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Abstract. Deep-learning based models offer powerful tools for the au-
tomatic segmentation of abdominal organs and tumors in CT scans, yet
they face challenges such as limited datasets and high computational
costs. The FLARE23 challenge addresses these by providing a large-scale
dataset featuring both partially and fully annotated data, and by prior-
itizing both segmentation accuracy and computational efficiency. In this
study, we adapt the winning FLARE22 strategy to FLARE23 by utiliz-
ing a two-step pseudo-labeling approach. Initially, a large model trained
on datasets with complete organ annotations generates pseudo-labels for
datasets that originally contain only tumor annotations. These labels are
then integrated to create a comprehensive training dataset. A smaller,
more efficient model is subsequently trained on this enriched dataset for
deployment, targeting both tumors and organs. Our approach, utiliz-
ing the FLARE23 dataset, has achieved notable results. On the online
validation leaderboard, it reached an average DSC of 89.63% for or-
gans and 46.07% for lesions, with an average processing time of 16.1
seconds for 20 selected validation cases. In the final testing set, our
model demonstrated improved performance, achieving an organ DSC of
89.98% and lesion DSC of 62.61%, while reducing the average process-
ing time to 12.02 seconds. The code and model are publicly available at
https://github.com/Ziyan-Huang/FLARE23.

Keywords: Medical Image Segmentation · Computational Efficiency ·
Abdominal Tumors

1 Introduction

The abdomen is a prevalent site for tumor growth. Accurate annotation of tu-
mors and relevant abdominal organs in CT scans is essential for the diagnosis
and treatment of abdominal tumors. While deep-learning-based methods ease

https://github.com/Ziyan-Huang/FLARE23
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the task of manual annotation for radiologists, several challenges hinder their
effectiveness. Firstly, there’s a lack of comprehensive datasets that include anno-
tations for both tumors and various abdominal organs. Many existing datasets
focus either on organ-specific or tumor-specific annotations. Therefore, learn-
ing accurate segmentations from these partially labeled and unlabeled datasets
remains a challenge. Second, while state-of-the-art solutions like nnU-Net offer
robust performance, they are often computationally intensive, thereby limiting
their clinical utility. Recognizing these challenges, the FLARE23 challenge has
been established. It offers a large-scale dataset that includes both partially an-
notated and unlabeled data, and it focuses on both segmentation accuracy and
efficiency as evaluation metrics.

Given the challenge of insufficiently fully annotated datasets, semi-supervised
and partial-label methods have increasingly garnered attention in the field of
medical image segmentation. DoDNet [22] employs a dynamic on-demand net-
work with a shared encoder-decoder architecture and a unique segmentation
head, efficiently segmenting multiple organs and tumors from partially labeled
datasets. In a similar vein, the Universal Model [10] employs Contrastive Lan-
guage–Image Pretraining (CLIP) [17] to extract semantic relationships between
abdominal structures, achieving high performance across multiple datasets. Mul-
tiTalent [19] adopts a multi-dataset learning approach, incorporating a class
and dataset adaptive loss function to handle varying dataset characteristics and
overlapping classes. As for using unlabeled data, the FLARE22 championship
solution [8] demonstrates significant performance gains through pseudo-labeling
and label-filtering techniques on unlabeled data. It also introduces a highly ef-
ficient, optimized version of nnU-Net [9]. However, the advent of nnU-Net v2,
which excels in code usability, calls for new acceleration techniques tailored to
this updated framework.

In this study, we extend the winning strategy of FLARE22 for application
in the FLARE23 challenge by leveraging pseudo-labeling techniques. We employ
partially-annotated and unannotated data to create datasets with comprehen-
sive pseudo-labels. For efficiency, two different model sizes are utilized: a larger
model for generating pseudo-labels and a smaller, deployable model for the fi-
nal application. Specifically, we categorize the partially-labeled data into two
main groups: one with comprehensive annotations for 13 types of abdominal or-
gans, and another focused on tumor annotations. The pseudo-labeling process
is executed in two stages. Initially, a larger model is trained on data with com-
plete organ annotations to specialize in segmenting the 13 abdominal organs.
This model then pseudo-labels organ annotations for datasets initially contain-
ing only tumor annotations. Subsequently, a full-annotation dataset is created
by combining the new organ annotations with existing tumor annotations. A
smaller, more efficient model is then trained on this comprehensive dataset for
the final deployment. In this manner, we successfully generate organ and tumor
labels for all 4000 complete datasets, while optimizing the inference speed of the
latest nnU-Netv2 framework.
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2 Method

2.1 Preprocessing

We employ the nnU-Net framework’s default preprocessing. For anisotropic data
resampling, trilinear interpolation is used in the axial plane and linear interpo-
lation in the sagittal direction. Intensity normalization is performed by clipping
values to the 0.5% (-970.0) and 99.5% (279.0) Hounsfield Unit levels, followed
by z-normalization using a mean of 80.3 and a standard deviation of 141.4.

Fig. 1. Pipeline of our two-stage pseudo-labeling method. In the first stage, a large
model trained for segmenting 13 organs assigns pseudo-labels to 1,497 tumor-annotated
images. These images then receive combined organ and tumor labels. In the second
stage, another large model trained on these 1,497 images assigns pseudo-labels for the
remaining dataset. Finally, a small model is trained using the complete 4,000-image
dataset.

2.2 Proposed Method

Inspired by the winning solution of FLARE 2022 from Huang et al. [8], we
implement a two-stage approach for generating pseudo-labels and eventual model
deployment. We employ varying sizes of STU-Net architectures [7] for these
stages. For a comprehensive overview of our method, please refer to Figure 1.
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STU-Net with different scales Figure 2 illustrates the architecture of our
STU-Net, which serves as an extendable and transferable version of the nnU-Net.
We achieve this by fixing certain configurations within the nnU-Net framework,
adding residual connections to the basic blocks, and modifying the up-sampling
and down-sampling techniques. In our experiments, we employed STU-Net-L for
the generation of pseudo-labels and utilized STU-Net-B for the final inference
deployment. These specific configurations are elaborated in the Table 1.

Fig. 2. Illustration of our STU-Net architecture which is built upon the nnU-Net archi-
tecture with several modifications to enhance its scalability and transferability. (a) An
overview of the STU-Net architecture. The blue arrows denote downsampling while the
yellow ones represent upsampling. (b) Residual blocks to achieve a large-scale model.
(c) Downsampling in the first residual block of each encoder stage. (d-e) Stem and
segmentation head for channel conversion of input and output. (f) Weight-free interpo-
lation for upsampling, which effectively addresses the issue of weight mismatch across
different tasks.

Loss function: we use the summation between Dice loss and cross-entropy
loss because compound loss functions have been proven to be robust in various
medical image segmentation tasks [11].

Handling Partially-Labeled and Unlabeled Data We divide the 2,200
partially-labeled FLARE23 images into three main categories, as summarized in
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Table 1. Configurations of STU-Net-L and STU-Net-B models. Depth indicates the
number of residual blocks at each resolution stage, and width denotes the channel count
at each stage.

Model depth width Params (M) FLOPs (T)
STU-Net-B (1,1,1,1,1,1) (32,64,128,256,512,512) 58.26 0.51
STU-Net-L (2,2,2,2,2,2) (64,128,256,512,1024,1024) 440.30 3.81

Table 2. Categorization of Partially-labeled Data in FLARE23 Dataset: 2,200 images
grouped into three categories

Category Number of Cases
13-organs, no tumor 250
Tumor, some 5-organs 1,497
Only 5-organs 453

Table 2. We particularly focus on the subsets containing 250 and 1,497 images.
Initially, a large STU-Net model (STU-Net-L) is trained on the 250 images an-
notated for 13 abdominal organs. This model is then applied to the set of 1,497
images, augmenting the organ annotations while preserving existing tumor la-
bels.

For consistency, all pseudo-labels are generated by a large STU-Net model
(STU-Net-L). Using the augmented 1,497-image set from the first stage, we train
another STU-Net-L model to generate pseudo-labels for the remaining dataset.
In the event of annotation conflicts, the original labels are preserved. Ultimately,
we employ the fully augmented 4,000-image dataset to train a smaller STU-Net
model (STU-Net-B) for efficient deployment and inference.

Inference Accelaration Based on nnU-Netv2 We build our efficient infer-
ence code upon the popular nnU-Net framework, particularly its latest version,
v2. Several optimizations are made to accelerate the inference process. These in-
clude using larger target spacing, eliminating the cropping stage, and replacing
the resampling function in skimage with torch.nn.interpolate to reduce compu-
tational load. Given that the FLARE2023 competition performs inference on
a per-image basis, we transition from multi-threading to single-threaded infer-
ence to better align with the competition’s structure. Additionally, we adopt last
year’s championship-winning efficient inference strategy, which involves skipping
certain patches during patch-based inference.

2.3 Post-processing

During the pseudo-labeling generation phase, we employed Testing Time Aug-
mentation (TTA) along the anatomical axes: sagittal, coronal, and axial, to
enhance the quality of the generated labels.
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However, in the final submission, we skipped post-processing for computa-
tional efficiency. The model’s raw outputs serve as the final segmentation results
without further modification.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [13][14],
aiming to promote the development of foundation models in abdominal disease
analysis. The segmentation targets cover 13 organs and various abdominal le-
sions. The training dataset is curated from more than 30 medical centers under
the license permission, including TCIA [2], LiTS [1], MSD [18], KiTS [5,6], au-
toPET [4,3], TotalSegmentator [20], and AbdomenCT-1K [15]. The training set
includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [21], nnU-Net [9], and
MedSAM [12].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 3.

Training protocols To handle partially labeled and unlabeled data, we uti-
lize the preprocessing and pseudo-labeling scheme discussed earlier. Alongside,
we adopt extensive data augmentation techniques, including rotations, elastic
deformations, and random cropping, to enhance our models’ generalization ca-
pabilities. For training, a patch-based approach is employed. We use a balanced
sampling mechanism in our patch sampling strategy to ensure equal represen-
tation of each class in each batch, effectively countering class imbalance issues.
We do not conduct model selection.
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Table 3. Development environments and requirements.

System CentOS 7
CPU Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz
RAM 32×4GB; 2.67MT/s
GPU (number and type) one NVIDIA A100 80G
CUDA version 11.7
Programming language Python 3.9
Deep learning framework torch 2.0
Specific dependencies nnU-Net 2.1
Code https://github.com/Ziyan-Huang/FLARE23

Table 4. Training protocols for the STU-Net-L model.

Network initialization He
Batch size 2
Patch size 48×192×192
Total epochs 2000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule poly decay
Training time 48 hours
Loss function Dice Loss + Cross Entropy
Number of model parameters 440M3

Number of flops 3.81T4

CO2eq 114.02 Kg5

Table 5. Training protocols for the STU-Net-B model.

Network initialization He
Batch size 2
Patch size 48×128×160
Total epochs 2000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule poly decay
Training time 24 hours
Loss function Dice Loss + Cross Entropy
Number of model parameters 58M6

Number of flops 510G7

CO2eq 17.08 Kg8

https://github.com/Ziyan-Huang/FLARE23
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Table 6. Quantitative evaluation results.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.70 ± 0.51 99.37 ± 0.48 97.61 99.29 96.57 98.20
Right Kidney 94.96 ± 5.19 96.84 ± 6.50 93.78 95.96 93.91 95.22
Spleen 96.64 ± 0.85 99.20 ± 1.32 96.67 99.41 96.09 98.47
Pancreas 87.07 ± 4.85 97.71 ± 2.95 85.82 96.97 90.37 98.20
Aorta 94.17 ± 2.18 98.64 ± 2.67 94.33 98.74 94.62 99.49
Inferior vena cava 92.84 ± 2.34 97.47 ± 2.32 92.81 97.34 93.34 98.40
Right adrenal gland 79.18 ± 12.52 94.93 ± 13.80 79.99 95.80 79.17 95.33
Left adrenal gland 80.41 ± 6.70 95.70 ± 4.18 79.94 94.97 80.00 95.16
Gallbladder 85.91 ± 19.62 88.06 ± 20.92 88.27 89.93 84.12 87.67
Esophagus 82.04 ± 15.17 93.95 ± 14.49 82.81 94.93 88.21 98.95
Stomach 93.92 ± 2.91 98.24 ± 3.25 94.19 98.34 93.53 98.09
Duodenum 84.65 ± 6.22 96.21 ± 4.65 85.47 96.75 88.37 98.01
Left kidney 94.00 ± 6.88 95.41 ± 9.33 93.46 95.59 92.96 94.62
Tumor 53.35 ± 34.22 45.24 ± 30.74 46.07 39.17 62.61 52.15
Average 86.92 ± 8.58 92.64 ± 8.40 86.52 92.37 88.13 93.43

Table 7. Performance Comparison: Partially Labeled vs. Total Data

Training Data Organ DSC Organ NSD Tumor DSC Tumor NSD
2200 Partial Label 89.45 96.20 45.91 40.04

4000 Total 89.63 96.46 46.07 39.17

4 Results and discussion

4.1 Quantitative results on validation set

Our final model’s performance metrics are summarized in Table 6. Due to limi-
tations in the online submission system, we present the average results obtained
solely on a publicly labeled validation set of 50 cases.

Additionally, we conducted an ablation study to assess the impact of utilizing
unlabeled data. Specifically, we compared the performance of STU-Net-L models
trained on two different datasets: one with 2,200 partially labeled images and
another with a total of 4,000 images. The results from the online leaderboard
for both training scenarios are detailed in Table 7. As indicated by the data in
Table 7, the inclusion of an extra 1,800 unlabeled images led to only minimal
changes in performance metrics.

4.2 Qualitative results on validation set

Qualitative results of two examples with good segmentation results and two ex-
amples with bad segmentation results in the validation set are shown in Figure
3. As can be seen from the figure, our model performs well in segmenting larger
tumors that are situated on organs. However, for smaller tumors that are not
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Table 8. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 22.03 2836 14975
0051 (512, 512, 100) 13.02 3144 16366
0017 (512, 512, 150) 28.82 3212 23825
0019 (512, 512, 215) 20.33 2974 16467
0099 (512, 512, 334) 14.13 3140 16904
0063 (512, 512, 448) 16.51 3210 19762
0048 (512, 512, 499) 16.17 3180 17090
0029 (512, 512, 554) 19.85 3394 23710

located on organs, the model tends to miss the segmentation. Further inves-
tigation reveals that the model’s limitations on smaller, isolated tumors could
be attributed to the initial training set, which mainly consists of larger, organ-
associated tumors.

4.3 Segmentation Efficiency Results on Validation Set

Efficiency results for multiple validation cases are presented in Table 8. As ob-
served, our algorithm completes the segmentation in less than 30 seconds for all
cases, with the majority finishing within 20 seconds. Additionally, the GPU mem-
ory consumption stays below 4GB. These results demonstrate that our model
not only performs well in terms of accuracy but also excels in computational
efficiency.

4.4 Segmentation Efficiency Ablation

We conduct our experiments on a consistent setup featuring an Intel Core i9-
13900K CPU and an NVIDIA RTX 4090 GPU. We analyze the time efficiency
for Case FLARE23Ts_0063, a typically time-consuming case, with dimensions
448× 512× 512 and spacing 1.5× 0.875× 0.875.

Figure 4 illustrates the time consumption for various segmentation phases
both before and after optimization. Before optimization, the process was most
time-consuming in "Resample Logits," taking up to 54 seconds. After applying
our optimization techniques, the time spent on this phase dramatically dropped
to just 0.06 seconds. Similarly, "Sliding Window Inference" was reduced from
13.4 to 2 seconds.

Overall, the total time was reduced from approximately 92 seconds to about
11 seconds, demonstrating an 8-fold efficiency improvement in the segmentation
process.

4.5 Results on final testing set

We represent our final testing set in Table 9.
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Fig. 3. Qualitative results of two examples with good segmentation results and two
examples with bad segmentation results in the validation set.

Organ DSC Organ NSD Lesion DSC Lesion NSD Time GPU Memory
89.98 96.53 62.61 52.15 12.02 12033

Table 9. Results on final testing set
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Fig. 4. Comparison of time consumption for various segmentation phases before and
after optimization. The case analyzed is FLARE23Ts_0063, a typically time-consuming
case.
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4.6 Limitation and Future Work

One of the limitations of our approach lies in the segmentation of tumors, where
a notable number of false negatives and missed detections have been observed.
This issue is partly attributed to our data processing methodology, where cases
marked with tumors were not comprehensively annotated. We operated under
the assumption that all tumors were identified in such cases, which was a mis-
step. A more meticulous approach to tumor annotation is essential to overcome
this challenge. Additionally, in our pursuit of accelerating the process, we opted
to resize the segmentation results instead of the logits. This decision led to a sig-
nificant decline in accuracy. Future work will focus on augmenting the training
data to include more varied tumor types and sizes for improved generalization,
alongside refining our data processing and segmentation methods to enhance
precision and reliability.

5 Conclusion

The primary focus of our study has been to address the issue of partially labeled
data in abdominal multi-organ and tumor segmentation. We explored a pseudo-
labeling strategy to efficiently handle this challenge, breaking it down into a
two-step process focused on separate organ and tumor annotations. Addition-
ally, to reconcile the trade-off between accuracy and computational efficiency,
we optimized the nnU-Netv2 segmentation framework. As a result, we have de-
veloped a methodology that is both accurate and efficient.
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Table 10. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 6
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided 3
Pre-processing 3
Strategies to use the partial label 5
Strategies to use the unlabeled images. 5
Strategies to improve model inference 5
Post-processing 5
Dataset and evaluation metric section is presented 6
Environment setting table is provided 7
Training protocol table is provided 7
Ablation study 8,11
Efficiency evaluation results are provided 9
Visualized segmentation example is provided 9
Limitation and future work are presented Yes
Reference format is consistent. Yes


