Under review as a conference paper at ICLR 2026

SHAPE2GCODE: DIRECT G-CODE GENERATION FROM
3D SHAPE DATA FOR AUTOMATED MANUFACTURING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern manufacturing relies on Computer Numerical Control (CNC) machines,
which execute machining operations using G-code, a programming language that
defines tool movements, cutting paths, and machining parameters. Despite ad-
vancements in automation, generating G-code still requires significant human
intervention and reliance on Computer-Aided Manufacturing (CAM) tools. To
address these challenges, we propose Shape2Gcode, an end-to-end framework that
directly generates optimized G-code from 3D shape data. Our approach leverages
reinforcement learning to optimize key machining parameters, including tool radius,
milling depth, and toolpath strategies. Additionally, Shape2Gcode incorporates a
tool orientation selection module to determine optimal rotation matrices, enhanc-
ing the flexibility and precision of the machining. We evaluate Shape2Gcode on
CNC manufacturing tasks using the ABC and ShapeNet datasets, comparing its
performance against existing CAD reconstitution and CNC automation methods.
Experimental results demonstrate that Shape2Gcode outperforms conventional
approaches in reconstruction accuracy, significantly reducing the need for manual
intervention. By optimizing G-code generation and minimizing manual adjust-
ments, Shape2Gcode improves CNC manufacturing efficiency, lowers costs, and
enables more automated machining workflows.

E(ode Simulation

\ e : =S - ? =
TWER
-9 QY &>

Target Shape

Genarated G-cod Stock Box G-code Simulation at t, G-code Simulationatt, Final Output

Figure 1: Overview of our proposed pipeline.

1 INTRODUCTION

Manufacturing has undergone a significant transformation with the advent of Computer Numerical
Control (CNC) machining, which automates tool movement through G-code instructions. Traditional
Computer-Aided Manufacturing (CAM) workflows rely on Computer-Aided Design (CAD) models
to generate toolpaths before converting them into G-code. This multi-stage process is widely used
in CNC machining, but optimizing G-code remains a manual and time-intensive task, as experts
must fine-tune machining parameters such as tool radius, cutting depth, and toolpath strategies to
achieve high-quality manufacturing outcomes. Expert involvement restricts automation and extends
production time. A system that automatically generates optimized G-code directly from 3D shapes,
without CAD conversion, could significantly boost manufacturing efficiency.

Recent deep learning-based approaches, such as CNC-Net, aim to infer machining operations directly
from 3D models without relying on labeled datasets. While CNC-Net represents a significant
advancement, it has several critical limitations. First, it does not account for real-world machining
constraints, making it difficult to apply in practical CNC manufacturing. For instance, it fails to
model layer-by-layer material removal, which is essential for milling operations that must avoid direct
vertical tool movements. Additionally, CNC-Net’s large decision space for tool parameters results in
unstable and imprecise toolpaths, limiting its effectiveness in high-precision machining applications.

Under review as a conference paper at ICLR 2026

Episode: ¢y,

o @D ¢

isbilty-base
econstruction
o et Acion — ‘e@l
—a P = it e S} Output G-code
r 8 s= generator Initial Setup and Tool Configuration
Orientation " - - . . i . D D
Selection 2) PP . - - Toolpath Execution Contour Zigzag

R tructi
Target shape feconstruction Periphery Spiral

N\ 1&. ~

. T l
L&/ t iE G-code Simulation "\.j,x

n g P Layer
Stock Material | Reward = N 01 Rs + ARy + AMrrRyrR | , Jne-gm
t ! Piayer
u%‘ Reward Action

Figure 2: The framework of Shape2Gcode. The large box depicts the training episodes of
Shape2Gcode, accompanied by a section presenting the reward and action space components.

To overcome these challenges, we introduce Shape2Gcode, the first method that directly generates G-
code from 3D shape data without requiring CAD conversion. Our approach includes a tool orientation
selection module that determines a minimal yet sufficient set of orientations to enusre complete
surface coverage. Additionally, Shape2Gcode leverages reinforcement learning to autonomously
learn machining strategies and select the best toolpath parameters, including tool radius, layer height,
and tool strategy. Unlike previous methods, Shape2Gcode reduces computational complexity by
focusing on critical machining parameters while maintaining precision. It constructs toolpaths using
conventional machining patterns (e.g., Contour, Zigzag, Periphery, and Spiral), ensuring compatibility
with standard CAM practices. Compared to CNC-Net, our method significantly reduces the decision
space, leading to more stable and precise toolpaths. We evaluate Shape2Gcode on benchmark
datasets and real-world G-code simulators, demonstrating that it outperforms existing deep learning
approaches in accuracy and efficiency. By automating G-code optimization, Shape2Gcode enhances
CNC manufacturing by making machining faster, more precise, and less dependent on human
expertise, ultimately improving modern manufacturing workflows.

‘We summarize our main contributions as follows:

* End-to-End G-code Generation: Shape2Gcode directly generates G-code from 3D shape
data, eliminating the need for CAD conversion and manual CAM workflows.

* Reinforcement Learning for Machining Optimization: Our model autonomously op-
timizes machining parameters, including tool radius, layer height, and toolpath strategy,
ensuring efficiency and precision.

* Real-World Compatibility: Shape2Gcode is the first approach to generate G-code compat-
ible with real-world CNC simulators.

2 RELATED WORKS

2.1 REVERSE ENGINEERING FOR 3D SHAPES

Reverse engineering in 3D manufacturing digitizes and reconstructs objects for replication, modifica-
tion, and inspection, aiming to recover their geometric and structural features for fabrication analysis.
Deep learning has enabled primitive-based modeling, approximating shapes with cubes Tulsiani et al.
(2017); Zou et al.| (2017); Niu et al.| (2018)), ellipsoids |Genova et al.| (2019), or deformable primi-
tives Deng et al.|(2020); |Yavartanoo et al.|(2021)); [Paschalidou et al.[(2021); Huang et al.| (2023), often
using constructive solid geometry (CSG) |Laidlaw et al.|(1986)); Foley et al.|(1996). Reinforcement
learning has also been applied to sequential primitive assembly Sharma et al.[(2018); Du et al.| (2018);
Chung et al.|(2021). Other approaches detect and fit primitives within point clouds [Li et al.| (2019);
Sharma et al.| (2020) or infer CSG programs |Sharma et al.|(2018); |Du et al.|(2018)). Recent works
compress CAD models via CSG operations without ground-truth assemblies Kania et al.[(2020);
Ren et al.| (2021} [2022); [Yu et al.| (2022)); [L1 et al.| (2023)). However, most methods focus on static
reconstruction and overlook the sequential material removal essential for CNC machining, motivating
the development of frameworks that capture its stepwise nature.

Under review as a conference paper at ICLR 2026

2.2 CNC MACHINING FOR REVERSE ENGINEERING

CNC machining is widely used for material removal and part reproduction in reverse engineering.
Although CNC machines follow G-code precisely, generating optimized code remains manual and
labor-intensive, requiring expert tuning of parameters and toolpaths. To address this, machine
learning-based Computer-Aided Process Planning (CAPP) has been explored, using techniques such
as particle swarm optimization (PSO) and support vector machines (SVM) [Hsieh & Chu (2013));
Dittrich et al.|(2019). However, these approaches depend on pre-labeled CAD models and shows
limited generalization ability across diverse datasets. Route planning methods |Balic & Korosec
(2002); |Kukreja & Pande] (2023)) also generate optimized toolpaths, but require extensive preparation
of CAD-toolpath pairs, making training time-consuming and limiting generalization. Given these
limitations, research on automatically searching and learning CNC operations in a sequential manner
remains limited. CNC-Net|Yavatanoo et al.| (2024) proposed a self-supervised framework that learns
operations from 3D models in an unsupervised manner. Despite this progress, it does not fully capture
machining constraints and often produces infeasible toolpaths due to its large decision space and
indirect feedback. To overcome these challenges, we propose Shape2Gcode, an RL-based framework
that directly generates optimized G-code from 3D shapes without CAD conversion, autonomously
learning machining strategies for more efficient, stable, and precise operations.

3 METHOD

In this section, we introduce Shape2Gcode, a novel framework that translates 3D shape representations
into optimized G-code for CNC machining. Instead of relying on traditional CAD-based workflows,
our method directly learns to generate efficient machining plans from raw 3D shape inputs. Using a
Deep Q-Network (DQN), it dynamically selects the optimal toolpath strategy, tool radius, and layer
height, enabling a data-driven and adaptive approach to toolpath generation. By eliminating manual
parameter tuning, Shape2Gcode improves efficiency and precision in CNC machining.

As shown in Figure 2] Shape2Gcode formulates G-code generation as an RL task, where an agent
optimizes machining parameters by interacting with the environment to carve material from the
stock material that encloses the target shape. The entire machining process is modeled as an episode,
consisting of a sequence of decision-making steps, each contributing to the final toolpath generation.
The pipeline begins with a 3D shape representation S of the target object. An angle selection module
first determines valid machining orientations V' = {vs}"_; to ensure full surface coverage. Each
selected angle provides a different view of the object, ensuring that critical features are not occluded
during machining. For each view direction v, a visibility-based reconstruction step refines the input
shape as S, by ensuring that all visible regions align with the target shape, while occluded regions
are filled. This guarantees that the machining operations are applied to an optimal, manufacturable
representation. Once the shape S, is reconstructed for a given machining angle v, an encoder &£
extracts a compact latent representation of the geometry:

Zs = 6(83)7 (1)

where z, € R? captures essential geometric and machining features. Using this learned features, a
DQN determines the optimal machining parameters, including tool radius 7°°!, layer height h'>*",
and toolpath strategy si %, by selecting an action a, in the actions space .A that maximizes the

expected reward:
tool 7 layer _strate;
as = {ry%, B sy e Al)

The generated parameters are then translated into executable G-code as machine-readable instructions
through a G-code generator. At the end of the episode, the complete G-code sequence, corresponding
to all selected machining angles, is then sent to a CNC machine simulator for validation. The agent
receives intermediate rewards at each step, as well as a final reward at the end of the episode, allowing
the learned policy to optimize both the step-wise machining behavior and the overall outcome. The
DQN policy is updated using this feedback, refining its decision-making for future episodes. By
integrating reinforcement learning with G-code generation, Shape2Gcode learns to dynamically
optimize toolpaths, ensuring efficient, precise, and automated CNC machining across various 3D
shapes. In the following sections, we provide a detailed discussion of the tool orientation selection
module, visibility-based reconstruction, G-code generator, and reward calculation, explaining how
each component contributes to the overall machining process.

Under review as a conference paper at ICLR 2026

- ™

A \(

S ||

Target Object L

Figure 3: Tool orientation selection process and visibility-based reconstructions. Top: Accumu-
lated coverage with added orientations. Bottom: Visibility-based reconstructions per orientation.

3.1 TooL ORIENTATION SELECTION

The goal of the tool orientation selection module is to identify a minimal set of tool orientations that
enables complete and efficient machining of a 3D shape. Since a shape cannot be fully machined from
a single direction due to occlusions, it is necessary to select a set of orientations V' = v,}_;
that achieves full surface coverage with as few orientations as possible. A surface point p is
considered visible from a candidate orientation v if the cutting tool can reach p directly, without
obstruction. Mathematically, visibility is determined by casting a ray from p along —v and checking
for intersections with the object surface; if the ray hits another surface point before exiting, p is
occluded in direction v. To select optimal tool directions, we use an iterative greedy approach: at
each step ¢, the next orientation v; is chosen to maximize the number of uncovered visible points:

vi = arg max Z 1(Vis(p,v)), 3)

PE Puncovered

where Pycovered 18 the set of surface points not yet covered, and 1(Vis(p, v)) is 1 if p is visible from
v, and 0 otherwise. The process stops once sufficient coverage is achieved, yielding the minimal set
V = {wvg,v1,...,v,} of tool orientations.

3.2 VISIBILITY-BASED RECONSTRUCTION

The visibility-based reconstruction step processes the input shape S to generate a manufacturable
representation S, ensuring that all visible regions align with S while occluded regions, corresponding
to the view direction v, are filled as shown in Figure 3] This ensures that machining operations are
applied to a manufacturable and structurally valid representation, preserving the integrity of the object
while facilitating effective tool movements. To achieve this, the reconstruction process employs a
surface voxelization approach, converting the visible portions of S into a discrete volumetric grid.
The occluded regions are filled to form a watertight representation. The reconstructed shape is then
refined using marching cubes to generate a smooth mesh representation, followed by Laplacian
smoothing to enhance surface continuity.

3.3 G-CODE GENERATION

The G-code generation module converts the generated action including the optimal machining
parameters into executable CNC commands, ensuring that the CNC machine correctly interprets the
learned machining strategy. This step bridges the reinforcement learning-based toolpath generation
and the actual machining process by encoding the tool’s movements in a standardized format. The
machining process is carried out layer by layer along the depth direction, ensuring systematic material
removal with the depth level of A", At each layer [, the contour toolpath is first applied to separate
the object’s main geometry from the surrounding material. However, since the detached material
remains connected to deeper layers, additional toolpath strategies e.g., zigzag, periphery, and spiral,
are employed to efficiently remove the remaining stock. The reinforcement learning model selects
the most efficient strategy for each layer. To maintain machining precision and prevent unintended
collisions, the toolpath is dynamically adjusted. In each layer, the tool retracts to a starting position
(T s.5t5 Us.st, 2s,5t) €Xecuting:

Gs,st =G0 Xxs,st sz,st ZZs,st, 4

Under review as a conference paper at ICLR 2026

where GO refers to the transition to the starting position. This ensures that the tool moves safely
without damaging the target shape. In the following subsections, we provide a detailed explanation of
each toolpath strategy, including contour, zigzag, periphery, and spiral.

3.3.1 CONTOUR TOOLPATH

The contour toolpath is designed to refine the object’s surface by closely following its geometry.
The process begins with the visibility-reconstructed shape Ss, where a signed distance function is
calculated as SDF(p) for each point p € P, in the layer [to its surface. The contour toolpath points
P;:ll” are determined by selecting points where the SDF value is approximately equal to the tool
radius, ensuring that the tool follows the object’s surface while maintaining an appropriate clearance:

Pt = {p € P;|SDF,(p) — ™| < e},)

where € is a small tolerance to account for numerical precision. The sorting process follows a nearest-
neighbor approach, starting from a starting point and iteratively selecting the closest unprocessed
point until all points are visited and the G-code is updated:

Gs,l,i =Gl Xxs,l,i sz,l,i Zzs,l,iu (6)

where (Zs1,i,Ys,1.is Zs,1,i) 1S the location of ps; ; € P;“{f in R® and G1 indicates carving motion.

3.3.2 Z1GZAG TOOLPATH

The zigzag toolpath is designed for efficient material removal by systematically traversing the
remaining stock within a machining layer. At each depth level [, after the contour toolpath has
separated the object from the surrounding material, the zigzag strategy ensures that unremoved
regions are cleared. The toolpath follows a structured back-and-forth motion, covering the machining
layer in a sweeping manner. The traversal path is determined by selecting all points Ps"}}‘ where the
signed distance function value is greater than the tool radius:

o = {p € Pi; SDF,(p) > ri®'}. @

The path begins at the starting point within the current viewpoint and progresses horizontally to the
right. Once the tool reaches the boundary, it moves one step upward and then traverses back to the
left. This alternating movement continues until all designated points in the layer have been processed
the G-code is updated:

GsJ,i =cGl Xxs,l,i szJ,i ZZsJ,i; (8)

where (25,1, Ys,1,i» 2s,1,:) is the location of a point p, ;; € P} in the 3D space R3.

3.3.3 PERIPHERY TOOLPATH

Similar to the zigzag toolpath is designed for efficient material removal by traversing the remaining
stock within a machining layer. However, unlike the zigzag strategy, where points are visited in a
structured back-and-forth motion, the periphery toolpath orders the points in a counterclockwise
sequence around the starting point in the layer [and the G-code is updated as equation [§]

3.3.4 SPIRAL TOOLPATH

Similar to the zigzag and periphery toolpaths, the spiral toolpath is designed for efficient material
removal by traversing the remaining stock within a machining layer. Instead of following a counter-
clockwise sequence, the tool moves along a continuous spiral trajectory outward from the starting
point, ensuring smooth and uniform material removal, and the G-code is updated as equation 8]

3.4 REWARD CALCULATION

The core decision-making process of Shape2Gcode is powered by a DQN, which learns a policy to
select machining parameters by maximizing a reward function. To assess the efficacy of the generated
parameters and precise object production, we simulate the CNC cutting process in a voxelized
environment. The target shape S and the shape at each step s are represented as a binary grids:

Vit = { Viliih) = {

1 inside,
0 outside,

1 if material is present,

B e 78 9
0 otherwise, (i,5,k) €Z°, (9)

Under review as a conference paper at ICLR 2026

where initially all voxels V,— are set as one. During simulation, the toolpath modifies the values,
, setting the removed voxels by the tool to 0. We define the overall reward as a combination of
preservation of the object structure, precision of the final shape, and machining efficiency.

3.4.1 PRESERVATION ACCURACY

At each step s, we ensure that voxels inside the target shape are not cut in V; and retain values of 1:
2 gmevin Valir g,)

Vir] ’
where |V,'"] is total number of voxels inside the target shape. This term penalizes any overcutting
into regions that should be preserved.

Rs = (10)

3.4.2 FINAL SHAPE ACCURACY

To evaluate the accuracy of the final shape, we compute the IoU between the the V;_,, and V;:
Ry =10U(Vszp, V2). (1D
This terms ensures that the target shape is precisely reproduced.

3.4.3 MATERIAL REMOVAL EFFICIENCY

We also consider machining efficiency which is quantified by the material removal rate:

1-V,_
RMRR = M, (12)
teut
where |1 — Vi, | is the total number of voxels removed, and ¢, is the execution time.
3.4.4 TOTAL REWARD FUNCTION
The total reward function is a linear combination of all defined reward terms:
s=n
Riotal = As Z Rs + ARy + AMRRRMRR, (13)
s=1

This reward structure enables the learning agent to generate high-quality and efficient toolpaths that
minimize damage to the object while maximizing alignment with the final desired geometry.

3.5 TOOLPATH ACTION SPACE AND NETWORK ARCHITECTURE

The action space comprises tool radius (0.001-0.01m), layer height (1/64-1/512m), and toolpath
strategy. Among toolpath startegies, contour is always chosen to preserve surfaces, while one of the
others is selected for material removal. DGCNN Wang et al.| (2019) extracts shape features, and a
DQN selects machining actions. Further implementation details are provided in the Appendix [A.T]

4 EXPERIMENTS

4.1 DATASETS

ABC Dataset. The ABC datasetKoch et al.|(2019) contains one million 3D CAD models, primarily
designed for manufacturing applications. It serves as a valuable resource for developing geometric
deep-learning methods. As in CNC-Net, we pre-train our model using 5,000 normalized single-part
CAD objects. Due to the computational cost of fine-tuning on individual shapes, we randomly sample
50 shapes from a set of 1,000 test samples for fine-tuning and evaluation.

ShapeNet Dataset. To ensure a broader generalization, we also utilize ShapeNet Core (V1)Chang
et al.| (2015), a dataset containing diverse 3D objects. We use watertight shapes obtained from
ONetMescheder et al.|(2019)) for training and evaluation. Consistent with CAPRI-Net, we pre-train
our model on 35,000 shapes across 13 categories and randomly select 10 shapes per category from
the test set for fine-tuning and evaluation.

Under review as a conference paper at ICLR 2026

4.2 EVALUATION PROTOCOL

For quantitative evaluation, we execute the generated G-code in a voxel-based simulator on a 2562
grid aligned to the normalized cube [—0.5,0.5]3, where each motion segment removes voxels of
the stock intersected by the swept tool volume (see Sec.[A.2] for details). After simulation, the
residual stock is converted into a mesh using Marching Cubes at the same resolution, without further
post-processing.

We use public code/weights when available, otherwise we retrain on the same split. All baselines are
run under their per-sample fine-tuning protocol, which is common in manufacturing where achieving
high-fidelity results is prioritized. For completeness, we also conduct experiments without fine-tuning
on CNC-Net and our method. Non-mesh outputs (CAD, implicit fields, toolpaths) are converted to
meshes with the same Marching Cubes configuration to ensure parity, and all meshes are evaluated
with the unified metric pipeline in Section[d.3]

4.3 EVALUATION METRICS

Volume-Based Metrics. We use Intersection over Union (IoU)Yu et al.|(2021)) and F1-scoreRen
et al.[(2022) to assess the accuracy of reconstructed shapes. As in previous works, we voxelize
the bounding box [—0.5,0.5]> C R3 into 2563 voxels and evaluate their occupancies against the
reconstructed meshes.

Surface-Based Metrics. To measure geometric accuracy, we use symmetric Chamfer Dis-
tance (CD)Mittal et al.| (2021)) and Normal Consistency (NC)Chen et al.| (2020). Following previous
works | Yu et al.| (2022); Yavatanoo et al.| (2024), we uniformly sample 8,000 points on the surface of
each object, with all CD values scaled by 1,000 for consistency.

4.4 QUANTITATIVE AND QUALITATIVE RESULTS

ABC ShapeNet
IoUt F1t CD] NCt IeUt F1t CD] NCt

Method Finetuning

CSG-Stump Ren et al.|(2021) v 0.787 0.879 0.428 0.884 0.697 0.827 0.521 0.866
ExtrudeNet|Ren et al.|(2022) 4 0.769 0.875 0505 0.871 0.607 0.773 0918 0.844
CAPRI-Net|Yu et al.|(2022) 4 0.768 0.866 0312 0914 0.700 0.824 0.447 0.895
SECAD-Net|Li et al.|(2023) 4 0.776 0.867 0398 0900 0.650 0.784 2405 0.852
CNC-Net|Yavatanoo et al.|(2024) X 0.780 0.889 1.127 0.864 0.698 0.817 2.154 0.844
CNC-Net|Yavatanoo et al.|(2024) v 0.824 0901 0509 0.893 0.740 0.850 1.562 0.863
Ours X 0.833 0902 0493 0914 0.766 0.858 0.678 0.879
Ours 4 0.848 0912 0.460 0922 0.773 0.863 0.669 0.880

Table 1: Quantitative results on ABC [Koch et al. (2019) and ShapeNet |Chang et al.[(2015).

Table [I| quantitatively compares our method with prior 3D CAD reconstruction and CNC-based
approaches on the ABC |Koch et al.|(2019) and ShapeNet|Chang et al.|(2015) datasets. Our method
achieves state-of-the-art IoU and F1 scores on both datasets, outperforming existing methods, with
IoU/F1 of 0.848/0.912 on ABC and 0.773/0.863 on ShapeNet. While we surpass CNC-Net on CD
and NC, our approach trails some CAD-specific models like CAPRI-Net, reflecting the difference
between CNC-based carving and CAD’s smooth primitive assembly, which is consistent with previous
observations |Yavatanoo et al.|(2024). Most prior works are reported in their per sample fine-tuned
setting to achieve manufacturing-grade fidelity. For CNC-Net and for our method, we additionally
report a no-fine-tuning variant to assess zero-shot performance. In this no-fine-tuning setting, our
method outperforms most of fine-tuned baselines on most metrics and shows stronger zero-shot
generalization than CNC-Net. Furthermore, we present qualitative results in Figures [a] and [Ab]
where prior methods are visualized using marching cubes at a resolution of 256, while our results
are shown through toolpath simulations shown in Figure [5a]in the CIMCO [CIMCO A/S| G-code
simulator. Unlike CAD-based methods that may miss localized features, our G-code simulation
result demonstrates high fidelity and manufacturability, highlighting the practical effectiveness of our
approach for real-world CNC applications.

Under review as a conference paper at ICLR 2026

CSG-Stump ExtrudeNet CAPRI-Net SECAD-Net CNC-Net
(a) Qualitative results on ABC |[Koch et al.|(2019) dataset.

K]

CSG-Stump ExtrudeNet CAPRI-Net SECAD-Net CNC-Net
(b) Qualitative results on ShapeNet|Chang et al.{(2015) dataset.

Figure 4: Qualitative comparisons. Our results are produced using CIMCO G-code simulator.
Red regions indicate the areas removed by cutting operations, while gray regions correspond to the
untouched portions of the original stock material.

S 2 & 2 A
FEor B8
M ¢ ¢ SHH

Ours Target (GT)

(a) Toolpath simulation. (b) Zero-shot generalization.

Jo e
Jael
Joe\
Jael
d@Q\
Joe\

Target (GT)

3o/
4o}/
++0/
+ob/
+ob/
el

Target (GT)

Figure 5: Visualizations of toolpath simulation (left) and zero-shot generalization (right).
4.5 ABLATION STUDIES

4.5.1 EFFECT OF TOOL ORIENTATION SELECTION

To assess our tool orientation selection method, we compare three strategies: (1) six fixed principal-
axis directions, (2) selecting multiple uniformly random orientations (averaged over several trials),
and (3) our proposed approach. We evaluate each by the percentage of visible surface points across
all selected views, using 16, 384 sampled points per object on various shapes from the ABC and
ShapeNet datasets. As shown in Table 2} our method achieves greater surface coverage with fewer
unseen points, using a set of five selected views, compared to fixed or randomly chosen orientations.
This strategic optimization improves machining accessibility and efficiency.

Under review as a conference paper at ICLR 2026

Dataset 6-axes Rand(5) Rand(6) Ours Method Ut FIf €D} NCT T
N Random . 0.781 0.863 0.905 0.521 533.52
ABC o wime sl sea% htiphlboidmi OB G G GD
ShapeNet 91.27% 79.77% 84.73% 92.75% Ours 0848 0912 0460 0922 423145
Table 2: Effect of tool orientation selection. Table 3: Effect of machining precisions.

4.5.2 EFFECT OF MACHINING PRECISIONS

We evaluate the effect of selecting machining precision settings, specifically tool radius and layer
height. As shown in Table 3] fixed setting reveal clear trade-offs: coarse configurations improve
efficiency but reduce accuracy, fine configurations enhance precision but significantly increase
machining time, and random selection leads to overall lower performance. In contrast, our method
learns to adaptively choose these parameters through reinforcement learning, achieving the best
balance between reconstruction quality and machining efficiency.

4.5.3 EFFECT OF TOOLPATH STRATEGIES

To analyze the impact of different toolpath strategies, we perform an ablation study by removing
each strategy individually. Using 50 random samples from the ABC dataset, we evaluate our
method’s performance after excluding contour, zigzag, periphery, or spiral toolpaths. Table] shows
that removing any single strategy degrades both reconstruction precision (IoU, F1, CD, NC) and
machining efficiency (T), demonstrating each strategy’s importance. Notably, removing contour
causes the largest drop in reconstruction fidelity, despite only minor changes in machining time, due
to its relatively short execution time compared to spiral, periphery, and zigzag paths.

Metric
Excluded Toolpath oUT FIT CD] NCT 7 Metric
Excluded Reward ToUT FIT CDJ NCT]

Spiral 0797 0876 0.615 0911 508.132
Periphery 0.806 0882 0565 0914 528.967 R, 0792 0871 0.603 0903 413.583
Zigzag 0811 0886 0611 0917 441.278 Rtk 0.851 0914 0456 0921 774.776
Contour 0756 0849 0891 0847 444430 None (Ours) 0.848 0912 0460 0922 423.145

None (Ours) 0.848 0912 0460 0922 423145

Table 5: Effect of d functions.
Table 4: Effect of toolpath strategies. avle ect of rewarc functions

4.5.4 EFFECT OF REWARD FUNCTIONS

We analyze the impact of each component in the total reward function (Equation[I3)) via ablation
study, with R always included to guarantee overall shape reconstruction. As shown in Table E],
removing R ¢ significantly reduces shape accuracy (e.g., loU), highlighting its role in preserving target
geometry. Excluding Ryrr leads to the highest execution time, confirming its importance for efficient
machining. The full reward achieves the best balance of accuracy and efficiency, demonstrating that
each component contributes to overall system performance.

4.5.5 ZERO-SHOT RESULTS ON OUT-OF- DOMAIN DATA

We assess the model’s zero-shot generalization to out-of-domain 3D shapes unseen during training.
Specifically, the model is first pretrained on the ShapeNet dataset and then tested on a variety of
unseen, out-of-domain 3D objects to evaluate its generalization capability. As shown in Figure [5b|
the method reconstructs high-fidelity shapes for these novel inputs without fine-tuning, demonstrating
strong generalization despite distribution shifts.

5 CONCLUSION

We introduced Shape2Gceode, a reinforcement learning-based framework for G-code generation in
CNC machining. Shape2Gcode optimizes toolpath strategies, and machining parameters without
relying on intermediate CAD models or manual tuning. Experiments demonstrate that Shape2Gcode
improves surface coverage, machining efficiency, and toolpath stability, while ablation studies validate
the importance of each component. By integrating Al-driven optimization with CNC manufacturing,
Shape2Gcode enhances automation, precision, and efficiency in modern machining workflows.

Under review as a conference paper at ICLR 2026

REFERENCES

J Balic and M Korosec. Intelligent tool path generation for milling of free surfaces using neural networks. Inz. J.
Mach. Tools Manuf., 2002.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository. arXiv, 2015.

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating compact meshes via binary space
partitioning. CVPR, 2020.

Hyunsoo Chung, Jungtaek Kim, Boris Knyazev, Jinhwi Lee, Graham W Taylor, Jaesik Park, and Minsu Cho.
Brick-by-brick: Combinatorial construction with deep reinforcement learning. NeurIPS, 2021.

CIMCO A/S. Cimco edit: Cnc program editor and g-code simulator. https://www.cimco.com/
products/cimco-edit/!|

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi.
Cvxnet: Learnable convex decomposition. In CVPR, 2020.

Marc-André Dittrich, Florian Uhlich, and Berend Denkena. Self-optimizing tool path generation for 5-axis
machining processes. CIRP-JMST, 2019.

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus, Armando Solar-
Lezama, and Wojciech Matusik. Inversecsg: Automatic conversion of 3d models to csg trees. ACM Trans.
Graph., 2018.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles and
Practice. Addison-Wesley Professional, 1996.

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas Funkhouser.
Learning shape templates with structured implicit functions. In /CCV, 2019.

Hsin-Ta Hsieh and Chih-Hsing Chu. Improving optimization of tool path planning in 5-axis flank milling using
advanced pso algorithms. Robot. Comput.-Integr. Manuf., 2013.

Xiaoyang Huang, Yi Zhang, Kai Chen, Teng Li, Wenjun Zhang, and Bingbing Ni. Learning shape primitives via
implicit convexity regularization. In /ICCV, 2023.

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. Ucsg-net-unsupervised discovering of constructive
solid geometry tree. NeurlPS, 2020.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc
Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for geometric deep learning. In
CVPR, 2019.

Aman Kukreja and Sanjay S Pande. Optimal toolpath planning strategy prediction using machine learning
technique. Eng. Appl. Artif. Intell., 2023.

David H Laidlaw, W Benjamin Trumbore, and John F Hughes. Constructive solid geometry for polyhedral
objects. In SIGGRAPH, 1986.

Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and Leonidas J Guibas. Supervised fitting of geometric
primitives to 3d point clouds. In CVPR, 2019.

Pu Li, Jianwei Guo, Xiaopeng Zhang, and Dong-Ming Yan. Secad-net: Self-supervised cad reconstruction by
learning sketch-extrude operations. In CVPR, 2023.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In CVPR, 2019.

Himangi Mittal, Brian Okorn, Arpit Jangid, and David Held. Self-supervised point cloud completion via
inpainting. In BMVC, 2021.

Chengjie Niu, Jun Li, and Kai Xu. Im2struct: Recovering 3d shape structure from a single rgb image. In CVPR,
2018.

Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, and Sanja Fidler. Neural parts: Learning
expressive 3d shape abstractions with invertible neural networks. In CVPR, 2021.

10

https://www.cimco.com/products/cimco-edit/
https://www.cimco.com/products/cimco-edit/

Under review as a conference paper at ICLR 2026

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, Haiyong Jiang, Zhongang Cai, Junzhe Zhang, Liang Pan,
Mingyuan Zhang, Haiyu Zhao, et al. Csg-stump: A learning friendly csg-like representation for interpretable
shape parsing. In ICCV, 2021.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, and Junzhe Zhang. Extrudenet: Unsupervised inverse
sketch-and-extrude for shape parsing. In ECCV, 2022.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet: Neural shape
parser for constructive solid geometry. In CVPR, 2018.

Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos Kalogerakis, Siddhartha Chaudhuri, and Radomir Méch.
Parsenet: A parametric surface fitting network for 3d point clouds. In ECCV, 2020.

Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik. Learning shape abstractions
by assembling volumetric primitives. In CVPR, 2017.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 2019.

Mohsen Yavartanoo, Jaeyoung Chung, Reyhaneh Neshatavar, and Kyoung Mu Lee. 3dias: 3d shape reconstruc-
tion with implicit algebraic surfaces. In ICCV, 2021.

Mohsen Yavatanoo, Sangmin Hong, Reyhaneh Neshatavar, and Kyoung Mu Lee. Cnc-net: Self-supervised
learning for cnc machining operations. In CVPR, 2024.

Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-Amiri, and Hao Zhang.
Capri-net: learning compact cad shapes with adaptive primitive assembly. In CVPR, 2022.

Jiagian Yu, Jingtao Xu, Yiwei Chen, Weiming Li, Qiang Wang, Byungin Yoo, and Jae-Joon Han. Learning
generalized intersection over union for dense pixelwise prediction. In ICML, 2021.

Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 3d-prnn: Generating shape primitives
with recurrent neural networks. In /CCV, 2017.

11

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

The reinforcement learning model was trained over 300 episodes on a multi-object dataset for 5-axis
CNC toolpath optimization. The machining process was simulated on a 256% voxel grid, with voxel
resolution adaptively scaled to object size. The starting point was placed at a safe height, offset
by 0.1m from the top of the shape in the tool direction. Grid resolutions were set to 1/256m for
contour and 1/64m for the remaining strategies. We used 16,384 sampled surface points to compute
1024-dimensional features with DGCNN. The DQN consisted of two fully connected layers with
128 units each. Training was performed using the Adam optimizer (Ir = 1 x 1073, v = 0.95) and an
e-greedy policy decaying from 1.0 to 0.01. Each reward term was weighted by A; = 1, Ay = 1, and
AMrr = 0.1. Experiments were conducted on an NVIDIA Quadro RTX 8000 GPU, and generated
G-code was validated in [CIMCO A/S|for toolpath inspection and collision checking. jjik

A.2 G-CODE SIMULATION

We simulate machining by carving a voxel stock along a polyline toolpath using a simple swept-
volume approximation. The toolpath is a T'x4 array of waypoints (x,y, 2, f), where the flag
f € {0,1} marks the ending waypoint of each segment as rapid (GO, f=0) or cutting (G1, f=1);
only G1 segments remove material. Safe moves are encoded as GO segments, and layer height is
implicitly determined by the z coordinates of successive G1 segments. A step-by-step simulation
procedure is given in Algorithm Al.

Algorithm Al: SIMULATE TOOLPATH

Input: stock_vozx, toolpath € RT*4 tool_radius, sweep_step, grid_main, voxel_size, tool_axis
Output: updated stock_vox
erase_vox <+ 0
fori < 0to7T —2do
start < toolpathl[i,0:3]; end < toolpath[i+1,0:3]
if toolpath[i+1, 3] == 0 then
L continue
L < end — start; if ||L|| = 0 then
L continue
L, < L/||L||; D « L x tool_axis; Dy < D/||D|; Nu < tool_axis/||tool_axis||
n « |||L||/sweep_step]
Sample n tuples (I, d,n’, r, 0, ¢) with I~U(0,1), d~U(—1,1), n'~U(—1, 1), r~U(0, tool_radius),
O~U(0,), $~U(0, 2)
Build P:
* ps = start + [rsinfcos ¢, rsinfsin ¢, r cos 0]
e pe = start + l||L|| Ly + (rcos0) Dy, + (rsin)N,
e p. = start + L ||L|| Ly + (dtool_radius) Dy, + (n' tool_radius) N,

| Map P to voxel indices: v = [(P — grid_min)/voxel_size|; erase_vox[vsy, vy, vs] 1

stock_vox < stock_vox ® (1 — erase_vor)
return stock_vox

A.3 MORE QUALITATIVE RESULTS

We extend our qualitative evaluation by providing additional compariosns between our method
and existing 3D CAD reconstruction approaches, including CSG-Stump, ExtrudeNet, CAPRI-Net,
SECAD-Net, and CNC-Net, on both the ABC and ShapeNet datasets. As shown in Figure
our method produces geometry that closely matches the ground-truth while remaining compatible
with real world CNC manufacturing process. The visualizations are obtained via CIMCO G-code
simulation, where red regions represent material removed during cutting, and gray regions indicate
untouched portions of the original stock. These examples further highlight our model’s ability to
preserve both structural integrity and surface fidelity across diverse shapes, reinforcing its practical
utility in real-world CNC applications.

12

Under review as a conference paper at ICLR 2026

v =al
ISP =0l

Q
#
|
)
)
A

P =2
P =20
=20

Y

CSG-Stump ExtrudeNet CAPRI-Net SECAD-Net CNC-Net Ours Target (GT)

Figure Al: Qualitative comparisons on ABC and ShapeNet dataset. Our results are produced
using CIMCO G-code simulator. Red regions indicate the areas removed by cutting operations, while
gray regions correspond to the untouched portions of the original stock material.

A.4 COMPARISON WITH COMMERCIAL CAM

We compare against MeshCAM, a representative commercial CAM tool, under two configurations.
(1) non-expert setting: reasonable orientations with median tool radius and layer height. and (2)
expert setting: a skilled machinist manually tunes orientation, tool size, and step size per toolpath
strategy. As shown in Table[AT] our method attains the best accuracy on all metrics, surpassing both
MeshCAM settings. In machining time, our approach is far faster than the non-expert configuration
and competitive with the expert setting (423.1 vs. 375.7). It is also efficient at runtime: ~35s for
orientation selection, < 0.1ms for action selection, and ~10s for G-code translation, faster than
MeshCAM.

Expert CAM typically relies on CAD metadata (e.g., features, tolerances). With only a triangulated
mesh, experts must infer features and often choose conservative parameters. Our policy instead
directly optimizes orientations and strategy from the mesh via fast simulation, exploring candidates
over a few episodes and finding geometry-aware settings that are hard to hand-tune consistently.
Overall, we outperform commercial CAM in accuracy while approaching expert-level efficiency
without human intervention.

Method Accuracy & Machining Time Runtime

ToU?T F11 CD| NCt T Orientation Sel. Action Sel. G-code Trans.
MeshCAM (Non-expert setting) 0.783 0.854 1474 0.868 1488.621 - - 29.282s
MeshCAM (Expert setting) 0.833 0904 0.555 0910 375.708 - - 18.759 s
Ours 0.848 0912 0.460 0922 423.145 5081.98 ms 0.03 ms 10.103 s

Table Al: Quantitative and runtime comparison on the ABC dataset.

A.5 ABLATIONS FOR EFFECTIVENESS OF PARAMETER SEARCH

To demonstrate the effectiveness of our parameter selection strategy, we compare our method against
a baseline that adopts fixed parameters, specifically the largest tool radius (0.01m) and the lowest
layer height (1/64m), from the action space. As illustrated in Figure[A2] our method consistently
generates high-fidelity reconstructions across a range of shapes, closely matching the target geometry.
In contrast, the fixed-parameter baseline produces degraded or incomplete results, highlighting the

13

Under review as a conference paper at ICLR 2026

0 O [e e o
V UV 9% N QAN

Target (GT) Fixed parameter Ours Target (GT) Fixed parameter Ours

Figure A2: Comparison results across different examples showing the target object, results using fixed
parameters with the largest tool radius (0.01m) and lowest layer height (1/64m), and our method.

importance of adaptive parameter selection. These results confirm that our approach successfully
balances geometric accuracy and machining efficiency by selecting context-aware parameters.

A.6 ABLATIONS FOR TOOL ORIENTATION SELECTION

Method IoUt F11 CD, NCt Method Fine-tuning Time per Sample
6-axes 0.792 0876 0711 0.881 ‘Ejftf‘ug:l;“;f gg ﬁiﬁ
Rand(5) 0740 0.839 0.710 0.869 CAPRLNGt 3 i
Rand(6) 0751 0.846 0.700 0.873 SECAD.Net 3 min
Ours 0.848 0.912 0.460 0.922 CNC-Net 50 min
Ours 10 min

Table A2: Quantitative comparison of tool ori- Table A3: Per-sample fine-tuning time com-
entation strategies. parison.

We demonstrate the effectiveness of our proposed orientation selection strategy through compre-
hensive quantitative evaluations on ABC dataset. As shown in Table [A2] our method consistently
outperforms baseline approaches such as Random-5, Random-6, and 6-axis orientation selection
across all mesh comparison metrics: Intersection over Union (IoU), surface fidelity (FI), Chamfer
Distance (CD), and normal consistency (NC). Random-5 and Random-6 denote five and six randomly
sampled orientations from a uniform distribution, while the 6-axis method uses the positive and
negative directions of the Cartesian axes. Our method achieves the highest IoU, FI, and NC scores
and the lowest CD values, highlighting the crucial role of our proposed orientation selection strategy.

A.7 PER-SAMPLE FINE-TUNING TIME

Table[A3|reports per-sample fine-tuning time. Our method requires 10 minutes (five episodes) on a
single NVIDIA Quadro RTX 8000 GPU, placing it between lightweight approaches such as CAPRI-
Net and SECAD-Net (=3 min) and optimization-heavy baselines including CSG-Stump (60 min),
CNC-Net (50 min), and ExtrudeNet (30 min). Despite the per-instance adaptation, the minutes-scale
budget keeps our procedure practical and competitive with prior work without introducing large
additional computational overhead.

A.8 MULTI-SEED ROBUSTNESS

To assess statistical reliability beyond a single random seed, we repeat each experiment with multiple
random seeds and plot the mean with 95% confidence intervals (CIs) for each method and metric
pair as shown in figure[A3] Across datasets and metrics, our plots show tight CIs and stable rankings,
indicating that the reported gains are not results of seed choice.

14

Under review as a conference paper at ICLR 2026

ABC Dataset - NG

ABC Dataset - loU ABC Dataset - F1 o ABC Dataset -CD

Figure A3: Results over multiple random seeds. Error bars indicate the 95% confidence interval of
the mean. Red plots denote the best performance for each metric.

ShapeNet — OOD Dataset
Method ToUT FIT CD] NCT
CNC-Net (w/ finetuning) 0.630 0.765 1.234 0.780
Ours (w/o finetuning) 0.770 0.866 0.710 0.859

Table A4: Quantitative results on OOD data.

A.9 QUANTITATIVE RESULTS ON OOD DATASET

We quantitatively evaluate ShapeNet—OOD transfer on a 20-shape benchmark (e.g., Stanford Bunny,
Utah Teapot, Eiffel Tower). Both CNC-Net and our method are pretrained on ShapeNet. As CNC-Net
is designed for per-sample fine-tuning, we allow CNC-Net to fine-tune on the OOD datasset, while
our method uses performs without fine-tuning. As shown in Table[A4] our approach outperforms
CNC-Net across all metrics, demonstrating stronger OOD robustness with zero-shot adaptation.

15

	Introduction
	Related works
	Reverse Engineering for 3D Shapes
	CNC Machining for Reverse Engineering

	Method
	Tool Orientation Selection
	Visibility-based Reconstruction
	G-code Generation
	Contour Toolpath
	Zigzag Toolpath
	Periphery Toolpath
	Spiral Toolpath

	Reward Calculation
	Preservation Accuracy
	Final Shape Accuracy
	Material Removal Efficiency
	Total Reward Function

	Toolpath Action Space and Network Architecture

	Experiments
	Datasets
	Evaluation Protocol
	Evaluation Metrics
	Quantitative and Qualitative Results
	Ablation Studies
	Effect of Tool Orientation Selection
	Effect of Machining Precisions
	Effect of Toolpath Strategies
	Effect of Reward Functions
	Zero-shot Results on Out-of- Domain data

	Conclusion
	Appendix
	Implementation Details
	G-code Simulation
	More Qualitative Results
	Comparison with commercial CAM
	Ablations for effectiveness of Parameter Search
	Ablations for Tool Orientation selection
	Per-sample fine-tuning time
	Multi-seed robustness
	Quantitative results on OOD dataset

