
ConeGS: Error-Guided Densification Using Pixel Cones for Improved
Reconstruction with Fewer Primitives

Bartłomiej Baranowski Stefano Esposito Patricia Gschoßmann Anpei Chen† Andreas Geiger
University of Tübingen

baranowskibrt.github.io/conegs

10k 50k 100k 200k 500k 1M 2M
Gaussians

24

25

26

27

28

29

30

P
S

N
R

1 2 3

Ours MCMC EDGS 1

1

2

1

3

1

O
ur

s
M

C
M

C
[2

5]
E

D
G

S
[2

7]

Figure 1. ConeGS replaces cloning-based densification with a novel method that generates pixel-cone-sized primitives in regions of high
image-space error. By improving placement and removing reliance on existing scene structure thanks to a flexible iNGP-based exploration,
it achieves higher reconstruction quality than baselines using the same number of primitives. Results are averaged over Mip-NeRF 360 [3]
and OMMO [33] datasets, with a visual comparison on the truck scene from Tanks & Temples [26].

Abstract

3D Gaussian Splatting (3DGS) achieves state-of-the-art
image quality and real-time performance in novel view syn-
thesis but often suffers from a suboptimal spatial distri-
bution of primitives. This issue stems from cloning-based
densification, which propagates Gaussians along existing
geometry, limiting exploration and requiring many primi-
tives to adequately cover the scene. We present ConeGS, an
image-space-informed densification framework that is in-
dependent of existing scene geometry state. ConeGS first
creates a fast Instant Neural Graphics Primitives (iNGP)
reconstruction as a geometric proxy to estimate per-pixel
depth. During the subsequent 3DGS optimization, it identi-
fies high-error pixels and inserts new Gaussians along the

†Corresponding author.

corresponding viewing cones at the predicted depth values,
initializing their size according to the cone diameter. A pre-
activation opacity penalty rapidly removes redundant Gaus-
sians, while a primitive budgeting strategy controls the total
number of primitives, either by a fixed budget or by adapt-
ing to scene complexity, ensuring high reconstruction qual-
ity. Experiments show that ConeGS consistently enhances
reconstruction quality and rendering performance across
Gaussian budgets, with especially strong gains under tight
primitive constraints where efficient placement is crucial.

1. Introduction

Neural Radiance Fields (NeRF) [37] have significantly ad-
vanced novel view synthesis, achieving remarkable fidelity

1

ar
X

iv
:2

51
1.

06
81

0v
1

 [
cs

.C
V

]
 1

0
N

ov
 2

02
5

https://baranowskibrt.github.io/conegs/
https://arxiv.org/abs/2511.06810v1

ConeGS

Cloning

Error map

Before After Target

1

1

2 3

Figure 2. Densification comparison. Cloning-based methods are
difficult to tune, and the resulting primitives may require many it-
erations to fit correctly into the scene. ConeGS, by contrast, places
primitives precisely using the pixel viewing cone size, enabling
faster scene integration without reliance on the existing geometry.

in scene reconstruction. However, representing scenes with
neural networks makes NeRF slow to train and render,
though it provides smooth parameterization and flexibility
to handle changes in scene structure. Recently, 3D Gaussian
Splatting (3DGS) [24] has gained attention as a faster, more
practical alternative to NeRF, explicitly modeling scenes
with sets of 3D Gaussians to achieve interactive rendering
speeds while maintaining competitive visual fidelity. How-
ever, 3DGS increases expressiveness through cloning and
splitting, which offer limited exploration, rely on hard-to-
define densification rules, and generate many unnecessary
primitives. As a result, primitives often accumulate in sub-
optimal regions, leaving large parts of the scene underrep-
resented or mispredicted.

To address these issues, we propose ConeGS, which
replaces cloning-based densification with a novel strategy
that targets pixels exhibiting high photometric error. By
sampling these pixels and using depth estimates from a
fast Instant Neural Graphics Primitives (iNGP) [39] recon-
struction, new Gaussians are placed precisely in regions
where the current representation is insufficient. This tar-
geted placement increases expressiveness in areas requiring
higher primitive density, improving reconstruction quality
while avoiding redundant primitives. To determine the size
of new Gaussians, we draw inspiration from Mip-NeRF [2].
During densification, each Gaussian is initialized according
to the size of the viewing cone of the pixel from which it is
generated at the specified depth. Their initial size is thus
defined directly by their image-space coverage, eliminat-
ing the need for local size analysis or adjustments to recon-
structed regions. Figure 2 illustrates the effectiveness of the
proposed approach. Combined with a pre-activation opac-
ity penalty that quickly removes redundant Gaussians, this
enables scene representation with fewer primitives while
preserving high reconstruction quality. We further incorpo-

rate two primitive budgeting strategies to regulate the total
number of primitives, either through a fixed budget or by
adapting to scene complexity. ConeGS outperforms base-
line methods across diverse datasets and a wide range of
primitive budgets. The advantage is most pronounced un-
der tight primitive budgets. At higher budgets, it matches
the quality of cloning-based methods, where efficient prim-
itive placement is less critical, while still rendering faster
than the baselines. In summary, our contributions are:
• A densification strategy that places new Gaussians in re-

gions of high photometric error in image space, guided by
depth estimates from an iNGP-based geometric proxy.

• An approach that determines the size of new Gaussians
from the viewing cones of the pixels from which they are
generated.

• An improved opacity penalty that promptly removes low-
opacity Gaussians, combined with a budgeting strategy
that balances scene complexity and primitive count.
Finally, our method is also compatible with other 3DGS

improvements, making it straightforward to integrate with
existing approaches for greater efficiency, or with methods
where cloning strategies are ambiguous or hard to formal-
ize [20, 34, 49].

2. Related work

Neural Radiance Fields: NeRFs [37] represent scenes
as continuous volumetric radiance fields, enabling high-
quality novel view synthesis. This is achieved by pa-
rameterizing the scene with a neural network (typically
an MLP), whose weights encode the scene globally. De-
spite producing photorealistic results, these methods rely
on costly volumetric rendering and remain computationally
inefficient. Extensions such as Mip-NeRF [2] and Mip-
NeRF360 [3] reduce aliasing via conical frustum integra-
tion, while Zip-NeRF [4] improves view consistency with
hierarchical sampling and multi-scale supervision. Hybrid
approaches [7, 45, 46, 56] mitigate this by combining ex-
plicit data structures with compact neural representations,
enabling faster optimization and real-time rendering. In-
stant Neural Graphics Primitives (iNGP) [39] further accel-
erate training through multi-resolution hash-grid encoding
and shallow MLPs.

Primitive-based Differentiable Rendering: 3D Gaussian
Splatting (3DGS) [24] has emerged as an efficient alterna-
tive to Neural Radiance Fields (NeRF) [37]. Rather than
modeling the scene as a global volume, 3DGS represents
it with local explicit 3D Gaussians and uses differentiable
rasterization, resulting in significantly faster rendering. Its
balance of fidelity and efficiency has attracted significant
attention and spurred a wide range of follow-up research.
Prior works have focused on tackling anti-aliasing [53, 57],
reconstructing dynamic scenes [52, 54], enabling gener-

2

ative content creation [48, 66], reducing rendering arti-
facts [43], substituting alpha composition with volumetric
rendering [35, 47], extracting geometry [16, 21, 58], level-
of-detail reconstruction [44], frequency-based regulariza-
tion [59, 60], and introducing new primitives or kernel func-
tions [18, 20, 31, 49]. Recent efforts have also targeted re-
ducing computational and memory costs, often through fea-
ture quantization or code-book encoding [10, 15, 34, 41],
or scene simplification [63]. [11] reduces computation by
lowering the number of primitives through an aggressive
densification and pruning strategy, while [11, 12, 64] insert
new Gaussians at the currently estimated depths using re-
initialization. Unlike our method, this approach overwrites
existing structures instead of adding new points, and further
depends on the scene already being well reconstructed. [25]
improves primitive distribution and exploration by incor-
porating positional errors and applying penalties to opac-
ity and scaling. Closely related to our approach, several
works focus on improving densification to reduce redun-
dancy and better capture fine details. Strategies include re-
fining cloning heuristics [5, 22, 25], per-Gaussian property-
or saliency-based cues [36], geometry- and volume-aware
criteria [1, 23, 65], addressing gradient collision [55], per-
ceptual sensitivity [64], learnable schemes [32, 40], and
based on Gaussian Processes [17]. Some works target den-
sification in challenging settings [38], filling holes in the
representation [9, 29], though typically adding only a few
primitives. PixelSplat [6] models dense probability distri-
butions for more robust Gaussian placement, influencing
later approaches [8]. Recent work [27] suggests that den-
sification may be unnecessary for high-quality reconstruc-
tion given strong initialization. Like our method, they start
by estimating scene geometry, but rely only on correspon-
dences from a pretrained dense matching network, without
enhancing densification, and at higher GPU memory cost
than our approach. Concurrent work [62], employs Gaus-
sians with spatially varying texture colors, improving fine-
detail reconstruction and reducing the number of primitives
needed. Other methods use neural radiance fields for depth
supervision [14, 28] or point cloud extraction [14, 42, 50] to
initialize a scene, but not to improve densification directly.
Concurrent work [13] applies NeRF for initialization and
limited densification, constrained by existing Gaussian lo-
cations, and does not explore varying Gaussian sizes, which
we find beneficial for reconstruction quality.

3. Preliminaries

3D Gaussian Splatting: 3DGS [24] represents a scene
as an unordered set of 3D Gaussian primitives {Gi|i =
1, . . . ,M}. Each primitive Gi = (pi, si,Ri, oi, ci) is de-
fined by its position pi ∈ R3, scaling vector si ∈ R3,
rotation matrix Ri ∈ R3×3, opacity oi ∈ R, and view-

dependent color ci ∈ R3. The color ci is represented by
spherical harmonics (SH) coefficients ki ∈ R3L, where
L is the number of coefficients determined by the chosen
SH order. The 3D covariance matrix is given by Σi =
RiSiS

T
i R

T
i , where Si = diag(si) is the scaling matrix.

The color Ĉ of a pixel is computed by α-blending over a set
of N Gaussians, sorted by depth, whose projections overlap
the pixel:

Ĉ =
∑

i∈N
ciαi

∏i−1

j=1
(1− αj), (1)

αi = oiK(pc,µ
2D
i ,Σ2D

i), (2)

where αi is the blending weight of the i-th Gaussian, pc

is the pixel center in image coordinates, µ2D
i and Σ2D

i are
the 2D projected mean and covariance of Gi, and K(·) is a
Gaussian filter response in screen space. The exact form of
K depends on the chosen filter [24, 57, 67]. Gaussians are
traditionally initialized from an SfM point cloud, with each
component of si set equal to the mean Euclidean distance
to the three nearest neighbors N3(i) of Gaussian i:

si = (si, si, si), si =
1

3

∑
k∈N3(i)

∥pk − pi∥ . (3)

During training, the Gaussian parameters are optimized
with the loss:

LGS = (1− λ)MAE(I, I∗) + λLD-SSIM , (4)

where λ = 0.2, MAE is the mean absolute error between
the rendered image I and the ground-truth image I∗, and
LD-SSIM = 1− SSIM(I, I∗) [51].

Neural Radiance Fields: NeRFs [37] model a scene as a
continuous 3D field that maps a 3D location along a camera
ray and the viewing direction of the corresponding pixel to
a density σ ∈ R and color c ∈ R3. A camera ray is pa-
rameterized as r(t) = pcam + td, where pcam is the camera
position and d is a unit direction vector pointing toward the
center of a pixel. Each ray is discretized into N intervals
defined by distances {ti, ti+1}Ni=1. For each sample posi-
tion r(ti) along the ray, the NeRF is queried to predict the
sample’s color ci and density σi. Using volumetric render-
ing [37], the corresponding pixel color is approximated as:

Ĉ =
∑N

i=1
ciαi

∏i−1

j=1
(1− αj), (5)

αi = 1− exp(−σiδi) with δi = ti+1 − ti. (6)

Here, αi is the opacity of the i-th sample, δi is the length
of its ray segment, and the product term represents the trans-
mittance τi =

∏i−1
j=1(1− αj).

Sampling only a single ray per pixel can lead to blur and
aliasing. Mip-NeRF [2] addresses this by replacing the ray

3

with a cone that models the pixel footprint, i.e. the 3D vol-
ume a pixel covers in world space. The cone is divided into
frustums, and integration is performed over these volumes
rather than along a 1D line. The cone’s radius rcone(t) de-
fines the cross-section of the pixel cone at distance t and is
computed from the directions of rays passing through the
pixel and its neighbors:

rcone(t) = t
∥dx − d∥+ ∥dy − d∥

2
, (7)

where d is the direction of the ray through the center of
the pixel, and dx,dy are the directions of rays through the
neighboring pixels in the x and y directions, respectively.

4. Method
This section outlines our ray-based densification approach
for 3DGS. First, we explain how we use an iNGP model as
a geometric proxy to initialize the 3D Gaussian scene (Sec-
tion 4.1). Next, we detail our ray-based densification strat-
egy, which uses the iNGP to place pixel-cone-sized Gaus-
sians in high-error regions, along with associated optimiza-
tion changes (Section 4.2). Finally, we provide additional
implementation details in Section 4.3. An overview of the
complete pipeline is shown in Figure 3.

4.1. Initialization

We use a trained iNGP model [39] as a geometric proxy to
initialize the 3DGS scene and guide densification. Trained
briefly on input images, it provides accurate depth esti-
mates, that position both the initial Gaussian primitives and
those added later during densification, with minimal impact
on training time. Additionally, the depths can be evaluated
on the fly during optimization, reducing both memory us-
age and computation compared to precomputing all depth
maps. We initialize the scene with Pinit Gaussians, set to
one million as in [42], or fewer if a smaller budget is spec-
ified (see Section 4.2). To construct this set, we uniformly
sample Pinit image-pixel pairs (I, u, v) from the training set
pixel domain Itrain. Each sampled image-pixel pair defines
exactly one Gaussian in the initialized scene. For each sam-
ple, we define its associated camera ray

rI(u, v, t) = pI + tdI(u, v), (8)

where I is an image index, (u, v) are pixel coordinates,
pI ∈ R3 is the camera center, and dI(u, v) ∈ R3 is the
normalized ray direction. We query the iNGP along this ray
to obtain discrete transmittance values {τk}, from which the
median depth tmed is computed as:

tmed = tk where τk−1 > 0.5 ≥ τk. (9)

The center of the j-th Gaussian primitive is then set to:

pj = pI + tmed dI(u, v), (10)

yielding the set of initial centers {pj}j∈Isample with
Isample ⊂ Itrain. The scale sj is initialized isotropically
using the average distance to the three nearest neighbors
N3(j), following Eq. (3). The rotation is set to identity
Rj = I, the opacity to oj = 0.1, and the SH coefficients to:

kj = (k1:3,j ,k4:L,j) , k1:3,j = cj,0, k4:L,j = 0,
(11)

where cj,0 is the RGB color for the sampled pixel (I, u, v)
rendered with iNGP using a zeroed-out view direction. Al-
though our densification strategy can achieve high-quality
reconstructions without scene initialization, we retain this
step to ensure consistently strong performance across all
metrics (see Section 5.2).

4.2. Optimization

We fully replace the standard 3DGS cloning-based densifi-
cation with an error-guided strategy that adapts the iNGP-
based ray-depth rendering procedure from Section 4.1 to
position new Gaussian primitives. Below, we outline the
sampling, scaling, budgeting, and pruning stages of our
densification pipeline.

Error-Weighted Gaussian Densification: To limit the
number of primitives while targeting poorly reconstructed
regions, we add new Gaussians at pixels with high photo-
metric error. At iteration j, we render an image Ij and
compute the per-pixel absolute error (L1 loss) E(p) =
|Ij(p) − I∗(p)| with respect to the ground-truth image I∗.
We then sample Nsample pixels without replacement accord-
ing to a multinomial distributionM with probabilities pro-
portional to the normalized error map:

{ps}
Nsample
s=1 ∼M

(
Nsample,

E(p)∑
p′∈Ij

E(p′)

)
, (12)

While L1 loss does not always indicate possible im-
provements and can also arise from noise or difficult-to-
optimize reflections, we found it to be a reliable indication
of lacking expressiveness, especially at low primitive bud-
gets. For each sampled pixel ps, a new Gaussian Gs is cre-
ated, with its center placed along the corresponding ray at
the median depth tmed,s given by the iNGP. Newly spawned
Gaussians are appended to an accumulation set:

Gaccum ← Gaccum ∪ {Gs}
Nsample
s=1 . (13)

Every 100 iterations, low-opacity Gaussians in the scene
Gscene are pruned, and Gaussians in Gaccum are merged into
the scene:

Gscene ← Gscene ∪ Gaccum, Gaccum ← ∅. (14)

The newly inserted Gaussians are then jointly optimized
with existing primitives. Unlike cloning-based methods,

4

Error

map

Pixel

sampling

Accumulate

Scene

initialization

Prune & densify

Rasterize

Ground

truthiNGP reconstruction

Median

Depth

Rescaling to

cone size

Gaussian

(a) Initialization (Section 4.1) (b) Optimization (Section 4.2)

Figure 3. Overview of the ConeGS pipeline. (a) First, an iNGP reconstruction is obtained to serve as a geometric proxy for object
surfaces, guiding the placement of Gaussians both during scene initialization and throughout the 3DGS optimization process. (b) During
3DGS optimization, ConeGS performs error-guided densification by sampling a subset of pixels with high L1 error. For each sampled
pixel, a new Gaussian G is created along the pixel’s viewing cone at the depth estimated by iNGP and scaled to match the cone’s size. New
Gaussians are accumulated and, every 100 iterations, inserted into the scene after pruning those with low opacity. Blue arrows indicate
gradient updates to Gaussian parameters, and the red arrow marks scene updates.

which constrain new primitives to the vicinity of exist-
ing ones and thus hinder exploration of unseen regions,
our approach places Gaussians directly in high-error ar-
eas, enabling effective scene coverage even far from exist-
ing geometry. Moreover, we preserve the integrity of well-
reconstructed areas, since new Gaussians are added on top
of the existing structure rather than created through splitting
or cloning. Although occasional iNGP depth inaccuracies
may introduce misplaced Gaussians, diverse viewpoint cov-
erage ensures that inconsistent ones are quickly corrected or
pruned, while multiview-consistent ones are retained. The
full densification pipeline is shown in Figure 4.

Pixel-Footprint-Aligned Scaling: Selecting an appropri-
ate scale for newly added Gaussians during densification is
crucial. If primitives are too large, they may obscure fine
details and be pruned prematurely, whereas overly small
ones contribute little to the rendered image, yielding weak
gradients and slowing convergence. Although k-NN–based
scaling is effective for initialization, recomputing nearest-
neighbor distances at every densification step is computa-
tionally expensive and sensitive to outliers. Large distances
can produce inflated scales, causing new Gaussians to over-
lap well-reconstructed regions and hinder further optimiza-
tion (see Section 5.2). To avoid these issues, we set the
initial scale of each newly added Gaussian directly from the
pixel footprint at the median depth tmed,i along its corre-
sponding camera ray, as defined in Eq. 7:

si = λscale rcone(tmed,i) (1, 1, 1), (15)

where λscale = 2 converts the cone radius rcone(tmed,i) to
the diameter of its cross-section. This ensures that, from
the spawning viewpoint, the Gaussian’s projection onto the
image plane approximately matches the pixel width, inde-
pendent of scene depth. The assigned scale is only an ini-
tial value, with subsequent optimization steps jointly updat-
ing all primitives to allow newly added Gaussians to adjust
to the existing scene. Our pixel-aligned, depth-aware scal-
ing provides three key benefits: (1) it is independent of the
current primitive distribution, avoiding the structural biases
of cloning-based methods that replicate and reinforce lo-
cal geometry, (2) pixel size allows Gaussians to contribute
to optimization immediately and efficiently fit fine details
while minimizing overlap with existing structure, and (3)
its isotropic shape promotes stable multi-view integration,
without shapes that the cloned Gaussians inherit.

Primitive Budgeting: We consider two budgeting strate-
gies for controlling the number of Gaussians in the scene.
The first enforces a hard upper bound, as in [25], ensur-
ing that densification never exceeds the prescribed budget.
This constraint regulates memory and computation while
preventing uncontrolled growth of the primitive set. At
each densification step, we set the number of sampled pix-
els Nsample so that newly added Gaussians replace those
pruned, avoiding excess primitives that would otherwise be
discarded under the budget. This is computed as:

Nsample =
max(0.2NGS, 1.2Nlast)

100
, (16)

5

Create Gaussians

at depths

Add to the scene

Calculate

Figure 4. Densification overview. Illustration of the proposed
error-guided strategy. We render an image with 3DGS, compute
the per-pixel L1 error, sample pixels proportionally to their error
magnitude, and place new Gaussians at the iNGP-predicted depth
along the corresponding viewing rays.

where NGS is the current total number of Gaussians, and
Nlast is the number of primitives inserted in the previous
densification step, and the division by 100 reflects the den-
sification interval. This formulation keeps NGS close to
the budget limit even under aggressive pruning, maintain-
ing consistent scene coverage throughout optimization.

The second strategy adapts the number of primitives to
the scene’s complexity, enabling controlled growth without
imposing a fixed upper bound:

Nsample =
βNGS

100
. (17)

Here, β controls the growth rate of the primitive set.
Smaller values balance the number of Gaussians added
with those pruned, maintaining a relatively stable primitive
count, whereas larger values yield higher primitive counts,
increasing geometric detail at the cost of memory and com-
puting power. With scene initialization at 1M primitives and
the application of the opacity penalty, we balance Gaussians
added and pruned, unlike [5], which requires a predefined
upper limit on primitives.

Opacity-Regularized Pruning: Following [24, 25], Gaus-
sians with opacity below 0.005 are pruned every 100 itera-
tions to remove primitives with negligible contribution to
the rendered image. Earlier work has promoted sparsity
through different strategies: periodically resetting opaci-
ties [24], which can destabilize training [5], reducing opac-
ities by a constant amount after each densification [5],
or introducing a post-activation opacity penalty Lpost

o =
∥σ(opre)∥1 [25], where opre denotes the opacity logits be-
fore the sigmoid and σ is the sigmoid function. This ap-
plies the strongest constraint around 0.5 and only a weak
penalty near the pruning threshold. In contrast, we employ
a pre-activation opacity penalty Lpre

o = ∥opre∥1. It provides
a steady constraint across the full opacity range, includ-
ing very low values, gradually reducing under-contributing
primitives. The penalty acts throughout training, and our
densification strategy can freely add new primitives, allow-
ing any structure lost through pruning to be recovered more

easily than with cloning-based approaches. In all experi-
ments, this loss is scaled by λo = 0.0002.

4.3. Implementation Details

For the iNGP model, we use the proposal-based implemen-
tation from NerfAcc [30], trained for 20k iterations with the
original setup and architecture. Gaussian optimization runs
for 30k iterations, with our densification active for the first
25k. Unlike 3DGS, all SH components are optimized from
the start, enabled by the stable initialization that removes
the need for gradual SH introduction.

5. Evaluation

Dataset and Metrics: We evaluate our method on pub-
licly available scenes from Mip-NeRF360 [3] and OMMO
dataset [33], with 01 scene from OMMO resized to have
1600 pixels width. Following [24, 25], we also include
the train and truck scene from Tanks & Temples [26],
as well as Dr Johnson and playroom from the Deep-
Blending [19] dataset. We report PSNR, SSIM [51], and
LPIPS [61], with rendering speeds averaged across the
full test set. All FPS measurements were recorded on an
NVIDIA RTX 2080 Ti, whereas training speeds are re-
ported on an NVIDIA A100, since EDGS requires more
memory. These training speeds do not include later-added
speed improvements [36].

Baselines: We primarily compare our method against
3DGS [24], it’s extension with iNGP point cloud initializa-
tion [14], MCMC [25] using different initialization types
(random, SfM, iNGP point clouds), as well as, Gaus-
sianPro [9], Perceptual-GS [64], EDGS (with densifica-
tion) [27], with the densification stopped for all of them
if the primitive budget is reached. If the number of prim-
itives at initialization would be higher than the specified
budget, the number of primitives is sampled uniformly to
fit below it. In the random initialization settings we follow
the process described in MCMC [25]. We additionally test
on Mini-Splatting2 [11] by matching their final number of
primitives instead of a specific budget, due to their method
relying on generating a high number of initial Gaussians.

5.1. Results

We observe improvements over the baselines across a wide
range of specified budgets in Table 1, with plots comparing
the most important methods on the budget and no-budget
scenario in Figure 6. For a lower limit on Gaussians, we
outperform the benchmarks across all datasets and metrics,
while providing a competitive reconstruction quality com-
pared to the best performing baselines on the high budget
scenarios. In Table 2 we additionally show that even on a
high number of primitives of 1M and including the iNGP
training, our method provides competitive speed to other

6

Mip-NeRF360 [3] OMMO [33] Tanks & Temples [26] DeepBlending [19]
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Number of Gaussians limited to 100k

3DGS [24] (SfM init.) 23.61 0.693 0.413 26.45 0.820 0.296 22.38 0.774 0.333 24.65 0.827 0.412
Foroutan et al. [14]† 26.64 0.781 0.318 26.89 0.829 0.276 22.48 0.766 0.341 25.31 0.822 0.418

MCMC [25] (rand. init.) 25.72 0.730 0.369 25.92 0.808 0.313 21.45 0.750 0.365 27.94 0.859 0.369
MCMC [25] (SfM init.) 27.06 0.800 0.303 27.01 0.841 0.266 22.50 0.780 0.332 28.94 0.876 0.333
MCMC [25] (iNGP init.) 27.35 0.797 0.299 26.95 0.837 0.265 22.69 0.775 0.326 29.02 0.872 0.337

GaussianPro [9] 25.57 0.766 0.338 26.14 0.822 0.289 20.59 0.757 0.348 28.15 0.870 0.342
Perceptual-GS [64] 25.66 0.774 0.320 26.13 0.819 0.292 20.76 0.759 0.347 28.32 0.874 0.338

EDGS [27] 27.09 0.798 0.296 26.99 0.838 0.261 22.32 0.777 0.324 28.43 0.872 0.337
Ours 27.74 0.809 0.285 27.59 0.852 0.243 23.12 0.791 0.310 29.44 0.880 0.328

Number of Gaussians limited to 500k

3DGS [24] (SfM init.) 28.22 0.821 0.260 28.96 0.883 0.196 23.54 0.816 0.265 29.25 0.882 0.302
Foroutan et al. [14]† 28.88 0.862 0.204 28.80 0.884 0.185 23.52 0.816 0.257 29.61 0.886 0.297

MCMC [25] (rand. init.) 28.38 0.844 0.237 28.23 0.874 0.212 22.96 0.808 0.279 28.84 0.875 0.315
MCMC [25] (SfM init.) 28.82 0.861 0.214 28.72 0.885 0.194 23.68 0.825 0.259 29.44 0.887 0.308
MCMC [25] (iNGP init.) 29.02 0.867 0.198 28.75 0.885 0.186 23.57 0.823 0.243 29.61 0.885 0.288

GaussianPro [9] 28.02 0.827 0.253 28.32 0.876 0.206 22.31 0.802 0.286 29.33 0.886 0.301
Perceptual-GS [64] 28.66 0.856 0.211 28.42 0.876 0.203 22.77 0.813 0.267 29.44 0.888 0.296

EDGS [27] 28.82 0.865 0.193 29.01 0.893 0.168 23.47 0.831 0.229 29.33 0.889 0.286
Ours 29.08 0.870 0.190 29.14 0.892 0.170 23.69 0.829 0.229 29.86 0.891 0.285

Number of Gaussians bounded by Mini-Splatting2 [11]

Mini-Splatting2 [11] 28.89 0.875 0.183 28.06 0.875 0.198 22.79 0.823 0.239 29.99 0.898 0.279
Ours 29.26 0.875 0.179 28.90 0.887 0.179 23.66 0.829 0.231 29.82 0.891 0.280

† Original code was not publicly available. Our implementation uses iNGP initialization and does not include the additional depth-based loss.

Table 1. Quantitative results with a Gaussian number limit of 100k and 500k. Mini-Splatting2 [11] does not support constraining the
number of Gaussians during reconstruction, so we match its Gaussian count. We highlight the best , second best and third best results
among methods with the same Gaussian counts. Per-scene metrics for selected methods are provided in the supplementary material.

EDGS [27] MCMC [25] Ours GT

R
oo

m
[3

]
(5

0k
)

D
rJ

oh
ns

on
[1

9]
(1

00
k)

05
[3

3]
(2

00
k)

13
[3

3]
(5

00
k)

Figure 5. Qualitative results comparing our method with MCMC [25] (with SfM point cloud initialization) and EDGS [27] on the Mip-
NeRF 360 [3], OMMO [33], and DeepBlending [19] datasets, with varying Gaussian budgets (given in parentheses).

methods. The qualitative results in Figure 5 show signif-
icant improvement using a wide range of primitive bud-
gets, demonstrating that for the same limit of primitives our
method is able to produce a much better reconstruction, es-

pecially in areas that are challenging to properly capture on
a low budget, such as isolated or high frequency structures.
We provide additional qualitative and quantitative results,
along with further scene analysis, in the appendix.

7

10k 50k 100k 200k 500k 1M 2M

22.5

24.0

25.5

27.0

28.5

30.0

P
S

N
R

Budget

441k 548k 750k 1.27M 2.19M

22.5

24.0

25.5

27.0

28.5

30.0
No budget

10k 50k 100k 200k 500k 1M 2M

0.16

0.24

0.32

0.40

0.48

LP
IP

S

441k 548k 750k 1.27M 2.19M

0.16

0.24

0.32

0.40

0.48

10k 50k 100k 200k 500k 1M 2M

Gaussians

100

200

300

400

500

FP
S

441k 548k 750k 1.27M 2.19M

Gaussians

100

200

300

400

500

ConeGS MCMC (SfM init.) MCMC (rand. init.) EDGS

Figure 6. PSNR, LPIPS and FPS plots for a specified primitive
budget (left) and without a budget (right), where the number of
primitives corresponds to the chosen β values. Numerical results
are provided in the appendix. Values are averaged across Mip-
NeRF360 [3] and OMMO [33].

Ours
10k iters

Ours
20k iters

Ours
40k iters EDGS [27] 3DGS [24]

(SfM init.)
MCMC [25]
(rand. init.)

MCMC [25]
(SfM init.)

PSNR ↑ 29.33 29.37 29.37 29.18 28.71 28.98 29.23
SSIM ↑ 0.877 0.88 0.881 0.877 0.846 0.865 0.875
LPIPS ↓ 0.171 0.168 0.166 0.168 0.222 0.204 0.190
FPS ↑ 134 137 137 131 112 92 95
3DGS time ↓ 20.7 20.5 20.5 19.4 22.6 26.3 25.1
Init. time ↓ 1.6 3.1 6.1 2.3 - - -
Overall time ↓ 22.3 23.6 26.6 21.7 22.6 26.3 25.1

Table 2. Quantitative results showing overall scene reconstruc-
tion timings for 3DGS [24], MCMC [25] and EDGS [27] methods,
as well as our method with differing iNGP reconstruction dura-
tions, with the number of Gaussians capped at 1M. Results are
averaged over the Mip-NeRF360 [3] dataset. 3DGS time reports
the target scene optimization, including densification, while init.
time shows the iNGP reconstruction needed by our method and
the initial matching for EDGS [27].

5.2. Ablations

We analyze the impact of individual components in our
method by conducting a series of ablation studies, pre-
sented in Table 3. (a), (b) Longer iNGP reconstruction
only slightly improves reconstruction quality. (c) contin-
uing training the iNGP model also during optimization,
(d) initializing Gaussians with the ground truth pixel color,
or (e) predicting spherical harmonics with iNGP, leads to
marginally worse results. Demonstrating the strength of
our densification method, using (f) pixel-cone-sized prim-
itives during initialization, or even not using any initializa-
tion (g), results in worse PSNR but maintains low LPIPS
and considerably improves rendering speed, thanks to less
overlap between primitives, reducing blending. (h) Sam-
pling pixels uniformly instead of guiding Gaussian creation
using the L1 loss from the training set produces lower re-

Ablation PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑
Ours 27.74 0.810 0.285 328

(a) 10k iNGP iter. 27.74 0.808 0.287 313
(b) 40k iNGP iter. 27.72 0.811 0.284 333
(c) Train iNGP during 3DGS 27.73 0.809 0.285 310
(d) Color from GT image 27.73 0.807 0.287 320
(e) Prediction of SH with iNGP 27.74 0.805 0.290 320

(f) Cone-sized initialization 27.38 0.806 0.287 437
(g) Without initialization 27.46 0.811 0.285 415

(h) Uniform image-space sampling 27.51 0.806 0.286 307
(i) Densify with 3DGS depth 27.43 0.797 0.296 332
(j) SfM initialization + 3DGS depth dens. 27.15 0.790 0.302 329
(k) Densify with k-NN scaling 27.54 0.802 0.295 299
(l) No opacity penalty 27.31 0.794 0.301 294
(m) Post-densification opacity decrease [5] 27.46 0.798 0.297 256
(n) MCMC-style opacity penalty [25] 27.49 0.803 0.293 239

(o) λscale = 1 27.70 0.810 0.285 329
(p) λscale = 4 27.63 0.808 0.285 329

Table 3. Ablation study of our method with 100k Gaussians, av-
eraged over the Mip-NeRF360 [3] dataset. We highlight the best ,
second best , and third best results.

construction quality, although due to uniform sampling in
image space still focusing more on parts of the scene seen
most across views, the drop is not drastic. Densifying with
3DGS depth (i), also without using iNGP even for initial-
ization (j), strongly affects the results. Similarly, k-NN siz-
ing of newly added primitives based on their closest neigh-
bors (k), or changing the opacity penalty (l), (m), (n), has a
large effect on reconstruction quality, reinforcing the bene-
fits of our densification approach. (o), (p) Altering the size
of Gaussians created during densification from their default
pixel-width cone size slightly reduces reconstruction qual-
ity, although the small difference suggests that Gaussians
are quickly resized to fit the scene.

6. Conclusion
We introduce ConeGS, a reconstruction pipeline that re-
places cloning-based densification with a method guided
by photometric error and a coarse iNGP proxy, where new
primitives are sized by pixel cones. Together with an im-
proved opacity penalty, this allows creating primitives inde-
pendently of existing structures through more flexible ex-
ploration. ConeGS consistently improves reconstruction
quality and rendering performance across Gaussian bud-
gets, with strong gains under tight primitive constraints. It
achieves up to a 0.6 PSNR increase and a 20% speedup over
cloning-based baselines.

Limitations: ConeGS works well on standard scenes
but can struggle with very large scenes, inaccurate cam-
era poses, or sparse viewpoints, sometimes producing extra
floating Gaussians (see appendix). Its gains are also limited
at very high Gaussian budgets, where dense coverage re-
duces the benefit of error-guided placement, offering mainly
faster rendering.

8

References
[1] Mohamed Abdul Gafoor, Marius Preda, and Titus Zaharia.

Refining gaussian splatting: A volumetric densification ap-
proach. In Computer Science Research Notes. University of
West Bohemia, Czech Republic, 2025. 3

[2] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. ICCV, 2021. 2, 3, 15

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 1, 2, 6, 7,
8, 12, 13, 14, 15, 17, 18

[4] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. ICCV, 2023. 2, 15

[5] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder.
Revising densification in gaussian splatting. ArXiv,
abs/2404.06109, 2024. 3, 6, 8

[6] David Charatan, Sizhe Li, Andrea Tagliasacchi, and Vincent
Sitzmann. pixelsplat: 3d gaussian splats from image pairs for
scalable generalizable 3d reconstruction. In CVPR, 2024. 3

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.
2

[8] Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang,
Marc Pollefeys, Andreas Geiger, Tat-Jen Cham, and Jianfei
Cai. Mvsplat: Efficient 3d gaussian splatting from sparse
multi-view images. arXiv preprint arXiv:2403.14627, 2024.
3

[9] Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin,
Yuexin Ma, Wenping Wang, and Xuejin Chen. GaussianPro:
3d gaussian splatting with progressive propagation. In Inter-
national Conference on Machine Learning (ICML), 2024. 3,
6, 7, 13

[10] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, De-
jia Xu, and Zhangyang Wang. Lightgaussian: Unbounded
3d gaussian compression with 15x reduction and 200+ fps,
2023. 3

[11] Guangchi Fang and Bing Wang. Mini-splatting2: Building
360 scenes within minutes via aggressive gaussian densifica-
tion. ArXiv, abs/2411.12788, 2024. 3, 6, 7, 12, 13

[12] Guangchi Fang and Bing Wang. Mini-splatting: Represent-
ing scenes with a constrained number of gaussians, 2024. 3

[13] Shuangkang Fang, I-Chao Shen, Takeo Igarashi, Yufeng
Wang, ZeSheng Wang, Yi Yang, Wenrui Ding, and Shuchang
Zhou. Nerf is a valuable assistant for 3d gaussian splatting,
2025. 3

[14] Yalda Foroutan, Daniel Rebain, Kwang Moo Yi, and Andrea
Tagliasacchi. Evaluating alternatives to sfm point cloud ini-
tialization for gaussian splatting. 2024. 3, 6, 7, 13

[15] Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Ea-
gles: Efficient accelerated 3d gaussians with lightweight en-
codings, 2024. 3

[16] Antoine Guédon and Vincent Lepetit. Sugar: Surface-
aligned gaussian splatting for efficient 3d mesh reconstruc-
tion and high-quality mesh rendering. CVPR, 2024. 3

[17] Zhihao Guo, Jingxuan Su, Shenglin Wang, Jinlong Fan,
Jing Zhang, Li Hong Han, and Peng Wang. Gp-gs: Gaus-
sian processes for enhanced gaussian splatting. ArXiv,
abs/2502.02283, 2025. 3

[18] Abdullah Hamdi, Luke Melas-Kyriazi, Jinjie Mai, Guocheng
Qian, Ruoshi Liu, Carl Vondrick, Bernard Ghanem, and
Andrea Vedaldi. Ges : Generalized exponential splatting
for efficient radiance field rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 19812–19822, 2024. 3

[19] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. 2018. 6, 7, 13, 14,
17, 18

[20] Jan Held, Renaud Vandeghen, Abdullah Hamdi, Adrien
Deliege, Anthony Cioppa, Silvio Giancola, Andrea Vedaldi,
Bernard Ghanem, and Marc Van Droogenbroeck. 3D con-
vex splatting: Radiance field rendering with 3D smooth con-
vexes. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2025. 2, 3

[21] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically ac-
curate radiance fields. 2024. 3

[22] Binxiao Huang, Zhengwu Liu, and Ngai Wong. Decompos-
ing densification in gaussian splatting for faster 3d scene re-
construction, 2025. 3

[23] Hanqing Jiang, Xiaojun Xiang, Han Sun, Hongjie Li, Liyang
Zhou, Xiaoyu Zhang, and Guofeng Zhang. Geotexdensifier:
Geometry-texture-aware densification for high-quality pho-
torealistic 3d gaussian splatting, 2024. 3

[24] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 2, 3, 6, 7, 8, 13

[25] Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Wei-
wei Sun, Yang-Che Tseng, Hossam Isack, Abhishek Kar,
Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian splat-
ting as markov chain monte carlo. In Conference on Neural
Information Processing Systems (NeurIPS), 2024. 1, 3, 5, 6,
7, 8, 12, 13, 14

[26] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics, 36(4), 2017.
1, 6, 7, 12, 13, 14, 17, 18

[27] Dmytro Kotovenko, Olga Grebenkova, and Björn Ommer.
EDGS: eliminating densification for efficient convergence of
3dgs. arXiv, 2504.13204, 2025. 1, 3, 6, 7, 8, 12, 13, 15

[28] Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun
Zhou, and Lin Gu. Dngaussian: Optimizing sparse-view 3d
gaussian radiance fields with global-local depth normaliza-
tion. arXiv preprint arXiv:2403.06912, 2024. 3

[29] Mingrui Li, Shuhong Liu, Tianchen Deng, and Hongyu
Wang. Densesplat: Densifying gaussian splatting slam with
neural radiance prior, 2025. 3

[30] Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo
Kanazawa. Nerfacc: Efficient sampling accelerates nerfs.
arXiv preprint arXiv:2305.04966, 2023. 6

9

[31] Rong Liu, Dylan Sun, Meida Chen, Yue Wang, and Andrew
Feng. Deformable beta splatting, 2025. 3

[32] Yueh-Cheng Liu, Lukas Höllein, Matthias Nießner, and
Angela Dai. Quicksplat: Fast 3d surface reconstruction
via learned gaussian initialization. ArXiv, abs/2505.05591,
2025. 3

[33] Chongshan Lu, Fukun Yin, Xin Chen, Tao Chen, Gang YU,
and Jiayuan Fan. A large-scale outdoor multi-modal dataset
and benchmark for novel view synthesis and implicit scene
reconstruction, 2023. 1, 6, 7, 8, 12, 13, 14, 15, 17, 18

[34] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin
Wang, Dahua Lin, and Bo Dai. Scaffold-gs: Structured 3d
gaussians for view-adaptive rendering. In CVPR, 2024. 2, 3

[35] Alexander Mai, Peter Hedman, George Kopanas, Dor
Verbin, David Futschik, Qiangeng Xu, Falko Kuester, Jon
Barron, and Yinda Zhang. Ever: Exact volumetric ellipsoid
rendering for real-time view synthesis, 2024. 3

[36] Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl,
Markus Steinberger, Francisco Vicente Carrasco, and Fer-
nando De La Torre. Taming 3dgs: High-quality radiance
fields with limited resources. In SIGGRAPH Asia 2024 Con-
ference Papers, New York, NY, USA, 2024. Association for
Computing Machinery. 3, 6

[37] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 3

[38] Mahmud A. Mohamad, Gamal Elghazaly, Arthur Hubert,
and Raphael Frank. Denser: 3d gaussians splatting for scene
reconstruction of dynamic urban environments, 2024. 3

[39] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM TOG, 2022. 2, 4

[40] Seungtae Nam, Xiangyu Sun, Gyeongjin Kang, Younggeun
Lee, Seungjun Oh, and Eunbyung Park. Generative densifi-
cation: Learning to densify gaussians for high-fidelity gener-
alizable 3d reconstruction. arXiv preprint arXiv:2412.06234,
2024. 3

[41] Simon Niedermayr, Josef Stumpfegger, and Rüdiger West-
ermann. Compressed 3d gaussian splatting for accelerated
novel view synthesis. In CVPR, 2024. 3

[42] Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakoto-
saona, Michael Oechsle, Daniel Duckworth, Rama Gosula,
Keisuke Tateno, John Bates, Dominik Kaeser, and Federico
Tombari. Radsplat: Radiance field-informed gaussian splat-
ting for robust real-time rendering with 900+ fps. arXiv.org,
2024. 3, 4

[43] Lukas Radl, Michael Steiner, Mathias Parger, Alexan-
der Weinrauch, Bernhard Kerbl, and Markus Steinberger.
StopThePop: Sorted Gaussian Splatting for View-Consistent
Real-time Rendering. ACM Transactions on Graphics, 4
(43), 2024. 3

[44] Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu,
Zhangkai Ni, and Bo Dai. Octree-gs: Towards consistent
real-time rendering with lod-structured 3d gaussians. IEEE
transactions on pattern analysis and machine intelligence,
PP, 2024. 3

[45] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 2

[46] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, 2022. 2

[47] Chinmay Talegaonkar, Yash Belhe, Ravi Ramamoorthi, and
Nicholas Antipa. Volumetrically consistent 3d gaussian ras-
terization, 2025. 3

[48] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang
Zeng. Dreamgaussian: Generative gaussian splatting for effi-
cient 3d content creation. arXiv preprint arXiv:2309.16653,
2023. 3

[49] Nicolas von Lützow and Matthias Nießner. Linprim: Lin-
ear primitives for differentiable volumetric rendering. ArXiv,
abs/2501.16312, 2025. 2, 3

[50] Zipeng Wang and Dan Xu. Pygs: Large-scale scene repre-
sentation with pyramidal 3d gaussian splatting, 2024. 3

[51] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 2004. 3,
6

[52] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
In CVPR, 2024. 2

[53] Zhiwen Yan, Weng Fei Low, Yu Chen, and Gim Hee Lee.
Multi-scale 3d gaussian splatting for anti-aliased rendering.
In CVPR, 2024. 2

[54] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians for
high-fidelity monocular dynamic scene reconstruction. arXiv
preprint arXiv:2309.13101, 2023. 2

[55] Zongxin Ye, Wenyu Li, Sidun Liu, Peng Qiao, and Yong
Dou. AbsGS: Recovering fine details in 3d gaussian splat-
ting. In ACM MM, 2024. 3

[56] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 2

[57] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-
ting. CVPR, 2024. 2, 3

[58] Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian
opacity fields: Efficient high-quality compact surface recon-
struction in unbounded scenes. arXiv:2404.10772, 2024. 3

[59] Zhaojie Zeng, Yuesong Wang, Lili Ju, and Tao Guan.
Frequency-aware density control via reparameterization for
high-quality rendering of 3d gaussian splatting. ArXiv,
abs/2503.07000, 2025. 3

[60] Jiahui Zhang, Fangneng Zhan, Muyu Xu, Shijian Lu, and
Eric P. Xing. Fregs: 3d gaussian splatting with progres-
sive frequency regularization. 2024 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
21424–21433, 2024. 3

[61] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In 2018 IEEE/CVF

10

Conference on Computer Vision and Pattern Recognition,
2018. 6

[62] Xin Zhang, Anpei Chen, Jincheng Xiong, Pinxuan Dai, Yu-
jun Shen, and Weiwei Xu. Neural shell texture splatting:
More details and fewer primitives. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2025. 3

[63] Yangming Zhang, Wenqi Jia, Wei Niu, and Miao Yin. Gaus-
sianspa: An ”optimizing-sparsifying” simplification frame-
work for compact and high-quality 3d gaussian splatting.
2025 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 26673–26682, 2024. 3

[64] Hongbi Zhou and Zhangkai Ni. Perceptual-gs: Scene-
adaptive perceptual densification for gaussian splatting.
ArXiv, abs/2506.12400, 2025. 3, 6, 7, 13

[65] Zheng Zhou, Yu-Jie Xiong, Chun-Ming Xia, Jia-Chen
Zhang, and Hong-Jian Zhan. Gradient-direction-aware den-
sity control for 3d gaussian splatting. 2025. 3

[66] Yuanchen Guo Yangguang Li Ding Liang Yanpei Cao Song-
hai Zhang Zixin Zou, Zhipeng Yu. Triplane meets gaussian
splatting: Fast and generalizable single-view 3d reconstruc-
tion with transformers. arXiv preprint arXiv:2312.09147,
2023. 3

[67] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa vol-
ume splatting. In Proceedings Visualization, 2001. VIS ’01.,
2001. 3

11

Appendix

This appendix introduces additional results (Section A1)
and ablations (Section A2). We then discuss our recon-
structed scene structure (Section A3), possible failure cases
(Section A4), and provide visualizations for the different
types of initializations mentioned in the main paper (Sec-
tion A5). Finally, we discuss the parallels between 3DGS
and NeRF rendering, which allows training a radiance field
using the rendering from 3DGS (Section A6).

A1. Detailed results

Table A1 and Table A2 present results for the no-budget
scenario, which were used for plots in Figure 6. We use var-
ious values of the β parameter without specifying a budget
for our method, except for the last cell, which uses the bud-
get set by the number of Gaussians generated by 3D Gaus-
sian Splatting. For each cell, we also compare MCMC [25]
and EDGS [27] where they are set to match the number of
Gaussians produced in each of the cells. The comparisons
show that our method is able to produce high-quality re-
sults even without specifying a budget, instead adjusting
the number of primitives based on the scene complexity,
while still remaining sparse in the number of primitives.
Notably, even when setting β = 0, which effectively dis-
ables densification, our method still performs well due to
a dense initialization and effective filtering of unnecessary
primitives enforced by the opacity penalty, consistent with

Ablation PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑ # Gaussians

Ours (β = 0) 29.12 0.873 0.183 185
542kMCMC (SfM) 28.86 0.865 0.209 136

EDGS 28.87 0.868 0.187 194

Ours (β = 0.01) 29.25 0.877 0.174 169
674kMCMC (SfM) 29.06 0.870 0.199 119

EDGS 28.97 0.873 0.178 167

Ours (β = 0.02) 29.34 0.880 0.166 146
942kMCMC (SfM) 29.15 0.876 0.189 101

EDGS 29.10 0.878 0.167 134

Ours (β = 0.04) 29.38 0.881 0.161 105
1.66MMCMC (SfM) 29.32 0.882 0.174 77

EDGS 29.19 0.881 0.159 102

Ours 29.35 0.879 0.159 80

2.57MMCMC (SfM) 29.56 0.887 0.164 55
EDGS 29.37 0.884 0.153 67
3DGS 29.03 0.870 0.184 69

Table A1. No-budget Mip-NeRF360. Comparison of recon-
struction quality without a fixed limit on the number of primi-
tives. For each cell, our method is run with a different β parame-
ter, which determines the number of Gaussians generated, and the
other methods are limited to this number. In the last cell, the num-
ber of Gaussians is set to match the amount produced by 3DGS,
with all other methods constrained accordingly. Results are aver-
aged over the Mip-NeRF360 [3] dataset.

Ablation PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑ # Gaussians

Ours (β = 0) 28.54 0.879 0.195 253
352kMCMC (SfM) 28.37 0.877 0.207 199

EDGS 28.62 0.885 0.183 219

Ours (β = 0.01) 29.02 0.890 0.176 237
438kMCMC (SfM) 28.55 0.882 0.199 175

EDGS 28.84 0.890 0.173 211

Ours (β = 0.02) 29.19 0.894 0.166 217
581kMCMC (SfM) 28.79 0.888 0.190 157

EDGS 29.07 0.896 0.163 188

Ours (β = 0.04) 29.32 0.898 0.157 116
927kMCMC (SfM) 29.05 0.895 0.177 105

EDGS 29.35 0.902 0.151 134

Ours 29.60 0.904 0.144 114

1.75MMCMC 29.46 0.904 0.157 89
EDGS 29.85 0.909 0.137 99
3DGS 29.30 0.896 0.171 88

Table A2. No-budget OMMO. Comparison of reconstruction
quality without a fixed limit on the number of primitives. For each
cell, our method is run with a different β parameter, which deter-
mines the number of Gaussians generated, and the other methods
are limited to this number. In the last cell, the number of Gaus-
sians is set to match the amount produced by 3DGS, with all other
methods constrained accordingly. Results are averaged over the
OMMO [33] dataset.

Ours Mini-Splatting2 [11]

Figure A1. Qualitative comparison between our approach
and Mini-Splatting2 [11] on the garden scene from Mip-
NeRF360 [3] and on the train scene from Tanks & Temples
[26].

findings in [27]. However, this configuration does not al-
low explicit control over the number of primitives and may
limit the achievable reconstruction quality.

If an even lower number of Gaussians is desired while
still using a no-budget scenario, the number of initialized
Gaussians can be reduced, effectively lowering the number
of primitives generated at the end.

We show in Table A3 the results on the selected bench-
marks for the budget of 1M primitives. Additionally, we
present per-scene results for 100k Gaussians in Table A8,

12

Mip-NeRF360 [3] OMMO [33] Tanks & Temples [26] DeepBlending [19]
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Number of Gaussians limited to 1M

3DGS [24] (SfM init.) 28.71 0.846 0.222 29.40 0.894 0.178 23.60 0.826 0.245 28.93 0.881 0.292
Foroutan et al. [14]† 29.22 0.876 0.177 29.32 0.896 0.163 23.75 0.829 0.230 29.60 0.886 0.282

MCMC [25] (rand. init.) 28.98 0.865 0.204 28.83 0.888 0.185 23.41 0.824 0.249 28.94 0.877 0.303
MCMC [25] (SfM init.) 29.23 0.875 0.190 29.18 0.895 0.174 23.93 0.836 0.233 29.67 0.887 0.288
MCMC [25] (iNGP init.) 29.32 0.879 0.173 28.76 0.887 0.181 23.37 0.804 0.268 29.87 0.892 0.276

GaussianPro [9] 28.56 0.845 0.226 28.79 0.885 0.189 23.01 0.818 0.256 29.27 0.887 0.291
Perceptual-GS [64] 29.27 0.876 0.176 29.00 0.888 0.179 23.26 0.828 0.240 29.41 0.889 0.286

EDGS [27] 29.18 0.877 0.168 29.58 0.903 0.149 23.66 0.842 0.200 29.43 0.889 0.271
Ours 29.37 0.880 0.168 29.44 0.899 0.154 23.70 0.835 0.207 29.69 0.889 0.273

† Original code was not publicly available. Our implementation uses iNGP initialization and does not include the additional depth-based loss.

Table A3. Quantitative results with a Gaussian number limit of 1M. We highlight the best , second best and third best results among
methods with comparable numbers of Gaussians.

Ours 3DGS (SfM) MCMC (SfM) EDGS Perceptual-GS

Memory (MiB) 9545 9049 8671 14517 12403

Table A4. Peak GPU memory usage on the 15 scene from the
OMMO dataset [33] on the maximum budget of 500k primitives.
We highlight the best , second best and third best results among
all.

PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑ Train (min) ↓
ConeGS 29.14 0.892 0.170 217 25
ConeGS (iNGP retrain) 29.27 0.893 0.168 212 29

Table A5. Ablation on additional iNGP training on the
OMMO [33] dataset with 500k primitives, evaluating the effect of
continuing training iNGP in parallel with the full 3DGS optimiza-
tion. We highlight the best , second best and third best results
among all.

500k Gaussians in Table A9, 1M Gaussians in Table A10,
and 2M Gaussians in Table A11. We also show additional
qualitative results with Mini-Splatting2 [11] in Figure A1.

A2. Additional ablations and comparisons

We evaluate the peak GPU memory usage during optimiza-
tion for several methods in Table A4. The results show that
our method is very close to 3DGS [24] and MCMC [25] in
terms of memory consumption, while remaining consider-
ably lower than EDGS [27] and Perceptual-GS [64]. This
efficiency allows our method to run on a wider range of
GPUs, making it more accessible to devices with limited
memory.

We expand on ablation (c) from the main paper, where
iNGP continues training in parallel with the full 3DGS opti-
mization. Since iNGP training, like densification, is guided
by the L1 error from 3DGS, the iNGP model can better fo-
cus on regions where 3DGS reconstruction may fall short,
potentially improving densification. The original ablation
was tested on a budget of 100k primitives, which may not

0 5000 10000 15000 20000 25000 30000

No. iterations

101

102

103

104

105

106

N
o.

G
au

ss
ia

ns

Set budget (100k)

0 5000 10000 15000 20000 25000 30000

No. iterations

101

102

103

104

105

106

Unset budget (β = 0.04)

0 5000 10000 15000 20000 25000 30000

No. iterations

101

102

103

104

105

106

N
o.

G
au

ss
ia

ns

Set budget (1M)

0 5000 10000 15000 20000 25000 30000

No. iterations

101

102

103

104

105

106

Unset budget (β = 0.01)

Pruned Added Accumulated Total

Figure A2. Number of primitives pruned, added, accumulated,
as well as the total number, during each densification, on different
budget scenarios. Results obtained from the garden scene from
Mip-NeRF360 [3].

fully reveal this effect. To explore further, we run exper-
iments with larger budgets. On the 500k budget for chal-
lenging OMMO [33] scenes (Table A5), we observe addi-
tional performance gains, though at the cost of longer train-
ing time. We also test this setup with a budget of 1M prim-
itives across all datasets (Table A6), finding minimal im-
provements on difficult scenes and slight decreases on Mip-
NeRF360, which may be caused by overfitting to certain
areas.

Figure A2 illustrates the number of primitives added and
removed during each densification and pruning step. It also
tracks the accumulation buffer of primitives. When no bud-
get is specified, all accumulated primitives are added to the
scene (see Eq. 17). Under a fixed budget, however, not all
of them are used. This is because accumulation happens
every iteration and must remain available for pruning and

13

Mip-NeRF360 [3] OMMO [33] Tanks & Temples [26] DeepBlending [19]
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Number of Gaussians limited to 1M

Ours 29.37 0.880 0.168 29.44 0.899 0.154 23.70 0.835 0.207 29.69 0.889 0.273
Ours, iNGP training during 3DGS 29.25 0.879 0.168 29.54 0.900 0.152 23.72 0.836 0.207 29.73 0.889 0.273

Table A6. Ablation on additional iNGP training for the budget of 1M primitives. We highlight the best , second best and third best
results among methods with comparable numbers of Gaussians.

0.1 0.2 0.5 1.0 2.0 4.0 10.0

Pixel size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fr
eq

ue
nc

y

×106 Histogram of Pixel Size Distribution

Figure A3. The histogram of perceived image-space size of
pixel-sized Gaussians rendered from different viewpoints. Size
expressed in pixel widths. Analysis doesn’t include the low-pass
filter from 3DGS rasterization.

Ours MCMC (SfM) MCMC 3DGS (SfM)

Gaussians per pixel 30.72 49.55 48.45 34.74

Table A7. Blending analysis. Mean number of Gaussians con-
tributing to alpha blending per pixel, averaged across the Mip-
NeRF360 [3] dataset using a budget of 1M Gaussians. We high-
light the best , second best and third best results among all.

densification, while the exact number that can be added is
unknown beforehand. As a result, the system accumulates
more primitives than are usually required to keep the total
count close to the budget after pruning (see Eq. 16).

The primitive size is defined to be approximately one
pixel from a single viewpoint. From other viewpoints, this
size is not exactly one pixel, but should remain close. To
confirm this, we measure the size of newly added pixel-
sized primitives from multiple viewpoints and report the re-
sults in Figure A3. The distribution shows that the apparent
size remains near one pixel, with very few cases above four
pixels or below 0.2 pixels.

A3. Scene structure
To confirm that our method produces reconstructions with
desirable characteristics, such as a balanced distribution
of scaling values and placement close to surfaces, which

10−7 10−3 101 105

Scale

Ours

10−7 10−3 101 105

Scale

MCMC

Figure A4. Histograms of the Gaussian scaling values for our
method and MCMC with SfM initialization on 2M Gaussians. The
red lines indicate the minimum scaling required for a Gaussian to
cover at least one pixel, disregarding the low-pass filter.

Ours MCMC

Figure A5. Shrunk Gaussians. Visual comparison between the
proposed method and MCMC, rendered using Gaussians scaled to
half their original size. Both methods were trained with a limit of
1 million primitives on the bicycle and bonsai scenes from
Mip-NeRF360 [3], and the 10 scene from OMMO [33].

are often important for downstream tasks, we analyze
the scenes created with our method in comparison to
MCMC [25].

Although Gaussian Splatting with the MCMC densifica-

14

tion strategy explores the scene effectively, it also has clear
shortcomings. Its cloning strategy and scaling penalty of-
ten cause Gaussians to shrink strongly along certain dimen-
sions. The low-pass filter used by 3DGS renderer can hide
this effect visually, but it prevents Gaussians from expand-
ing in those directions and interferes with tasks that depend
on accurate scales, such as MCMC position error. As shown
in Figure A4, many of its Gaussians shrink below the pixel
radius, in contrast to the more balanced distribution pro-
duced by our method.

Figure A5 shows that our approach produces Gaussians
that are more uniform in size and placed closer to object sur-
faces. This avoids an overreliance on oversized background
primitives located far from the surface. This primitive dis-
tribution not only improves geometric alignment but also
increases rendering speed by reducing blending and sorting
overhead during rasterization. To support this hypothesis,
Table A7 reports the mean number of Gaussians blended
per pixel. Our method consistently requires less blending
compared to the selected benchmarks. The difference is es-
pecially large compared to MCMC, which blends over 60%
more Gaussians per pixel on average.

A4. Failure cases

While our method generally produces strong reconstruc-
tions on almost all tested scenes, its reliance on iNGP can
make it susceptible to floaters in challenging scenarios such
as noisy poses, very large or sparse-view scenes, or other
cases where reliable iNGP reconstruction is difficult. One
such example is shown in Figure A6, where the scene con-
tains distortions and lacks sufficient viewpoint coverage
near the cameras. This leads to spurious high-density re-
gions in iNGP close to the cameras, which in turn degrades
densification quality by placing Gaussians in incorrect re-
gions. Although this can reduce performance, the method
still produces high-quality reconstructions overall (see per-
scene results).

A5. Initialization visualizations

The choice of initialization has a strong impact on the per-
formance of 3DGS reconstruction. A sufficiently good ini-
tialization can even remove the need for additional densi-
fication ([27], Table A1, Table A2). We visualize different
initialization types in Figure A7. Initialization from a sparse
SfM point cloud often leaves large gaps that are difficult to
fill correctly, while our initialization produces a more uni-
form coverage. Another important strategy is initialization
based on pixel width. This approach does not provide a use-
ful inductive bias of larger primitives and can lead to more
gaps in unobserved regions, although it may offer faster ren-
dering due to reduced blending (Section 5.2). Finally, our
formulation allows scaling the initial primitives in image

GT ConeGS iNGP

Figure A6. Depth maps. Depth maps for ConeGS and the
iNGP reconstruction model on the 01 scene from the OMMO [33]
dataset. Since the Gaussians are generated from an iNGP recon-
struction, the presence of floaters in it leads to floaters also appear-
ing in the Gaussian Splatting results.

SfM point cloud init. Our init.

1× pixel size init. 10× pixel size init.

Figure A7. Initialization Methods Comparison. Visual compar-
ison of four initialization methods for 3DGS reconstruction on the
bicycle scene from Mip-NeRF 360 dataset [3]: (1) SfM point
cloud initialization, (2) iNGP initialization with kNN-based sizing,
(3) iNGP initialization with 1× sizing, and (4) iNGP initialization
using the smaller of 10× pixel size or kNN-based sizing.

space, producing a balance between these two types of ini-
tialization.

A6. Gaussian-Based Radiance Field training
To establish a more direct connection between the volu-
metric ray marching procedure in Neural Radiance Fields
(NeRF) and the rendering in 3D Gaussian Splatting
(3DGS), the set of conical frustums sampled along a cone
in Mip-NeRF and its derivatives [2–4] can be reinterpreted
as a set of 3D Gaussian primitives, covering approximately
the same area. The purpose of this reformulation is to en-
able training a neural radiance field model using only the
3DGS renderer, without using the traditional volumetric ray
integration.

15

Figure A8. Training equivalence. Illustration of the equivalence
between training an implicit radiance field model using NeRF-
style ray marching and 3D Gaussian Splatting rasterization.

To align the 3DGS and NeRF rendering formulations, it
is necessary to demonstrate that an entire ray can be equiv-
alently represented as a sequence of Gaussians such that,
when rendered, the result is equal to the volumetric integra-
tion process. This is achieved by casting cones along pixel
directions and subdividing each into a set of conical frus-
tums. Each frustum is then mapped to a Gaussian primitive,
where the midpoint

tµ,i =
ti + ti+1

2
(A1)

is used to define the Gaussian center pi. The view-
dependent RGB color ci and scalar density σi, which is
converted to opacity oi using Eq. 6, are predicted by a
neural network. As detailed in Section 4.1, the predicted
RGB color ci is encoded as spherical harmonics coeffi-
cients, which are compatible with the 3DGS rasterizer.

Since the Gaussians lie along the cone and their cen-
ters are co-linear with the pixel center and the camera ori-
gin, their projected 2D means fall directly on the target
pixel. Consequently, the maximum opacity contribution
aligns with the pixel center, and the kernel evaluation sat-
isfies

K(pc,µ
2D
i ,Σ2D

i) = 1. (A2)

This condition ensures that the Gaussian opacity oi corre-
sponds directly to the opacity αi used in blending opera-
tions, as defined in Eq. 6 and Eq. 2. The opacity is therefore
determined by the predicted density and the length of the
corresponding frustum.

To maintain consistent 2D projection footprints across
different depths, each Gaussian’s 3D covariance must be
adjusted based on its location along the cone. Because elon-
gating Gaussians along the ray direction does not affect the
resulting 2D projection, the scaling can be derived using the
pixel footprint size and set isotropically using the formula-
tion in Eq. 15, while the quaternion can be set to the identity
quaternion.

Given these assignments for position, color, opacity,
scale, and orientation, each Gaussian can be rendered us-
ing the 3DGS renderer to produce the same pixel color as
that produced by volumetric rendering. Assuming no low-
pass filtering is applied and that only a single image is ren-

dered at a time, it becomes possible to train an Instant-NGP-
style model using only the 3DGS rendering pipeline. Al-
though this approach is marginally slower than traditional
ray marching, it yields equivalent radiance field representa-
tions. A visual comparison of both approaches is shown in
Figure A8.

This reinterpretation also provides a more principled
foundation for the proposed densification strategy. Instead
of using depth, the strategy can be understood as selecting
a Gaussian that corresponds to a surface-level conical frus-
tum of pixels with high photometric error. This establishes
a clearer theoretical link between cone-based densification
and neural implicit models such as NeRF.

16

Scene Ours 3DGS (SfM) MCMC (SfM) EDGS
M

ip
-N

eR
F3

60
[3

] Bicycle 24.05 / 0.652 / 0.379 / 368 20.99 / 0.470 / 0.543 / 466 23.34 / 0.630 / 0.400 / 339 23.68 / 0.635 / 0.393 / 444
Garden 24.69 / 0.709 / 0.336 / 431 22.87 / 0.589 / 0.445 / 430 24.51 / 0.710 / 0.350 / 569 24.47 / 0.706 / 0.341 / 493
Stump 25.71 / 0.707 / 0.351 / 456 22.79 / 0.547 / 0.498 / 506 25.16 / 0.680 / 0.370 / 402 25.08 / 0.673 / 0.377 / 588
Room 31.09 / 0.903 / 0.254 / 275 27.02 / 0.859 / 0.328 / 267 30.37 / 0.900 / 0.270 / 224 30.08 / 0.896 / 0.265 / 317
Counter 28.22 / 0.879 / 0.251 / 229 25.64 / 0.845 / 0.307 / 252 27.83 / 0.880 / 0.260 / 198 27.77 / 0.877 / 0.251 / 245
Kitchen 29.73 / 0.896 / 0.183 / 239 20.53 / 0.671 / 0.440 / 297 28.37 / 0.890 / 0.210 / 246 28.84 / 0.891 / 0.186 / 269
Bonsai 30.67 / 0.920 / 0.241 / 276 25.41 / 0.866 / 0.331 / 326 29.84 / 0.910 / 0.260 / 281 29.73 / 0.906 / 0.256 / 298
Average 27.74 / 0.809 / 0.285 / 325 23.61 / 0.692 / 0.413 / 363 27.06 / 0.800 / 0.303 / 323 27.09 / 0.798 / 0.296 / 379

O
M

M
O

[3
3]

01 22.58 / 0.625 / 0.458 / 212 20.53 / 0.543 / 0.575 / 159 22.66 / 0.620 / 0.470 / 180 22.50 / 0.608 / 0.475 / 222
03 25.39 / 0.842 / 0.244 / 356 24.09 / 0.803 / 0.295 / 112 24.30 / 0.810 / 0.290 / 217 24.85 / 0.827 / 0.259 / 313
05 27.95 / 0.863 / 0.246 / 415 26.87 / 0.841 / 0.296 / 354 27.70 / 0.860 / 0.270 / 318 27.69 / 0.856 / 0.259 / 398
06 27.30 / 0.913 / 0.202 / 321 26.53 / 0.899 / 0.229 / 107 26.25 / 0.910 / 0.210 / 339 26.60 / 0.910 / 0.198 / 339
10 29.31 / 0.853 / 0.252 / 338 28.86 / 0.833 / 0.291 / 125 28.70 / 0.840 / 0.280 / 337 28.78 / 0.839 / 0.275 / 341
13 30.36 / 0.899 / 0.211 / 449 29.79 / 0.889 / 0.247 / 171 29.45 / 0.880 / 0.250 / 378 28.98 / 0.878 / 0.234 / 468
14 29.73 / 0.924 / 0.145 / 394 27.09 / 0.874 / 0.220 / 237 29.26 / 0.920 / 0.160 / 360 28.92 / 0.909 / 0.169 / 374
15 28.10 / 0.893 / 0.182 / 405 27.80 / 0.877 / 0.213 / 153 27.72 / 0.890 / 0.200 / 427 27.58 / 0.877 / 0.215 / 420
Average 27.59 / 0.852 / 0.242 / 361 26.45 / 0.820 / 0.296 / 177 27.00 / 0.841 / 0.266 / 320 26.99 / 0.838 / 0.261 / 359

Ta
nk

s
&

Te
m

pl
es

[2
6] Truck 24.54 / 0.822 / 0.291 / 184 23.59 / 0.803 / 0.318 / 128 23.86 / 0.810 / 0.316 / 155 23.33 / 0.799 / 0.314 / 183

Train 21.70 / 0.759 / 0.328 / 204 21.17 / 0.744 / 0.349 / 118 21.13 / 0.749 / 0.347 / 160 21.31 / 0.756 / 0.334 / 180
Average 23.12 / 0.790 / 0.309 / 194 22.38 / 0.774 / 0.334 / 123 22.49 / 0.780 / 0.332 / 158 22.32 / 0.778 / 0.324 / 182

D
ee

p
B

le
nd

in
g

[1
9] Dr John-

son
28.78 / 0.875 / 0.338 / 447 23.58 / 0.808 / 0.440 / 521 28.16 / 0.869 / 0.343 / 550 27.66 / 0.865 / 0.347 / 444

Playroom 30.09 / 0.885 / 0.318 / 489 25.72 / 0.845 / 0.384 / 489 29.72 / 0.883 / 0.323 / 552 29.19 / 0.879 / 0.327 / 486
Average 29.44 / 0.880 / 0.328 / 468 24.65 / 0.827 / 0.412 / 505 28.94 / 0.876 / 0.333 / 551 28.43 / 0.872 / 0.337 / 465

Table A8. Detailed results on a selection of datasets and methods with the number of Gaussians limited to 100k. Each field contains
PSNR, SSIM, LPIPS and FPS respectively. We highlight the best , second best and third best results among all. Slight discrepancies from
the main table are due to rounding.

Scene Ours 3DGS (SfM) MCMC (SfM) EDGS

M
ip

-N
eR

F3
60

[3
] Bicycle 25.25 / 0.758 / 0.242 / 234 24.06 / 0.651 / 0.370 / 174 24.90 / 0.740 / 0.282 / 162 24.95 / 0.751 / 0.251 / 248

Garden 26.87 / 0.837 / 0.157 / 246 25.16 / 0.743 / 0.296 / 297 26.36 / 0.823 / 0.189 / 221 26.49 / 0.833 / 0.161 / 252
Stump 27.03 / 0.793 / 0.215 / 255 25.27 / 0.688 / 0.348 / 226 26.81 / 0.779 / 0.250 / 175 26.50 / 0.768 / 0.237 / 296
Room 32.02 / 0.924 / 0.205 / 192 31.47 / 0.913 / 0.234 / 112 31.72 / 0.921 / 0.221 / 114 31.36 / 0.923 / 0.203 / 168
Counter 28.87 / 0.906 / 0.194 / 148 28.86 / 0.901 / 0.213 / 113 28.95 / 0.907 / 0.205 / 93 29.05 / 0.912 / 0.184 / 137
Kitchen 31.38 / 0.929 / 0.124 / 172 30.76 / 0.918 / 0.143 / 111 31.04 / 0.921 / 0.141 / 111 31.35 / 0.928 / 0.122 / 154
Bonsai 32.16 / 0.944 / 0.191 / 190 31.95 / 0.936 / 0.218 / 135 31.97 / 0.939 / 0.210 / 128 32.02 / 0.942 / 0.191 / 170
Average 29.08 / 0.870 / 0.190 / 205 28.22 / 0.821 / 0.260 / 167 28.82 / 0.861 / 0.214 / 143 28.82 / 0.865 / 0.193 / 204

O
M

M
O

[3
3]

01 23.46 / 0.690 / 0.356 / 140 23.81 / 0.682 / 0.385 / 102 23.73 / 0.685 / 0.378 / 90 23.63 / 0.686 / 0.363 / 84
03 27.01 / 0.887 / 0.181 / 197 26.18 / 0.868 / 0.220 / 111 26.50 / 0.875 / 0.212 / 105 27.16 / 0.892 / 0.176 / 93
05 28.61 / 0.877 / 0.199 / 232 28.53 / 0.874 / 0.235 / 162 28.71 / 0.877 / 0.233 / 154 28.79 / 0.881 / 0.196 / 122
06 27.79 / 0.932 / 0.159 / 195 27.59 / 0.931 / 0.161 / 120 26.99 / 0.934 / 0.159 / 152 27.38 / 0.941 / 0.135 / 105
10 31.16 / 0.905 / 0.165 / 235 31.04 / 0.894 / 0.194 / 143 30.56 / 0.892 / 0.192 / 168 31.11 / 0.906 / 0.165 / 129
13 33.02 / 0.949 / 0.115 / 280 32.40 / 0.939 / 0.149 / 165 32.18 / 0.934 / 0.155 / 175 31.95 / 0.944 / 0.123 / 151
14 31.57 / 0.950 / 0.096 / 225 31.57 / 0.946 / 0.107 / 135 31.14 / 0.946 / 0.108 / 130 31.51 / 0.950 / 0.095 / 112
15 30.50 / 0.944 / 0.090 / 231 30.59 / 0.934 / 0.114 / 149 29.92 / 0.933 / 0.113 / 162 30.52 / 0.942 / 0.095 / 125
Average 29.14 / 0.892 / 0.170 / 217 28.96 / 0.884 / 0.196 / 136 28.72 / 0.885 / 0.194 / 142 29.01 / 0.893 / 0.169 / 115

Ta
nk

s
&

Te
m

pl
es

[2
6] Truck 25.41 / 0.858 / 0.204 / 122 24.80 / 0.842 / 0.253 / 93 25.24 / 0.851 / 0.242 / 68 24.66 / 0.850 / 0.212 / 114

Train 21.97 / 0.799 / 0.253 / 140 22.28 / 0.790 / 0.277 / 72 22.12 / 0.798 / 0.275 / 86 22.27 / 0.812 / 0.246 / 104
Average 23.69 / 0.829 / 0.229 / 131 23.54 / 0.816 / 0.265 / 82 23.68 / 0.825 / 0.259 / 77 23.47 / 0.831 / 0.229 / 109

D
ee

p
B

le
nd

in
g

[1
9] Dr John-

son
29.20 / 0.890 / 0.291 / 270 28.85 / 0.881 / 0.307 / 151 28.71 / 0.884 / 0.313 / 180 28.60 / 0.888 / 0.292 / 269

Playroom 30.51 / 0.892 / 0.279 / 287 29.66 / 0.883 / 0.298 / 161 30.16 / 0.889 / 0.303 / 209 30.06 / 0.890 / 0.281 / 277
Average 29.86 / 0.891 / 0.285 / 278 29.26 / 0.882 / 0.303 / 156 29.44 / 0.887 / 0.308 / 194 29.33 / 0.889 / 0.287 / 273

Table A9. Detailed results on a selection of datasets and methods with the number of Gaussians limited to 500k. Each field contains
PSNR, SSIM, LPIPS and FPS respectively. We highlight the best , second best and third best results among all. Slight discrepancies from
the main table are due to rounding.

17

Scene Ours 3DGS (SfM) MCMC (SfM) EDGS
M

ip
-N

eR
F3

60
[3

] Bicycle 25.45 / 0.778 / 0.198 / 156 24.40 / 0.688 / 0.325 / 129 25.34 / 0.768 / 0.238 / 106 25.26 / 0.778 / 0.199 / 161
Garden 27.42 / 0.861 / 0.115 / 162 26.70 / 0.827 / 0.172 / 142 26.83 / 0.847 / 0.147 / 135 27.05 / 0.857 / 0.118 / 158
Stump 27.23 / 0.802 / 0.184 / 164 25.64 / 0.719 / 0.301 / 162 27.21 / 0.798 / 0.213 / 110 26.71 / 0.783 / 0.203 / 179
Room 32.30 / 0.928 / 0.196 / 139 31.62 / 0.918 / 0.221 / 82 32.09 / 0.926 / 0.208 / 79 31.71 / 0.928 / 0.191 / 111
Counter 29.21 / 0.911 / 0.181 / 107 29.11 / 0.907 / 0.201 / 75 29.24 / 0.913 / 0.191 / 61 29.27 / 0.917 / 0.171 / 94
Kitchen 31.66 / 0.932 / 0.117 / 118 31.18 / 0.924 / 0.131 / 78 31.44 / 0.927 / 0.130 / 72 31.83 / 0.933 / 0.114 / 101
Bonsai 32.33 / 0.945 / 0.183 / 132 32.34 / 0.941 / 0.205 / 95 32.46 / 0.944 / 0.199 / 81 32.44 / 0.947 / 0.181 / 115
Average 29.37 / 0.880 / 0.168 / 140 28.71 / 0.846 / 0.222 / 109 29.23 / 0.875 / 0.189 / 92 29.18 / 0.878 / 0.168 / 131

O
M

M
O

[3
3]

01 23.73 / 0.711 / 0.315 / 104 24.18 / 0.703 / 0.350 / 73 24.18 / 0.709 / 0.341 / 63 24.02 / 0.709 / 0.321 / 84
03 27.39 / 0.896 / 0.167 / 127 26.96 / 0.886 / 0.197 / 64 27.20 / 0.890 / 0.189 / 67 27.72 / 0.905 / 0.157 / 85
05 28.56 / 0.877 / 0.185 / 157 28.72 / 0.877 / 0.227 / 115 28.98 / 0.883 / 0.217 / 98 29.15 / 0.885 / 0.181 / 101
06 27.87 / 0.936 / 0.150 / 136 27.68 / 0.933 / 0.158 / 110 27.46 / 0.939 / 0.146 / 103 27.75 / 0.945 / 0.127 / 102
10 31.60 / 0.914 / 0.147 / 170 31.47 / 0.906 / 0.171 / 104 30.89 / 0.904 / 0.169 / 120 31.82 / 0.920 / 0.138 / 116
13 33.55 / 0.957 / 0.098 / 190 33.13 / 0.949 / 0.129 / 116 32.83 / 0.945 / 0.131 / 124 32.83 / 0.955 / 0.100 / 125
14 31.80 / 0.953 / 0.090 / 146 31.93 / 0.951 / 0.097 / 89 31.44 / 0.950 / 0.099 / 96 32.08 / 0.955 / 0.086 / 92
15 30.99 / 0.950 / 0.081 / 151 31.13 / 0.943 / 0.096 / 100 30.42 / 0.942 / 0.097 / 104 31.25 / 0.950 / 0.079 / 104
Average 29.44 / 0.899 / 0.154 / 148 29.40 / 0.894 / 0.178 / 96 29.18 / 0.895 / 0.174 / 97 29.58 / 0.903 / 0.149 / 101

Ta
nk

s
&

Te
m

pl
es

[2
6] Truck 25.34 / 0.864 / 0.181 / 97 25.06 / 0.851 / 0.234 / 70 25.57 / 0.862 / 0.217 / 45 25.02 / 0.862 / 0.181 / 82

Train 22.05 / 0.805 / 0.232 / 109 22.13 / 0.801 / 0.255 / 51 22.29 / 0.811 / 0.249 / 47 22.29 / 0.823 / 0.220 / 78
Average 23.70 / 0.835 / 0.207 / 103 23.60 / 0.826 / 0.245 / 60 23.93 / 0.837 / 0.233 / 46 23.66 / 0.843 / 0.201 / 80

D
ee

p
B

le
nd

in
g

[1
9] Dr John-

son
28.98 / 0.886 / 0.282 / 194 28.85 / 0.884 / 0.293 / 106 29.06 / 0.884 / 0.291 / 164 28.75 / 0.890 / 0.277 / 180

Playroom 30.39 / 0.891 / 0.264 / 200 29.02 / 0.877 / 0.290 / 112 30.28 / 0.890 / 0.284 / 173 30.11 / 0.889 / 0.265 / 182
Average 29.69 / 0.889 / 0.273 / 197 28.94 / 0.881 / 0.292 / 109 29.67 / 0.887 / 0.288 / 168 29.43 / 0.890 / 0.271 / 181

Table A10. Detailed results on a selection of datasets and methods with the number of Gaussians limited to 1M. Each field contains PSNR,
SSIM, LPIPS and FPS respectively. We highlight the best , second best and third best results among all. Slight discrepancies from the
main table are due to rounding.

Scene Ours 3DGS (SfM) MCMC (SfM) EDGS

M
ip

-N
eR

F3
60

[3
] Bicycle 25.43 / 0.781 / 0.175 / 99 24.85 / 0.729 / 0.267 / 79 25.56 / 0.786 / 0.205 / 71 25.48 / 0.792 / 0.168 / 93

Garden 27.59 / 0.870 / 0.097 / 97 27.22 / 0.852 / 0.129 / 84 27.33 / 0.862 / 0.122 / 82 27.46 / 0.870 / 0.097 / 89
Stump 27.03 / 0.796 / 0.177 / 100 26.18 / 0.749 / 0.255 / 100 27.39 / 0.808 / 0.189 / 69 26.79 / 0.788 / 0.186 / 100
Room 32.32 / 0.929 / 0.189 / 92 31.80 / 0.919 / 0.218 / 63 32.14 / 0.929 / 0.199 / 53 31.89 / 0.930 / 0.184 / 81
Counter 29.23 / 0.912 / 0.175 / 70 29.07 / 0.907 / 0.201 / 68 29.41 / 0.917 / 0.181 / 42 29.37 / 0.918 / 0.164 / 65
Kitchen 31.80 / 0.934 / 0.114 / 72 31.60 / 0.927 / 0.126 / 54 32.00 / 0.931 / 0.122 / 47 32.06 / 0.935 / 0.111 / 65
Bonsai 32.63 / 0.948 / 0.177 / 84 32.34 / 0.941 / 0.204 / 84 32.80 / 0.948 / 0.189 / 53 32.62 / 0.947 / 0.175 / 85
Average 29.43 / 0.881 / 0.158 / 88 29.01 / 0.861 / 0.200 / 76 29.52 / 0.883 / 0.172 / 60 29.38 / 0.883 / 0.155 / 83

O
M

M
O

[3
3]

01 23.92 / 0.725 / 0.283 / 73 24.51 / 0.721 / 0.321 / 49 24.51 / 0.731 / 0.303 / 45 24.24 / 0.725 / 0.285 / 64
03 27.73 / 0.902 / 0.155 / 70 27.05 / 0.888 / 0.193 / 47 27.73 / 0.900 / 0.171 / 45 27.77 / 0.909 / 0.149 / 82
05 28.65 / 0.877 / 0.176 / 91 28.69 / 0.877 / 0.227 / 112 29.20 / 0.887 / 0.201 / 67 29.31 / 0.887 / 0.169 / 90
06 27.93 / 0.937 / 0.143 / 79 27.67 / 0.933 / 0.157 / 109 27.58 / 0.942 / 0.138 / 63 27.93 / 0.947 / 0.123 / 97
10 31.81 / 0.920 / 0.135 / 104 31.77 / 0.915 / 0.153 / 70 31.59 / 0.913 / 0.151 / 80 32.26 / 0.928 / 0.123 / 89
13 33.88 / 0.961 / 0.088 / 112 33.79 / 0.957 / 0.112 / 73 33.30 / 0.953 / 0.111 / 80 33.55 / 0.961 / 0.087 / 90
14 32.02 / 0.955 / 0.086 / 83 31.95 / 0.951 / 0.096 / 82 31.75 / 0.953 / 0.093 / 62 31.76 / 0.956 / 0.084 / 86
15 31.25 / 0.953 / 0.075 / 86 31.35 / 0.947 / 0.090 / 83 30.80 / 0.947 / 0.086 / 67 31.63 / 0.954 / 0.072 / 87
Average 29.65 / 0.904 / 0.143 / 87 29.60 / 0.899 / 0.169 / 78 29.56 / 0.903 / 0.157 / 64 29.81 / 0.908 / 0.137 / 86

Ta
nk

s
&

Te
m

pl
es

[2
6] Truck 25.43 / 0.865 / 0.167 / 69 25.39 / 0.859 / 0.217 / 53 25.86 / 0.869 / 0.193 / 38 25.09 / 0.865 / 0.162 / 55

Train 21.95 / 0.809 / 0.217 / 77 22.29 / 0.802 / 0.253 / 55 22.35 / 0.822 / 0.228 / 40 21.84 / 0.827 / 0.204 / 58
Average 23.69 / 0.837 / 0.192 / 73 23.84 / 0.831 / 0.235 / 54 24.11 / 0.846 / 0.211 / 39 23.47 / 0.846 / 0.183 / 56

D
ee

p
B

le
nd

in
g

[1
9] Dr John-

son
29.01 / 0.884 / 0.274 / 127 28.75 / 0.886 / 0.282 / 77 28.83 / 0.882 / 0.285 / 104 28.65 / 0.887 / 0.268 / 113

Playroom 30.50 / 0.887 / 0.247 / 127 29.32 / 0.880 / 0.279 / 83 30.22 / 0.890 / 0.272 / 105 30.11 / 0.886 / 0.248 / 112
Average 29.76 / 0.886 / 0.261 / 127 29.04 / 0.883 / 0.281 / 80 29.53 / 0.886 / 0.279 / 104 29.38 / 0.887 / 0.258 / 112

Table A11. Detailed results on a selection of datasets and methods with the number of Gaussians limited to 2M. Each field contains PSNR,
SSIM, LPIPS and FPS respectively. We highlight the best , second best and third best results among all. Slight discrepancies from the
main table are due to rounding.

18

	. Introduction
	. Related work
	. Preliminaries
	. Method
	. Initialization
	. Optimization
	. Implementation Details

	. Evaluation
	. Results
	. Ablations

	. Conclusion
	. Detailed results
	. Additional ablations and comparisons
	. Scene structure
	. Failure cases
	. Initialization visualizations
	. Gaussian-Based Radiance Field training

