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Abstract. We propose to answer questions about videos by generating
short procedural programs that solve visual subtasks to obtain a final
answer. We present Procedural Video Querying (ProViQ), which uses a
large language model to generate such programs from an input question
and an API of visual modules in the prompt, then executes them to ob-
tain the output. Recent similar procedural approaches have proven suc-
cessful for image question answering, but cannot effectively or efficiently
answer questions about videos due to their image-centric modules and
lack of temporal reasoning ability. We address this by providing ProViQ
with novel modules intended for video understanding, allowing it to gen-
eralize to a wide variety of videos with no additional training. As a result,
ProViQ can efficiently find relevant moments in long videos, do causal
and temporal reasoning, and summarize videos over long time horizons in
order to answer complex questions. This code generation framework ad-
ditionally enables ProViQ to perform other video tasks beyond question
answering, such as multi-object tracking or basic video editing. ProViQ
achieves state-of-the-art results on a diverse range of benchmarks, with
improvements of up to 25% on short, long, open-ended, multiple-choice
and multimodal video question-answering datasets. Our project page is
at https://rccchoudhury.github.io/proviq2023/.

1 Introduction

Consider the video in Figure 1. What color jacket did the skier in orange pants
wear? To answer this question, one would look for a skier in each frame, search
those frames for a skier wearing orange pants, then check what color jacket they
were wearing. Like this example, humans tend to solve questions procedurally,
breaking problems down into a sequence of steps, each with concrete results. We
hypothesize that using this type of reasoning can significantly improve perfor-
mance for video question answering (QA).

Existing video QA methods do not follow this approach. The predominant
paradigm for video understanding is to train a supervised end-to-end model,
typically by pre-training on large video datasets such as Kinetics [6] or Ego4D

https://orcid.org/0009-0004-8307-8395
https://orcid.org/0000-0001-8367-3988
https://orcid.org/0000-0002-9389-4060
https://orcid.org/0000-0002-2830-700X
https://rccchoudhury.github.io/proviq2023/


2 Rohan Choudhury et al.

Fig. 1: Our method, ProViQ, reasons procedurally about videos by generating and
executing Python programs that solve visual subtasks, mimicking how humans might
approach such problems.

[12], then fine-tuning on relatively smaller QA benchmarks. Some zero-shot and
few-shot QA methods such as FrozenBilM [55] or SeViLa [60] combine pre-trained
video backbones with language models to some success, but are still unable
to explicitly carry out procedural reasoning. Recent large multimodal language
models like GPT-4V [1] and Gemini [47] exhibit very strong performance, but
are closed-source, expensive to run and not easily intepretable.

On the other hand, recent works like ViperGPT [46] and VISPROG [13] used
large language models (LLMs) to generate short programs for this exact type of
reasoning, achieving strong results for compositional image tasks. Given an API
of modules that solve visual subtasks, these methods generate programs that call
these modules and execute the program to obtain a final answer. This requires no
training, as LLMs can generate working, correct code and the provided modules
rely on models pre-trained on large image datasets.

Although these works show strong results on images, they do not transfer
well to video. Because they were designed to reason about images, they have
no clear way to aggregate information over several frames, to efficiently find
information in a long video, or to understand the high-level narrative; put simply,
their modules are not capable of reasoning about video. For example, ViperGPT
needs to iterate through each frame in a video to satisfy individual predicates
in its generated code, and can only consider a single frame for any piece of
reasoning. This is prohibitively slow as well as fragile to noisy predictions from
underlying modules. Furthermore, replacing these underlying large pretrained
image models with analogous video models is not straightforward. Due to the
large computational burden and relative lack of training data, significantly fewer
high-quality video models are available, and those that do, do not offer the same
level of performance.

We introduce Procedural Video Querying (ProViQ), which addresses these
shortcomings. ProViQ provides API of video-centric modules, an input query,
and relevant in-context examples to an LLM. The LLM then generates a Python
program that uses the video modules, and executes it to obtain a final answer
to the query. While on their own, the individual video modules are not able to
directly answer queries, ProViQ compensates by programmatically combining
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them to solve subtasks for question answering. In particular, we include modules
to enable video retrieval, captioning, summarization, and multi-object tracking,
as well as image-based tasks like object detection, segmentation and captioning.
These modules enable frame-level, clip-level, and video-level reasoning, allowing
ProViQ to efficiently and effectively answer questions about videos.

ProViQ’s procedural reasoning over videos has several benefits. Firstly, like
prior visual programming works, ProViQ requires no further training. This al-
lows smooth incorporation of task-specific modules, making it simple to add
capabilities for solving new types of questions without fine tuning. Secondly, the
program’s reasoning is interpretable: each line in the program can help attribute
errors to specific modules. Thirdly, the LLM can compose the modules freely,
enabling capabilities beyond question-answering. We demonstrate that combin-
ing the object detector and tracker modules yields a query-based multi-object
tracking system, and the retrieval module can be used for basic video editing,
just through generating a few lines of code.

ProViQ leverages these advantages to significantly improve on a wide range
of zero-shot video question answering benchmarks: we improve up to 25% on Ac-
tivityNet [61], iVQA [54], MSR-VTT-QA [53], MSVD-QA [53], TGIF-QA [17]
and NeXT-QA [52], without any additional training, even surpassing the super-
vised state-of-the-art on some datasets. We also demonstrate strong performance
on understanding long egocentric videos with a gain of 25% on the challenging
EgoSchema benchmark [33], as well as multimodal understanding, obtaining
state-of-the-art performance on the TVQA dataset [21].

In summary, our contributions are that

1. We present ProViQ , a method that successfully extends visual programming
to video QA through the use of novel video tools.

2. Using these novel modules, we achieve large accuracy improvements on a
wide range of video QA benchmarks, setting the state-of-the-art on open-
ended, multiple choice, and long video tasks, demonstrated by experiment
and comprehensive ablations.

3. ProViQ is capable of additional tasks beyond question answering, such as
multi-object tracking or basic video editing.

2 Related Work

2.1 Video Question Answering

Compared to other video tasks, video question-answering datasets are relatively
small. As in image QA, the predominant paradigm for video QA is to pre-
train models on large datasets like Kinetics [6], Ego4D [12], HowTo100M [34],
or YouTube-100M [62], then fine-tune on smaller annotated QA datasets [8–10,
16, 19, 20, 28, 37, 43, 58]. Recent work like InternVideo [49], InternVid [48] and
mPLUG-Owl [59] scale up this type of training significantly, but still do not
generalize well enough to answer questions about videos outside their training
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distribution zero-shot. Recently, massive multimodal language models like GPT-
4V [1] and Gemini 1.5 [47] have been found to perform well on zero-shot video
QA, but are extremely expensive to train and run.

Comparatively few works directly address zero-shot video QA. BLIP [24]
trains a large model on image-question-answer triplets and evaluates the transfer
to video QA tasks, but includes a fine-tuning step. Current methods are typically
trained on web-scale datasets with audio or speech transcripts providing weak
language supervision [54, 55, 62, 63]. In particular, FrozenBiLM [55] connects a
frozen bidirectional language encoder with a trainable video model, trains on
WebVid10M [4] and measures zero-shot question-answering performance. More
recently, SeViLa [60] fine-tunes BLIP to identify video frames relevant for an
input query and generate an answer. These methods currently obtain state-of-
the-art results, and we compare against them in Section 4.2. Another recent line
of work [25, 27, 32, 44] use combinations of language models and visual inputs
such as textual descriptions or CLIP [38] features from sparsely sampled frames
to enable conversations about videos, but do not achieve strong quantitative
results on standard benchmarks.

2.2 Modular Vision

Neural Modular Networks (NMNs) [3] introduced modular visual question an-
swering approaches, using parsers to compose learned modules into single train-
able network. Follow-up methods to NMNs jointly trained the layout gener-
ator and the visual modules with reinforcement learning and weak supervi-
sion [14, 15, 41]. Several other works train large models that contain modules
for different modalities and tasks [11,40,50,64], but cannot freely compose them
or alter their layout.

In the past year, CodeVQA [45], VISPROG [13] and ViperGPT [46] leveraged
the large improvements in language modeling to reformulate modular VQA as
code generation: they use the strong performance of GPT-3 [5] and GPT-4 [36]
on code generation to formulate answers to visual questions as short Python
programs, enabling use of mathematical operations, if-statements, and logical
operators to manipulate the outputs of visual models. ViperGPT provides strong
results on the NeXT-QA dataset [52], but cites the length and inability to tem-
porally reason as limiting factors for further experiments. We directly build off
ViperGPT’s approach with the same program generation framework and suc-
cessfully extend it to video QA.

2.3 Prompting and Tool Use

With the recent surge of interest in large language models, many papers have
studied how to effectively incorporate additional tools, either through fine-tuning
[42] or prompting [25,51,56,57]. Following the success of large multimodal models
like Flamingo [2] and GPT-4 [36], recent methods train multimodal language
models, such as LLAVA [29,30], or MiniGPT-4 [68] to add visual capabilities to
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Fig. 2: Our method. ProViQ provides the input question, visual API, and relevant
examples in the prompt to the code generation model. The LLM generates a short
Python program that uses modules from the API to answer the question. Using the
video as input, we execute the program to obtain the final output.

language models. However, these have not successfully incorporated videos, due
to the challenges of training on large-scale video data.

Following CodeVQA, VISPROG and ViperGPT, we use several pre-trained
models for visual functions like object detection and image QA. We use Ground-
ingDINO [31] for text-conditioned object detection, BLIP-2 [23] for image cap-
tioning and QA, and ByteTrack [66] for multi-object tracking. We also use LaV-
iLa [67] for video-to-language generation and use GPT3.5 [5] for generating code
and querying summaries. Concurrent work [65] proposes a similar language-
based strategy to ours for summarizing long videos, and we encourage readers
to review it for a more complete view of the field.

3 Method

3.1 Program Generation

The input to ProViQ is an input video and a query. We then construct a prompt
containing a list of video modules in an application programming interface (API),
the input query or task, and a few example programs, which is then fed to the
LLM. We used gpt-3.5-turbo for all experiments in the main paper, but include
evaluation with open-source alternatives in Appendix C. The LLM produces a
short Python program that decomposes the input query into concrete steps,
each calling visual modules specified by the API. The generated program takes
as input the question, the video frames, and other relevant information such
as a list of multiple choice options. Once the output is generated, we compile
and execute the program as in [46] using Python’s built-in exec() function. The
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compiled function runs on the input video to output the final answer or modified
video as specified by the task.

3.2 Video Modules

The list of video modules in the provided API are intended as a toolbox for
the generated programs to use for decomposing and answering questions. We
used these specific methods in order to encompass a wide variety of datasets and
possible questions, with room for the LLM to improvise and combine methods
together as it sees fit. While this API is not necessarily exhaustive, we found it
sufficient to answer the vast majority of questions in QA benchmarks. We provide
this list of modules to the LLM in the prompt in the form of methods with
documentation, which we include in Appendix E. While all modules are intended
to run on collections of frames, they work on single images as well, enabling
reasoning about singular frames as well as clips. Specifically, they include:
filter_property Given a boolean predicate such as “Is the person running?",
this method finds all frames in the video that satisfy the predicate. It works by
calling BLIP-2 on an input batch of frames with the question and collecting all
frames where the answer is yes.
filter_object Given a specific object, such as yogurt, this method finds all
frames in the video where the object exists.This method runs an object detector
over the input clip and returns all the frames where the given object is found.
While filter_property can handle this functionality, using an object detector
works much better for finding specific objects.
find This method calls a text-conditioned object detector to return each crop
of the input object found in the collection of frames. This method is useful for
zooming in to the input object over time, which can improve performance on
visual queries about it.
track_objects Given a set of detections over continuous frames, associates them
together using ByteTrack [66] and returns each tracked object in the scene.
video_query This method invokes BLIP-2 [23]’s QA capability to answer a
question about collections of frames: for example, "what is the person doing?"
It computes the answer to the input question for each frame in the video and
collates them. It then uses frame-wise voting to choose the most salient answer.
We used voting over choosing a single frame’s value in order to reduce potential
for errors from a single frame.
get_summary Given a collection of frames, this method uses a video captioning
model on discrete slices of the video and produces an overarching paragraph
summary of the events in the video. We elaborate more on this capability in
Section 3.3. This module is useful for answering questions about the high-level
narrative structure of a video, especially for longer clips such as those in Ego4D.
get_script This computes a transcript of the audio from the input video using
Whisper [39], or returns the transcript if one already exists. This method is
particularly useful for benchmarks like TVQA, where obtaining the character’s
dialogue is essential for solving questions.
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Fig. 3: Qualitative samples from ProViQ. Provided an input video and question,
ProViQ can effectively decompose a query into steps, translate them into function
calls, and execute them to obtain a final answer. Since our results are on video, we
urge readers to view our video results on our project page
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Fig. 4: Our long video summarization module. In order to answer questions
about video narratives, our summarization module uses an LLM to fuse the outputs
of video-to-text models on subclips into a coherent paragraph summary. This method
produces qualitatively accurate summaries, but depends on a high-quality video-to-
text model that captures the action in short video clips. We used LaViLa [67], which
is meant to be used on the Ego4D dataset.

get_caption Computes captions for the input image or set of frames. This is
useful for giving visual context of the entire scene, which can help guide choosing
multiple choice answers on datasets like TVQA or NeXT-QA.
best_text_match Given a video segment and a set of choices, returns the option
that best matches the content of the video segment. This is done by querying
the video segment whether each individual choice is true or false, and return the
option with the highest score. We compute the score of an option by averaging
the confidence of the video querying module over the segment. This module is
particularly useful for multiple-choice questions, as it can help simulate process-
of-elimination reasoning.
choose_option Given input context, a question and options, uses an LLM to
answer a multiple choice question by choosing the most relevant answer. The
input context can be visual, such as a caption or visual outputs from other
modules, or textual, such as a narrative summary or transcript. This method is
crucial for solving multiple choice benchmarks, and for reasoning about input
context from get_script or get_summary.

3.3 Long Video Summarization

One advantage of our modular approach is that we can define different mod-
ules that are better adapted to certain tasks. We use this to address long-
video question answering, a task that has remained out of reach for all but the
largest models [47, 49]. Consider a question that requires understanding higher-
level semantics, such as "Which option best describes the overarching narrative
of the video?". A human solving this would construct a mental narrative of
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the video, then match it to the list of given options. We implement a module
get_summary() that leverages pretrained video-to-text models to understand the
high-level story of a video, which we illustrate in Figure 4. This works on videos
of any length, allowing it to summarize 5 minute videos, much longer than any
existing model except Google’s recent Gemini 1.5 Ultra [47]. Given a long video
V and pre-trained model M that accepts a contiguous segment of frames and
outputs a caption, such as LaViLa [67], we partition V into equal-sized chunks of
1 second. For each chunk, we run M , outputting a caption and the timestamp of
the chunk, resulting in a list of timestep annotated captions. We then aggregate
this caption stream into a paragraph summary with an LLM which we use as
the "narrative" of the video, with each sentence describing a 5-second interval.
Importantly, this module relies on a high-quality video captioning model. This
approach demonstrates strong results on the EgoSchema dataset due to the high
density of annotated narrations in the underlying Ego4D dataset, enabling high-
quality models like LaViLa to be trained. For other datasets, this approach is
less effective due to the lack of comparable quality video captioning models.

3.4 Prompting and In-Context Examples

A long line of work [22, 51] has demonstrated that the wording of the input
prompt and set of examples used greatly influence LLM performance for down-
stream tasks While ViperGPT includes a fixed set of example programs in the
API and eight in-context examples, we follow VISPROG and CodeVQA and
annotate up to five example programs for each benchmark dataset. At inference
time, we sample the three examples whose corresponding queries are closest in
embedding space to the input query. We use OpenAI’s text-embedding-3-small
to embed all queries. Using these in-context examples results in significantly
higher quality generated programs. For individual modules that use language
models, such as choose_option or get_summary, we keep their prompts fixed,
using a static set of example inputs. All example queries and answers are sampled
from training splits of benchmark datasets to avoid contamination in downstream
evaluation. We provide detailed ablations on prompt components in Section 4.3,
and more details on in-context examples and the prompt in Appendix D.

3.5 Open-Ended and Multiple-Choice Benchmarks

The output answer from the program needs to be constrained to a fixed vocab-
ulary to evaluate correctness with benchmarks. In multiple-choice QA datasets,
this can be accomplished by prompting the LLM in the ‘choose_option()‘
module to constrain its output to the range of input answers. On the other
hand, open-ended benchmarks are typically formulated as K-way classification
problems with K ranging into the thousands. To address this, we select the se-
mantically closest vocabulary answer to the string produced by the generated
program. Concretely, we embed the output string from video_query with a pre-
trained phrase embedding model and find the closest match in embedding space
from the output vocabulary. We used FastText [18] for this step, and abstracted
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TGIF MSVD MSRVTT ANet iVQA NeXT TVQA EgoSchema

Random 0.1 0.1 0.1 0.1 0.1 20 20 20
CLIP-VIT-L/14 [38] 3.6 7.2 2.1 1.2 9.2 26.1 -
Just Ask [54] - 13.3 5.6 12.3 13.3 - - -
FrozenBiLM [55] 41.9 33.8 16.9 25.9 26.8 - 59.7 26.1
SeViLa [60] - - - - - 63.6 38.2 -
ViperGPT (3-shot) [46] 51.2 25.3 17.2 30.6 41.4 60.0 - -
Supervised SOTA 66.3 54.8 47.0 43.2 40.9 63.1 86.1 32.1

ProViQ (3-shot) 66.1 37.5 22.1 42.3 50.7 63.8 66.3 57.1

Table 1: Comparison of ProViQ to zero-shot video QA benchmarks. Following
[46], we compare to other end-to-end zero-shot methods. ProViQ achieves state-of-
the-art performance by a wide margin, improving accuracy by up to 26% on both
open-ended and multiple-choice benchmarks and is even competitive with supervised
methods.

away this logic from the program execution to reduce the calls required for the
generated program. Furthermore, several open-ended benchmarks classify their
questions into disjoint categories, such as "locations" or "objects". As the ques-
tion type is available at test time, we use these splits to constrain the vocabulary
for each category as well. We ablate these components in Appendix C.

4 Experiments

This section demonstrates the effectiveness of ProViQ and compares to the cur-
rent state of the art. We compare to other methods inSection 4.2, and present
ablation studies and error analysis in Section 4.3. Finally, we present qualitative
examples of ProViQ’s capabilities beyond question answering in Section 4.4

4.1 Experimental Setup

We evaluate ProViQ on a wide variety of datasets, containing short, long and
egocentric videos with visual, narrative and multimodal questions. We briefly
describe the benchmarks used here, and provide further details in Appendix B.
Unless otherwise stated, we evaluate on the full test split of each dataset. We
evaluate ProViQ on open-ended VideoQA (iVQA [54], TGIF-QA FrameQA [26],
MSRVTT-QA [53], MSVD-QA [53] and ActivityNet-QA [61]) and multiple-
choice VideoQA (TVQA [21], NeXT-QA [52]) and long-video understanding(
EgoSchema [33]). Furthermore, none of the underlying models for any module
are trained on the benchmarks used for evaluation. On all datasets, we measure
performance with top-1 test accuracy for fair comparison with prior work. Some
recent methods [25, 32, 44] use a different metric based on language model eval-
uation; we compare to those in Appendix B. All videos are sampled at 1 FPS
and native resolution.
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Fig. 5: Qualitative comparisons on ProViQ’s generated code to ViperGPT.
Thanks to its dedicated video modules, ProViQ generates code that is more concise and
less error-prone, enabling significantly higher performance across standard benchmarks.

4.2 Video QA Results

Our main results are contained in Table 1 . We achieve large accuracy improve-
ments on both open-ended and multiple choice benchmarks, with particularly
large gains of 9% on iVQA, 15% on TGIF-QA and 25% on the challenging
EgoSchema benchmark, as well as state-of-the-art performance on every other
benchmark. Surprisingly, we surpass the supervised SOTA on iVQA, NeXT-QA
and and are competitive on TGIF and ActivityNet. We attribute these improve-
ments to a few different factors.

Firstly, on open-ended benchmarks, such as TGIF, ActivityNet, and iVQA,
we observe much larger improvements as ProViQ can effectively find the relevant
video segments through its generated program, then use strong vision-language
models only on n that segment to compute the answer. In contrast, end-to-end
methods like Just Ask and FrozenBiLM consider all frames and are less able to
focus on the informative segments of the video. Secondly, we also outperform
ViperGPT, which uses an image-centric API and is unable to reason over longer
intervals of time. In comparison, ProViQ generates code that is more concise and
robust, demonstrated in Figure 5. We also observe that performance improve-
ments were highly correlated with dataset label quality. MSR-VTT and MSVD
have a large fraction of ambiguously or incorrectly labeled questions, while iVQA,
TGIF-QA and ActivityNet-QA have higher quality labels. In particular, iVQA
contains multiple correct answers per question, making the vocabulary-matching
much more forgiving. On multiple-choice datasets, such as TVQA and NeXT-
QA, the improvement is less due to the constraints imposed by having much
fewer choices; on TVQA in particular, most questions are dominated by the lan-
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IQ VQ FP find caption full TGIF MSVD MSRVTT ActivityNet iVQA NeXT-QA

✓ 62.1 34.1 16.6 27.7 41.5 49.3
✓ 63.4 37.8 20.1 35.0 46.5 53.2
✓ ✓ 66.1 37.5 24.1 39.1 50.3 55.2
✓ ✓ ✓ 66.1 37.5 23.5 42.6 52.0 55.9
✓ ✓ ✓ ✓ 66.1 22.8 16.9 42.3 50.7 63.8

✓ ✓ ✓ ✓ ✓ 66.1 37.5 22.1 42.3 50.7 64.6

Table 2: Ablating the visual modules. We successively ablate the performance with
single-image querying only (IQ), video querying (VQ), filtering (FP), the find, caption
modules, and then the full prompt. Generally, adding more modules can slightly reduce
performance on individual datasets, but enables generalization to a much wider range
of benchmarks.

guage model reasoning over the input script rather than visual elements, leading
to a smaller but still significant improvement.

4.3 Ablation Studies

Individual Modules. We ablate each module to better understand the ob-
served boosts in performance, shown shown in Table 2. We omit the get_summary
module from this analysis since it only applies to the EgoSchema benchmark;
the other datasets do not have sufficiently performant video-to-text models. In-
cluding a image QA module already provides a strong baseline, suggesting that
simply prompting a strong image QA model with the right questions can be
helpful. Including the video_query module, enabling QA over video segments,
results in a large boost as it is less prone to errors from querying a single
frame; this accounts for most of the improvement in shorter video datasets.
The filter_property and filter_object modules especially help on longer
video datasets, such as ActivityNet and NeXT-QA. The find module helps an-
swer “counting" and “color" questions in ActivityNet, explaining the observed
accuracy increase, and the get_caption module adds a significant boost on
NeXT-QA, which needs visual descriptions of scenes to answer causal questions.
In general, adding more and more modules slightly decreases performance, as
the language model can misuse modules or combine them in ways that may not
compile. However, this effect is mitigated with in-context examples, and includ-
ing more modules allows ProViQ to generalize to a wider variety of benchmarks
with state-of-the-art performance.
In-context Examples. We next ablate the in-context examples provided in
the prompt to understand their effect. In Figure 6, we measure the effect of
varying the number of in-context examples on downstream benchmarks. With
no examples, performance is poor: the LLM generates programs that may not
compile, hallucinates methods or writes overly complex code. Adding a single
example program greatly improves performance, and while including more exam-
ples is helpful, it provides diminishing returns. We found that using 3-4 examples
worked well across benchmarks.
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Fig. 6: Impact of in-context examples.
ProViQ performs best with in-context ex-
amples, but with diminishing returns as
more examples are included.

Fig. 7: Error Analysis. On
lower-quality datasets, ProViQ
suffers from visual module failure
and labeling issues, but on harder
datasets like TVQA, errs by
generating incorrect programs.

Failure Modes. We manually inspected the failure modes of ProViQ, shown in
Figure 7, on 100 random samples from each dataset. Due to the interpretabil-
ity of our method, we can effectively attribute the cause of errors to either an
incorrect program, module failure, or incorrect labeling. We conduct this analy-
sis on MSR-VTT, ActivityNet, iVQA and TVQA. On open-ended benchmarks,
a considerable portion of the dataset are ambiguously or incorrectly labeled,
with ProViQ outputting a correct answer. We find that the balance of program
generation vs. module failures depends on the dataset: lower quality and shorter
video datasets, such as MSVD and MSR-VTT, mostly suffer from annotation er-
ror or mistakes from individual visual modules. Although iVQA has much higher
annotation quality, the word-matching embedding model often misclassifies the
output from video_query, leading to correct output from the program but mis-
takes in post-processing. On the other hand, ProViQ’s mistakes on TVQA, a
multimodal dataset, are mostly at the program generation phase, as the lan-
guage model often uses the the wrong modalities, such as checking the speech
transcript to answer visual questions.

4.4 Additional Capabilities

ProViQ can use its modules to perform other video tasks by composing its
modules in different ways. We provide qualitative examples in Figure 8 with
ProViQ’s ability and perform multi-object tracking or video editing. Other tasks
are straightforward to implement as well, requiring only a module for the specific
functionality. We do not claim to achieve state-of-the-art performance on any of
these tasks, but ProViQ is able to accomplish them with no additional training.
Grounded Tracking Since ProViQ can use a text-conditioned object detector,
it can combine it with the tracking module to track multiple objects in a scene
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Fig. 8: ProViQ exhibits additional video capabilities. ProViQ can compose its
modules into programs besides question answering, such as query-based multi-object
tracking or basic video editing.

based on an input query. An example is shown in Figure 8 where we are able
to track all the dancers in a complicated scene through detecting them in each
frame, and tracking them over time.
Video Editing ProViQ can also combine its modules to retrieve relevant clips
and remove clips that do not satisfy input criteria, enabling a basic form of video
editing. An example is shown in Figure 8, where we ask ProViQ to cut all parts
of a video where the subject is scrolling their phone. By combining retrieval
with basic Python list slicing, ProViQ is able to cut and splice videos despite
not being trained to do so.

5 Conclusions

We presented ProViQ, a method that extends modular vision methods to zero-
shot video question answering. Our approach achieves a significant improvement
over the state-of-the-art by using strong language models for temporal reasoning
with code rather than using an end-to-end network. Extensive ablation studies
and analysis demonstrate the strengths of our method, suggesting procedural
reasoning can improve performance for vision tasks in general. We also present
other creative capabilities enabled by ProViQ such as grounded tracking and
text-based video editing. that require no modifications to the method. We be-
lieve ProViQ will serve as a strong video question answering baseline for the
community going forward.

Limitations. Although ProViQ is capable across a diverse range of ques-
tions, it may struggle for questions for which its modules are not suited due to
the lack of helpful in-context examples. Additionally, while it faster than other
visual programming methods, it is slower than end-to-end approaches because
it needs to generate, then execute the code, which varies across questions. We
believe these issues can be overcome in future work.
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In this supplement, we include additional results referenced in the main text
to support our experiments and analysis, along with our source code. We fur-
thermore include several video demos on our attached project page, which we
strongly encourage readers to view. The project page is accessible by opening
the index.html file in the website folder of the supplemental material.

A Implementation Details

Our codebase is a heavily modified fork of the original ViperGPT [46] codebase.
We used Langchain for interfacing with large language models and including
in-context examples in the prompt. For visual modules, we used BLIP-2 [23] for
Image QA, GroundingDino [31] (with Swin-T backbone) for object detection,
LaViLa [67] for video captioning, and ByteTrack [66] for object tracking. Each
video is represented as 60 frames at their native resolution. All model inference
can be done with a single Nvidia A100 GPU, but we split the evalution over
multiple GPUs for speed, especially for datasets with large test sets, like MSR-
VTT.

B Datasets and Metrics Details

B.1 Datasets

TGIF-QA [26], MSVD-QA [53], and MSRVTT-QA [53] are open-ended
VideoQA benchmarks automatically generated from captions, with some manual
annotations. Each question has a single answer that is one word or phrase. TGIF-
QA consists of GIFs that are a few seconds long, while MSVD and MSR-VTT
can be up to 15 seconds. For MSVD and MSRVTT, questions are split into five
categories: who, what, when, where and how, while TGIF is split into color,
object, location, and number.
iVQA [54] is a recent open-ended benchmark based on instructional videos. It
only includes visual questions, and for each answer has multiple correct answers,
reducing ambiguity for each question.
ActivityNet-QA [61] is an open-ended benchmark containing longer videos, up
to 3 minutes long. It contains nine categories: motion, spatial, temporal, yes/no,
color, object, location, number and ‘free’.
TVQA [21] is a multiple-choice video QA dataset focused on multimodal under-
standing from clips of popular TV shows. Each question has 5 answers, and each
question also has a ground-truth scene transcript. Questions are either visual or
focused on the narrative aspect of the scene.
EgoSchema [33] is a recent multiple-choice zero-shot benchmark focused on
long-term video understanding. Videos are sourced from Ego4D and are all 3
minutes long, which questions requiring long-horizon understanding. It contains
5K video in a held-out test split and no training data. The questions and answers
are created from processing Ego4D ground-truth narrations with an LLM.
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What Who Number Color When Where Full

Just Ask [54] 7.8 1.7 74.3 18.8 3.5 0.0 13.3
FrozenBiLM [55] 26.0 45.0 69.9 56.3 5.2 17.9 33.8

ProViQ (Ours) 38.1 40.1 70.9 56.3 36.5 50.0 37.5

Just Ask [54] 1.8 0.7 66.3 0.6 0.6 4.5 5.6
FrozenBiLM [55] 10.7 28.7 55.0 11.4 9.2 9.3 16.9

ProViQ (Ours) 14.6 28.1 67.1 19.3 22.5 22.6 22.1

Table 3: Zero-shot QA results on the MSVD (above) and MSR-VTT (below) datasets,
separated by category.

Method iVQA ANet MSVD TGIF

Video-ChatGPT [32] - 35.2 64.9 60.1
MovieChat [44] - 35.1 60.1 59.3
Video-Chat [25] - 26.5 56.3 34.4

ProViQ(ours) 53.7 42.3 37.5 66.1

Table 4: Evaluation with language model-based metric. We evaluate following
the protocol of [32] instead of using top-1 accuracy. ProViQ is still superior with this
metric.

NeXT-QA [52] is a multiple-choice benchmark designed to test causal and
temporal reasoning. The answer to the question is typically found in a short
timespan, while videos can be up to a minute long. Each question has 5 distinct
choices.

B.2 Metrics

A known issue with open-ended video QA datasets is that top-1 accuracy requires
a single correct answer, even though the questions are often ill-posed and have
multiple valid answers. One line of work [32,44] that focuses on video conversa-
tional assistants propose a different metric based on using LLMs for evaluation.
In particular, they compare a sentence or paragraph output from their model to
the ground-truth answer (a single word or phrase) and prompt GPT3.5 to output
a binary correctness score as well as a subjective score to rate its conversational
ability. While this is suitable for measuring conversational ability, we found that
this metric is unreliable for measuring answer accuracy and often leads to incor-
rect evaluation. We compare ProViQ to these works using this metric in Table
4. Although we believe this metric to be flawed, ProViQ still exhibits superior
performance on it compared to other works.

B.3 Per-dataset Results

We provide breakdowns of the QA results on each dataset by question type.
In Table 5, we present the ActivityNet results, and in Table 3 we show both
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ActivityNet-QA Motion Spatial Time Y/N Color Object Location Number Free Full

Just Ask [54] 2.3 1.1 0.3 36.3 11.3 4.1 6.5 0.2 4.7 12.3
FrozenBiLM [55] 12.7 6.8 1.6 53.2 16.5 17.9 18.1 26.2 25.8 25.9

ProViQ (Ours) 38.3 5.6 3.3 70.4 35.7 20.0 35.7 39.1 43.7 41.3

Table 5: Zero-shot QA results per category on the ActivityNet-QA dataset.

Color Number Loc Obj Full

FrozenBiLM 31.3 67.8 38.2 40.1 41.9

ProViQ 74.6 81.2 51.2 47.8 66.1
Table 6: Zero-shot video QA results
per category on the TGIF-QA dataset.

Causal Temporal Full

ViperGPT 49.8 56.4 60.0

ProViQ 55.6 60.1 63.8
Table 7: Zero-shot video QA results
per category on the NeXT-QA dataset.

the MSVD and MSR-VTT results on each category. We also include results on
NeXT-QA and TGIF-QA in Tables 7 and 6.

C Additional Ablations

Choice of Language Model The main paper results were based on using
gpt-3.5-turbo for program generation. We evaluate the difference when us-
ing other language models in Table 8. Specifically, we tested CodeLLama13-b,
WizardCoder15-b, CodeLlama-34b, and GPT-4. We generally found that open-
source language models were reasonably competitive; however, the lower the
parameter count, the lower the overall benchmark performance. This was usu-
ally due to weaker models producing more code fragments that did not compile,
being less able to follow instructions from the prompt, or not invoking methods
from the API correctly.
Word Matcher Open-ended benchmarks are formulated as K-way classifica-
tion problems, with K, the size of the answer vocabulary, often ranging into
the thousands. For end-to-end models typically finetune pretrained features on
question-answering datasets, and pick the answer from the output vocabulary
with the highest score. Since our setup uses a video-language model, we map
outputs to the semantically nearest word or phrase in the output vocabulary.
Without this component, any prediction that is not in the vocabulary will au-
tomatically be treated as incorrect, leading to significantly worse performance
on QA benchmarks. We used FastText, but other options, such as BERT or
word2vec, could be used as well. We demonstrate the accuracy from using each
of these embeddings in Table 9.
Output Vocabulary Some open-ended benchmarks have enormous answer vo-
cabularies: MSR-VTT has 73K questions in the test set, with over 10,000 unique
answers. Standard practice [54, 55, 62] is to use the most common 1000 answers
from the training set as the vocabulary. One other input at test time is the ques-
tion category: we used this to constrain the vocabulary further. For a question
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Method iVQA ANet MSVD TGIF

CodeLLama-13B 48.6 34.2 32.5 60.3
WizardCoder-15B 48.9 35.1 33.6 59.8
CodeLlama-34B 49.9 38.2 33.9 62.2
gpt-3.5 50.7 42.3 37.5 66.1

Table 8: Comparison with open-source language models. Open-source language
models work reasonably well, but are still inferior to larger, closed-source models.

TGIF-QA MSVD MSR-VTT ActivityNet iVQA

word2vec [35] 63.3 36.7 19.3 41.1 47.5
BERT [7] 61.1 37.7 14.4 39.3 44.3
FastText [18] 66.1 37.5 22.1 42.3 50.7

No Constraint 61.4 37.3 12.9 35.3 50.1
Top-1000 63.8 37.1 17.8 41.1 50.7
Type-based 66.1 37.5 22.1 42.3 -

Table 9: Ablation of components related to the output vocabularies on open-ended
video dataset benchmarks. The top half of the table shows the impact of using different
word-matching embeddings, and the bottom half shows the effect of restricting the
output vocabulary in different ways.

type Q, the output vocabulary is the list of all answers for questions of type Q
in the training set that are also among the top 1000 answers. Since our method
needs no training, dynamically altering the output vocabulary is straightfor-
ward, and we found that this can significantly boost performance on datasets
with poor label quality and ambiguous phrasing, such as MSRVTT-QA. The re-
sults of ablating on these components are in Table 9. We see that the vocabulary
size matters most for lower-quality labeled datasets, such as ActivityNet-QA and
MSRVTT-QA, while the effect is minimal in higher-quality labels like TGIF and
iVQA.

D In-Context Examples

As mentioned in the main text, ViperGPT [46] mostly uses fixed in-context
examples, both in the API docstrings and as additional input in the prompt. In
particular, they use 8 in-context examples for Next-QA evaluation. On the other
hand, CodeVQA [45] and VISPROG [13] annotate a small pool of examples with
programs and use a retrieval mechanism to construct the prompt. We opt for
this approach. For each benchmark dataset, we annotated several (at most 10)
in-context examples, and used an embedding-based retrieval method to add the
three closest in-context examples to the prompt. We embed the input questions
and retrieve the examples whose questions are closest in embedding space. All
examples are annotated from the training set. Some components of our method
involve language model calls. For example, the choose_option method calls a
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language model to choose the most appropriate response in a multiple choice
question given some input context. This uses fixed in-context examples, and
we do not use any sort of retrieval for these methods, only for the program
generation step. We found that example retrieval was unnecessary for strong
performance for subtasks and that we could rely on the base model for good
performance. Finally, for our open-world demo, we use eight fixed in-context
examples as there is no benchmark or standard pool to retrieve from.

E Prompt

We include the full prompt containing the visual API for our model on the next
page. The prompt slightly changes for each dataset: following [46], we exclude
certain methods when running on datasets where they are not applicable. For
example, we only include the get_summary method on the EgoSchema bench-
mark. In addition to the following prompt, we include in-context examples for
each dataset, which are appended to the API prompt along with the input ques-
tion or command.

1 def get_max_key(responses: Dict[str , int]) -> str
2 """
3 Given a dict , returns the key with the highest count.
4 """
5
6 class VideoClip:
7 """A Python class containing a set of frames and methods for querying

them.
8 Attributes
9 ----------

10 video : torch.Tensor
11 A tensor of image frames.
12 start : int
13 An int describing the starting frame in this video segment.
14 end : int
15 An int describing the ending frame in this video segment .
16 num_frames ->int
17 An int containing the number of frames in the video segment.
18 trimmed_video: torch.Tensor
19 A trimmed video from start to end of the original input tensor.
20 """
21
22 def __init__(self , video: torch.Tensor , start: int = None , end: int =

None , parent_start =0, queues=None):
23 """ Initializes a VideoClip object.
24
25 Parameters
26 -------
27 video : torch.Tensor
28 A tensor of the original video.
29 start : int
30 An int describing the starting frame in this video segment.
31 end : int
32 An int describing the ending frame in this video segment.
33 """
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81 def filter_property(self , property:str) -> VideoClip:
82 """
83 Given a Yes/no query , returns a VideoClip composed only of the frames
84 where that statement is true.
85 Parameters
86 -----------
87 property: str
88 A query to filter the video segment with.
89
90 Returns: VideoClip
91 A VideoClip composed only of the frames where the input
92 property is true.
93
94 Examples
95 ----------
96 question: What is the party for?
97 def answer_question(video , possible_answers):
98 party_segment = video.filter_property ("Is a party happening ?")
99 responses = vid_segment.video_query ("What is the party for?",

possible_answers)
100 return get_max_key(responses)
101 """
102
103 def filter_object(self , object: str) -> VideoClip:
104 """
105 Given a object , returns a VideoClip composed only of frames where
106 that object is present.
107 Parameters
108 -----------
109 object: str
110 The object to look for.
111
112 Returns: VideoClip
113 A VideoClip composed only of the frames containing the input
114 object.
115
116 Examples
117 ----------
118 question: What color is the skier’s jacket?
119 def answer_question(video , possible_answers):
120 skier_clip = video.filter_object (" skier")
121 skier_boxes = video.find("skier")
122 jacket_boxes = skier_clip.find(" jacket ")
123 responses = jacket_boxes.video_query ("What color is this jacket

?", possible_answers)
124 return get_max_key(responses)
125 """
126
127 def video_query(self , query: str , possible_answers: List[str]) -> Dict

:
128 """ Answers a query for each frame in the video and returns a dict

with the count of responses.
129 Parameters
130 -----------
131 query: str
132 The question to be answered.
133 possible_answers : List[str]
134 The list of possible answers for output.
135
136 Returns: Dict
137 The query answers , grouped by how many frames they occur for.
138
139 Examples
140 --------
141 question: what is the person doing?
142 def answer_question(video , possible_answers):
143 responses = video.video_query ("What is the person doing?",

possible_answers)
144 return get_max_key(responses)
145 """
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81 def get_caption(self , index: int) -> str:
82 """
83 Gets a caption of the frame at that index in the video segment.
84 Parameters
85 ----------
86 index: int
87 The index of the frame to use. Range is [0, self.num_frames -1].
88
89 Returns : str
90 The image caption of the frame at that index.
91 """
92
93 def find(self , object: str) -> VideoClip:
94 """
95 Finds all bounding boxes around a certain object in a video segment ,
96 and collates them into a collection of frames.
97
98 Parameters
99 ---------

100 object: str
101 The object to look for.
102
103 Returns : VideoClip
104 A VideoClip object composed of crops of the object.
105 """
106
107 # This is only included in the prompt if we can get the script.
108 def get_script(self) -> str:
109 """
110 Returns:
111 A string script of the speech spoken during the video , if

available.
112 """
113
114 # This is only included in the prompt for the Egoschema evaluation ,
115 # and should only be used if a sufficient video captioning model exists.
116 def get_summary(self) -> str:
117 """
118 Returns: str
119 A string summary representing the narrative of the video.
120 """
121
122 def track_objects(self , input_boxes: List[torch.Tensor ]): -> List(STrack)
123 """
124 Runs a tracker on a set of input bounding boxes , representing some

object(s)
125 detected over time. Returns the boxes grouped by track ID.
126
127 Parameters
128 ---------
129 input_boxes: List[torch.Tensor]
130 A list of all the detected boxes at each frame in the video.
131
132 Returns: List[STrack]
133 A list of tracked objects with bounding box and time information.
134 --------
135 """
136
137
138 def choose_option(self , question:str , context: Dict , options: List[str])

-> str:
139 """
140 Uses a language model to choose the option that best answers the

question
141 given the input context.
142
143 Parameters
144 ----------
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156 """
157 question: str
158 The input query.
159 context: Dict
160 Any useful context , such as scripts , visual information , or

summaries.
161 options: List[str]
162 The list of options to choose from , numbered.
163
164 Returns: str
165 A string detailing which number option was chosen with reasoning.
166
167 Examples
168 ---------
169 question: How was the toy bear moved to the front?
170 def answer_question(video , possible_answers):
171 vid_seg = video.trim(0, len(video) // 4) # consider the star
172 bear_seg = vid_seg.filter_object ("bear")
173 image_context = bear_seg.get_caption(bear_seg.num_frames // 2)
174 activity_context = bear_seg.video_query ("What is this ?")
175 context = {" caption ": image_context , "activity ": activity_context

}
176 answer = bear_seg.choose_option ("how was the toy bear moved to

the front?", context , possible_answers)
177 return answer
178 """
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
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