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Abstract

Language models strongly rely on frequency
information because they maximize the likeli-
hood of tokens during pre-training. As a conse-
quence of this objective, language models tend
to not generalize well to tokens rarely seen dur-
ing training. Our work introduces a method for
quantifying the frequency bias of a language
model: the degree to which a language model is
influenced by token frequency when determin-
ing the grammatical acceptability of sentences.
We then present a method for pre-training a
language model to remove the frequency bias
by adjusting the objective function to distribute
the learning signal to syntactically similar to-
kens, inducing a syntactic prior over the token
embeddings. Our method, which we call POS
Smoothing, results in better performance on in-
frequent tokens without degrading the model’s
general ability on downstream language under-
standing tasks. !

1 Introduction

Pre-trained transformer models have proven
tremendously capable of solving a wide array of
language understanding tasks (Touvron et al., 2023;
Chowdbhery et al., 2023). Part of the success of pre-
trained language models can be attributed to the
pre-training objective. Despite differences in ar-
chitecture, the vast majority of language models
are pre-trained to maximize the log-likelihood of a
word, given the surrounding context (Devlin et al.,
2019; Brown et al., 2020; Chowdhery et al., 2023;
Touvron et al., 2023). While the performance of
language models has increased on a variety of lan-
guage understanding benchmarks (Zellers et al.,
2019; Hendrycks et al., 2020), it remains an open
challenge to improve their performance on rare and
specialized domains without resorting to perpetual
increases of data and model size.
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Figure 1: Illustration of the BLiMP frequency bias cal-
culation for our baseline model.
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The fact that language follows a Zipfian dis-
tribution (Zipf, 1935) means that language mod-
els are exposed to frequent tokens exponentially
more often than rare ones during pre-training.
When focusing on cumulative evaluation scores,
a language model’s weak performance on low-
frequency words is often overlooked.

To increase the generalization abilities of lan-
guage models, it is essential to improve the per-
formance on low-frequency tokens. Current ap-
proaches to modeling long tail distributions require
large model sizes, limiting the scalability of these
methods (Feldman, 2020; Haviv et al., 2023).

In this work, we propose POS Smoothing: a
new method for improving representation learning
in small language models. We smoothly distribute
the backpropagation signal over syntactically simi-
lar tokens using a similarity metric based on part-of-
speech tag distributions. Using this method, tokens
that are rarely seen during training can fall back
on a syntactically plausible initialization, taking on



representations of more frequent tokens that serve
similar syntactic roles. We evaluate our method
using a new metric for quantifying the frequency
bias of language models (illustrated in fig. 1) and
find that POS Smoothing improves the generaliza-
tion capabilities of a small language model without
affecting perplexity and downstream capabilities.

2 Representing Rare Tokens

Current approaches to language modeling rely on
the memorization of infrequent words to perform
well on generalization tasks (Feldman, 2020). How-
ever, models trained as likelihood maximizers tend
to yield degenerate representations for rare words
(Gao et al., 2019). To address this problem, Gong
et al. (2018) introduces an adversarial training ob-
jective to push the embeddings of frequent and in-
frequent words to occupy a similar semantic space.
Gao et al. (2019) proposes a novel regularization
term to the standard log-likelihood objective to
better distribute the representation of rare words
in semantic space. Other approaches have shown
promising results on rare word performance by con-
structing token embeddings that take into account a
word’s surface form as well as surrounding context
(Schick and Schiitze, 2019, 2020).

Memorization Effects Recent analytical work
has shown that certain layers of transformer
models implicitly encode frequency information
(Kobayashi et al., 2023), while others store mem-
orized long-tail data (Haviv et al., 2023). Feld-
man and Zhang (2020) demonstrate that models
memorize atypical examples to achieve the highest
accuracy on long-tailed data samples. This mem-
orization hack, however, has only been shown to
work well with over-parameterized models, when
the number of weights surpasses the number of
training samples (Belkin et al., 2019). These find-
ings suggest that with the current limited training
objectives, generalization can only be achieved by
large models trained on noisy datasets with suffi-
cient long-tail samples (Zheng and Jiang, 2022).

Integrating Linguistic Information In a sepa-
rate line of work, researchers have explored the
integration of morphological and orthographic in-
formation in word embeddings (Salle and Villav-
icencio, 2018; Vuli¢ et al., 2017; Cotterell and
Schiitze, 2015; Bhatia et al., 2016; Botha and Blun-
som, 2014). Others have proposed syntactically-
motivated objective functions, such as predicting

POS distribution Similarity distribution

1.0

blind |
0.8 the
0.61
0.41
0.2
0.0 S o x 0 2000 4000 6000 8000
o = - -
22285L5352k
g g < g <z b}

Figure 2: Part-of-speech distributions and similarities
distributions for the subword tokens “blind” and “the”.
Similarities are computed against every other word in
the vocabulary and sorted.

constituency labels (Wang et al., 2023), hypernyms
(Bai et al., 2022), dependency tags (Cui et al., 2022)
and POS tags (Martinez et al., 2023) to implicitly
encode syntactic information in word representa-
tions.

Here, we propose a new method for improv-
ing the representation of rare words by integrat-
ing linguistic information. This method aims to
increase generalization without needing to scale up
the model or data.

3 POS Smoothing

The guiding hypothesis for our method is that
words that serve similar syntactic roles should re-
ceive similar gradient update steps. When any par-
ticular token is updated during training, part of
the signal is distributed to all syntactically similar
words using a syntactic similarity metric (opera-
tionalized below). This results in the representation
of rare words approaching the average representa-
tion of all words that serve a similar syntactic func-
tion (see appendix D for an analytic explanation).

Our method consists of two components; (1) a
similarity metric that uses part-of-speech distribu-
tions as a coarse proxy for syntactic similarity, and
(2) an adjustment to the loss function that uses this
similarity metric to smooth backpropagation over
similar tokens during pre-training.

3.1 Syntactic Similarity Score

The syntactic similarity between two tokens can be
measured in multiple ways, e.g., by using surface
features, dependency labels, or even the predictions
of a parent language model (Hinton et al., 2015).
Here, we present a simple measure that considers
two tokens to be similar if they have a similar dis-
tribution of part-of-speech tags in the training set.
We use the part-of-speech tagger from the NLTK
package (Bird et al., 2009) to assign each word to



one of the 12 universal POS tags (Petrov et al.,
2012). As words can take on a different part of
speech depending on the context, we count the num-
ber of times each subword token in our vocabulary
V' appears as each part-of-speech tag in the train-
ing data, producing a 12-valued vector. Subword
tokens are assigned the part-of-speech tag of their
parent word in each occurrence. This results in
a matrix M € RIVI*12 containing the distribution
over part-of-speech tags for each token. Finally, we
can compute the similarity of two tokens V; and V/
using the cosine similarity of their part-of-speech
distributions:

POS Similarity(i, j MM,
ey D = AT T

This similarity metric acts as a coarse approx-
imation for syntactic similarity. We provide the
part-of-speech distributions and similarity distribu-
tions for the example tokens “blind” and “the” in
fig. 2. Notice that “the” occurs almost entirely as a
determiner and is not similar to most other words,
whereas “blind” occurs as nouns, verbs, adjectives,
and adverbs and has a high similarity to more than
half of the items in the vocabulary.

3.2 Smoothing the Backpropagation Signal

Modern pre-training objectives involve likelihood
maximization using cross-entropy loss between the
label of the correct word and predicted probabilities
from a forward pass of the model. POS Smoothing
makes a small adjustment. Instead of a one-hot
encoding, the target vector ¢ becomes a distribution
across the entire vocabulary with some of the signal
on the correct label j and the rest of the signal
distributed across all other tokens ¢ according to
the syntactic similarity metric used:
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\% .
I s(ik)

ifi=j
X (1 —a) otherwise

where « determines the proportion of the error sig-
nal reserved for the correct word and s is our part-
of-speech similarity metric. To emphasize the in-
fluence of syntactically similar tokens we apply
a temperature smoothing function to the similar-
ity distribution (7 = 0.025). We experiment with
different values for o, noting that o = 1 is the stan-
dard likelihood maximization task. We also use a
linear pacing function that gradually increases «
so that at the start of training the majority of the

signal is propagated to other syntactically similar
tokens and by the end of training nearly all of the
error signal is sent to the correct token to ensure
that the model still optimizes perplexity.

We provide analytical proof (appendix D) that
this minor change to the objective function results
in less degenerate representations for rare words
and induces a syntactic bias in all embeddings.

3.3 Experimental Setup

Generalization to rare words is particularly chal-
lenging for smaller language models and datasets
(Warstadt et al., 2023; Martinez et al., 2023).

Data We use the dataset published as training
data for the BabyLM challenge at the 2023 CoNLL
workshop (Warstadt et al., 2023). It contains a di-
verse collection of transcribed speech and dialogue
data, books, movie subtitles, and Wikipedia articles
of roughly 10 million tokens.

Model We use a small 8-layer encoder-style
RoBERTa model with pre-layer normalization
(Huebner et al., 2021). We report the hyper-
parameter settings we use throughout our exper-
imentation in Table 2. We use a BPE tokenizer
(Sennrich et al., 2016) with a vocabulary size of
8192 as recommended in previous work (Martinez
et al., 2023). We also report results for OPT-125M
(Zhang et al., 2022), RoBERTa-base (Liu et al.,
2019), and T5-base (Raffel et al., 2020) trained on
the same dataset by Warstadt et al. (2023).

4 Results

We introduce a measure of frequency bias and show
that typical language models do exhibit bias to-
wards frequent tokens. We then show that our
method reduces this bias while retaining strong
language modeling capabilities.

4.1 Quantifying the Frequency Bias

We investigate frequency effects using a zero-
shot test of grammatical capability known as
BLiMP: The Benchmark of Linguistic Minimal
Pairs (Warstadt et al., 2020). BLiMP consists of 67
datasets (or “subtasks”), each consisting of 1,000
pairs of grammatical and ungrammatical sentences
that differ only with respect to a specific linguistic
characteristic (covering syntax, morphology, and
semantics). Language models are tasked with as-
signing a higher likelihood to the grammatical sen-
tence. The grammatical generalization capabilities



Model \ Bias BLiMP GLUE
OPT 10.6 63.2 62.7
RoBERTa 13.7 69.8 71.7
T5 6.2 58.3 58.7
Our models with POS Smoothing (PS)
Base Model | 9.8 71.4 69.3
PS (0.2-1.0) | 5.2 722 68.4
PS (0.5-1.0) | 5.7 72.3 68.7
PS (0.8-1.0) | 74 71.9 69.3
PS (0.5-0.5) | -0.2 72.1 68.0
PS (0.8-0.8) | 2.9 73.2 68.9

Table 1: We report bias (1), BLIMP (1), and GLUE (1)
scores for the three pretrained models, our MLM base-
line, and five POS Smoothing (PS) variants. The values
in parentheses indicate the «v values for the pacing func-
tion at the start and end of training.

of a language model are often summarized by aver-
aging the accuracies achieved across the 67 BLiIMP
tasks. With random guessing scoring 0.5, state-of-
the-art models have achieved scores of 0.87 when
trained on large datasets, and models trained on the
10M-word BabyLLM dataset have achieved scores
up to 0.8 (Warstadt et al., 2023).

BLiMP is carefully balanced to ensure individ-
ual tokens occur equally in both sentence types.
However, within a single pair, there may be an
imbalance in average token frequency. We hypoth-
esize that despite the minimal difference in BLiMP
pairs, models trained in a typical manner will be
biased by token frequency when determining gram-
matical acceptability.

In each pair, we calculate the average frequency
of the differing tokens over the training data. We
then rank sentences according to the relative dif-
ference in average frequency (positive differences
indicate higher average frequency for the accept-
able sentence) and compute the BLiMP score for
both the lower third and upper third of sentences.
We call the difference between these two BLiMP
scores the BLIMP frequency bias of the model
tested. We illustrate this process in fig. 1.

POS Smoothing reduces frequency bias. We
find that all four pretrained models exhibit strong
frequency bias (see Table 1), are more likely to
incorrectly prefer ungrammatical sentences if they
contain tokens that occur more frequently during
training. This confirms our hypothesis that the eval-
uation of generalization capabilities is obfuscated
by frequency effects.

In contrast, all five POS Smoothing variants

successfully reduce the frequency bias. The two
best variants maintain a constant signal distribu-
tion throughout training (no pacing). In the case
of the equal 0.5 split, the frequency bias is almost
completely removed.

4.2 Language Modeling Performance

We extend our analysis beyond the specific phe-
nomenon of the frequency bias and examine the
impact of POS Smoothing on the linguistic gen-
eralization capabilities of the model and its down-
stream performance after finetuning.

Linguistic Generalization on BLiMP As our
method aims at improving the representation of
rare subwords, we did not expect a large increase
in standard measures of evaluation because only
relatively few test instances would be affected. In
practice, however, we found that all of the POS
Smoothing models achieved better BLIMP scores
than our baseline model, see Table 1. These results
indicate that POS Smoothing might improve the
representation of all tokens, not just the rare ones.

Downstream Finetuning Effects We had con-
cerns that softening the frequency bias with our
method might lead to degraded performance in
downstream tasks for which frequency can be a
strong proxy. As a control condition, we finetune
our model on the GLUE (Wang et al., 2018) bench-
mark. We find that none of the POS Smoothing
objectives result in substantial performance degra-
dation on GLUE (see the last column of Table 1).

5 Conclusion

Our work studies the phenomenon of frequency
bias in language models that degrades the perfor-
mance of these models on rare tokens. We develop
a novel method for quantifying the degree to which
a language model prefers grammatically incorrect
sentences that contain frequent tokens over gram-
matically correct sentences containing infrequent
tokens. We introduce a new training approach,
POS Smoothing, that distributes the backpropaga-
tion signal to syntactically similar tokens. Using a
coarse approximation of syntactic similarity based
on part-of-speech tags, we show that this approach
can remove the frequency bias without degrading
downstream finetuning performance.



6 Ethical Impact

Studying long-tail data comes with some known
ethical concerns. Previous research has found that
names of female and non-white persons tend to fall
in the long tail of many datasets which can result in
models exhibiting implicit racial bias (Wolfe and
Caliskan, 2021). Our paper does not directly study
whether the methods we develop affect these im-
plicit biases, although we would suspect that our
approach might help remove some of these biases
(without further experimentation this, however, re-
mains a risk of our work).

Along similar lines, we also do not conduct a
thorough analysis to determine whether the curated
BabyLM training set we use contains offensive
data or uniquely identifies individuals. For an
overview of the pre-processing steps that were done
to remove harmful data from the BabyLLM corpora,
we link the BabyLLM proceedings (Warstadt et al.,
2023).

We also note that the use of large-scale black-box
LLMs makes studying rare word representations
and their downstream effects more difficult. Our
use of smaller LMs helps increase transparency
and facilitates the reproducibility of our method by
research groups with small computational budgets.

7 Limitations

Our methods use English-only data, and thus as-
sume an English-centric notion of word functions.
For the syntactic information, we use the POS tags
provided by the NLTK tagger. As this tagger was
trained on a separate dataset, this may suggest our
method relies on additional data in order to best
represent rare words. However, in initial exper-
iments with an unsupervised tagger trained only
on the 10M-word dataset, we achieved similar re-
sults. Finally, the models we experiment with are
all relatively small and, while we assume that our
results can be scaled up to larger architectures, our
limited computational resources do not allow us to
collect empirical evidence. In future work, we plan
to further explore the impact of POS Smoothing on
models with autoregressive architectures and larger
training datasets.
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A Experimental Hyperparameters

These hyperparameters are taken from Martinez
et al. (2023) who tuned the RoBERTa model for
the 10M-word BabyLLM dataset.

B Computational Requirements

We purposefully train a small-scale LM for our
experiments. The total amount of the trainable
parameters in our model is 12,750,336. Each of
our experiments trains for approximately 14-20
GPU hours, using a single A-100 (80GB) GPU.

Parameter | Value
Layer Norm EPS le-5
Learning Rate 0.001
Optimizer AdamW
Scheduler Type Linear
Max Steps 200,000
Warm-up Steps 50,000
Total Batch Size 512
Vocab Size 8192
Hidden Dimension Size 256
Max. Sequence Length 128
Num. Attention Layers 8
Num. Attention Heads 8
Model Architecture RoBERTa (Pre-LN)

Table 2: Hyperparameter settings which are constant
across all experiments

C Word Class Versus Word Frequency
Analysis
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Figure 3: Distribution across POS tags of the top versus
bottom 100 most frequent tokens.

Broadly, we find that content words, primarily
nouns, are over-represented in low-frequency to-
kens. We moreover, find that the syntactic distribu-
tion across POS tags changes considerably when
comparing the top 100 and bottom 100 most and
least frequently occurring tokens. This analysis
suggests that poor performance on rare words has
a particularly strong effect on a model’s inability to
correctly model specialized noun vocabulary items.

D POS Smoothing Gradient Signal

To understand why the POS Smoothing technique
is successful at removing frequency bias it helps to
analyze how the POS Smoothing objective changes
the back-propagation gradient update steps of word
embeddings. One of the decisions that must be
made in language modeling is whether to tie the
input word embedding and output projection matri-
ces. In recent years, common practice has become
to tie the two because of both practical memory sav-
ings and theoretical findings that doing so provides
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a regularization method on word embeddings (Inan
et al., 2017; Press and Wolf, 2017). The choice of
tied versus untied output matrices, however, has a
considerable effect on the gradient update steps for
the word embeddings (Press and Wolf, 2017).

Let us analyze the gradient update step for the
tied word embedding setting. The standard masked
modeling loss function for a token at position p in
an input sequence of length S is defined as

ﬁp = ~Yp IOg(sz)>

where y,, represents the true output distribution
for the masked token, and %, = pp(y|@i=1:5%p)
represents the model’s predicted probability.

Let us next define some terms. We define the
embedding matrix as a matrix W € R'VI’S, where
|V'| represents the size of the vocabulary and S
represents the maximum sequence length. We also
define the output of the N " final attention block
of a transformer as Hy € ]Rs’hemb, with A,,p as
the hidden embedding dimension. Let h), repre-

sent the pth row of Hpy, and W, the i row of W.
Classically, transformers compute

hy W;
R T e
Yp; = U(hp Wz) = Ty,
Z ehp W

JEIV]

oL
We then find that awf.
sum of two terms:

oh

oL T
g = (@ W) =gp)hy+ 55 (D

can be expressed as the

Notice that if the embedding and projection ma-
trices are not tied, the first term of the previous
equation is replaced with:

oh

oc, oL, oh,
ow, =~ oh, T oW, 2)

Typically y,, the true distribution over the cor-
rect tokens, is modeled as a point distribution (with
all probability mass placed on the single masked
token). Notice that equation 1 implies that when
using tied-weights, the representation for token 7,
W;, is updated either towards (when thi < Yp)
or away (when hZWi > y,) from h,,.

Now consider what occurs for a token that
is rarely observed during training and when us-
in]g masked language modeling. By definition,
h, W; > y, will nearly always be the case and
thus at every update step the representation for that

token will be moved in a direction away from h,,.
At the limit, this leads to rare words being pushed
far away in semantic space from all other frequently
occurring tokens. This exact phenomenon has been
described by Gao et al. as representation degenera-
tion.

POS Smoothing can be thought of as a method
to ensure that rare words are pushed away less from
and towards other tokens that serve similar syntac-
tic functions, in the process solving the aforemen-
tioned representation degeneration problem and
instead inducing a syntactic bias in the token repre-
sentations.

E BLiMP Data Filtering

We filter the BLiMP data to only focus on pairs
of sentences where one set of tokens has been re-
placed by another set and ignore sentence pairs
that only differ in the order of tokens. We also
remove pairs where tokens have only been added
to one sentence, rather than replaced. This filtering
only removes 15% of BLiMP pairs and 9 of the 67
subtasks from consideration.



