blind” and “the” in147

fig. 2. Notice that “the” occurs almost entirely as a148

determiner and is not similar to most other words,149

whereas “blind” occurs as nouns, verbs, adjectives,150

and adverbs and has a high similarity to more than151

half of the items in the vocabulary.152

3.2 Smoothing the Backpropagation Signal153

Modern pre-training objectives involve likelihood
maximization using cross-entropy loss between the
label of the correct word and predicted probabilities
from a forward pass of the model. POS Smoothing
makes a small adjustment. Instead of a one-hot
encoding, the target vector t becomes a distribution
across the entire vocabulary with some of the signal
on the correct label j and the rest of the signal
distributed across all other tokens i according to
the syntactic similarity metric used:

ti = {
α, if i = j

s(i,j)
∑∣V ∣

k=0 s(i,k)
× (1 − α) otherwise

where α determines the proportion of the error sig-154

nal reserved for the correct word and s is our part-155

of-speech similarity metric. To emphasize the in-156

fluence of syntactically similar tokens we apply157

a temperature smoothing function to the similar-158

ity distribution (τ = 0.025). We experiment with159

different values for α, noting that α = 1 is the stan-160

dard likelihood maximization task. We also use a161

linear pacing function that gradually increases α162

so that at the start of training the majority of the163

signal is propagated to other syntactically similar 164

tokens and by the end of training nearly all of the 165

error signal is sent to the correct token to ensure 166

that the model still optimizes perplexity. 167

We provide analytical proof (appendix D) that 168

this minor change to the objective function results 169

in less degenerate representations for rare words 170

and induces a syntactic bias in all embeddings. 171

3.3 Experimental Setup 172

Generalization to rare words is particularly chal- 173

lenging for smaller language models and datasets 174

(Warstadt et al., 2023; Martinez et al., 2023). 175

Data We use the dataset published as training 176

data for the BabyLM challenge at the 2023 CoNLL 177

workshop (Warstadt et al., 2023). It contains a di- 178

verse collection of transcribed speech and dialogue 179

data, books, movie subtitles, and Wikipedia articles 180

of roughly 10 million tokens. 181

Model We use a small 8-layer encoder-style 182

RoBERTa model with pre-layer normalization 183

(Huebner et al., 2021). We report the hyper- 184

parameter settings we use throughout our exper- 185

imentation in Table 2. We use a BPE tokenizer 186

(Sennrich et al., 2016) with a vocabulary size of 187

8192 as recommended in previous work (Martinez 188

et al., 2023). We also report results for OPT-125M 189

(Zhang et al., 2022), RoBERTa-base (Liu et al., 190

2019), and T5-base (Raffel et al., 2020) trained on 191

the same dataset by Warstadt et al. (2023). 192

4 Results 193

We introduce a measure of frequency bias and show 194

that typical language models do exhibit bias to- 195

wards frequent tokens. We then show that our 196

method reduces this bias while retaining strong 197

language modeling capabilities. 198

4.1 Quantifying the Frequency Bias 199

We investigate frequency effects using a zero- 200

shot test of grammatical capability known as 201

BLiMP: The Benchmark of Linguistic Minimal 202

Pairs (Warstadt et al., 2020). BLiMP consists of 67 203

datasets (or “subtasks”), each consisting of 1,000 204

pairs of grammatical and ungrammatical sentences 205

that differ only with respect to a specific linguistic 206

characteristic (covering syntax, morphology, and 207

semantics). Language models are tasked with as- 208

signing a higher likelihood to the grammatical sen- 209

tence. The grammatical generalization capabilities 210
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Model Bias BLiMP GLUE

OPT 10.6 63.2 62.7
RoBERTa 13.7 69.8 71.7
T5 6.2 58.3 58.7

Our models with POS Smoothing (PS)

Base Model 9.8 71.4 69.3

PS (0.2-1.0) 5.2 72.2 68.4
PS (0.5-1.0) 5.7 72.3 68.7
PS (0.8-1.0) 7.4 71.9 69.3
PS (0.5-0.5) -0.2 72.1 68.0
PS (0.8-0.8) 2.9 73.2 68.9

Table 1: We report bias (↓), BLiMP (↑), and GLUE (↑)
scores for the three pretrained models, our MLM base-
line, and five POS Smoothing (PS) variants. The values
in parentheses indicate the α values for the pacing func-
tion at the start and end of training.

of a language model are often summarized by aver-211

aging the accuracies achieved across the 67 BLiMP212

tasks. With random guessing scoring 0.5, state-of-213

the-art models have achieved scores of 0.87 when214

trained on large datasets, and models trained on the215

10M-word BabyLM dataset have achieved scores216

up to 0.8 (Warstadt et al., 2023).217

BLiMP is carefully balanced to ensure individ-218

ual tokens occur equally in both sentence types.219

However, within a single pair, there may be an220

imbalance in average token frequency. We hypoth-221

esize that despite the minimal difference in BLiMP222

pairs, models trained in a typical manner will be223

biased by token frequency when determining gram-224

matical acceptability.225

In each pair, we calculate the average frequency226

of the differing tokens over the training data. We227

then rank sentences according to the relative dif-228

ference in average frequency (positive differences229

indicate higher average frequency for the accept-230

able sentence) and compute the BLiMP score for231

both the lower third and upper third of sentences.232

We call the difference between these two BLiMP233

scores the BLiMP frequency bias of the model234

tested. We illustrate this process in fig. 1.235

POS Smoothing reduces frequency bias. We236

find that all four pretrained models exhibit strong237

frequency bias (see Table 1), are more likely to238

incorrectly prefer ungrammatical sentences if they239

contain tokens that occur more frequently during240

training. This confirms our hypothesis that the eval-241

uation of generalization capabilities is obfuscated242

by frequency effects.243

In contrast, all five POS Smoothing variants244

successfully reduce the frequency bias. The two 245

best variants maintain a constant signal distribu- 246

tion throughout training (no pacing). In the case 247

of the equal 0.5 split, the frequency bias is almost 248

completely removed. 249

4.2 Language Modeling Performance 250

We extend our analysis beyond the specific phe- 251

nomenon of the frequency bias and examine the 252

impact of POS Smoothing on the linguistic gen- 253

eralization capabilities of the model and its down- 254

stream performance after finetuning. 255

Linguistic Generalization on BLiMP As our 256

method aims at improving the representation of 257

rare subwords, we did not expect a large increase 258

in standard measures of evaluation because only 259

relatively few test instances would be affected. In 260

practice, however, we found that all of the POS 261

Smoothing models achieved better BLIMP scores 262

than our baseline model, see Table 1. These results 263

indicate that POS Smoothing might improve the 264

representation of all tokens, not just the rare ones. 265

Downstream Finetuning Effects We had con- 266

cerns that softening the frequency bias with our 267

method might lead to degraded performance in 268

downstream tasks for which frequency can be a 269

strong proxy. As a control condition, we finetune 270

our model on the GLUE (Wang et al., 2018) bench- 271

mark. We find that none of the POS Smoothing 272

objectives result in substantial performance degra- 273

dation on GLUE (see the last column of Table 1). 274

5 Conclusion 275

Our work studies the phenomenon of frequency 276

bias in language models that degrades the perfor- 277

mance of these models on rare tokens. We develop 278

a novel method for quantifying the degree to which 279

a language model prefers grammatically incorrect 280

sentences that contain frequent tokens over gram- 281

matically correct sentences containing infrequent 282

tokens. We introduce a new training approach, 283

POS Smoothing, that distributes the backpropaga- 284

tion signal to syntactically similar tokens. Using a 285

coarse approximation of syntactic similarity based 286

on part-of-speech tags, we show that this approach 287

can remove the frequency bias without degrading 288

downstream finetuning performance. 289
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6 Ethical Impact290

Studying long-tail data comes with some known291

ethical concerns. Previous research has found that292

names of female and non-white persons tend to fall293

in the long tail of many datasets which can result in294

models exhibiting implicit racial bias (Wolfe and295

Caliskan, 2021). Our paper does not directly study296

whether the methods we develop affect these im-297

plicit biases, although we would suspect that our298

approach might help remove some of these biases299

(without further experimentation this, however, re-300

mains a risk of our work).301

Along similar lines, we also do not conduct a302

thorough analysis to determine whether the curated303

BabyLM training set we use contains offensive304

data or uniquely identifies individuals. For an305

overview of the pre-processing steps that were done306

to remove harmful data from the BabyLM corpora,307

we link the BabyLM proceedings (Warstadt et al.,308

2023).309

We also note that the use of large-scale black-box310

LLMs makes studying rare word representations311

and their downstream effects more difficult. Our312

use of smaller LMs helps increase transparency313

and facilitates the reproducibility of our method by314

research groups with small computational budgets.315

7 Limitations316

Our methods use English-only data, and thus as-317

sume an English-centric notion of word functions.318

For the syntactic information, we use the POS tags319

provided by the NLTK tagger. As this tagger was320

trained on a separate dataset, this may suggest our321

method relies on additional data in order to best322

represent rare words. However, in initial exper-323

iments with an unsupervised tagger trained only324

on the 10M-word dataset, we achieved similar re-325

sults. Finally, the models we experiment with are326

all relatively small and, while we assume that our327

results can be scaled up to larger architectures, our328

limited computational resources do not allow us to329

collect empirical evidence. In future work, we plan330

to further explore the impact of POS Smoothing on331

models with autoregressive architectures and larger332

training datasets.333

References334

He Bai, Tong Wang, Alessandro Sordoni, and Peng Shi.335
2022. Better language model with hypernym class336
prediction. In Proceedings of the 60th Annual Meet-337

ing of the Association for Computational Linguistics 338
(Volume 1: Long Papers), pages 1352–1362, Dublin, 339
Ireland. Association for Computational Linguistics. 340

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik 341
Mandal. 2019. Reconciling modern machine- 342
learning practice and the classical bias–variance 343
trade-off. Proceedings of the National Academy of 344
Sciences, 116(32):15849–15854. 345

Parminder Bhatia, Robert Guthrie, and Jacob Eisenstein. 346
2016. Morphological priors for probabilistic neural 347
word embeddings. In Proceedings of the 2016 Con- 348
ference on Empirical Methods in Natural Language 349
Processing, pages 490–500, Austin, Texas. Associa- 350
tion for Computational Linguistics. 351

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat- 352
ural language processing with Python: analyzing text 353
with the natural language toolkit. " O’Reilly Media, 354
Inc.". 355

Jan Botha and Phil Blunsom. 2014. Compositional 356
morphology for word representations and language 357
modelling. In International Conference on Machine 358
Learning, pages 1899–1907. PMLR. 359

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 360
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 361
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 362
Askell, et al. 2020. Language models are few-shot 363
learners. Advances in neural information processing 364
systems, 33:1877–1901. 365

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 366
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 367
Barham, Hyung Won Chung, Charles Sutton, Sebas- 368
tian Gehrmann, et al. 2023. Palm: Scaling language 369
modeling with pathways. Journal of Machine Learn- 370
ing Research, 24(240):1–113. 371

Ryan Cotterell and Hinrich Schütze. 2015. Morpholog- 372
ical word-embeddings. In Proceedings of the 2015 373
Conference of the North American Chapter of the 374
Association for Computational Linguistics: Human 375
Language Technologies, pages 1287–1292, Denver, 376
Colorado. Association for Computational Linguis- 377
tics. 378

Yiming Cui, Wanxiang Che, Shijin Wang, and Ting Liu. 379
2022. Lert: A linguistically-motivated pre-trained 380
language model. arXiv preprint arXiv:2211.05344. 381

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 382
Kristina Toutanova. 2019. BERT: Pre-training of 383
deep bidirectional transformers for language under- 384
standing. In Proceedings of the 2019 Conference of 385
the North American Chapter of the Association for 386
Computational Linguistics: Human Language Tech- 387
nologies, Volume 1 (Long and Short Papers), pages 388
4171–4186, Minneapolis, Minnesota. Association for 389
Computational Linguistics. 390

Vitaly Feldman. 2020. Does learning require memoriza- 391
tion? a short tale about a long tail. In Proceedings 392
of the 52nd Annual ACM SIGACT Symposium on 393
Theory of Computing, pages 954–959. 394

5

https://doi.org/10.18653/v1/2022.acl-long.96
https://doi.org/10.18653/v1/2022.acl-long.96
https://doi.org/10.18653/v1/2022.acl-long.96
https://doi.org/10.18653/v1/D16-1047
https://doi.org/10.18653/v1/D16-1047
https://doi.org/10.18653/v1/D16-1047
https://doi.org/10.3115/v1/N15-1140
https://doi.org/10.3115/v1/N15-1140
https://doi.org/10.3115/v1/N15-1140
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Vitaly Feldman and Chiyuan Zhang. 2020. What neural395
networks memorize and why: Discovering the long396
tail via influence estimation. Advances in Neural397
Information Processing Systems, 33:2881–2891.398

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and399
Tieyan Liu. 2019. Representation degeneration prob-400
lem in training natural language generation models.401
In International Conference on Learning Representa-402
tions.403

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang,404
and Tie-Yan Liu. 2018. Frage: Frequency-agnostic405
word representation. Advances in neural information406
processing systems, 31.407

Adi Haviv, Ido Cohen, Jacob Gidron, Roei Schuster,408
Yoav Goldberg, and Mor Geva. 2023. Understand-409
ing transformer memorization recall through idioms.410
In Proceedings of the 17th Conference of the Euro-411
pean Chapter of the Association for Computational412
Linguistics, pages 248–264.413

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,414
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.415
2020. Measuring massive multitask language under-416
standing. In International Conference on Learning417
Representations.418

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.419
Distilling the knowledge in a neural network. arXiv420
preprint arXiv:1503.02531.421

Philip A. Huebner, Elior Sulem, Fisher Cynthia, and422
Dan Roth. 2021. BabyBERTa: Learning more gram-423
mar with small-scale child-directed language. In Pro-424
ceedings of the 25th Conference on Computational425
Natural Language Learning, pages 624–646, Online.426
Association for Computational Linguistics.427

Hakan Inan, Khashayar Khosravi, and Richard Socher.428
2017. Tying word vectors and word classifiers: A429
loss framework for language modeling. In Interna-430
tional Conference on Learning Representations.431

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and432
Kentaro Inui. 2023. Transformer language models433
handle word frequency in prediction head. In Find-434
ings of the Association for Computational Linguis-435
tics: ACL 2023, pages 4523–4535, Toronto, Canada.436
Association for Computational Linguistics.437

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-438
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,439
Luke Zettlemoyer, and Veselin Stoyanov. 2019.440
Roberta: A robustly optimized bert pretraining ap-441
proach. arXiv preprint arXiv:1907.11692.442

Richard Diehl Martinez, Hope McGovern, Zebulon443
Goriely, Christopher Davis, Andrew Caines, Paula444
Buttery, and Lisa Beinborn. 2023. CLIMB – curricu-445
lum learning for infant-inspired model building. In446
Proceedings of the BabyLM Challenge at the 27th447
Conference on Computational Natural Language448
Learning, pages 84–99, Singapore. Association for449
Computational Linguistics.450

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012. 451
A universal part-of-speech tagset. In Proceedings 452
of the Eighth International Conference on Language 453
Resources and Evaluation (LREC’12), pages 2089– 454
2096, Istanbul, Turkey. European Language Re- 455
sources Association (ELRA). 456

Ofir Press and Lior Wolf. 2017. Using the output embed- 457
ding to improve language models. In Proceedings of 458
the 15th Conference of the European Chapter of the 459
Association for Computational Linguistics: Volume 460
2, Short Papers, pages 157–163. 461

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 462
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 463
Wei Li, and Peter J Liu. 2020. Exploring the limits 464
of transfer learning with a unified text-to-text trans- 465
former. The Journal of Machine Learning Research, 466
21(1):5485–5551. 467

Alexandre Salle and Aline Villavicencio. 2018. Incor- 468
porating subword information into matrix factoriza- 469
tion word embeddings. In Proceedings of the Sec- 470
ond Workshop on Subword/Character LEvel Models, 471
pages 66–71, New Orleans. Association for Compu- 472
tational Linguistics. 473

Timo Schick and Hinrich Schütze. 2019. Attentive mim- 474
icking: Better word embeddings by attending to infor- 475
mative contexts. arXiv preprint arXiv:1904.01617. 476

Timo Schick and Hinrich Schütze. 2020. Rare words: 477
A major problem for contextualized embeddings and 478
how to fix it by attentive mimicking. In Proceedings 479
of the AAAI Conference on Artificial Intelligence, 480
volume 34, pages 8766–8774. 481

Rico Sennrich, Barry Haddow, and Alexandra Birch. 482
2016. Neural machine translation of rare words with 483
subword units. In Proceedings of the 54th Annual 484
Meeting of the Association for Computational Lin- 485
guistics (Volume 1: Long Papers), pages 1715–1725, 486
Berlin, Germany. Association for Computational Lin- 487
guistics. 488

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 489
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 490
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 491
Bhosale, et al. 2023. Llama 2: Open founda- 492
tion and fine-tuned chat models. arXiv preprint 493
arXiv:2307.09288. 494
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A Experimental Hyperparameters550

These hyperparameters are taken from Martinez551

et al. (2023) who tuned the RoBERTa model for552

the 10M-word BabyLM dataset.553

B Computational Requirements554

We purposefully train a small-scale LM for our555

experiments. The total amount of the trainable556

parameters in our model is 12,750,336. Each of557

our experiments trains for approximately 14-20558

GPU hours, using a single A-100 (80GB) GPU.559

Parameter Value

Layer Norm EPS 1e-5
Learning Rate 0.001
Optimizer AdamW
Scheduler Type Linear
Max Steps 200,000
Warm-up Steps 50,000
Total Batch Size 512
Vocab Size 8192
Hidden Dimension Size 256
Max. Sequence Length 128
Num. Attention Layers 8
Num. Attention Heads 8
Model Architecture RoBERTa (Pre-LN)

Table 2: Hyperparameter settings which are constant
across all experiments

C Word Class Versus Word Frequency 560

Analysis 561

Figure 3: Distribution across POS tags of the top versus
bottom 100 most frequent tokens.

Broadly, we find that content words, primarily 562

nouns, are over-represented in low-frequency to- 563

kens. We moreover, find that the syntactic distribu- 564

tion across POS tags changes considerably when 565

comparing the top 100 and bottom 100 most and 566

least frequently occurring tokens. This analysis 567

suggests that poor performance on rare words has 568

a particularly strong effect on a model’s inability to 569

correctly model specialized noun vocabulary items. 570

D POS Smoothing Gradient Signal 571

To understand why the POS Smoothing technique 572

is successful at removing frequency bias it helps to 573

analyze how the POS Smoothing objective changes 574

the back-propagation gradient update steps of word 575

embeddings. One of the decisions that must be 576

made in language modeling is whether to tie the 577

input word embedding and output projection matri- 578

ces. In recent years, common practice has become 579

to tie the two because of both practical memory sav- 580

ings and theoretical findings that doing so provides 581
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a regularization method on word embeddings (Inan582

et al., 2017; Press and Wolf, 2017). The choice of583

tied versus untied output matrices, however, has a584

considerable effect on the gradient update steps for585

the word embeddings (Press and Wolf, 2017).586

Let us analyze the gradient update step for the
tied word embedding setting. The standard masked
modeling loss function for a token at position p in
an input sequence of length S is defined as

Lp = −yp log(ŷp),

where yp represents the true output distribution587

for the masked token, and ŷp = pθ(y∣xi=1∶S,i≠p)588

represents the model’s predicted probability.589

Let us next define some terms. We define the
embedding matrix as a matrix W ∈ R∣V ∣,S , where
∣V ∣ represents the size of the vocabulary and S
represents the maximum sequence length. We also
define the output of the N

th final attention block
of a transformer as HN ∈ RS,hemb , with hemb as
the hidden embedding dimension. Let hp repre-
sent the p

th row of HN , and Wi the i
th row of W.

Classically, transformers compute

ŷpi = σ(hTpWi) =
e
h
T
p Wi

∑j∈∣V ∣ e
hT
p Wj

.

We then find that ∂Lp

∂Wi
can be expressed as the590

sum of two terms:591

∂Lp

∂Wi
= (σ(hTpWi) − yp)hp +

∂hp
∂Wi

(1)592

Notice that if the embedding and projection ma-593

trices are not tied, the first term of the previous594

equation is replaced with:595

∂Lp

∂Wi
=

∂Lp

∂hp
+

∂hp
∂Wi

(2)596

Typically yp, the true distribution over the cor-597

rect tokens, is modeled as a point distribution (with598

all probability mass placed on the single masked599

token). Notice that equation 1 implies that when600

using tied-weights, the representation for token i,601

Wi, is updated either towards (when h
T
pWi < yp)602

or away (when h
T
pWi > yp) from hp.603

Now consider what occurs for a token that604

is rarely observed during training and when us-605

ing masked language modeling. By definition,606

h
T
pWi > yp will nearly always be the case and607

thus at every update step the representation for that608

token will be moved in a direction away from hp. 609

At the limit, this leads to rare words being pushed 610

far away in semantic space from all other frequently 611

occurring tokens. This exact phenomenon has been 612

described by Gao et al. as representation degenera- 613

tion. 614

POS Smoothing can be thought of as a method 615

to ensure that rare words are pushed away less from 616

and towards other tokens that serve similar syntac- 617

tic functions, in the process solving the aforemen- 618

tioned representation degeneration problem and 619

instead inducing a syntactic bias in the token repre- 620

sentations. 621

E BLiMP Data Filtering 622

We filter the BLiMP data to only focus on pairs 623

of sentences where one set of tokens has been re- 624

placed by another set and ignore sentence pairs 625

that only differ in the order of tokens. We also 626

remove pairs where tokens have only been added 627

to one sentence, rather than replaced. This filtering 628

only removes 15% of BLiMP pairs and 9 of the 67 629

subtasks from consideration. 630
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