
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHAPE2GCODE: DIRECT G-CODE GENERATION FROM
3D SHAPE DATA FOR AUTOMATED MANUFACTURING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern manufacturing relies on Computer Numerical Control (CNC) machines,
which execute machining operations using G-code, a programming language that
defines tool movements, cutting paths, and machining parameters. Despite ad-
vancements in automation, generating G-code still requires significant human
intervention and reliance on Computer-Aided Manufacturing (CAM) tools. To
address these challenges, we propose Shape2Gcode, an end-to-end framework that
directly generates optimized G-code from 3D shape data. Our approach leverages
reinforcement learning to optimize key machining parameters, including tool radius,
milling depth, and toolpath strategies. Additionally, Shape2Gcode incorporates a
tool orientation selection module to determine optimal rotation matrices, enhanc-
ing the flexibility and precision of the machining. We evaluate Shape2Gcode on
CNC manufacturing tasks using the ABC and ShapeNet datasets, comparing its
performance against existing CAD reconstitution and CNC automation methods.
Experimental results demonstrate that Shape2Gcode outperforms conventional
approaches in reconstruction accuracy, significantly reducing the need for manual
intervention. By optimizing G-code generation and minimizing manual adjust-
ments, Shape2Gcode improves CNC manufacturing efficiency, lowers costs, and
enables more automated machining workflows.

Target Shape

Initial Setup and Tool Configuration

Toolpath Execution

Generated G-code
Stock Box Final OutputG-code Simulation at t2

G-code Simulation at t1

G-code Simulation

Figure 1: Overview of our proposed pipeline.

1 INTRODUCTION

Manufacturing has undergone a significant transformation with the advent of Computer Numerical
Control (CNC) machining, which automates tool movement through G-code instructions. Traditional
Computer-Aided Manufacturing (CAM) workflows rely on Computer-Aided Design (CAD) models
to generate toolpaths before converting them into G-code. This multi-stage process is widely used
in CNC machining, but optimizing G-code remains a manual and time-intensive task, as experts
must fine-tune machining parameters such as tool radius, cutting depth, and toolpath strategies to
achieve high-quality manufacturing outcomes. Expert involvement restricts automation and extends
production time. A system that automatically generates optimized G-code directly from 3D shapes,
without CAD conversion, could significantly boost manufacturing efficiency.

Recent deep learning-based approaches, such as CNC-Net, aim to infer machining operations directly
from 3D models without relying on labeled datasets. While CNC-Net represents a significant
advancement, it has several critical limitations. First, it does not account for real-world machining
constraints, making it difficult to apply in practical CNC manufacturing. For instance, it fails to
model layer-by-layer material removal, which is essential for milling operations that must avoid direct
vertical tool movements. Additionally, CNC-Net’s large decision space for tool parameters results in
unstable and imprecise toolpaths, limiting its effectiveness in high-precision machining applications.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Output G-code

Toolpath Execution

Initial Setup and Tool Configuration

. . .

Target shape

. . .

ActionDQN

Network

G-code

generator

DQN

Network

G-code

generator

Visibility-based

Reconstruction

. . .

. . .

. . .

. . .

. . .

Action

Visibility-based

Reconstruction

Orientation

Selection

Stock Material

G-code Simulation

Radius

Layer

height

Contour Zigzag

Periphery Spiral

ActionReward

Figure 2: The framework of Shape2Gcode. The large box depicts the training episodes of
Shape2Gcode, accompanied by a section presenting the reward and action space components.

To overcome these challenges, we introduce Shape2Gcode, the first method that directly generates G-
code from 3D shape data without requiring CAD conversion. Our approach includes a tool orientation
selection module that determines a minimal yet sufficient set of orientations to enusre complete
surface coverage. Additionally, Shape2Gcode leverages reinforcement learning to autonomously
learn machining strategies and select the best toolpath parameters, including tool radius, layer height,
and tool strategy. Unlike previous methods, Shape2Gcode reduces computational complexity by
focusing on critical machining parameters while maintaining precision. It constructs toolpaths using
conventional machining patterns (e.g., Contour, Zigzag, Periphery, and Spiral), ensuring compatibility
with standard CAM practices. Compared to CNC-Net, our method significantly reduces the decision
space, leading to more stable and precise toolpaths. We evaluate Shape2Gcode on benchmark
datasets and real-world G-code simulators, demonstrating that it outperforms existing deep learning
approaches in accuracy and efficiency. By automating G-code optimization, Shape2Gcode enhances
CNC manufacturing by making machining faster, more precise, and less dependent on human
expertise, ultimately improving modern manufacturing workflows.

We summarize our main contributions as follows:

• End-to-End G-code Generation: Shape2Gcode directly generates G-code from 3D shape
data, eliminating the need for CAD conversion and manual CAM workflows.

• Reinforcement Learning for Machining Optimization: Our model autonomously op-
timizes machining parameters, including tool radius, layer height, and toolpath strategy,
ensuring efficiency and precision.

• Real-World Compatibility: Shape2Gcode is the first approach to generate G-code compat-
ible with real-world CNC simulators.

2 RELATED WORKS

2.1 REVERSE ENGINEERING FOR 3D SHAPES

Reverse engineering in 3D manufacturing digitizes and reconstructs objects for replication, modifica-
tion, and inspection, aiming to recover their geometric and structural features for fabrication analysis.
Deep learning has enabled primitive-based modeling, approximating shapes with cubes Tulsiani et al.
(2017); Zou et al. (2017); Niu et al. (2018), ellipsoids Genova et al. (2019), or deformable primi-
tives Deng et al. (2020); Yavartanoo et al. (2021); Paschalidou et al. (2021); Huang et al. (2023), often
using constructive solid geometry (CSG) Laidlaw et al. (1986); Foley et al. (1996). Reinforcement
learning has also been applied to sequential primitive assembly Sharma et al. (2018); Du et al. (2018);
Chung et al. (2021). Other approaches detect and fit primitives within point clouds Li et al. (2019);
Sharma et al. (2020) or infer CSG programs Sharma et al. (2018); Du et al. (2018). Recent works
compress CAD models via CSG operations without ground-truth assemblies Kania et al. (2020);
Ren et al. (2021; 2022); Yu et al. (2022); Li et al. (2023). However, most methods focus on static
reconstruction and overlook the sequential material removal essential for CNC machining, motivating
the development of frameworks that capture its stepwise nature.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 CNC MACHINING FOR REVERSE ENGINEERING

CNC machining is widely used for material removal and part reproduction in reverse engineering.
Although CNC machines follow G-code precisely, generating optimized code remains manual and
labor-intensive, requiring expert tuning of parameters and toolpaths. To address this, machine
learning-based Computer-Aided Process Planning (CAPP) has been explored, using techniques such
as particle swarm optimization (PSO) and support vector machines (SVM) Hsieh & Chu (2013);
Dittrich et al. (2019). However, these approaches depend on pre-labeled CAD models and shows
limited generalization ability across diverse datasets. Route planning methods Balic & Korosec
(2002); Kukreja & Pande (2023) also generate optimized toolpaths, but require extensive preparation
of CAD-toolpath pairs, making training time-consuming and limiting generalization. Given these
limitations, research on automatically searching and learning CNC operations in a sequential manner
remains limited. CNC-Net Yavatanoo et al. (2024) proposed a self-supervised framework that learns
operations from 3D models in an unsupervised manner. Despite this progress, it does not fully capture
machining constraints and often produces infeasible toolpaths due to its large decision space and
indirect feedback. To overcome these challenges, we propose Shape2Gcode, an RL-based framework
that directly generates optimized G-code from 3D shapes without CAD conversion, autonomously
learning machining strategies for more efficient, stable, and precise operations.

3 METHOD

In this section, we introduce Shape2Gcode, a novel framework that translates 3D shape representations
into optimized G-code for CNC machining. Instead of relying on traditional CAD-based workflows,
our method directly learns to generate efficient machining plans from raw 3D shape inputs. Using a
Deep Q-Network (DQN), it dynamically selects the optimal toolpath strategy, tool radius, and layer
height, enabling a data-driven and adaptive approach to toolpath generation. By eliminating manual
parameter tuning, Shape2Gcode improves efficiency and precision in CNC machining.

As shown in Figure 2, Shape2Gcode formulates G-code generation as an RL task, where an agent
optimizes machining parameters by interacting with the environment to carve material from the
stock material that encloses the target shape. The entire machining process is modeled as an episode,
consisting of a sequence of decision-making steps, each contributing to the final toolpath generation.
The pipeline begins with a 3D shape representation S of the target object. An angle selection module
first determines valid machining orientations V = {vs}ns=1 to ensure full surface coverage. Each
selected angle provides a different view of the object, ensuring that critical features are not occluded
during machining. For each view direction vs, a visibility-based reconstruction step refines the input
shape as Ss by ensuring that all visible regions align with the target shape, while occluded regions
are filled. This guarantees that the machining operations are applied to an optimal, manufacturable
representation. Once the shape Ss is reconstructed for a given machining angle vs, an encoder E
extracts a compact latent representation of the geometry:

zs = E(Ss), (1)

where zs ∈ Rd captures essential geometric and machining features. Using this learned features, a
DQN determines the optimal machining parameters, including tool radius rtool

s , layer height hlayer
s ,

and toolpath strategy sstrategy
s , by selecting an action as in the actions space A that maximizes the

expected reward:
as = {rtool

s , hlayer
s , sstrategy

s } ∈ A. (2)
The generated parameters are then translated into executable G-code as machine-readable instructions
through a G-code generator. At the end of the episode, the complete G-code sequence, corresponding
to all selected machining angles, is then sent to a CNC machine simulator for validation. The agent
receives intermediate rewards at each step, as well as a final reward at the end of the episode, allowing
the learned policy to optimize both the step-wise machining behavior and the overall outcome. The
DQN policy is updated using this feedback, refining its decision-making for future episodes. By
integrating reinforcement learning with G-code generation, Shape2Gcode learns to dynamically
optimize toolpaths, ensuring efficient, precise, and automated CNC machining across various 3D
shapes. In the following sections, we provide a detailed discussion of the tool orientation selection
module, visibility-based reconstruction, G-code generator, and reward calculation, explaining how
each component contributes to the overall machining process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Target Object

Figure 3: Tool orientation selection process and visibility-based reconstructions. Top: Accumu-
lated coverage with added orientations. Bottom: Visibility-based reconstructions per orientation.

3.1 TOOL ORIENTATION SELECTION

The goal of the tool orientation selection module is to identify a minimal set of tool orientations that
enables complete and efficient machining of a 3D shape. Since a shape cannot be fully machined from
a single direction due to occlusions, it is necessary to select a set of orientations V = vs

n
s=1

that achieves full surface coverage with as few orientations as possible. A surface point p is
considered visible from a candidate orientation v if the cutting tool can reach p directly, without
obstruction. Mathematically, visibility is determined by casting a ray from p along −v and checking
for intersections with the object surface; if the ray hits another surface point before exiting, p is
occluded in direction v. To select optimal tool directions, we use an iterative greedy approach: at
each step i, the next orientation vi is chosen to maximize the number of uncovered visible points:

vi = argmax
v

∑
p∈Puncovered

1(Vis(p, v)), (3)

where Puncovered is the set of surface points not yet covered, and 1(Vis(p, v)) is 1 if p is visible from
v, and 0 otherwise. The process stops once sufficient coverage is achieved, yielding the minimal set
V = {v0, v1, . . . , vn} of tool orientations.

3.2 VISIBILITY-BASED RECONSTRUCTION

The visibility-based reconstruction step processes the input shape S to generate a manufacturable
representation Ss, ensuring that all visible regions align with S while occluded regions, corresponding
to the view direction vs, are filled as shown in Figure 3. This ensures that machining operations are
applied to a manufacturable and structurally valid representation, preserving the integrity of the object
while facilitating effective tool movements. To achieve this, the reconstruction process employs a
surface voxelization approach, converting the visible portions of S into a discrete volumetric grid.
The occluded regions are filled to form a watertight representation. The reconstructed shape is then
refined using marching cubes to generate a smooth mesh representation, followed by Laplacian
smoothing to enhance surface continuity.

3.3 G-CODE GENERATION

The G-code generation module converts the generated action including the optimal machining
parameters into executable CNC commands, ensuring that the CNC machine correctly interprets the
learned machining strategy. This step bridges the reinforcement learning-based toolpath generation
and the actual machining process by encoding the tool’s movements in a standardized format. The
machining process is carried out layer by layer along the depth direction, ensuring systematic material
removal with the depth level of hlayer

s . At each layer l, the contour toolpath is first applied to separate
the object’s main geometry from the surrounding material. However, since the detached material
remains connected to deeper layers, additional toolpath strategies e.g., zigzag, periphery, and spiral,
are employed to efficiently remove the remaining stock. The reinforcement learning model selects
the most efficient strategy for each layer. To maintain machining precision and prevent unintended
collisions, the toolpath is dynamically adjusted. In each layer, the tool retracts to a starting position
(xs,st, ys,st, zs,st) executing:

Gs,st = G0 Xxs,st Y ys,st Zzs,st, (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where G0 refers to the transition to the starting position. This ensures that the tool moves safely
without damaging the target shape. In the following subsections, we provide a detailed explanation of
each toolpath strategy, including contour, zigzag, periphery, and spiral.

3.3.1 CONTOUR TOOLPATH

The contour toolpath is designed to refine the object’s surface by closely following its geometry.
The process begins with the visibility-reconstructed shape Ss, where a signed distance function is
calculated as SDFs(p) for each point p ∈ Pl in the layer l to its surface. The contour toolpath points
P surf
s,l are determined by selecting points where the SDF value is approximately equal to the tool

radius, ensuring that the tool follows the object’s surface while maintaining an appropriate clearance:

P surf
s,l = {p ∈ Pl;

∣∣SDFs(p)− rtool
s

∣∣ < ϵ}, (5)

where ϵ is a small tolerance to account for numerical precision. The sorting process follows a nearest-
neighbor approach, starting from a starting point and iteratively selecting the closest unprocessed
point until all points are visited and the G-code is updated:

Gs,l,i = G1 Xxs,l,i Y ys,l,i Zzs,l,i, (6)

where (xs,l,i, ys,l,i, zs,l,i) is the location of ps,l,i ∈ P surf
s,l in R3 and G1 indicates carving motion.

3.3.2 ZIGZAG TOOLPATH

The zigzag toolpath is designed for efficient material removal by systematically traversing the
remaining stock within a machining layer. At each depth level l, after the contour toolpath has
separated the object from the surrounding material, the zigzag strategy ensures that unremoved
regions are cleared. The toolpath follows a structured back-and-forth motion, covering the machining
layer in a sweeping manner. The traversal path is determined by selecting all points P out

s,l where the
signed distance function value is greater than the tool radius:

P out
s,l = {p ∈ Pl; SDFs(p) > rtool

s }. (7)

The path begins at the starting point within the current viewpoint and progresses horizontally to the
right. Once the tool reaches the boundary, it moves one step upward and then traverses back to the
left. This alternating movement continues until all designated points in the layer have been processed
the G-code is updated:

Gs,l,i = G1 Xxs,l,i Y ys,l,i Zzs,l,i, (8)
where (xs,l,i, ys,l,i, zs,l,i) is the location of a point ps,l,i ∈ P out

s,l in the 3D space R3.

3.3.3 PERIPHERY TOOLPATH

Similar to the zigzag toolpath is designed for efficient material removal by traversing the remaining
stock within a machining layer. However, unlike the zigzag strategy, where points are visited in a
structured back-and-forth motion, the periphery toolpath orders the points in a counterclockwise
sequence around the starting point in the layer l and the G-code is updated as equation 8.

3.3.4 SPIRAL TOOLPATH

Similar to the zigzag and periphery toolpaths, the spiral toolpath is designed for efficient material
removal by traversing the remaining stock within a machining layer. Instead of following a counter-
clockwise sequence, the tool moves along a continuous spiral trajectory outward from the starting
point, ensuring smooth and uniform material removal, and the G-code is updated as equation 8.

3.4 REWARD CALCULATION

The core decision-making process of Shape2Gcode is powered by a DQN, which learns a policy to
select machining parameters by maximizing a reward function. To assess the efficacy of the generated
parameters and precise object production, we simulate the CNC cutting process in a voxelized
environment. The target shape S and the shape at each step s are represented as a binary grids:

Vt(i, j, k) =

{
1 inside,
0 outside,

Vs(i, j, k) =

{
1 if material is present,
0 otherwise,

(i, j, k) ∈ Z3, (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where initially all voxels Vs=0 are set as one. During simulation, the toolpath modifies the values,
, setting the removed voxels by the tool to 0. We define the overall reward as a combination of
preservation of the object structure, precision of the final shape, and machining efficiency.

3.4.1 PRESERVATION ACCURACY

At each step s, we ensure that voxels inside the target shape are not cut in Vs and retain values of 1:

Rs =

∑
(i,j,k)∈V in

t
Vs(i, j, k)

|V in
t |

, (10)

where |V in
t | is total number of voxels inside the target shape. This term penalizes any overcutting

into regions that should be preserved.

3.4.2 FINAL SHAPE ACCURACY

To evaluate the accuracy of the final shape, we compute the IoU between the the Vs=n and Vt:
Rf = IoU(Vs=n, Vt). (11)

This terms ensures that the target shape is precisely reproduced.

3.4.3 MATERIAL REMOVAL EFFICIENCY

We also consider machining efficiency which is quantified by the material removal rate:

RMRR =
|1− Vs=n|

tcut
, (12)

where |1− Vs=n| is the total number of voxels removed, and tcut is the execution time.

3.4.4 TOTAL REWARD FUNCTION

The total reward function is a linear combination of all defined reward terms:

Rtotal = λs

s=n∑
s=1

Rs + λfRf + λMRRRMRR, (13)

This reward structure enables the learning agent to generate high-quality and efficient toolpaths that
minimize damage to the object while maximizing alignment with the final desired geometry.

3.5 TOOLPATH ACTION SPACE AND NETWORK ARCHITECTURE

The action space comprises tool radius (0.001–0.01m), layer height (1/64–1/512m), and toolpath
strategy. Among toolpath startegies, contour is always chosen to preserve surfaces, while one of the
others is selected for material removal. DGCNN Wang et al. (2019) extracts shape features, and a
DQN selects machining actions. Further implementation details are provided in the Appendix A.1.

4 EXPERIMENTS

4.1 DATASETS

ABC Dataset. The ABC datasetKoch et al. (2019) contains one million 3D CAD models, primarily
designed for manufacturing applications. It serves as a valuable resource for developing geometric
deep-learning methods. As in CNC-Net, we pre-train our model using 5,000 normalized single-part
CAD objects. Due to the computational cost of fine-tuning on individual shapes, we randomly sample
50 shapes from a set of 1,000 test samples for fine-tuning and evaluation.

ShapeNet Dataset. To ensure a broader generalization, we also utilize ShapeNet Core (V1)Chang
et al. (2015), a dataset containing diverse 3D objects. We use watertight shapes obtained from
ONetMescheder et al. (2019) for training and evaluation. Consistent with CAPRI-Net, we pre-train
our model on 35,000 shapes across 13 categories and randomly select 10 shapes per category from
the test set for fine-tuning and evaluation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 EVALUATION PROTOCOL

For quantitative evaluation, we execute the generated G-code in a voxel-based simulator on a 2563

grid aligned to the normalized cube [−0.5, 0.5]3, where each motion segment removes voxels of
the stock intersected by the swept tool volume (see Sec. A.2 for details). After simulation, the
residual stock is converted into a mesh using Marching Cubes at the same resolution, without further
post-processing.

We use public code/weights when available, otherwise we retrain on the same split. All baselines are
run under their per-sample fine-tuning protocol, which is common in manufacturing where achieving
high-fidelity results is prioritized. For completeness, we also conduct experiments without fine-tuning
on CNC-Net and our method. Non-mesh outputs (CAD, implicit fields, toolpaths) are converted to
meshes with the same Marching Cubes configuration to ensure parity, and all meshes are evaluated
with the unified metric pipeline in Section 4.3.

4.3 EVALUATION METRICS

Volume-Based Metrics. We use Intersection over Union (IoU)Yu et al. (2021) and F1-scoreRen
et al. (2022) to assess the accuracy of reconstructed shapes. As in previous works, we voxelize
the bounding box [−0.5, 0.5]3 ⊂ R3 into 2563 voxels and evaluate their occupancies against the
reconstructed meshes.

Surface-Based Metrics. To measure geometric accuracy, we use symmetric Chamfer Dis-
tance (CD)Mittal et al. (2021) and Normal Consistency (NC)Chen et al. (2020). Following previous
works Yu et al. (2022); Yavatanoo et al. (2024), we uniformly sample 8,000 points on the surface of
each object, with all CD values scaled by 1,000 for consistency.

4.4 QUANTITATIVE AND QUALITATIVE RESULTS

Method Finetuning ABC ShapeNet

IoU↑ F1↑ CD↓ NC↑ IoU↑ F1↑ CD↓ NC↑
CSG-Stump Ren et al. (2021) ✓ 0.787 0.879 0.428 0.884 0.697 0.827 0.521 0.866
ExtrudeNet Ren et al. (2022) ✓ 0.769 0.875 0.505 0.871 0.607 0.773 0.918 0.844
CAPRI-Net Yu et al. (2022) ✓ 0.768 0.866 0.312 0.914 0.700 0.824 0.447 0.895
SECAD-Net Li et al. (2023) ✓ 0.776 0.867 0.398 0.900 0.650 0.784 2.405 0.852
CNC-Net Yavatanoo et al. (2024) ✗ 0.780 0.889 1.127 0.864 0.698 0.817 2.154 0.844
CNC-Net Yavatanoo et al. (2024) ✓ 0.824 0.901 0.509 0.893 0.740 0.850 1.562 0.863

Ours ✗ 0.833 0.902 0.493 0.914 0.766 0.858 0.678 0.879
Ours ✓ 0.848 0.912 0.460 0.922 0.773 0.863 0.669 0.880

Table 1: Quantitative results on ABC Koch et al. (2019) and ShapeNet Chang et al. (2015).

Table 1 quantitatively compares our method with prior 3D CAD reconstruction and CNC-based
approaches on the ABC Koch et al. (2019) and ShapeNet Chang et al. (2015) datasets. Our method
achieves state-of-the-art IoU and F1 scores on both datasets, outperforming existing methods, with
IoU/F1 of 0.848/0.912 on ABC and 0.773/0.863 on ShapeNet. While we surpass CNC-Net on CD
and NC, our approach trails some CAD-specific models like CAPRI-Net, reflecting the difference
between CNC-based carving and CAD’s smooth primitive assembly, which is consistent with previous
observations Yavatanoo et al. (2024). Most prior works are reported in their per sample fine-tuned
setting to achieve manufacturing-grade fidelity. For CNC-Net and for our method, we additionally
report a no-fine-tuning variant to assess zero-shot performance. In this no-fine-tuning setting, our
method outperforms most of fine-tuned baselines on most metrics and shows stronger zero-shot
generalization than CNC-Net. Furthermore, we present qualitative results in Figures 4a and 4b,
where prior methods are visualized using marching cubes at a resolution of 256, while our results
are shown through toolpath simulations shown in Figure 5a in the CIMCO CIMCO A/S G-code
simulator. Unlike CAD-based methods that may miss localized features, our G-code simulation
result demonstrates high fidelity and manufacturability, highlighting the practical effectiveness of our
approach for real-world CNC applications.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

CSG-Stump ExtrudeNet CAPRI-Net SECAD-Net CNC-Net Ours Target (GT)

(a) Qualitative results on ABC Koch et al. (2019) dataset.

CSG-Stump ExtrudeNet CAPRI-Net SECAD-Net CNC-Net Ours Target (GT)

(b) Qualitative results on ShapeNet Chang et al. (2015) dataset.

Figure 4: Qualitative comparisons. Our results are produced using CIMCO G-code simulator.
Red regions indicate the areas removed by cutting operations, while gray regions correspond to the
untouched portions of the original stock material.

(a) Toolpath simulation.

Ours Target (GT)

(b) Zero-shot generalization.

Figure 5: Visualizations of toolpath simulation (left) and zero-shot generalization (right).

4.5 ABLATION STUDIES

4.5.1 EFFECT OF TOOL ORIENTATION SELECTION

To assess our tool orientation selection method, we compare three strategies: (1) six fixed principal-
axis directions, (2) selecting multiple uniformly random orientations (averaged over several trials),
and (3) our proposed approach. We evaluate each by the percentage of visible surface points across
all selected views, using 16, 384 sampled points per object on various shapes from the ABC and
ShapeNet datasets. As shown in Table 2, our method achieves greater surface coverage with fewer
unseen points, using a set of five selected views, compared to fixed or randomly chosen orientations.
This strategic optimization improves machining accessibility and efficiency.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Dataset 6-axes Rand(5) Rand(6) Ours

ABC 92.67% 83.52% 89.11% 96.42%
ShapeNet 91.27% 79.77% 84.73% 92.75%

Table 2: Effect of tool orientation selection.

Method IoU↑ F1↑ CD↓ NC↑ T↓
Random 0.781 0.863 0.905 0.521 533.52

Fixed (Tool radius: 0.001m, Layer height: 1/512m) 0.856 0.917 0.427 0.936 1634.001
Fixed (Tool radius: 0.01m, Layer height: 1/64m) 0.718 0.818 0.666 0.853 129.07

Ours 0.848 0.912 0.460 0.922 423.145

Table 3: Effect of machining precisions.

4.5.2 EFFECT OF MACHINING PRECISIONS

We evaluate the effect of selecting machining precision settings, specifically tool radius and layer
height. As shown in Table 3, fixed setting reveal clear trade-offs: coarse configurations improve
efficiency but reduce accuracy, fine configurations enhance precision but significantly increase
machining time, and random selection leads to overall lower performance. In contrast, our method
learns to adaptively choose these parameters through reinforcement learning, achieving the best
balance between reconstruction quality and machining efficiency.

4.5.3 EFFECT OF TOOLPATH STRATEGIES

To analyze the impact of different toolpath strategies, we perform an ablation study by removing
each strategy individually. Using 50 random samples from the ABC dataset, we evaluate our
method’s performance after excluding contour, zigzag, periphery, or spiral toolpaths. Table 4 shows
that removing any single strategy degrades both reconstruction precision (IoU, F1, CD, NC) and
machining efficiency (T), demonstrating each strategy’s importance. Notably, removing contour
causes the largest drop in reconstruction fidelity, despite only minor changes in machining time, due
to its relatively short execution time compared to spiral, periphery, and zigzag paths.

Excluded Toolpath Metric
IoU↑ F1↑ CD↓ NC↑ T↓

Spiral 0.797 0.876 0.615 0.911 508.132
Periphery 0.806 0.882 0.565 0.914 528.967

Zigzag 0.811 0.886 0.611 0.917 441.278
Contour 0.756 0.849 0.891 0.847 444.430

None (Ours) 0.848 0.912 0.460 0.922 423.145

Table 4: Effect of toolpath strategies.

Excluded Reward Metric
IoU↑ F1↑ CD↓ NC↑ T↓

Rs 0.792 0.871 0.603 0.903 413.583
RMRR 0.851 0.914 0.456 0.921 774.776

None (Ours) 0.848 0.912 0.460 0.922 423.145

Table 5: Effect of reward functions.

4.5.4 EFFECT OF REWARD FUNCTIONS

We analyze the impact of each component in the total reward function (Equation 13) via ablation
study, with Rf always included to guarantee overall shape reconstruction. As shown in Table 5,
removing Rs significantly reduces shape accuracy (e.g., IoU), highlighting its role in preserving target
geometry. Excluding RMRR leads to the highest execution time, confirming its importance for efficient
machining. The full reward achieves the best balance of accuracy and efficiency, demonstrating that
each component contributes to overall system performance.

4.5.5 ZERO-SHOT RESULTS ON OUT-OF- DOMAIN DATA

We assess the model’s zero-shot generalization to out-of-domain 3D shapes unseen during training.
Specifically, the model is first pretrained on the ShapeNet dataset and then tested on a variety of
unseen, out-of-domain 3D objects to evaluate its generalization capability. As shown in Figure 5b,
the method reconstructs high-fidelity shapes for these novel inputs without fine-tuning, demonstrating
strong generalization despite distribution shifts.

5 CONCLUSION

We introduced Shape2Gcode, a reinforcement learning-based framework for G-code generation in
CNC machining. Shape2Gcode optimizes toolpath strategies, and machining parameters without
relying on intermediate CAD models or manual tuning. Experiments demonstrate that Shape2Gcode
improves surface coverage, machining efficiency, and toolpath stability, while ablation studies validate
the importance of each component. By integrating AI-driven optimization with CNC manufacturing,
Shape2Gcode enhances automation, precision, and efficiency in modern machining workflows.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

J Balic and M Korosec. Intelligent tool path generation for milling of free surfaces using neural networks. Int. J.
Mach. Tools Manuf., 2002.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository. arXiv, 2015.

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating compact meshes via binary space
partitioning. CVPR, 2020.

Hyunsoo Chung, Jungtaek Kim, Boris Knyazev, Jinhwi Lee, Graham W Taylor, Jaesik Park, and Minsu Cho.
Brick-by-brick: Combinatorial construction with deep reinforcement learning. NeurIPS, 2021.

CIMCO A/S. Cimco edit: Cnc program editor and g-code simulator. https://www.cimco.com/
products/cimco-edit/.

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi.
Cvxnet: Learnable convex decomposition. In CVPR, 2020.

Marc-André Dittrich, Florian Uhlich, and Berend Denkena. Self-optimizing tool path generation for 5-axis
machining processes. CIRP-JMST, 2019.

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus, Armando Solar-
Lezama, and Wojciech Matusik. Inversecsg: Automatic conversion of 3d models to csg trees. ACM Trans.
Graph., 2018.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles and
Practice. Addison-Wesley Professional, 1996.

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas Funkhouser.
Learning shape templates with structured implicit functions. In ICCV, 2019.

Hsin-Ta Hsieh and Chih-Hsing Chu. Improving optimization of tool path planning in 5-axis flank milling using
advanced pso algorithms. Robot. Comput.-Integr. Manuf., 2013.

Xiaoyang Huang, Yi Zhang, Kai Chen, Teng Li, Wenjun Zhang, and Bingbing Ni. Learning shape primitives via
implicit convexity regularization. In ICCV, 2023.

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. Ucsg-net-unsupervised discovering of constructive
solid geometry tree. NeurIPS, 2020.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc
Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for geometric deep learning. In
CVPR, 2019.

Aman Kukreja and Sanjay S Pande. Optimal toolpath planning strategy prediction using machine learning
technique. Eng. Appl. Artif. Intell., 2023.

David H Laidlaw, W Benjamin Trumbore, and John F Hughes. Constructive solid geometry for polyhedral
objects. In SIGGRAPH, 1986.

Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and Leonidas J Guibas. Supervised fitting of geometric
primitives to 3d point clouds. In CVPR, 2019.

Pu Li, Jianwei Guo, Xiaopeng Zhang, and Dong-Ming Yan. Secad-net: Self-supervised cad reconstruction by
learning sketch-extrude operations. In CVPR, 2023.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In CVPR, 2019.

Himangi Mittal, Brian Okorn, Arpit Jangid, and David Held. Self-supervised point cloud completion via
inpainting. In BMVC, 2021.

Chengjie Niu, Jun Li, and Kai Xu. Im2struct: Recovering 3d shape structure from a single rgb image. In CVPR,
2018.

Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, and Sanja Fidler. Neural parts: Learning
expressive 3d shape abstractions with invertible neural networks. In CVPR, 2021.

10

https://www.cimco.com/products/cimco-edit/
https://www.cimco.com/products/cimco-edit/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, Haiyong Jiang, Zhongang Cai, Junzhe Zhang, Liang Pan,
Mingyuan Zhang, Haiyu Zhao, et al. Csg-stump: A learning friendly csg-like representation for interpretable
shape parsing. In ICCV, 2021.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, and Junzhe Zhang. Extrudenet: Unsupervised inverse
sketch-and-extrude for shape parsing. In ECCV, 2022.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet: Neural shape
parser for constructive solid geometry. In CVPR, 2018.

Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos Kalogerakis, Siddhartha Chaudhuri, and Radomír Měch.
Parsenet: A parametric surface fitting network for 3d point clouds. In ECCV, 2020.

Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik. Learning shape abstractions
by assembling volumetric primitives. In CVPR, 2017.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 2019.

Mohsen Yavartanoo, Jaeyoung Chung, Reyhaneh Neshatavar, and Kyoung Mu Lee. 3dias: 3d shape reconstruc-
tion with implicit algebraic surfaces. In ICCV, 2021.

Mohsen Yavatanoo, Sangmin Hong, Reyhaneh Neshatavar, and Kyoung Mu Lee. Cnc-net: Self-supervised
learning for cnc machining operations. In CVPR, 2024.

Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-Amiri, and Hao Zhang.
Capri-net: learning compact cad shapes with adaptive primitive assembly. In CVPR, 2022.

Jiaqian Yu, Jingtao Xu, Yiwei Chen, Weiming Li, Qiang Wang, Byungin Yoo, and Jae-Joon Han. Learning
generalized intersection over union for dense pixelwise prediction. In ICML, 2021.

Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 3d-prnn: Generating shape primitives
with recurrent neural networks. In ICCV, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

The reinforcement learning model was trained over 300 episodes on a multi-object dataset for 5-axis
CNC toolpath optimization. The machining process was simulated on a 2563 voxel grid, with voxel
resolution adaptively scaled to object size. The starting point was placed at a safe height, offset
by 0.1m from the top of the shape in the tool direction. Grid resolutions were set to 1/256m for
contour and 1/64m for the remaining strategies. We used 16,384 sampled surface points to compute
1024-dimensional features with DGCNN. The DQN consisted of two fully connected layers with
128 units each. Training was performed using the Adam optimizer (lr = 1× 10−3, γ = 0.95) and an
ϵ-greedy policy decaying from 1.0 to 0.01. Each reward term was weighted by λs = 1, λf = 1, and
λMRR = 0.1. Experiments were conducted on an NVIDIA Quadro RTX 8000 GPU, and generated
G-code was validated in CIMCO A/S for toolpath inspection and collision checking. jjik

A.2 G-CODE SIMULATION

We simulate machining by carving a voxel stock along a polyline toolpath using a simple swept-
volume approximation. The toolpath is a T×4 array of waypoints (x, y, z, f), where the flag
f ∈ {0, 1} marks the ending waypoint of each segment as rapid (G0, f=0) or cutting (G1, f=1);
only G1 segments remove material. Safe moves are encoded as G0 segments, and layer height is
implicitly determined by the z coordinates of successive G1 segments. A step-by-step simulation
procedure is given in Algorithm A1.

Algorithm A1: SIMULATE TOOLPATH

Input: stock_vox, toolpath ∈ RT×4, tool_radius, sweep_step, grid_min, voxel_size, tool_axis
Output: updated stock_vox
erase_vox← 0
for i← 0 to T − 2 do

start← toolpath[i, 0:3]; end← toolpath[i+1, 0:3]
if toolpath[i+1, 3] == 0 then

continue
L← end− start; if ∥L∥ = 0 then

continue
Lu ← L/∥L∥; D ← L× tool_axis; Du ← D/∥D∥; Nu ← tool_axis/∥tool_axis∥
n← ⌊∥L∥/sweep_step⌋
Sample n tuples (l, d, n′, r, θ, ϕ) with l∼U(0, 1), d∼U(−1, 1), n′∼U(−1, 1), r∼U(0, tool_radius),
θ∼U(0, π), ϕ∼U(0, 2π)

Build P :
• ps = start+ [r sin θ cosϕ, r sin θ sinϕ, r cos θ]

• pc = start+ l ∥L∥Lu + (r cos θ)Du + (r sin θ)Nu

• pr = start+ l ∥L∥Lu + (d tool_radius)Du + (n′ tool_radius)Nu

Map P to voxel indices: v = ⌊(P − grid_min)/voxel_size⌋; erase_vox[vx, vy, vz]← 1

stock_vox← stock_vox⊙ (1− erase_vox)
return stock_vox

A.3 MORE QUALITATIVE RESULTS

We extend our qualitative evaluation by providing additional compariosns between our method
and existing 3D CAD reconstruction approaches, including CSG-Stump, ExtrudeNet, CAPRI-Net,
SECAD-Net, and CNC-Net, on both the ABC and ShapeNet datasets. As shown in Figure A1,
our method produces geometry that closely matches the ground-truth while remaining compatible
with real world CNC manufacturing process. The visualizations are obtained via CIMCO G-code
simulation, where red regions represent material removed during cutting, and gray regions indicate
untouched portions of the original stock. These examples further highlight our model’s ability to
preserve both structural integrity and surface fidelity across diverse shapes, reinforcing its practical
utility in real-world CNC applications.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CSG-Stump ExtrudeNet CAPRI-Net SECAD-Net CNC-Net Ours Target (GT)

Figure A1: Qualitative comparisons on ABC and ShapeNet dataset. Our results are produced
using CIMCO G-code simulator. Red regions indicate the areas removed by cutting operations, while
gray regions correspond to the untouched portions of the original stock material.

A.4 COMPARISON WITH COMMERCIAL CAM

We compare against MeshCAM, a representative commercial CAM tool, under two configurations.
(1) non-expert setting: reasonable orientations with median tool radius and layer height. and (2)
expert setting: a skilled machinist manually tunes orientation, tool size, and step size per toolpath
strategy. As shown in Table A1, our method attains the best accuracy on all metrics, surpassing both
MeshCAM settings. In machining time, our approach is far faster than the non-expert configuration
and competitive with the expert setting (423.1 vs. 375.7). It is also efficient at runtime: ∼5s for
orientation selection, < 0.1ms for action selection, and ∼10s for G-code translation, faster than
MeshCAM.

Expert CAM typically relies on CAD metadata (e.g., features, tolerances). With only a triangulated
mesh, experts must infer features and often choose conservative parameters. Our policy instead
directly optimizes orientations and strategy from the mesh via fast simulation, exploring candidates
over a few episodes and finding geometry-aware settings that are hard to hand-tune consistently.
Overall, we outperform commercial CAM in accuracy while approaching expert-level efficiency
without human intervention.

Method Accuracy & Machining Time Runtime

IoU↑ F1↑ CD↓ NC↑ T↓ Orientation Sel. Action Sel. G-code Trans.

MeshCAM (Non-expert setting) 0.783 0.854 1.474 0.868 1488.621 – – 29.282 s
MeshCAM (Expert setting) 0.833 0.904 0.555 0.910 375.708 – – 18.759 s
Ours 0.848 0.912 0.460 0.922 423.145 5081.98 ms 0.03 ms 10.103 s

Table A1: Quantitative and runtime comparison on the ABC dataset.

A.5 ABLATIONS FOR EFFECTIVENESS OF PARAMETER SEARCH

To demonstrate the effectiveness of our parameter selection strategy, we compare our method against
a baseline that adopts fixed parameters, specifically the largest tool radius (0.01m) and the lowest
layer height (1/64m), from the action space. As illustrated in Figure A2, our method consistently
generates high-fidelity reconstructions across a range of shapes, closely matching the target geometry.
In contrast, the fixed-parameter baseline produces degraded or incomplete results, highlighting the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Target (GT) Fixed parameter Ours Target (GT) Fixed parameter Ours

Figure A2: Comparison results across different examples showing the target object, results using fixed
parameters with the largest tool radius (0.01m) and lowest layer height (1/64m), and our method.

importance of adaptive parameter selection. These results confirm that our approach successfully
balances geometric accuracy and machining efficiency by selecting context-aware parameters.

A.6 ABLATIONS FOR TOOL ORIENTATION SELECTION

Method IoU↑ F1↑ CD↓ NC↑
6-axes 0.792 0.876 0.711 0.881

Rand(5) 0.740 0.839 0.710 0.869
Rand(6) 0.751 0.846 0.700 0.873

Ours 0.848 0.912 0.460 0.922

Table A2: Quantitative comparison of tool ori-
entation strategies.

Method Fine-tuning Time per Sample

CSG-Stump 60 min
ExtrudeNet 30 min
CAPRI-Net 3 min
SECAD-Net 3 min
CNC-Net 50 min
Ours 10 min

Table A3: Per-sample fine-tuning time com-
parison.

We demonstrate the effectiveness of our proposed orientation selection strategy through compre-
hensive quantitative evaluations on ABC dataset. As shown in Table A2, our method consistently
outperforms baseline approaches such as Random-5, Random-6, and 6-axis orientation selection
across all mesh comparison metrics: Intersection over Union (IoU), surface fidelity (FI), Chamfer
Distance (CD), and normal consistency (NC). Random-5 and Random-6 denote five and six randomly
sampled orientations from a uniform distribution, while the 6-axis method uses the positive and
negative directions of the Cartesian axes. Our method achieves the highest IoU, FI, and NC scores
and the lowest CD values, highlighting the crucial role of our proposed orientation selection strategy.

A.7 PER-SAMPLE FINE-TUNING TIME

Table A3 reports per-sample fine-tuning time. Our method requires 10 minutes (five episodes) on a
single NVIDIA Quadro RTX 8000 GPU, placing it between lightweight approaches such as CAPRI-
Net and SECAD-Net (≈3 min) and optimization-heavy baselines including CSG-Stump (60 min),
CNC-Net (50 min), and ExtrudeNet (30 min). Despite the per-instance adaptation, the minutes-scale
budget keeps our procedure practical and competitive with prior work without introducing large
additional computational overhead.

A.8 MULTI-SEED ROBUSTNESS

To assess statistical reliability beyond a single random seed, we repeat each experiment with multiple
random seeds and plot the mean with 95% confidence intervals (CIs) for each method and metric
pair as shown in figure A3. Across datasets and metrics, our plots show tight CIs and stable rankings,
indicating that the reported gains are not results of seed choice.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure A3: Results over multiple random seeds. Error bars indicate the 95% confidence interval of
the mean. Red plots denote the best performance for each metric.

Method ShapeNet→ OOD Dataset
IoU↑ F1↑ CD↓ NC↑

CNC-Net (w/ finetuning) 0.630 0.765 1.234 0.780
Ours (w/o finetuning) 0.770 0.866 0.710 0.859

Table A4: Quantitative results on OOD data.

A.9 QUANTITATIVE RESULTS ON OOD DATASET

We quantitatively evaluate ShapeNet→OOD transfer on a 20-shape benchmark (e.g., Stanford Bunny,
Utah Teapot, Eiffel Tower). Both CNC-Net and our method are pretrained on ShapeNet. As CNC-Net
is designed for per-sample fine-tuning, we allow CNC-Net to fine-tune on the OOD datasset, while
our method uses performs without fine-tuning. As shown in Table A4, our approach outperforms
CNC-Net across all metrics, demonstrating stronger OOD robustness with zero-shot adaptation.

15

	Introduction
	Related works
	Reverse Engineering for 3D Shapes
	CNC Machining for Reverse Engineering

	Method
	Tool Orientation Selection
	Visibility-based Reconstruction
	G-code Generation
	Contour Toolpath
	Zigzag Toolpath
	Periphery Toolpath
	Spiral Toolpath

	Reward Calculation
	Preservation Accuracy
	Final Shape Accuracy
	Material Removal Efficiency
	Total Reward Function

	Toolpath Action Space and Network Architecture

	Experiments
	Datasets
	Evaluation Protocol
	Evaluation Metrics
	Quantitative and Qualitative Results
	Ablation Studies
	Effect of Tool Orientation Selection
	Effect of Machining Precisions
	Effect of Toolpath Strategies
	Effect of Reward Functions
	Zero-shot Results on Out-of- Domain data

	Conclusion
	Appendix
	Implementation Details
	G-code Simulation
	More Qualitative Results
	Comparison with commercial CAM
	Ablations for effectiveness of Parameter Search
	Ablations for Tool Orientation selection
	Per-sample fine-tuning time
	Multi-seed robustness
	Quantitative results on OOD dataset

