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ABSTRACT

Pre-trained Vision-Language Models (VLMs) are becoming increasingly popular
across various visual tasks, and several open-sourced VLM variants have been
released. However, selecting the best-performing pre-trained VLM for a specific
downstream task is challenging since no single VLM can achieve promising per-
formance on all downstream tasks, and evaluating all available VLMs is impossi-
ble due to time and data limitations. To address this problem, this paper proposes a
novel paradigm to select and reuse VLM for downstream tasks, called Model La-
bel Learning (MLL). The proposal contains three key modules: model labeling,
which assigns labels to each VLM to describe their specialty and utility; model
selection, which matches the requirements of the target task with model labels;
and model reuse, which applies selected VLMs to the target task in an ensem-
ble manner. The proposal is highly computationally efficient and growable since
the model labeling process is completed target task independent and the ability
could grow with the number of candidate VLMs. We also introduce a new bench-
mark for evaluating VLM selection methods, including 49 VLMs and 17 target
task datasets. Experimental results clearly demonstrate the effectiveness of the
proposed method for selecting and reusing VLMs.

1 INTRODUCTION

Vision-Language Models (VLMs), such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021),
etc, which are pre-trained on large-scale image-text datasets, have recently attracted significant at-
tention due to their remarkable zero-shot prediction capabilities on visual tasks. However, though
VLM shows impressive general ability, as highlighted in Radford et al. (2021), VLMs often fall
short of supervised expert models in many downstream tasks. To address this limitation, numerous
studies (Dosovitskiy et al., 2021; Yu et al., 2022; Fang et al., 2023) have sought to enhance the zero-
shot performance of VLMs by studying model architectures, pre-training datasets, and training/fine-
tuning methods. This effort has led to the development of many open-source pre-trained VLMs with
diverse structures and parameters, contributing to VLM model hubs like open-clip (Ilharco et al.,
2021), which currently hosts more than 100 pre-trained VLMs.

As more and more VLMs are open-sourced, the problem of how to select a VLM to reuse for
specific downstream tasks naturally occurs. Although we can directly utilize the best-performing
model on a universal dataset such as ImageNet, previous work (Fang et al., 2022) has shown that
the performance of VLMs can vary greatly depending on dataset domain. For example, we evaluate
the performance of various pre-trained VLMs in the open-clip library across several downstream
tasks (1(a)) and within different classes of a specific task (1(b)). Figure 1(a) reveals that each VLM
demonstrates distinct strengths in zero-shot visual tasks, with no single model outperforming all
others across every task. Interestingly, models that perform worse on general tasks can sometimes
surpass stronger models in specific downstream tasks. Furthermore, even in the same task, different
VLMs exhibit varying levels of performance across specific classes, as illustrated in Figure 1(b).

Therefore, it is important to design VLM selection methods, and it would be better if we could
achieve more fine-grained selection, i.e., select different VLMs to handle different classes. The
direct way to select a model is to evaluate all candidate models’ performance on the target task.
However, it is unrealistic due to time and computational resource limitations. Additionally, previous
works on model selection (Tran et al., 2019; You et al., 2021) primarily focus on single-modal
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(a) Accuracy of VLMs on 7 specific
downstream tasks.

(b) F1 score of VLMs per class in a
downstream task FER2013.

Figure 1: The spider charts measure the models’ capabilities across different downstream tasks and
classes within a task, showing that the best-performing models vary across downstream tasks and
classes, highlighting the importance of model selection for VLM.

models, making them unsuitable for VLM selection since they only handle either image or text
output and cannot incorporate data from the other modality. Zohar et al. (2023) is the first study
to focus on VLM selection, proposing to evaluate VLM performance using textual information.
However, their selection strategy heavily depends on the models’ ground-truth performance on large-
scale datasets, such as ImageNet. When models excel on large-scale datasets but under-perform on
specific tasks, selection strategy effectiveness drops, as shown later in our experiments.

To this end, we introduce a novel paradigm to select and reuse VLMs called Model Label Learning
(MLL). The core idea is to organize candidate pre-trained VLMs into a model hub and describe
the specialty and utility of each VLM as the model’s label in some manner. When facing a new
downstream task, we can match the task requirements with the model labels to select and reuse
models. Specifically, the proposal contains three key interconnected modules: model labeling, model
selection, and model reuse. In the model labeling process, we construct a semantic graph with
commonly occurring visual concepts and representative samples, and each model undergoes pre-
testing on the semantic graph to generate its model label, which describes its capability on these
semantic classes. In the model selection process, we generate caption descriptions for both the
nodes in the semantic graph and the categories to be classified in the target task to compare their
similarity. This enables us to evaluate the model’s performance on the target classes by aligning the
matched semantic nodes with the model labels. In the model reuse process, we apply an ensemble
strategy that combines the selected models’ predictions on a single class and chooses the highest
confidence across all classes as the final prediction.

The model labeling process is completed immediately when the candidate VLM is added to the
model hub, therefore, it is target task independent, which means the proposal is both data and com-
putationally efficient in the model selection process. Moreover, the proposal is highly growable
since the capability could grow with the number of candidate models in the model hub and the
model labels are also scalable since more semantic nodes can be added continually. Moreover, we
introduce a comprehensive benchmark for evaluating VLM selection methods, aiming to facilitate
related research. The benchmark includes 49 pre-trained VLMs and 17 target datasets as down-
stream tasks. The ground-truth model ranking for each target task is provided for evaluation. We
construct a semantic graph that contains more than 9000 commonly used visual concepts to pre-
test each VLM. The experiments conducted demonstrate the effectiveness of our approach in both
selecting and reusing VLMs, while also validating the scalability of the model hub.

In summary, our contributions are as follows:

1. We highlight that the performance of pre-trained VLM varies across different downstream
tasks and even among classes within the same task. Therefore, it is important to study the
VLM selection problem which is usually neglected by related researchers.
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2. We propose a novel paradigm called Model Label Learning, which encompasses the pro-
cesses of model labeling, selection, and reuse. This paradigm is both time- and data-
efficient, and highly scalable. It can give birth to new VLM model hubs, which can make
it easier for users to select and reuse VLM to solve their tasks.

3. We introduce a new benchmark for evaluating pre-trained VLM selection and reuse meth-
ods, contributing to the advancement of research in this field. Experimental results validate
the effectiveness and scalability of the proposal for selecting and reusing VLMs.

2 RELATED WORK

2.1 VISION-LANGUAGE MODEL

In recent years, there have been significant advances in the field of Vision-Language Models
(VLMs), including notable models such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021),
BLIP (Li et al., 2022), etc. These models leverage large-scale datasets containing image-text pairs,
such as WIT (Srinivasan et al., 2021), to align visual and text features within a shared embedding
space, which has led to impressive capabilities in feature extraction, particularly in the realm of
zero-shot visual tasks. Tremendous works (Dosovitskiy et al., 2021; Yu et al., 2022; Fang et al.,
2023) attempted to improve the zero-shot capabilities of VLMs by focusing on model architecture,
pre-training datasets, and training/fine-tuning methods, which lead to the emergence of numerous
open-source pre-trained VLMs. As a result, several VLM model hubs are constructed, such as open-
clip (Ilharco et al., 2021) and HuggingFace (Wolf et al., 2020), which provide access to numerous
VLMs. However, these model hubs lack effective model selection mechanisms; users can only select
models based on some quantitative indicators, such as download volume, popularity, etc.

2.2 MODEL SELECTION

As pre-trained models become increasingly diverse, how to select appropriate pre-trained models
to tackle specific tasks has become a significant challenge. Many researchers have started to focus
on this aspect. For example, Negative Conditional Entropy (NCE) (Tran et al., 2019) proposes an
information-theoretic quantity to learn the transferability and hardness between classification tasks;
LEEP (Nguyen et al., 2020) utilizes source prediction probabilities instead of hard labels compared
with NCE; LogME (You et al., 2021) estimates the correlation between source model features and
the target outputs by maximum evidence; MetaGL (Park et al., 2023) solves the model selection
problem on graph data by introducing a meta-learning method; EMMS (Meng et al., 2023) uses
weighted linear regression to estimate the transferability of candidate models; Model Spider (Zhang
et al., 2024) uses a re-ranking mechanism to enhance the task-model co-embedding. Although these
methods achieve well-performing in different settings, most of them focus on single-modal which
cannot be directly used for VLM selection. Moreover, the training data for VLM is inaccessible,
which introduces more challenges. Model selection for VLM is still a relatively new topic. LOVM
(Zohar et al., 2023) uses a text dataset to describe the prediction task to train a linear model to predict
the performance of the VLM. However, this method can only exploit text information and becomes
less effective when there is a domain shift between the downstream tasks and the training tasks.

2.3 LEARNWARE

Learnware (Zhou & Tan, 2022) is a novel paradigm that explores more effective model selection
by constructing specifications to describe the capabilities of the model, closely aligning with our
idea of model labeling. Compared with previous selection methods, learnware enables scalable and
efficient model selection across diverse architectures and input types within a unified framework,
improving as the system expands. Model specification is central to the learnware paradigm. Re-
cent works (Tan et al., 2024) on learnware paradigm are built on Reduced Kernel Mean Embedding
(RKME) (Wu et al., 2021), which maps training data distributions to points in Reproducing Kernel
Hilbert Space (RKHS) and identifies models by comparing similarities in the RKHS. Furthermore,
Guo et al. (2023) enhanced RKME for heterogeneous label spaces, while Tan et al. (2023) addressed
challenges in heterogeneous feature spaces. However, learnware requires training data to construct
specifications. Considering the scale of VLM pre-trained datasets, it is unrealistic to construct spec-
ifications for learnware to select models due to limited time and computational resources.
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3 PRELIMINARIES

3.1 ZERO-SHOT VISION TASK OF VLM

Pre-trained VLMs for zero-shot visual tasks are built using two encoders: image encoder and text
encoder. The image encoder is used to transform an image into a vector embedding, which presents
its feature. The text encoder tokenizes the text input and generates a embedding representation by
the text token. Let I : X → Rn denotes the image encoder and T : Y → Rn denotes the text
encoder, where X ∈ X is the image input, Y ∈ Y is the text input, and n is the dimension of the
shared multi-modal embedding space of text embeddings and image embeddings.

In a particular downstream task T , there are CT classes YT = {yi}CT
i=1. For a image x ∈ X , we

obtain the image embeddings I(x) given by the image encoder I and the text embeddings T (y) of
class y produced by the text encoder T . Then, the prediction ŷ of image x can be obtained as

ŷ = argmax
y∈YT

exp (sim (I(x), T (y)))∑
y′∈YT

exp (sim (I(x), T (y′)))
(1)

where sim (·, ·) denotes cosine similarity.

3.2 PROBLEM SETUP

Assume the model hub has M pre-trained VLMs {fm = {Im, Tm}}Mm=1, where Im and Tm denote
image encoder and text encoder of the VLM fm. There are two stages in our setting: the submission
stage for developers to upload models and the identification stage for users to select models.

In the submission stage, the model developer submits a VLM fm to the model hub, and the model
hub assigns a label Sm to the model to describe its specialty and utility. It is particularly emphasized
that uploaded models are anonymous, meaning we do not have access to their training data.

In the identification stage, the user attempts to select VLMs from the model hub for the zero-shot
downstream task T , by uploading general information about the task, such as classes, domain type,
and task type, to describe their requirements. We subsequently utilize this information to select and
reuse suitable VLMs, based on the model labels established in the submission stage.

The two main problems in our settings are: 1) In the submission stage, how can we design a label
to that fully characterize the capabilities of the submitted VLM? 2) In the identification stage, how
can we select and reuse appropriate VLMs from the model hub to address users’ downstream tasks
based on their requirements and the model labels?

4 OUR APPROACH

4.1 FRAMEWORK

As illustrated in Figure 2, the MLL paradigm consists of three key modules: model labeling, model
selection, and model reuse. In the model labeling process, MLL constructs a semantic graph G with
commonly occurring visual concepts and representative samples as the evaluation datasets. When
models are submitted to the model hub, they are pre-tested on the semantic graph and assigned
labels Sm, which describe their capability on these semantic classes. In the model selection process,
we generate caption descriptions for both the nodes in the semantic graph and the categories in the
target task to compare their similarity. This enables us to evaluate the model’s performance on the
target classes by aligning the matched semantic nodes with the model labels. In the model reuse
process, we apply an ensemble strategy that combines the selected models’ predictions on a single
class and chooses the highest confidence across all classes as the final prediction.

4.2 MODEL LABELING

To thoroughly characterize the capabilities of the model, we initiate the process by constructing a
Semantic Graph G as evaluation datasets utilizing the WordNet (Miller, 1995) synsets. Firstly, we
represent each synset in WordNet as a corresponding node v within the semantic graph and establish
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Figure 2: The framework of MLL paradigm. Models added to the hub first undergo a pre-testing
phase, during which they are assigned labels that describe their specific functionalities in the labeling
module. When a downstream task is presented, the system selects relevant models in the selection
module and ensembles them to address the task.

links between nodes based on their relationships of hypernyms and hyponyms. Subsequently, to
capture the real-world image distribution associated with each node, we randomly select images Xv

from sample datasets (detailed in Section 5.1) to serve as representations for each node v. Due to the
limited information in synset name, we also need obtain the caption dataset DG = {dv|v ∈ VG} for
label generalization where VG denotes the set of nodes in Semantic Graph G, dv denotes the caption
of node v. We use “{synset name} which is {synset definition}” as the caption for each node, where
“{synset name}” and “{synset definition}” correspond to the synset name and definition of a synset.
Utilizing the constructed semantic graph, we generate a label Sm for each VLM fm in the model
hub that accurately reflects its capabilities.

svm,x = sim(Im(x), Tm(DG)), x ∈ Xv (2)

svm = {svm,x| ∀x ∈ Xv} (3)

Sm = {svm| v ∈ VG} (4)

where Im(·), Tm(·) denotes the image encoder and text encoder of model fm .

Specifically, the constructed semantic graph allows for the seamless addition of new nodes and the
incremental updating of model labels based on existing foundations. As the nodes in the semantic
graph are expanded, its ability to reflect the performance capabilities of the models is enhanced.
Once we have obtained labels for each model, we can utilize them for effective model selection.

4.3 MODEL SELECTION

In the model selection module, given a downstream task T with CT classes YT = {yi}CT
i=1, in order

to utilize the obtained model labels Sm, we need to match the downstream task classes YT with
the semantic graph nodes VG . However, it can not match well using original class names. Inspired
by previous work (Zohar et al., 2023), we construct expanded captions for both the downstream
task classes and the semantic graph nodes. Large Language Models (OpenAI, 2023) have made
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Algorithm 1 Model Selection & Reuse
Input: Model hub M, model labels {Sm}, semantic graph G, semantic graph caption dataset DG ,

count k of reused models pre-class, target task T = (X,Y )
Output: Task prediction {ŷ}

1: Construct caption dataset DT for target task T .
2: Match similar nodes V Selected in VG with Y by captions DG and DT .
3: Construct transfer matrix Z ∈ RV Selected×CT

based on caption similarity of V Selected and Y .
4: for fm ∈ FM do
5: Calculate reusable metric rm,y for each class y in Y by Eq.(5, 6, 7).
6: end for
7: for y ∈ Y do
8: Select k models to ensemble predictor Fk

y =
{
fm | fm ∈ top - k

(
{rm,y}M

)}
.

9: Calculate prediction ŷ for x by Eq.(8, 9, 10).
10: end for
11: return Task prediction {ŷ};

significant advancements, facilitating the generation of text data. Assuming general information
about the downstream tasks, such as task types and target domain, is accessible, we use GPT-3.5
with specific prompts to generate descriptions for each class as shown below, creating the caption
dataset DT for downstream task T . The following is an example of a prompt used to generate a
caption of the class cat.

Generate long detailed caption for the natural picture of cat in the

image classification. e.g., “ The natural picture of cat, which is ... ”.

Generate long caption for cat within 50 words.

where natural picture and image classification can be replaced with the domain and task descrip-
tions, while cat can be substituted with the specific class name for the target task.

Then, we can use a language model to generate embeddings of graph captions DG and target
task captions DT . By comparing the cosine similarity between the embeddings, we can select
the top k nodes for each class based on similarity and construct a transfer matrix Z = (zvy) ∈
R|V Selected|×|Y T

, where V Selected represents all selected nodes. Additionally, zvy represents the
similarity of captions between graph node v and task class y if v is among the top k nodes that
exhibit the highest similarity with task class y. Otherwise, it will be set to 0. Subsequently, the
precision pm,v for each model fm at the graph nodes v is defined as follows.

pm,v =
1

|Xv|
∑
x∈Xv

I
(
v = argmax

v∈V Selected

svm,x

)
(5)

By utilizing the transfer matrix Z, the precision prediction pm,y for each class y in the downstream
task T can be further derived.

pm,y =
∑

v∈V Selected

pm,v · zvy (6)

When a model excels in a specific class, it may incorrectly handle data not belonging to that class.
Consequently, we need to select models that perform well on specific classes while also maintaining
good overall performance. Thus, we introduce a weight parameter α to balance class performance
with overall performance. Then, the reuse metric r for model fm in class y is defined as:

rm,y = α · pm,y +
1− α

|YT |
∑

y′∈YT

pm,y′ (7)

4.4 MODEL REUSE

To better utilize the selection and harness the capabilities of models in the model hub, we introduce
a specific count k of models to reuse for each class y, we select up to k highest-score model to form

6
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the ensemble predictor Fk
y =

{
fm | fm ∈ top - k

(
{rm,y}M

)}
. During testing, for the data x ∈ X

of the downstream task, ensemble predictor Fk
y infers the confidence pky(x) of class y:

pky(x) =
∑

fm∈Fk
y

wm,y ·
exp (sim (Im(x), Tm(y)))∑

y′∈YT

exp (sim (Im(x), Tm(y′)))
(8)

where wm,y denotes the ensemble weight obtained from the output probability entropy H of each
model within Fk

y , aimed at reducing the impact of unreliable predictions. wm,y is defined as:

wm,y =
H ({sim(Im(x), Tm(y)| ∀ y ∈ YT })∑

fm′∈Fk
y

H ({sim(Im′(x), Tm′(y)| ∀ y ∈ YT })
(9)

Then, the class with the highest confidence is selected as the prediction ŷ for x:

ŷ(x) = argmax
y∈YT

pky(x) (10)

Flow of model selection and reuse of MLL Paradigm are summarized in Algorithm 1.

Our proposal achieves higher accuracy, efficiency, and scalability. In terms of accuracy, the proposal
elucidates the functionalities of VLMs by labeling models with a semantic graph that covers the
most common visual concepts and representative samples to describe different data distributions,
enabling more accurate identification of suitable models for users’ target tasks. For efficiency, the
proposal generates model labels when the pre-trained model is uploaded to the model hub, thus,
it is highly efficient in the model selection process, without the need to run the candidate models
on the target dataset. Regarding scalability, the concepts in the semantic graph can be continually
added, thus, the model labels are scalable flexibility. Moreover, as the number of VLMs in the model
hub increases, our proposal identifies higher-quality models, leading to improved performance on
zero-shot downstream visual tasks.

5 EXPERIMENTS

5.1 MLL BENCHMARK

To evaluate the capabilities of the MLL paradigm in zero-shot visual tasks with VLMs, we need to
obtain a set of sampling datasets for constructing semantic graph G, along with another set dedicated
to downstream target tasks. For this study, we select 49 VLMs, 5 Sample Datasets, and 17 Target
Datasets. Additionally, we collect general information about the task types and domains associated
with each dataset to provide a task description. For testing the selected models on the target tasks, we
utilized the same prompting strategy outlined in Radford et al. (2021)’s work, ensuring consistency
in our evaluation methodology, available at the anonymous link.

Model Hub. We leverage the open-clip library (Ilharco et al., 2021), which encompasses a diverse
set of pre-trained VLMs across multiple architectural frameworks, such as ViT(Dosovitskiy et al.,
2021) and ConvNet(Liu et al., 2022). These models have been pre-trained on a variety of large-scale
datasets, such as WIT (Srinivasan et al., 2021) and LAION-2B (Schuhmann et al., 2022). We select
49 models from this library to form our model hub for the purpose of our experiments. All models
used in the experiments are directed downloaded from the library.

Datasets. We utilized 5 datasets, ImageNet (Deng et al., 2009), ImageNet-V2 (Recht et al., 2019),
ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b) and ImageNet-R
(Hendrycks et al., 2021a), as Sample Datasets for semantic graph construction. Additionally, we
used 17 commonly used datasets and their task general information as Target Datasets to evaluate
VLM selection and reuse methods in zero-shot visual tasks (as shown in Table 3). These datasets
demonstrate diversity in terms of domain, number of classes, and task types. They encompass
various domains, including animals, food, text, landscapes, remote sensing, medical applications,
and transportation. Additionally, they cover a range of tasks such as image classification, geo-
localization, optical character recognition, facial expression recognition, and object distance estima-
tion. To eliminate interference from additional modules or training during evaluation, all tasks can
be assessed using the same VLM architecture.

7
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Table 1: Comparison of the zero-shot performance on 17 target task datasets. The best performance
is highlighted in bold.

Methods CIFAR100 Country211 CLEVR-D DTD DMLab Flowers102

INB 0.8599 0.3121 0.1262 0.6787 0.1940 0.8761
ModelGPT 0.8599 0.3121 0.1262 0.6787 0.1940 0.8761

Proposal (k=1) 0.8773 0.3159 0.1361 0.6910 0.2111 0.8914
Proposal (k=3) 0.8923 0.3238 0.1171 0.7053 0.1573 0.8720

Methods MNIST OxfordPet PCam FER2013 Food101 GTSRB

INB 0.7956 0.9401 0.5332 0.2859 0.9553 0.5391
ModelGPT 0.5648 0.9401 0.4990 0.4014 0.9553 0.5391

Proposal (k=1) 0.8210 0.9488 0.5334 0.3904 0.9576 0.5752
Proposal (k=3) 0.8101 0.9428 0.5003 0.4933 0.9566 0.5636

Methods RESISC45 Rendered
SST2

StanfordCars STL10 UCF101 Avg.

INB 0.6139 0.5199 0.9487 0.9889 0.7702 0.6434
ModelGPT 0.6139 0.5800 0.9487 0.9639 0.7702 0.6367

Proposal (k=1) 0.6437 0.5206 0.9568 0.9878 0.7961 0.6620
Proposal (k=3) 0.6800 0.5233 0.9541 0.9854 0.8092 0.6664

Evaluation Metrics. In our benchmark, methods are expected to select models from a hub of 49
pre-trained VLMs and reuse them across 17 target datasets as downstream tasks to achieve better
performance. Notably, all models selected for use are without additional fine-tuning, as all down-
stream tasks are zero-shot. We use Acc. to evaluate methods’ performance on both downstream
target tasks and the average performance across all tasks.

5.2 EXPERIMENT SETUP

Semantic Graph Construction. We construct a semantic graph G containing 9055 nodes using
the WordNet synsets, which contains a wide range of items, such as animals, tools, clothing, vehi-
cles, plants, and more. Each node is represented by up to 75 randomly selected images from the
sample datasets, reflecting the distribution of the node’s concepts. We use OpenAI text-embedding-
3-large model to obtain caption embeddings of semantic graph nodes and downstream task class
nodes, we then match the similar node between them by cosine similarity between the embeddings.

Compared Methods. Initially, we compare our proposal with ImageNet Baseline (INB), which
employs the performance of VLMs on the ImageNet to select which model to reuse. Additionally,
we compare it with a VLM selection method called ModelGPT (Zohar et al., 2023). ModelGPT
employs generated captions and synonyms for target task classes as substitutes for images of those
classes, then evaluates the performance of VLMs by measuring their ability to correctly classify
the captions and synonyms into their corresponding classes, which serves as the reuse metric in
combination with INB. A linear model is then learned between the reuse metric and ground-truth
performance on training downstream tasks. Finally, the zero-shot ability of VLMs on the target task
is predicted using this linear model and the reuse metric.

Implementation Details. We adopt the official code to implement ModelGPT. For a fair com-
parison, the experiment utilizes the ground-truth performance of VLMs on Sample Datasets for
ModelGPT to train its linear model, and then evaluate it on the benchmark. For both INB and
ModelGPT, the experiment selects the model with the highest predictive performance given by the
method for reuse in the target task. Specifically, we employ the same prompting strategy outlined
in the work of Radford et al. (2021), which uses the prompt “a photo of {class}”, where “{class}”
is replaced by the task class. All selected models are utilized without any further fine-tuning, given
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that all downstream tasks are conducted in a zero-shot manner. Additionally, the weight α for model
selection in our setting is set to 0.7. All experiments are conducted on NVIDIA A800 GPUs.

5.3 EXPERIMENT RESULTS

Zero-shot Performance In our experimental setup, the goal is to optimize the performance of
VLMs on downstream zero-shot visual tasks. Therefore, in Table 1, we compare the performance
of different model selection methods across 17 benchmark datasets. We set two values for the
count k of reused models, specifically 1 and 3, to test the effects of using a single model versus an
ensemble of three models per class. The results show that our method achieves high performance on
most downstream tasks. ModelGPT largely aligns with INB, indicating a strong correlation in
their selection strategies. When INB fails to select a well-performing model, ModelGPT also
struggles with selection. By comparing different counts k of reused models, MLL demonstrates
that reusing the model with the best performance per class is often sufficient to outperform baseline
methods in most downstream tasks, highlighting the practicality of the MLL paradigm. We also find
that in datasets with a limited number of classes, such as PCam and MNIST, employing a single
model for each class tends to yield better results. Additionally, when the models available in the
model hub are generally weak, as seen in several datasets, such as CLEVR-D and DMLab, relying
on ensemble methods may introduce more noise than benefit. In these cases, a single model per
class often provides the ultimate balance between simplicity and effectiveness.

Figure 3: The average performance on 17 down-
stream tasks with the scaling of the model hub

Scalability of Model Hub We design a sce-
nario where the model hub starts from scratch
and gradually expands until it contains all avail-
able VLMs. Figure 3 provides a detailed illus-
tration of the average performance of 17 down-
stream tasks throughout 30 randomly gener-
ated expansion schemes. The results clearly
show that as the model hub grows and expands,
our method can more efficiently reuse the well-
performing VLM models for various tasks, re-
ducing the limitations in model selection and
boosting system performance across a range of
visual tasks. This shows that our method is
not only highly effective in the present but also
holds the potential for continued improvement
as the model hub grows.

6 CONCLUSION

In this paper, we explore how to select and reuse pre-trained VLMs for a specific downstream task.
To the best of our knowledge, this problem has been rarely studied. To address this, we propose
a novel paradigm called Model Label Learning (MLL) that assigns each VLM a label to describe
its utility on representative visual concepts. The MLL paradigm contains three key modules: model
labeling, model selection, and model reuse. The proposal is highly efficient, scalable, and convenient
for both model developers and users. Moreover, we introduced a benchmark for evaluating pre-
trained VLM selection and reuse methods that contain 49 pre-trained VLMs and 17 target datasets,
with ground-truth ranking for each target task. Experiments demonstrate the proposal can achieve
state-of-the-art model selection performance for VLMs and the ability to deal with downstream tasks
could grow with the scale of the model hub, showing the potential of building large model hubs with
advanced model selection mechanisms.

In future work, we will endeavor to develop a novel model hub based on the MLL paradigm pre-
sented in this paper, allowing valid VLM developers from all over the world to submit their models.
When users work on visual classification tasks, they will be able to select and reuse models from
the hub. The limitation of this paper is that the current implementation focuses solely on VLMs and
visual classification tasks. We will further attempt to extend our paradigm to more model types that
have significant architectural differences compared with VLMs, and more complex tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Krizhevsky Alex. Learning multiple layers of features from tiny images. 2009.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Proceedings of the 13th European Conference on Computer Vision,
pp. 446–461, 2014.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3606–3613, 2014.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the 14th International Conference on Artificial Intelligence
and Statistics, pp. 215–223, 2011.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Proceedings of 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In Proceedings of the 9th International Conference on Learning Representations, 2021.

Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan, Vaishaal Shankar, Achal Dave, and
Ludwig Schmidt. Data determines distributional robustness in Contrastive Language Image Pre-
training (CLIP). In Proceedings of the 39th International Conference on Machine Learning, pp.
6216–6234, 2022.

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong
Wang, and Yue Cao. EVA: Exploring the limits of masked visual representation learning at scale.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
19358–19369, 2023.

Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben Hamner,
Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, et al. Challenges in representation
learning: A report on three machine learning contests. In Proceedings of the 20th International
Conference on Neural Information Processing, pp. 117–124, 2013.

Lan-Zhe Guo, Zhi Zhou, Yu-Feng Li, and Zhi-Hua Zhou. Identifying useful learnwares for hetero-
geneous label spaces. In Proceedings of the 40th International Conference on Machine Learning,
pp. 12122–12131, 2023.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adver-
sarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15262–15271, 2021b.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. OpenCLIP, 2021.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In Proceedings of the 38th International Conference on Machine
Learning, pp. 4904–4916, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. CLEVR: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2901–2910, 2017.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations for fine-
grained categorization. In Proceedings of the IEEE International Conference on Computer Vision
Workshops, pp. 554–561, 2013.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of 2020 Conference on Empirical Methods in Natural
Language Processing, pp. 38–45, 2020.

Xi-Zhu Wu, Wenkai Xu, Song Liu, and Zhi-Hua Zhou. Model reuse with reduced kernel mean
embedding specification. IEEE Transactions on Knowledge and Data Engineering, 35(1):699–
710, 2021.

Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. LogME: Practical assessment of
pre-trained models for transfer learning. In Proceedings of the 38th International Conference on
Machine Learning, pp. 12133–12143, 2021.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
CoCa: Contrastive captioners are image-text foundation models. Transactions on Machine Learn-
ing Research, 2022.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. CoRR,
abs/1910.04867, 2019.

Yi-Kai Zhang, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan, and Han-Jia Ye. Model spider:
Learning to rank pre-trained models efficiently. Advances in Neural Information Processing Sys-
tems, pp. 13692–13719, 2024.

Zhi-Hua Zhou and Zhi-Hao Tan. Learnware: Small models do big. CoRR, abs/2210.03647, 2022.

Orr Zohar, Shih-Cheng Huang, Kuan-Chieh Wang, and Serena Yeung. LOVM: Language-only
vision model selection. In Advances in Neural Information Processing Systems, pp. 33120–33132,
2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DETAILS OF BENCHMARK

In this section, we provide detailed insights into our benchmark utilized for evaluating VLM selec-
tion and reuse methods. Table 2 presents general information on the model hub, including model
architecture, pre-trained datasets, parameters, FLOPs, and accuracy on ImageNet. Table 3 outlines
the datasets used in the benchmark, highlighting the type of domain and task for each dataset. This
breakdown is essential for understanding the context and effectiveness of the models assessed in our
study.

Table 2: Details on model hub used in the benchmark, which contain the model architecture, pre-
trained datasets, parameters, FLOPs, and Accuracy on ImageNet
ID Model Architecture Pretrained Dataset Params (M) FLOPs (B) ImageNet Acc.
1 RN50 openai 102.01 18.18 0.5982
2 RN50 cc12m 102.01 18.18 0.3591
3 RN101 openai 119.69 25.5 0.6228
4 RN101 yfcc15m 119.69 25.5 0.3407
5 RN101-quickgelu openai 119.69 25.5 0.6228
6 RN101-quickgelu yfcc15m 119.69 25.5 0.3487
7 RN50x4 openai 178.3 51.82 0.6627
8 RN50x64 openai 623.26 552.65 0.7391
9 ViT-B-32 openai 151.28 14.78 0.6332

10 ViT-B-32 laion2b e16 151.28 14.78 0.6565
11 ViT-B-32 datacomp xl s13b b90k 151.28 14.78 0.6917
12 ViT-B-32 commonpool m clip s128m b4k 151.28 14.78 0.2725
13 ViT-B-32-256 datacomp s34b b86k 151.29 17.46 0.7281
14 ViT-B-32-quickgelu laion400m e31 151.28 14.78 0.6294
15 ViT-B-32-quickgelu metaclip fullcc 151.28 14.78 0.6766
16 ViT-B-16 openai 149.62 41.09 0.6834
17 ViT-B-16 laion2b s34b b88k 149.62 41.09 0.7023
18 ViT-B-16 datacomp l s1b b8k 149.62 41.09 0.6310
19 ViT-B-16 commonpool l laion s1b b8k 149.62 41.09 0.5526
20 ViT-B-16 dfn2b 149.62 41.09 0.7624
21 ViT-B-16-quickgelu metaclip fullcc 149.62 41.09 0.7212
22 ViT-B-16-plus-240 laion400m e31 208.38 64.03 0.6904
23 ViT-L-14 openai 427.62 175.33 0.7554
24 ViT-L-14 laion400m e31 427.62 175.33 0.7271
25 ViT-L-14 datacomp xl s13b b90k 427.62 175.33 0.7921
26 ViT-L-14 commonpool xl clip s13b b90k 427.62 175.33 0.7637
27 ViT-L-14-quickgelu metaclip fullcc 427.62 175.33 0.7917
28 ViT-L-14-quickgelu dfn2b 427.62 175.33 0.8141
29 ViT-L-14-336 openai 427.94 395.22 0.7656
30 ViT-H-14 laion2b s32b b79k 986.11 381.68 0.7796
31 ViT-H-14-quickgelu metaclip fullcc 986.11 381.68 0.8051
32 ViT-H-14-378-quickgelu dfn5b 986.71 1054.05 0.8437
33 ViT-g-14 laion2b s12b b42k 1366.68 581.15 0.7663
34 ViT-bigG-14 laion2b s39b b160k 2539.57 1065.36 0.8009
35 roberta-ViT-B-32 laion2b s12b b32k 212.72 105.87 0.6171
36 xlm-roberta-base-ViT-B-32 laion5b s13b b90k 366.12 105.87 0.6236
37 convnext base w laion2b s13b b82k 179.39 49.38 0.7078
38 convnext base w 320 laion aesthetic s13b b82k 179.39 71.94 0.7167
39 convnext large d laion2b s26b b102k augreg 351.77 107.5 0.7591
40 convnext large d 320 laion2b s29b b131k ft 351.77 157.98 0.7660
41 convnext xxlarge laion2b s34b b82k augreg soup 1200.58 443.03 0.7947
42 coca ViT-B-32 laion2b s13b b90k 253.56 33.34 0.6331
43 coca ViT-L-14 laion2b s13b b90k 638.45 214.52 0.7561
44 EVA01-g-14 laion400m s11b b41k 1136.44 547.36 0.7852
45 EVA02-B-16 merged2b s8b b131k 149.69 41.09 0.7472
46 EVA02-L-14-336 merged2b s6b b61k 428.08 395.16 0.8039
47 EVA02-E-14 laion2b s4b b115k 4704.59 2311.42 0.8196
48 nllb-clip-base v1 501.89 369.6 0.2432
49 nllb-clip-base-siglip v1 507.47 472.91 0.3909
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Table 3: Details on the datasets used in the benchmark, which contain the type of domain and task.

Dataset Domain Task

ImageNet (Deng et al., 2009) natural picture image classification
ImageNet-V2 (Recht et al., 2019) natural picture image classification

ImageNet-Sketch (Wang et al., 2019) Sketch picture image classification
ImageNet-A (Hendrycks et al., 2021b) natural picture image classification
ImageNet-R (Hendrycks et al., 2021a) 15 domain picture

(e.g., art, cartoon)
image classification

CIFAR100 (Alex, 2009) natural picture image classification
Country211 (Radford et al., 2021) natural picture geo-localization
CLEVR-D (Johnson et al., 2017) natural picture object distance estimation

DTD (Cimpoi et al., 2014) texture picture image classification
DMLab (Zhai et al., 2019) natural picture object distance estimation

Flowers102 (Nilsback & Zisserman, 2008) flower picture image classification
FER2013 (Goodfellow et al., 2013) facial picture facial expression classification

Food101 (Bossard et al., 2014) food picture image classification
GTSRB (Stallkamp et al., 2012) traffic picture image classification

MNIST (LeCun et al., 1998) digit picture image classification
OxfordIIITPet (Parkhi et al., 2012) pet photograph image classification

PCam (Veeling et al., 2018) medical picture image classification
Rendered SST2 (Radford et al., 2021) text picture optical character recognition

RESISC45 (Cheng et al., 2017) satellite picture land cover classification
StanfordCars (Krause et al., 2013) car picture image classification

STL10 (Coates et al., 2011) natural picture image classification
UCF101 (Soomro et al., 2012) video frame action recognition
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