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ABSTRACT

In this study, we propose an effective contrastive learning method that bridges
crystal structures with their linguistic properties (e.g., superconductor). Con-
trastive learning enables both the retrieval of crystal structures based on linguistic
characteristics and the inference of linguistic properties from crystal structures,
which are essential for accelerating materials discovery. However, a major chal-
lenge lies in the limitation of available datasets, which currently include only crys-
tal structures paired with their corresponding article titles and abstracts. Because
many papers depend on referenced works and shared domain knowledge—often
explored in detail within the main text—titles and abstracts alone do not suffi-
ciently capture the full characteristics of a crystal. To address this issue, we in-
troduce a neural knowledge graph by incorporating a transformer into the text
encoder of the existing contrastive learning framework, rather than expanding the
dataset. This modification enables the model to dynamically incorporate related
knowledge, thereby enhancing its representation of linguistic properties and facil-
itating more accurate correlations between crystal structures and their properties.

1 INTRODUCTION

The crystal structure and physical properties are closely related, making it essential to understand
this relationship for material discovery (Callister, 2006). Traditionally, materials modeling has
focused on predicting precisely quantifiable properties (e.g., bandgap, formation energy) (Xie &
Grossman, 2018; Chen & Ong, 2022; Ito et al., 2025). However, materials discovery is not only
driven by such precise numerical targets. Qualitative, linguistically defined properties (e.g., super-
conductor, ferromagnetic), often offer more practical guidance.

Suzuki et al. (2025) introduced Contrastive Language–Structure Pre-training (CLaSP) to tackle this
issue. Their approach utilizes a CLIP-like contrastive learning strategy (Radford et al., 2021), in-
corporating a text encoder to capture linguistic properties and a crystal encoder to represent crystal
structures, thereby linking crystal structures to physical property keywords extracted from academic
papers.

However, a major challenge remains: the lack of sufficiently annotated data for effective training.
Existing datasets, such as the Crystallography Open Database (COD) (Gražulis et al., 2009) and the
Inorganic Crystal Structure Database (ICSD) (Belsky et al., 2002), pair crystal structures with paper
titles and abstracts. Since research papers typically build upon prior studies or established knowl-
edge, offering detailed analysis within the main text, titles and abstracts rarely provide a complete
representation of a crystal structure.

Although knowledge graphs have been proposed as datasets for incorporating contextual knowl-
edge (Venugopal & Olivetti, 2024; Zhang et al., 2024), their direct integration into contrastive learn-
ing models remains challenging. A key limitation is that keywords in articles are often missing as
entities in existing knowledge graphs. This mismatch between datasets and knowledge graphs raises
a new idea: by representing a knowledge graph within a neural network framework and jointly
training it with contrastive learning, we can effectively incorporate peripheral knowledge.

In this paper, we introduce a neural knowledge graph which is a neural network representation of a
knowledge graph. This involves a simple modification—adding a transformer (Vaswani et al., 2017)
after the original CLaSP’s text encoder— to allow the model to dynamically incorporate and learn
related knowledge during the contrastive learning process (Fig. 1).
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Figure 1: Overall architecture of CLaSP with neural knowledge graph.

2 NEURAL KNOWLEDGE GRAPH

In this section, we introduce the transformer as a neural network-based representation of a knowl-
edge graph, called Neural Knowledge Graph (NKG), and describe its integration into CLaSP, a
contrastive learning framework.

2.1 REPRESENTING A KNOWLEDGE GRAPH WITH TRANSFORMER

NKG utilizes the transformer architecture to process text embeddings encoded from keywords in the
titles and abstracts of articles. It dynamically retrieves and integrates relevant knowledge by leverag-
ing the attention mechanism within the transformer, enabling a more contextualized representation
of linguistic information.

The simplified one layer of transformer architecture can be described as

Transformer(X,Y ) = X + Attention(XWq, Y Wk, Y Wv), (1)

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V, (2)

where X ∈ RN×d and Y ∈ RM×d are input d-dimensional embeddings with N and M elements,
and Wq,Wk, and Wv ∈ Rd×d are learnable matrices that project the input embeddings into query,
key, and value spaces, respectively. In essence, the attention mechanism calculates the similarity
between each element in X (queries) and each element in Y (keys) through a scaled dot product. The
resulting similarity scores are then used to weight the corresponding elements in Y (values), which
are subsequently added to X . This implies that the feature vector X is updated by dynamically
incorporating contextually relevant knowledge from Y .

Applying this to our problem, we aim to incorporate relevant information into the keyword em-
beddings extracted from each paper. For a collection of N papers, we generate a keyword em-
bedding xi ∈ Rd (i = 1, 2, . . . , N) for each paper using a text encoder (described later). We
also prepare M embeddings yi ∈ Rd (i = 1, 2, . . . ,M) for potentially related keywords. Defining
X = [x1,x2, . . . ,xN ]T and Y = [y1,y2, . . . ,yM ]T , the transformer, via its attention mechanism,
computes the relationships between these embeddings and incorporates the highly related keywords
selected from Y into the embedding of each paper. This process can be interpreted as constructing
and utilizing a knowledge graph, where the extracted keywords from the papers and the predefined
related keywords are treated as entities. We propose the following two methodologies to prepare the
set of potentially relevant keywords Y .
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Self-attention. The first method is to set Y = X , which means using self-attention. This allows
the model to integrate information from other papers within the dataset into the representation of
each paper. For example, if one paper mentions “superconductivity” and another mentions “high-
temperature superconductivity”, self-attention can help the model learn a richer representation of
“superconductivity” by incorporating information from the related term “high-temperature”.

Cross-attention. Another approach is to prepare a set of highly relevant keywords in advance for
Y . Unlike the self-attention method, this approach allows updating the embedding by referring to
information that is often not explicitly stated in the title and abstract in the paper (e.g., commonly
known knowledge, in-depth analysis from the main text or related works). For instance, if a paper
mentions “perovskite,” the cross-attention mechanism can incorporate information from predefined
keywords like “oxide,” “bandgap” and “photovoltaics.” The predetermined set of keywords are
expected to be selected based on expert knowledge to ensure their high relevance. However, if
relevance can be sufficiently guaranteed, it is also acceptable to have an LLM generate the keyword
set by tuning the prompt or by performing a manual check.

Note that although traditional knowledge graphs typically feature an explicit hierarchical structure
and ontology (Hogan et al., 2021), the transformer-based implementation here uses fully connected
attention and does not include them. Based on its ability to incorporate peripheral knowledge, we
call this a “knowledge graph.” In Sec. 4, we discuss in detail the comparison between the traditional
knowledge graph and the proposed NKG.

2.2 TEXT ENCODER WITH NEURAL KNOWLEDGE GRAPH

To perform the contrastive learning with our proposed NKG, we incorporated it into CLaSP.
CLaSP comprises a crystal encoder, which encodes crystal structures, and a text encoder that
encodes keywords extracted from the titles and abstracts of the corresponding papers. These

Add & Norm
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Attention

SciBERT

L×
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3-Layer MLP

Additional Keywords

Keywords from articles

Text embeddings

Figure 2: Architecture of text en-
coder. (SA:Self-Attention, CA:Cross-
Attention. In blend-attention, SA and
CA switch alternately.)

keywords are generated using Meta’s Llama3.1 (8B In-
struct) (AI@Meta, 2024), which is provided with each
paper’s title and abstract and instructed to extract ten
keywords based on a predefined prompt detailed in the
Appendix A. The overall architecture remains consistent
with the original CLaSP, with the only modification be-
ing the integration of NKG into the text encoder. The
model is trained using mini-batches, refining embeddings
to draw each sample closer to itself while pushing it away
from other samples within the batch. We first explain
the text encoder incorporating NKG, followed by a brief
overview of the other architecture.

Text encoder. The extracted keywords from the paper
are processed using the frozen pretrained SciBERT model
(Beltagy et al., 2019), where they are converted into em-
beddings via the CLS token. This step yields N text em-
beddings, denoted as X ∈ RN×d, where N represents the
batch size and d is the embedding dimension. For cross-
attention, M keywords that are highly likely to be related
to the keywords extracted from the paper were prepared
and converted into embeddings using the same SciBERT
model, say Y ∈ RM×d. To introduce NKG, we employed
the original transformer (Vaswani et al., 2017), which
consists of multi-head attention, feed-forward networks,
residual connections, and layer normalization (see Fig. 2).
The only difference is that, in cross-attention method, X
serves as the query, while Y is used as both the key and
the value. After the transformer layer, the final text em-
beddings ti (i = 1, 2, ..., N) is obtained through a three-
layer multilayer perceptron (MLP).
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Other architecture. The crystal structures are converted into d-dimensional embeddings ci (i =
1, 2, ..., N) by using CGCNN (not pretrained) Xie & Grossman (2018). Contrastive learning is
conducted by minimizing the large margin cosine loss function (Wang et al., 2018), as shown in
the following equation, to train the model for increasing the cosine similarity of positive pairs while
reducing that of negative pairs.

L = − 1

N

N∑
i=1

log

(
exp
(
s
(
cos(ci, ti)−m

))
exp
(
s
(
cos(ci, ti)−m

))
+
∑N

j=1,j ̸=i exp
(
s cos(ci, tj)

)) , (3)

where s > 0 is a scaling hyperparameter and m ∈ [0, 1] is a margin hyperparameter.

3 EXPERIMENT

We collected 108,795 crystal structures and their corresponding papers from the COD, dividing the
dataset into training data, validation data, and test data in a ratio of 8:1:1. For the cross-attention
method, we used an LLM to generate candidate keywords related to physical properties (e.g., Hall
effect) and potential causal factors (e.g., Effective mass). We then manually examined these candi-
dates and carefully selected 256 keywords to ensure high relevance and precision. The full list of
keywords is provided in the Appendix B.

To evaluate the methods of NKG, we conducted experiments with original CLaSP (without NKG)
and three different NKG methods: a 4-layer transformer with all self-attention, a 4-layer transformer
with all cross-attention, and a 4-layer transformer alternating between self and cross attention layers
(blend-attention). All attention calculations were performed using multi-head attention with 8 heads.
The embedding dimensionality for both modalities was set to 768. We optimized the loss function
shown in Eq. 3 with a scaling factor s of 3 and a margin m of 0.5, which are the best parameters
of the original CLaSP. We used stochastic gradient descent with a batch size N of 1024, trained
on four NVIDIA V100 GPUs (resulting in a global batch size of 4 × 1024). We employed the
AdamW optimizer (Loshchilov & Hutter, 2019) with a constant learning rate of 1 × 10−6, without
any warm-up period, and trained for 2000 epochs.

We evaluated the ability to retrieve crystal structures based on a keyword of material properties (e.g.,
Ferromagnetic) to assess the capability of linking crystal structures with linguistic features. We used
cosine similarity to match keyword embeddings with structure embeddings from the test set. We
considered a structure to have a specific property if the keywords generated from the corresponding
paper’s title and abstract contained the target keyword or its variations. We assessed the performance
using ROC-AUC metrics which is the area under the ROC (receiver operating characteristic) curve
to analyze the trade-off between true and false positives.

Table 1 presents the ROC-AUC results for four keywords, comparing them against the original
CLaSP (baseline) and our proposed Neural Knowledge Graph, which incorporates self-attention,
cross-attention, and a blended approach. The corresponding ROC curves for each keyword can
be found in Appendix C. For three of the four keywords, cross-attention exhibited superior per-
formance, which can be attributed to the fact that the predefined keywords used in cross-attention
provide additional context and relevant information that are not explicitly stated in the title or ab-
stract of a typical paper, but are crucial for understanding the properties of the material. Additionally,
self-attention performed better than the baseline method for two keywords, likely due to its ability
to integrate information from related studies not explicitly mentioned in the paper itself.

Table 1: ROC-AUC comparison for keyword-based crystal structure retrieval tasks. Bold indicates
the best results, underline the second best.

Ferromagnetic Ferroelectric Semiconductor Electroluminescence

CLaSP (baseline) 0.749 0.686 0.553 0.865
— w/ NKG (self-attention) 0.686 0.688 0.718 0.639
— w/ NKG (cross-attention) 0.669 0.787 0.848 0.900
— w/ NKG (blend-attention) 0.482 0.725 0.812 0.793
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4 DISCUSSION AND LIMITATIONS

Keywords for cross-attention method. Although the cross-attention method outperforms the
baseline in terms of ROC-AUC, it likely remains reliant on the chosen keyword list. Notably, per-
formance degradation was observed compared to the baseline when evaluated using the keyword
“Ferromagnetic”. In this preliminary study, the keyword list was constructed through a provisional
approach. This limitation suggests that a more systematic and comprehensive approach to keyword
selection, incorporating multiple perspectives and keywords strongly associated with physical prop-
erties, could further enhance performance.

Comparison with traditional knowledge graphs. One major difference between traditional
Knowledge Graphs (KG) and NKG is whether they include an explicit hierarchical structure and
ontology. The transformer in NKG can learn these relationships through training, yet it is be-
lieved that providing the structure explicitly may affect performance. This raises an interesting
question: which approach yields better results—the non-fully connected graph neural network struc-
ture with an explicitly defined hierarchical structure (which constrains representational capacity in
advance) (Schlichtkrull et al., 2018) or the fully connected attention used in this study? Our trans-
former model has the potential to generate physically impossible associations, while at the same
time revealing important relationships that researchers might have otherwise overlooked.

Direct evaluation of the obtained NKG. In the proposed method, a knowledge graph is repre-
sented as a transformer and trained during the contrastive learning process. Therefore, visualizing
the transformer model (i.e., displaying the learned knowledge graph) not only allows us to verify
whether it aligns with the researchers’ intuition but also offers the potential to extract valuable in-
sights in materials science. Various methods for visualizing transformers have been proposed, and
applying these diverse approaches is an important future direction (Binder et al., 2016; Selvaraju
et al., 2017; Chefer et al., 2021).

5 CONCLUSION

In this work, we presented NKG, a neural network representation of a knowledge graph that lever-
ages a transformer architecture for contrastive learning between crystal structures and their linguis-
tic properties. This approach addresses the common limitations of existing databases, where only
paper titles and abstracts are available—often insufficient for comprehensive representation. We
demonstrated NKG’s effectiveness in a crystal structure retrieval task based on physical property
keywords, showing that it outperforms a standard baseline in terms of ROC-AUC. These results
highlight NKG’s ability to meaningfully integrate relevant knowledge, suggesting that it can enhance
the linguistic understanding of crystal structures and potentially accelerate material discovery.
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A PROMPT FOR EXTRACTING KEYWORDS FROM EACH PAPER

We generated 10 keywords from each paper using Llama with the prompt shown below. The prompt
was carefully designed so that it does not generate keywords unrelated to material properties, such
as general methods or measurement techniques.

def prompt_format_func(material_id, title, abstract):
"""Formats the prompt for the Llama model."""
prompt_template = """Below are title-abstract pairs for materials

science papers dealing with crystal structures. For each paper,
list up to 10 keywords in English that describe the features,

functions, or applications of the material discussed. Focus on
the material itself, and do not include general terms or
measurement techniques (e.g., Crystal Structure, Crystal
Lattice, X-ray diffraction, Neutron Diffraction, Powder
Diffraction). Return the results in json format with the
following schema.

**Example input 1:**

‘‘‘
ID: 0001
Title: Enhancement of Critical Temperature in Layered Copper Oxide

Superconductors via Lattice Compression Techniques
Abstract: Superconductivity in copper oxides (cuprates) offers vast

potential for technological applications due to their high
critical temperatures (Tc). Our research presents a novel
approach to enhance Tc in layered cuprate materials through the
controlled application of lattice compression. Using advanced

crystallographic methods, we systematically altered the
interlayer spacing and analyzed the resultant changes in
electronic properties. Our findings demonstrate a significant
improvement in superconducting behavior at elevated
temperatures, further supporting the unconventional mechanisms
underpinning superconductivity in these materials.

‘‘‘

**Example output 1:**

‘‘‘json
[ {

"ID": "0001",
"Keywords": [
"High-Tc",
"Cuprate Superconductors",
"Lattice Compression",
"Electronic Properties",
"Layered Structures",
"Superconducting Phase",
"Temperature Enhancement",
"Unconventional Superconductivity"
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]
}]

‘‘‘

**Example input 2:**

‘‘‘
ID: 0002
Title: Advancements in Biodegradable Polymers for Sustained Drug

Delivery Systems
Abstract: The development of biocompatible and biodegradable

materials is critical in the field of medical implants and drug
delivery systems. This paper examines the latest advancements

in biodegradable polymers tailored for sustained release of
therapeutic agents. We analyze various polymer compositions
that provide controlled degradation rates and compatibility
with a range of drugs. Our results show promising applications
in long-term treatments, reducing the need for repeated
administration and improving patient compliance.

‘‘‘

**Example output 2:**

‘‘‘json
[ {

"ID": "0002",
"Keywords": [
"Biomaterials",
"Biodegradable Polymers",
"Sustained Release",
"Drug Delivery Systems",
"Biocompatibility",
"Controlled Degradation",
"Therapeutic Agents",
"Medical Implants",
"Long-Term Treatment"

]
}]

‘‘‘
"""
prompt = prompt_template + f"""
**Input :**

‘‘‘
ID: {material_id}
Title: {title}
Abstract: {abstract}
‘‘‘

**Output :**

‘‘‘json
"""
return prompt

B KEYWORDS FOR CROSS-ATTENTION

We used the following 256 keywords as additional keywords for cross-attention method. These
keywords were generated using an LLM and were then manually verified to ensure that they are
related to physical properties.

- Physical Properties - Superconductor
- Dielectric - Magnetic susceptibility
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- Thermal conductivity - Electrical resistivity
- Ferromagnetism - Paramagnetism
- Diamagnetism - Piezoelectricity
- Pyroelectricity - Hall effect
- Curie temperature - Neel temperature
- Band gap - Work function
- Density of states - Surface tension
- Capacitance - Inductance
- Refractive index - Absorption coefficient
- Optical conductivity - Spin-orbit coupling
- Electron mobility - Hole mobility
- Permeability - Permittivity
- Conductance - Shear modulus
- Bulk modulus - Young's modulus
- Poisson's ratio - Compressibility
- Elasticity - Plasticity
- Fracture toughness - Thermal expansion
- Specific heat capacity - Phase transition
- Melting point - Boiling point
- Vapour pressure - Viscosity
- Malleability - Ductility
- Hardness - Tensile strength
- Magnetic anisotropy - Hysteresis
- Coercivity - Remanence
- Saturation magnetization - Superfluidity
- Bose-Einstein condensation - Quantum Hall effect
- Fermi energy - Fermi level
- Debye temperature - Phonon dispersion
- Phonon lifetime - Photon absorption
- Thermal diffusivity - Seebeck coefficient
- Peltier effect - Thomson effect
- Wiedemann-Franz law - Magnetic flux density
- Magnetic field strength - Spin density
- Magnetic dipole moment - Magnetic monopole
- Electromotive force - Zener breakdown
- Avalanche breakdown - Carrier concentration
- Effective mass - Cyclotron frequency
- Landau levels - Plasma frequency
- Plasmon resonance - Exciton binding energy
- Lattice constant - Crystal symmetry
- Grain boundary - Dislocation density
- Point defects - Interstitial defects
- Vacancy defects - Frenkel defect
- Schottky defect - Diffusion coefficient
- Thermal gradient - Heat flux
- Critical current density - Critical temperature
- Quantum tunneling - Josephson effect
- Meissner effect - Flux pinning
- London penetration depth - Cooper pairs
- Density functional theory - Local density approximation
- Exchange-correlation energy - Phonon-electron interaction
- Electron-electron interaction - Polarizability
- Dielectric constant - Energy dissipation
- Spin relaxation - Spin lifetime
- Spin Hall effect - Rashba effect
- Magnetoresistance - Giant magnetoresistance
- Colossal magnetoresistance - Spintronics
- Skyrmions - Topological insulators
- Topological superconductors - Quantum spin liquid
- Spin ice - Frustrated magnetism
- Charge density wave - Spin density wave
- Orbital ordering - Valleytronics
- Anomalous Hall effect - Spin polarization
- Spin current - Thermopower
- Thermoelectric efficiency - Lorenz number
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- Mott transition - Hubbard model
- Anderson localization - Kondo effect
- Heavy fermions - Spin glass
- Quantum entanglement - Decoherence
- Quantum coherence - Quantum dots
- Single-photon emitter - Two-photon absorption
- Quantum well - Quantum wire
- Dirac fermions - Weyl fermions
- Band topology - Chern number
- Berry phase - Berry curvature
- Topological invariants - Luttinger liquid
- Spin-charge separation - Fractional quantum Hall effect
- Anyons - Majorana fermions
- Photonic crystals - Metamaterials
- Hyperbolic materials - Negative refraction
- Zero refractive index - Anisotropic conductivity
- Isotropic conductivity - Heat capacity
- Thermodynamic stability - Gibbs free energy
- Helmholtz free energy - Entropy
- Enthalpy - Order parameter
- Critical exponents - Universality class
- Phase coexistence - Triple point
- Solid-liquid interface - Liquid-vapour interface
- Wetting - Contact angle
- Hydrophobicity - Hydrophilicity
- Surface roughness - Surface energy
- Adhesion - Cohesion
- Slip boundary condition - Stokes flow
- Reynolds number - Knudsen number
- Mach number - Shock waves
- Turbulence - Chaos theory
- Lyapunov exponent - Bifurcation
- Strange attractors - Fractal dimension
- Atomic structure - Electron configuration
- Molecular bonding - Covalent bonding
- Ionic bonding - Metallic bonding
- Van der Waals forces - Hydrogen bonding
- Crystal lattice - Lattice defects
- Grain size - Dislocations
- Impurities - Doping
- Alloying - Phase composition
- Microstructure - Polymorphism
- Amorphous structure - Crystallinity
- Chemical composition - Elemental abundance
- Atomic radius - Ionic radius
- Polarizability - Electronegativity
- Ionization energy - Electron affinity
- Band structure - Energy levels
- Density of states - Fermi level
- Carrier density - Effective mass
- Valence electrons - Conductive electrons
- Phonon interactions - Electron-phonon coupling
- Spin-orbit coupling - Spin-spin interactions
- Magnetic domains - Exchange interaction
- Anisotropy energy - Dipole-dipole interaction
- Orbital overlap - Hybridization
- Molecular orbitals - Surface states
- Quantum confinement - Strain
- Stress - External pressure
- Temperature - Thermal history
- Quenching - Annealing
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C ROC CURVES FOR EACH KEYWORD
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Figure A1: ROC curves of zero-shot cross-modal crystal structure classification using the keywords
(a) : “ferromagnetic,” (b) : “ferroelectric,” (c) : “semiconductor,” and (d) : “electroluminescence”
on the test set.
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