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ABSTRACT

Flow Matching (FM) algorithm achieves remarkable results in generative tasks
especially in robotic manipulation. Building upon the foundations of diffusion
models, the simulation-free paradigm of FM enables simple and efficient training,
but inherently introduces a train-inference gap. Specifically, we cannot assess the
model’s output during the training phase. In contrast, other generative models
including Variational Autoencoder (VAE), Normalizing Flow and Generative Ad-
versarial Networks (GANs) directly optimize on the reconstruction loss. Such a gap
is particularly evident in scenarios that demand high precision, such as robotic ma-
nipulation. Moreover, we show that FM’s over-pursuit of straight predefined paths
may introduce some serious problems such as stiffness into the system. These moti-
vate us to fine-tune FM via Maximum Likelihood Estimation of reconstructions - an
approach made feasible by FM’s underlying smooth ODE formulation, in contrast
to the stochastic differential equations (SDEs) used in diffusion models. This paper
first theoretically analyzes the relation between training loss and inference error
in FM. Then we propose a method of fine-tuning FM via Maximum Likelihood
Estimation of reconstructions, which includes both straightforward fine-tuning and
residual-based fine-tuning approaches. Furthermore, through specifically designed
architectures, the residual-based fine-tuning can incorporate the contraction prop-
erty into the model, which is crucial for the model’s robustness and interpretability.
Experimental results in image generation and robotic manipulation verify that our
method reliably improves the inference performance of FM.

1 INTRODUCTION

Deep generative models refer to a category of deep learning techniques designed to approximate
and generate samples from an unknown underlying data distribution. A mainstream paradigm is to
learn a mapping between a fixed (e.g., standard normal) distribution and the data distribution. This
category notably includes diffusion models, which are the current state of the art on many gernerative
modelling tasks. Particularly, they have also achieved remarkable results in robot motion generation
tasks (Chi et al., 2023). The mathematical principles behind diffusion can be described by SDEs
(Song et al., 2021). Naturally, we can also establish the relationship between noise and samples
through ODE trajectories to simplify the model and achieve faster training and inference times. This
inspired the development of the Flow Matching (FM) algorithm (Lipman et al., 2023; Liu et al., 2023;
Albergo & Vanden-Eijnden, 2023). FM has garnered extensive attention, particularly emerging as
the leading approach in robot policy due to its fast inference speed (Black et al., 2024; Zhang et al.,
2025; Braun et al., 2024; Chisari et al., 2024; Zhang & Gienger, 2024).

FM, which inherits the characteristics of diffusion, employs a simulation-free training approach. This
means that during the training phase, we only train some intermediate variables, e.g., vector filed
(Lipman et al., 2023), score (Song & Ermon, 2019), and noise (or the previous state) (Ho et al., 2020).
We cannot directly observe and optimize the final output from these difference or differential terms.
In contrast, other generative models directly includes generated samples in their training loss. In
Variational Autoencoder (VAE), we contain the rescontruction error (Kingma & Welling, 2013). In
normalizing flow, we use the Maximum Likelihood Estimation (MLE) of the final output generated
by the model (Rezende & Mohamed, 2015; Chen et al., 2018). Generative Adversarial Networks
(GANs) are similar except they use adversarial training to replace the likelihood function (Goodfellow
et al., 2014).
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(a) Straight Flow (b) Finetuned Flow (c) 1D Contraction (d) 2D Contraction

Figure 1: Fine-Tuning Your Flow: A Visual Explanation. These figures plot trajectories under
different vector field models. (a) illustrates that over-pursuing straightness (blue lines) leads to
discontinuities in the vector field, i.e., f(0+, 0) ̸= f(0−, 0). This will cause the system to exhibit
stiffness, significantly exacerbating the difficulty of numerical solution and thereby compromising the
model’s reliability. By comparison, the green line depicts a more stable flow. (b) plots the pre-trained
FM path (blue line), the fine-tuned flow (green line), the flow fine-tuned with residuals (red line),
and the flow trained entirely with MLE (purple line). An oversimplified assumption like "the straight
path" can lead to underfitting (blue line). A fine-tuned model converges to a local optimum near the
pre-trained model, thereby improving its fit to the sample while maintaining path simplicity (green
line). By contrast, the CNF (purple line) solely fits the samples without any prior guidance on the
vector field’s shape, which can easily produce overly complex trajectories. The red line utilizes
a residual fine-tuning approach that preserves the pre-trained model unchanged, employing solely
a residual network to learn the remaining residual components. (c) plots the variation curve of
component x1 over time. Here, compared with the blue line, the green one represents a "contracting"
trajectory (Lohmiller & Slotine, 1998). When subjected to a minor disturbance d0 (which may arise
from stochastic noise or slight differences in external inputs), a contracting trajectory still tends to
stabilize around a similar solution. Such a model demonstrates superior performance in terms of
stability and robustness. (d) illustrates contraction in 2-dimensional space. (Blue) points in different
contraction regions will converge to different (red) destinations. Points in the same contraction region
behave stably and robustly.

Therefore, though offering relatively fast training speed, we have no knowledge of how the real
samples are actually generated during the simulation-free training phase. This implies the existence
of a gap between its training and inference phases. Such a gap can considerably impact scenarios
that require high precision, such as robotic manipulation or spatio-temporal data imputation and
prediction. By comparison, the Action Chunking with Transformers (ACT) architecture (Zhao et al.,
2023), built upon a VAE with integrated reconstruction error, performs remarkably well in fine
manipulation tasks. Moreover, we point out that FM’s over-pursuit of straight paths may render the
system stiff or even lead to discontinuous vector fields (see Fig. 1a), resulting in numerical instability
and model unreliability. Although in practice, the stochastic noise introduced by batching and early
stopping technique can smooth the model output and mitigate this phenomenon, it comes at the cost
of underfitting. Fortunately, due to the smoothness of ODE trajectories (Chen et al., 2018), it is
feasible to fine-tune FM directly by reconstruction error. There are multiple ways to track parameter
gradients (Kidger, 2021, Chapter 5) such as adjoint sensitivity method.

The schematic diagrams in Figure 1 outline the core principles of our proposed methodology. Fine-
tuning enhances the representational capacity of vector fields while preserving their simplicity.
Notably, it can imbue a flow with contraction properties, leading to robust stability against minor
perturbations and a latent space with higher semantic quality. This paper is organized as follows. We
first theoretically analysis the relation between training loss and inferring error (Theorem 1). Then we
propose a method of fine-tuning FM via MLE of reconstruction inference error (Theorem 2), which
includes both straightforward fine-tuning and residual-based fine-tuning approaches. Furthermore,
through specifically designed architectures, the residual-based fine-tuning can incorporate contraction
properties into the model (Theorems 3-4). Experimental results verify that our method reliably
improves the inference performance of FM. Our primary contributions are: (1) the first theoretical
analysis quantifying the relationship between training and inference errors in FM; (2) a practical
MLE-based fine-tuning framework that includes both an easy-to-implement version and a robustness-
oriented residual variant with contraction analysis; and (3) comprehensive experimental validation.
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2 RELATED WORK

NODE and CNF Neural Ordinary Differential Equations (NODE), or Continuous Normalizing
Flow (CNF) in the context of generation tasks (Chen et al., 2018), also adpot the ODE model. In
contrast to FM’s dependence on predefined reference paths, these methods utilize an optimization
framework grounded in Maximum Likelihood Estimation (MLE), using the change of variables
theorem with a tractable noise distribution to compute probabilities. Consequently, they tend to
generate complex and intractable vector fields (see Fig. 1b). Significant efforts have been devoted
to its improvement. Dupont et al. (2019) project the state into a higher-dimensional space to enable
simpler paths. Finlay et al. (2020) introduce regularizations that encourage neural ODEs to prefer
simpler dynamics. However, in most tasks, these methods still fail to match the simplicity and
efficiency of simulation-free approaches like diffusion and FM. But their direct optimization of the
end-to-end loss theoretically allows for a higher potential performance.

Convergence and Stability Some work is also being done on the progressive stability analysis
of networks based on ODE models. Llorente-Vidrio et al. (2021) study a class of NODEs, using
the asymptotic stability to guide the design of network weights. Mei et al. (2024) investigate the
theoretical conditions for convergence. These two studies are primarily focused on the task of image
classification by NODE, though Mei et al. (2024) experimentally explore the ability of their network
to model dynamics. The theoretical analysis of convergence, stability and contraction focus on the
final steady-state characteristics of the model, rather than the preliminary dynamic behavior. Our
work is for the flow model in generation tasks (one of the most prevalent approaches in this domain
especially in robot manipulation). Generative models desires solution diversity, but convergence (Mei
et al., 2024; 2022; Efimov & Aleksandrov, 2021) refers to a global convergent (unique) solution. Thus,
in this paper we study contraction (Lohmiller & Slotine, 1998) instead, which is more concerned with
the local aspect: do nearby trajectories converge to one another? This paper enables the partitioning
of the domain into distinct contraction regions and then analyzes the contraction within each one.
Moreover, in terms of network design, we adhere to the principle that dynamic characteristics (as
long as the state remains bounded) do not affect the subsequent steady-state contraction property.
We simply added a residual fine-tuning network segment at the later stage. This approach not only
preserves the powerful approximation capabilities of the flow-matching component involving UNet
or Transformer structures but also ensures stability and contraction in the later phases. Note that
stability analyses have also been performed on NODE variants including SODEF (Kang et al., 2021),
SNDEs (White et al., 2023), and Stable Neural Flows (Massaroli et al., 2020).

Optimal-transport conditional FM The original FM method constructs paths based on individual
sample pairs, which may lead to twisted, entangled, and complex trajectories across the overall
distribution. Several studies have been dedicated to addressing this issue. Liu (2022) propose
Rectified Flow, which leverages the observation that flow models follow a global predefined path
yet make local adjustments to noise-sample pairings. This enables trajectory distillation but suffers
from accumulated error through iteration. Tong et al. (2024) and Pooladian et al. (2023) consider the
joint probability between noise and samples within a batch. By constructing optimal transport within
minibatches, it approximates the optimal path between global distributions. This paper applies the
principles of Tong et al. (2023; 2024) to determine the pairing between noise and samples.

Consistency and Fast Inference The consistency model (Song et al., 2023) or consistency FM
(Yang et al., 2024) represents another research direction aimed at achieving rapid single-step inference,
albeit with a deliberate compromise on model accuracy. The Consistency Model learns to map any
point on a PF-ODE trajectory directly to its origin (clean data). The reliance on distillation limits
their practicality in robotics (Lu et al., 2024). Consistency flow defines a straight flow from any time
step to a fixed endpoint by constraining its velocity, and has been applied in robot policy (Zhang
et al., 2025). However, as previously discussed, these practices can lead to an excessively large
Lipschitz constant (Fig. 1a), resulting in stiff behavior. This could pose potential risks for a system
described by differential equations. Our vision is to accelerate inference speed by constructing a
simple, smooth, and contracting vector field that fundamentally reduces the difficulty of numerical
solutions. Furthermore, with the help of contraction analysis, we could possibly map each contraction
region to its corresponding equilibrium point, thereby achieving single-step inference without relying
on distillation and without loss of accuracy.
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3 ON THE FINE-TUNING OF FM: MOTIVATIONS AND METHODS

3.1 THE TRAINING-INFERENCE GAP IN FM

Let Rd denote the data space with data points x = (x1, . . . , xd) ∈ Rd. Denote the probability
path pt : Rd → R+, which is a time dependent (for t ∈ [0, 1]) probability density function, i.e.,∫
pt(x)dx = 1, and a time-dependent vector field, ut : [0, 1]×Rd → Rd. A vector field ut constructs

a time-dependent diffeomorphic map, called a flow, ψ : [0, 1]× Rd → Rd, defined via the ordinary
differential equation (ODE):

d

dt
ψt(x(0)) = ut(ψt(x(0))), ψ0(x(0)) = x0. (1)

Given two marginal distributions q0(x0) and q1(x1) for which we would like to learn a model to
transport between, FM seeks to optimize the simple regression objective Et,pt(x) ∥vt(x; θ)− ut(x)∥2,
where ut(x) is the is a vector field that generates a probability path pt under the two marginal
constraints, vt(x; θ) is the parametric vector field. Let ϕt(x0) be the solution to the ODE d

dtϕt =
vt(ϕt; θ) with initial value ϕ0 = x0. To obtain the numerical solution, let us define N as the total
number of discrete steps, ti as the i-th time point, τi = ti+1− ti as i-th interval. Different time points
typically involve different step sizes if we employ adaptive step size algorithms, as is often the case.
We use ϕ̂n(x0) to represent the corresponding numerical solution at time tn, with the model error
εn(x0) := ψtn(x0)− ϕ̂n(x0).

For computational tractability, we use the equivalent Conditional Flow Matching (CFM) objective
LCFM(θ) = Et,q(x1),pt(x|x1) ∥vt(x)− ut(x|x1)∥2 (Lipman et al., 2023). Reparameterizing pt(x|x1)
in terms of just x0 we get

LCFM = Et,q(x0,x1) ∥vt (ψt(x0|x1); θ)− ut (ψt(x0|x1)|x1)∥2 , (2)

where ψt(x0|x1) is the conditional flow with a predefined form. We typically use ψt(x0|x1) =
(1− t)x0 + tx1 with the corresponding vector field ut (ψt(x0|x1)|x1) = x1 − x0. Thus we have

LCFM = Et,q(x0,x1)

[
∥x0 +∆tvt(t, ψt(x0|x1); θ)− x1∥2

]
, with ∆t = 1. (3)

This can be seen as measuring the ground truth x1 and the numerical result by implicit one-step
Euler method within time interval [0, 1], with derivative estimated in time t. We can also turn to a
more advanced solving scheme, as we do during the inference phase. The difference is that when
in training we use the ground truth value ψt(x0|x1) since we have predefined the path, but when
inferring we should use the estimated value ϕ̂n(x0). And this creates the gap between the training
stage and inference (or prediction). Fortunately, we can bound this gap by the following theorem.

Theorem 1 Assume that the truth vector field ut(x) is a Lipschitz-continuous function with the
Lipschitz constant Lu > 0. And the discrepancy between the learned vector field and the truth satisfies
∥vθ(t, x)− ut(x)∥∞ ≤ δ, then we can derive the following error estimate between the ground-truth
values and the network’s inferred values

|εN | ≤ exp (LutN−1)

(
ΣN−1

j=0 (δτj +
1

2
Mτ2j ) + |ε0|

)
. (4)

whereM = max
0≤t≤1

|ψ̈t| is an upper bound for the second time derivative. Under special circumstances,

when uniform step sizes are adopted, we obtain a more refined estimation formula,

|εN | ≤ exp(Lu)ε0 +
Mτ0 + 2δ

2L
(exp (Lu)− 1). (5)

Proof is in Appendix B.

Remark 1 The variable step-size method, while often more efficient, introduces a degree of uncon-
trollability due to its excessive degrees of freedom, thereby raising the upper bound.

Remark 2 Theorem 1 generalizes classical numerical analysis to settings in which the underlying
vector field is approximated (e.g., via learning), introducing inherent approximation errors.
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Though this shows that the gap between training and inference is bounded, such a gap will inevitably
compromise the model’s effectiveness. This theorem indicates that the error in the final generated
sample (or action in robot policy) εN will further amplify the training error δ, at least by a multi-
plicative factor exp(Lu) with an additive constant. This issue becomes particularly severe when
predefined paths may cause discontinuities in the vector field (Fig. 1a), resulting in a large Lipschitz
constant Lu. This motivates our pursuit of a consistent training-inference paradigm that can further
optimaize εN . More specifically, we utilize MLE for fine-tuning based on reconstruction results, and
the detailed principles and procedures will be thoroughly discussed in the following subsection.

3.2 MLE FINE-TUNING

We begin by making the following assumption regarding the conditional distribution of given samples.

Assumption 1 Suppose that given the sample x1, the underlying conditional distribution is a Gaus-
sian distribution p1(x|x1) = N (x|x1,Σ), where Σ is a d-dimensional covariance matrix.

The following theorem provides a concrete loss function for MLE fine-tuning.

Theorem 2 Under Assumption 1, and when Σ is a scalar matrix, performing maximum likelihood
estimation (MLE) by maximizing the expectation Eq(x0,x1)

[
log p1

(
ϕ̂N (x0)|x1

)]
is equivalent to

minimizing the following loss function

LMLE = Eq(x0,x1)

[
∥εN (x0|x1)∥2

]
, (6)

where εn(x0|x1) := ψtn(x0|x1)− ϕ̂n(x0) is the conditional model error.

The proof, along with the loss function in the more general case of a diagonal matrix Σ, is given in
Appendix B. (6) provides us with a computationally feasible loss function that we can directly use to
fine-tune our model. As established by Theorem 2, our method enables the direct optimization of
the model error εN (x0). This stands in contrast to previous approaches ((4) and (5) in Theorem 1),
which could only provide a loose upper bound that contained non-optimizable components.

MLE by (6) has the advantange of high-precision for it directly optimizing the object obtained by
inference procedure. But it suffers from several critical issues. Firstly, it is particularly prone to
overfitting. Since no additional constraints are imposed on the vector field or trajectory shapes,
it often generates sophisticated flow fields with convoluted solution paths (Finlay et al., 2020).
This compromises the reliability of numerical solutions, resulting in highly unstable model outputs.
Secondly, it is computationally expensive compared to the original FM training algorithm, for it needs
repeated simulation of the ODE. These issues are major obstacles to the adoption of ODE-based
models trained with MLE.

However, we contend that MLE is particularly well-suited for fine-tuning pre-trained flow
models. The reasons are listed as follows. After the training of FM, we already get a relatively
straight base model, MLE method will only fine-tune it. Therefore, the vector fields will improves
accuracy without significant shape distortion. From an optimization perspective, it more readily
converges to local optima near a ’straight flow’. Moreover, this convergence process of parameters
is significantly faster and more efficient than training a flow model from scratch. Thus the higher
computational complexity of MLE is acceptable. We emphasize that the complexity during training
is generally inconsequential, as our primary focus remains inference speed which is unaffected by
these training-phase design choices.

There is another fundamental aspect regarding straightness of flow we want to clarify. One might
question whether fine-tuning a flow model would compromise its ’straighter’ trajectory property,
potentially increasing numerical solution difficulty and computational overhead during both training
and inference phases. However, in practice, the actual situation may differ and the following issues
may arise. First, straighter lines between sample points does not necessarily mean that the path
between distributions will also be straighter (Gao et al., 2024). Second, as in Fig. 1a , excessive
pursuit of straightness may lead to system stiffness or even discontinuity. This would severely hinder
the numerical solution of this ODE system, which is unacceptable both in training and inference.
Acutually, during the training of a flow, we often inject noise or adopt early stopping—this can also
be interpreted as a form of smoothing for the system’s vector field. Therefore, defining a straight
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trajectory does not guarantee enabling single-step inference. The implementation of usable single-step
inferring often necessitates iterative distillation, a process that introduces cumulative model errors.

More discussion of the advantages of the MLE-based training approach using model reconstruction
in high-precision scenarios (e.g., robotic manipulation) is provided in Appendix C.

3.3 RESIDUAL MLE FINE-TUNING WITH CONTRACTION ANALYSIS

In this part we introduce a residual learning framework for fine-tuning FM robot policy, motivated
by Yuan et al. (2025) and Jiang et al. (2025). They found that fine-tuning the policy by learning
residuals yielded highly effective results. For our scenario, we implement it through extending the
time horizon for solving the flow model from [0, 1] to [0, 1 + T ] (T > 0). Specifically, the residual
part takes ϕ1(x0) as input, and generate ϕ1+T (x0) as the final result, i.e., d

dtϕt(x) = ṽt(ϕt(x); θ̃)

with given ϕ1(x0) for t ∈ [1, 1 + T ]. Here ṽ is the vector field of the residual part with parameters θ̃.
ṽ is also trained via MLE loss (6) for better fitting capability, and ṽ features a simpler structure and
fewer parameters compared to v to prevent overfitting.

ISS and Contraction Moreover, we employ networks with specific architectures to obtain certain
desirable properties, such as Input-to-State Stability (ISS) and contraction (Figs. 1c-1d). ISS refers
to the property that the model output remains stable and bounded in the presence of external inputs,
thereby avoiding divergence behavior as illustrated by the blue curves in Fig. 1c. ISS property
is particularly crucial in fields such as robotic manipulation. We obviously do not want minor
disturbances to be excessively amplified, causing severe jitter in movements. The precise definition
of ISS is provided in Appendix A. Furthermore, the contraction property indicates that the model
exhibits robustness against small disturbance noises, as shown by the green curves in Fig. 1c and Fig.
1d. Each contraction region can correspond to a specific semantic meaning in the latent space. We
may even achieve single-step inference without relying on distillation and without loss of accuracy
by directly mapping each contraction region to its corresponding equilibrium point.

Specifically, we consider the ControlSynth Neural ODE (Mei et al., 2024) or Persidskii system
(Efimov & Aleksandrov, 2021; Mei et al., 2022),

ẋ(t) = A0x(t) +

M∑
j=1

Ajfj(Wjx(t)) + g(u(t)), (7)

where xt := x(t) ∈ Rn is the robot’s state vector typically including its 3-dimensional position and
orientation; the matrices A· are with approximate dimensions; W· are weight matrices; the visual
image or state input ut := u(t) ∈ U ⊂ Rm, u ∈ L m

∞ ; fj = [f1j . . . f
kj

j ]⊤
(
fj : Rkj → Rkj

)
and

g : U → Rn ensuring the existence of the solutions of the neural network (NN) (7) at least locally in
time, and g = [g1 . . . gn]

⊤; w.l.o.g., the time t is set as t ≥ 0. The definitions of the relevant symbols
and further details are provided in Appendix A. Suppose that the nonlieanr function f satisfying the
following conditions.
Assumption 2 For any i ∈ {1, . . . , kj} and j ∈ {1, . . . ,M}, sfsj (s) > 0 for all s ∈ R\{0}.

Assumption 3 Assume that the functions f ij are continuous and strictly increasing for any i ∈
{1, . . . , kj} and j ∈ {1, . . . ,M}.

Assumption 2 applies to many activation functions, such as tanh and parametric ReLU. With a
reordering of nonlinearities and their decomposition, there exists an index ω ∈ {0, . . . ,M} such
that for all 1 ≤ s ≤ ω and 1 ≤ i ≤ ks, lim

ν→±∞
f is(ν) = ±∞. Also, there exists ζ ∈ {ω, . . . ,M}

such that for all 1 ≤ s ≤ ζ, 1 ≤ i ≤ ks, we have lim
ν→±∞

ν∫
0

f is(r)dr = +∞. First we introduce ISS

theorem.
Theorem 3 Let Assumptions 2-3 be satisfied. If there exist positive semidefinite symmetric
matrices P ; positive semidefinite diagonal matrices {Λi = diag(Λi

1, . . . ,Λ
i
n)}Mi=1, {Ξs}Ms=0,

{Υs,r}0≤s<r≤M ; positive definite symmetric matrix Φ such that the following linear matrix in-
equalities hold true:

P +

ζ∑
j=1

Λj > 0; Q = QT ≤ 0;

M∑
j=1

Υ0,j +

ω∑
s=1

Ξs +

ω∑
s=1

ω∑
r=s+1

Υs,r > 0. (8)
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where

Q1,1 = A⊤
0 P + PA0 + Ξ0; Qj+1,j+1 = A⊤

j W
⊤
j Λj + ΛjWjAj + Ξj ;

Q1,j+1 = PAj +A⊤
0 W

⊤
j Λj +W⊤

j Υ0,j ; Qs+1,r+1 = A⊤
s W

⊤
r Λr + ΛsWsAr +W⊤

s WrΥs,rW
⊤
r Ws;

Q1,M+2 = P ; QM+2,M+2 = −Φ; Qj+1,M+2 = ΛjWj .

then system (7) is ISS.

Proof is in Appendix B. Next, to analyse contraction, we consider another trajectory of the model (7)
ẏ(t) =

∑M
j=1Ajfj(Wjy(t))+g(u(t)) with the same input but different initial conditions y(0) ∈ Rn.

Let ξ := y − x. Then the corresponding error system is

ξ̇ = A0pj(ξ) +

M∑
j=1

Ajpj(x, ξ), (9)

where pj(x, ξ) = fj(Wj(ξ + x)) − fj(Wjx). Note that for any fixed x ∈ Rn, the functions pj in
the variable ξ ∈ Rn satisfy the properties in Assumptions 1, 2 (with a different Lipschitz constant).
Theorem 4 Let Assumptions 2-3 and conditions in Theorem 3 be satisfied, and in the bounded
domain (determined by the ISS property), the functions f ij are Lipschitz continuous with Lipschitz
constants Li

j . If there exist positive semidefinite symmetric matrices P̃ ; positive semidefinite diagonal
matrices {Λ̃i = diag(Λ̃i

1, . . . , Λ̃
i
n)}Mi=1, {Υ̃j,r}Mj,r=1, {Γj}Mj=1, {Ωj}Mj=1; positive definite symmetric

matrix Φ; and positive scalars γ, θ such that the following linear matrix inequalities hold true:

Q̃ = Q̃T ≤ 0; Γj − γLj ≥ 0; Ωj − θLj ≥ 0;

M∑
j=1

(
Γj − γLj +Ωj − θLj

)
+

M∑
j=1

M∑
r=1

Υ̃j,r > 0,
(10)

where

Q̃1,1 = A⊤
0 P̃ + PA0 + Ξ̃0; Q̃2,2 = −2γI; Q̃1,2 = PA+ Γ; Q̃1,3 = A⊤

0 ∆+Ω;

Q̃2,3 = A⊤∆+ Υ̃; Q̃3,3 = −2θI; A = [ A1 · · · AM ] ; Γ =
[
W⊤

1 Γ1 · · · W⊤
MΓM

]
;

∆ =
[
W⊤

1 Λ1 · · · W⊤
MΛM

]
; Ω =

[
W⊤

1 Ω1 · · · W⊤
MΩM

]
; Υ̃ = (W⊤

j WjΥ̃j,rW
⊤
r Wr)

M
j,r=1,

then system (7) (with trajectory x) is contracting. If we define Ṽ (ζ) = ζ⊤P̃ ζ +

2
∑M

j=1

∑kj

i=1 Λ̃
j
i

∫W i
j ζ

0
f ij(s)ds, then the contraction region of x0 contains {x0 + ξ|V (ξ) ≤

maxζ∈Rd Ṽ (ζ)}

Proof is in Appendix B. This theorem provides the conditions for contraction and delineates the
contraction region. Theorems 3 and 4 establish the stability and contraction property for systems
of the form (7) via tractable linear inequalities. In practical applications, we can strictly embed
these conditions into the training process, for instance, by incorporating physics-informed loss
functions. Alternatively, we may simply guide the model to select matrices A· with predominantly
negative eigenvalues, while using these conditions for theoretical guarantees and interpretability
analysis. Certainly, we can also employ networks with more complex architectures (e.g., UNet and
Transformer). For the contraction analysis of these more general forms, we can refer to Lohmiller &
Slotine (1998) and Li et al. (2025), albeit at the expense of increased condition complexity.

4 EXPERIMENTS

In this section we experimentally evaluate the benefits of fine-tuning FM. All experiment details can
be found in Appendix D.

4.1 PRELIMINARY EXPERIMENTS

We first perform an experiment on unconditional CIFAR-10 generation from a Gaussian source to
test the basic principles of our method. The baseline models are chosen as DDPM (Ho et al., 2020),

7
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Table 1: FID score and number of function
evaluations (NFE) for different ODE solvers:
fixed-step Euler integration with 100 and
1000 steps and adaptive integration (Hairer
et al., 1993, DOPRI5). The adaptive solver is
significantly better than the Euler solver in
fewer steps. First results are from Lipman
et al. (2023) and the next three from Tong
et al. (2024). The two last rows report the
results of our fine-tuned FM. Here ResFT-
FM denotes a residual MLE fine-tuning in
Section 3.3 using a simplified UNet.

NFE / sample → 100 1000 Adaptive

Algorithm ↓ FID FID FID NFE

DDPM 7.48 274
VP-FM 7.772 4.048 4.335 525.92
OT-FM 4.640 3.822 3.655 143.00
S.I. 4.488 4.132 4.009 146.12
I-CFM 4.461 3.643 3.659 146.42
OT-CFM 4.443 3.741 3.577 133.94
FT-FM (ours) 4.451 3.620 3.496 146.42
ResFT-FM (ours) 3.553 460 .07

(a) FID of Cifar-10 (b) SR in Franka Kitchen (c) Turn on Left Burner

Figure 2: Visualization of Experimental Results. (a) plots the FID of FM (blue curve) under different
training steps. The fine-tuned The red line is the fine-tuned FID score from checkpoint at 3.5× 105

step under the same time consumption. (b) plots the success rate (SR) of the fine-tuned policy
from checkpoint at 4000 epoch. The red vertical bars represent the variance of SR, which gradually
decreases during the training process. (c) shows the task of turning on the left burner in the Franka
Kitchen environment, executed by our fine-tuned FM policy within the MuJoCo simulator.

FM with Variance Exploding (VE) path and Optimal Transport (OT) path (Lipman et al., 2023), and
Stochastic Interpolants (SI) (Albergo et al., 2023). We train our fine-tuned FM and report the Fréchet
inception distance (FID) in Table 1. The FID over training time is in Fig 2a.

From Table 1, we can see that fine-tuning FM can improve the performance on FID with almost the
same number of function evaluations (NFE). In Fig. 2a, the FID of FM model has stopped decreasing
by the 350,000th step. But when fine-tune the checkpoint at that step, the FID score was further
reduced since MLE enables more powerful representations. More visualization results and analysis
are in the appendix. These demonstrate the significance of fine-tuning FM.

4.2 ROBOTIC MANIPULATION

In this part we investigate the performance of our method on three robot manipulation datasets which
includes closed-loop 6D robot actions and gripper actions: Franka Kitchen (Gupta et al., 2020),
push-T (Florence et al., 2022), and Robomimic (Mandlekar et al., 2022).

• Push-T involves manipulating a T-shaped block to a designated target using a circular end-effector.
The policy takes RGB images along with end-effector proprioception as input and produces
closed-loop end-effector actions. The task is supported by a dataset of 200 human demonstrations.

• The Franka Kitchen environment contains 7 interactive objects with 566 human demonstration se-
quences. Each demonstration completes any 4 tasks in variable order, and the goal is to accomplish
as many tasks as possible regardless of sequence. The policy uses state-based observations and
generates closed-loop commands for both robot joint movements and gripper actions.

• Robomimic offers 5 different tasks with high-quality human teleoperation demonstrations. This
study specifically utilizes the Transport task, containing 200 demonstrations. The policy operates
on state-based inputs and outputs closed-loop control signals for robot joints and the gripper.

8
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Methods (16-step) Push-Ta ↑ Push-Tb ↑ Franka Kitchen ↑ Robominic ↑
DDPM 0.8840/0.7178 0.7360/0.6100 0.9840/0.6716 0.9359/0.7168
DDIM 0.8801/0.6372 0.7490/0.6167 0.9865/0.7471 0.9334/0.7073
FM 0.9035/0.7519 0.7363/0.6218 0.9960/0.7425 0.9360/0.7289
FT-FM (ours) 0.9197/0.7885 0.7567/0.6496 0.9967/0.7822 0.9401/0.7552
ResFT-FM FMc (ours) 0.9143/0.7761 0.7452/0.6511 0.9963/0.7836 0.9385/0.7447
ResFT-FM FMd (ablation) 0.9039/0.7518 0.7371/0.6220 0.9961/0.7541 0.9362/0.7283

asampling range: [(50, 450), (50, 450), (200, 300), (200, 300), (−π, π)]
bsampling range: [(50, 450), (50, 450), (100, 400), (100, 400), (−π, π)]
cfine-tuning using ControlSynth Neural ODE (7)
dfine-tuning using the standard conditional UNet

Table 2: We report robot performance as (max) / (average over last checkpoint with 10 replications),
each averaged across 500 environment initializations. Success rate is used for all tasks except Push-T,
which uses target area coverage. For Push-T, we vary initial end-effector and T-block poses. Results
are shown for the Transport task in the Robomimic benchmark.

We learn the robot policy from expert data and evaluate it in the corresponding simulation environment
in MuJoCo or Gym. We choose DDPM, DDIM and orginal FM as baseline models. The evaluation
in each environment has been carried out across 500 different initial conditions. The baseline
models are trained for 4500 epochs. The fine-tuned training starts from the checkpoint at 3500
epochs and runs for approximately 100 epochs to ensure a roughly consistent training duration. To
achieve the desired contraction property, we incorporate a physics-informed loss term λωReLU(ω)

where ω =
∑

i,k

(
|Ak,k

i | −
∑

l!=k |A
k,l
i |

)
/
(∑

l |A
k,l
i |+ ϵA

)
in (7) that encourages the matrix to be

negatively diagonally dominant, thereby promoting a greater number of negative eigenvalues then
satisfying (8) and (10). For ablation study, instead of a structurally simplistic network (7), we utilize
the standard conditional UNet from the pre-training stage and apply MLE to learn the residual
components. The results are recorded in Table 2 and Fig. 2b.

Table 2 reflects that fine-tuning can effectively enhance FM’s performance. Ablation results show
that training a complex network directly with MLE does not yield satisfactory results due to the
optimization challenges posed by an excessive number of free parameters. Conversely, utilizing a
structurally simpler contracting network (7) results in substantially improved stability and training
efficiency. In subsequent work, we will analyze the various contraction regions and attempt to
use them to accelerate inference. Figure 2b shows the success rate (SR) after fine-tuning the FM
checkpoint at 4000 epochs, where the model’s performance had reached its ceiling. We observe a
significant improvement in the model’s SR after only 80 epochs. The observed variance reduction
also indicates enhanced reliability of our fine-tuning strategy.

5 CONCLUSION AND FUTURE WORK

While the simulation-free optimization is simple and efficient, this paper identifies some of its
inherent limitations and proposes a methodology that leverages fine-tuning to further optimize FM.
Experimental results robustly demonstrate the efficacy of our fine-tuning strategy. This paper also
provides several novel analytical tools for flow models. We generalizes classical numerical analysis to
flow settings in which the underlying vector field is approximated via learning. We combine network
designs inspired from control theory to incorporate contraction property into the FM model.

In future work, we will expand the evaluation of fine-tuned FM models across a broader range of
experimental settings, including spatio-temporal data forecasting. Additionally, we plan to develop
methods for efficiently incorporating LMI boundedness conditions during training. The effects
of more advanced numerical schemes on flow-based inference under more quantitative forms for
characterizing vector field errors besides the infinity norm will be examined both theoretically and
empirically. We will also explore more fine-tuning techniques, such as LoRA, and investigate alterna-
tive structured learning systems to endow the model with desirable properties such as contraction
and stability. We further propose to extend this training paradigm—combining velocity matching
pre-training with reconstruction error fine-tuning—to the modeling of ODE dynamical systems.

9
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We encourage responsible use of the technology.

Reproducibility Statement We provide the following to ensure reproducibility:

• Code: Our code is in the accompanying supplementary material.
• Experiments: Our implementation is based on PyTorch 1.12.1 and Python 3.9. We include full

training and evaluation scripts, and all hyperparameters are detailed in Section D.
• Datasets: We use the public datasets (CIFAR-10, Push-T, Franka Kitchen, Robomimic).
• Resources: The experiments were conducted on 8 × NVIDIA A100 GPUs.
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APPENDIX

A NOTATION AND DEFINITIONS

The symbol R represents the set of real numbers, R+ = {ℓ ∈ R : ℓ ≥ 0}, and Rn denotes the vector
space of n-tuple of real numbers. The transpose of a matrix A ∈ Rn×n is denoted by A⊤. Let I
stand for the identity matrix. The symbol ∥·∥ refers to the Euclidean norm on Rn.

For a Lebesgue measurable function u : R → Rq , define the norm ∥u∥(t1,t2) = ess supt∈(t1,t2)∥u(t)∥
for (t1, t2) ⊆ R. We denote by L q

∞ the space of functions u with ∥u∥∞ :=∥u∥(−∞,+∞) < +∞.

A continuous function α : R+ → R+ belongs to class K if it is strictly increasing and α(0) = 0,
and K∞ means that α is also unbounded. A continuous function β : R+ × R+ → R+ belongs to
class K L if β(·, r) ∈ K and β(r, ·) is a decreasing to zero function for any fixed r > 0.

For this system (7), we have the following assumption.

Assumption A.1 We assume that the system (7) is forward complete, i.e., for all x0 ∈ Rn and
u ∈ Lq

∞, the solution x(t, x0, u) is uniquely defined for all t ∈ R+.

The formal definitions of ISS and convergence are provided below.

Definition A.1 A forward complete system (7) is input-to-state stable (ISS) if there exist β ∈ K L
and γ ∈ K L such that

∥x(t, x0, u)∥ ≤ β(∥x0∥, t) + γ(∥u∥∞), ∀t ∈ R+,

for any x0 ∈ Rn and u ∈ Lq
∞. The model (7) is convergent if it admits a unique bounded solution for

t ∈ R that is globally asymptotically stable (GAS).

B THEOREM PROOFS

B.1 PROOF OF THEOREM 1

To be clear and concise, we define and rearrange some notations. For an initial value x0, let
x(tn) := ψt(x0) and xn := ϕn(x0) represent the ground truth and the model output, respectively.
Then we can derive that

εn+1 = x(tn+1)− xn+1

= x(tn) +

∫ tn+1

tn

uτ (x(τ)) dτ − xn − vtn(xn)

= εn−1 +

∫ tn+1

tn

uτ (x(τ))− vtn(xn) dτ

= εn−1 +

∫ tn+1

tn

f(τ, x(τ))− utn(x(tn)) + utn(x(tn))− utn(xn) + utn(xn)− vtn(xn) dτ.

(B.1)
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We will split the integral in expression (B.1) into three parts and estimate them separately. The first
part

|
∫ tn+1

tn

uτ (x(τ))− utn(x(tn)) dτ |

= |
∫ tn+1

tn

x′(τ)− x′(tn) dτ |

= |
∫ tn+1

tn

x′′(tn + θ(τ − tn))(τ − tn) dτ |

= |x′′(tn + θ(τ − tn))

∫ tn+1

tn

(τ − tn) dτ |

= |1
2
τ2nx

′′(tn + θ(t̄− tn))|

≤ 1

2
Mτ2n,

(B.2)

where 0 < θ < 1, t̄ ∈ (tn, tn+1), M = max0≤t≤1 |x′′(t)|. The second and third equalities in (B.2)
use the Differentiation Mean Value Theorem (MVT) and Integration MVT, respectively. Using the
Lipschitz condition, the second part in (B.1) derives

|
∫ tn+1

tn

utn(x(tn))− utn(xn)| = τn |(utn(x(tn))− utn(xn))| ≤ Luτn|x(tn)− xn| = Luτnεn.

The third part |
∫ tn+1

tn
utn(xn)−vtn(xn)dτ | ≤ δτn. Plugging these into (B.1) and taking the absolute

values yield

|εn+1| ≤ (1 + Luτn)|εn|+ δτn +
1

2
Mτ2n, (B.3)

or equivalently,

|εn+1| − |εn| ≤ Luτn|εn|+ δτn +
1

2
Mτ2n. (B.4)

Summing n in (B.4) from n = 0 to m− 1, we have

|εm| ≤ LuΣ
m−1
j=0 τj |εj |+Σm−1

j=0 (δτj +
1

2
Mτ2j ) + |ε0|.

Appling Grönwall inequality (Lemma 1) we get

|εm| ≤ exp (Lutm−1)

(
Σm−1

j=0 (δτj +
1

2
Mτ2j ) + |ε0|

)
.

By taking m = N , we obtain the final result in (4). It is noted that Lemma 1 employs specialized
scaling techniques designed for variable step-size schemes. On a uniform grid, i.e., ∀ i ∈ [0, N ],
τi = τ0, we can have a shaper error estimate. It follows directly from (B.3) that

|εn+1| ≤ (1 + τ0Lu)|εn|+R

= (1 + τ0Lu)
2|εn−1|+ (1 + τ0Lu)R+R

≤ · · ·
≤ (1 + τ0Lu)

n+1|ε0|+
[
(1 + τ0Lu)

n + (1 + τ0Lu)
n−1 + · · ·+ 1

]
R ,

where R := δτ0 +
1
2Mτ20 . Therefore,

|εn| ≤ (1 + τ0Lu)
n|ε0|+

n−1∑
j=0

(1 + τ0Lu)
j

R
≤ (1 + τ0Lu)

n|ε0|+
R

τ0Lu
[(1 + τ0Lu)

n − 1] .

Considering exp (nτ0Lu) > (1 + τ0Lu)
n, we can obtain

εn ≤ exp(Luτ0n)ε0 +
Mτ0 + 2δ

2L
(exp (Luτ0n)− 1). (B.5)

Taking n = N yields the final estimate (5).
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For the sake of completeness, in the following we put the standard discrete Grönwall inequality, e.g.,
Liao & Zhang (2021, Lemma 3.1), and its proof.

Lemma 1 Let λ ≥ 0, the time sequences {ξk}Nk=0 and {Vk}Nk=1 be nonnegative. If

Vn ≤ λ

n−1∑
j=1

τjVj +

n∑
j=0

ξj for 1 ≤ n ≤ N,

then it holds that

Vn ≤ exp(λtn−1)

n∑
j=0

ξj for 1 ≤ n ≤ N.

Proof. Under the induction hypothesis Vj ≤ exp(λtj−1)
∑j

k=0 ξk for 1 ≤ j ≤ n− 1, the desired
inequality for the index n follows directly from

λ

n−1∑
j=1

τj exp(λtj−1) ≤ λ

∫ tn−1

0

exp(λt) dt = exp(λtn−1)− 1.

The principle of induction completes the proof.

B.2 PROOF OF THEOREM 2

Under the Assumption 1 , we have

log p1(x|x0, x1) = log
exp

(
− 1

2 (x− x1)
TΣ−1(x− x1)

)√
(2π)d|Σ|

(B.6)

When σ = diag(σ1, · · · , σd) is a diagonal matrix with all positive entries, it follows from B.6 that

log p1(x|x0, x1) = −1

2

d∑
i=1

(xi − xi1)
2

σi
− log

√√√√(2π)d
d∏

i=1

σd (B.7)

Note that the second term is independent of x. Moreover, considering the relation ψ1(x0|x1) = x1

and εN (x0|x1) = ψ1(x0|x1)− ϕ̂N (x0), maximizing Eq(x0,x1)

[
log p1

(
ϕ̂N (x0)|x1

)]
is equivalent

to minimizing Eq(x0,x1)

[
1
2

∑d
i=1(ε

i
N (x0|x1))2/σi

]
.

In the case where Σ is a scalar matrix, i.e., Σ = σI with σ ∈ R+, following the same procedure and
discarding the irrelevant coefficient leads to the loss function (6).

B.3 PROOF OF THEOREM 3

Similar proofs can be found in Mei et al. (2024; 2022); Efimov & Aleksandrov (2021). Here, we
briefly outline the general process.

Proof of Theorem 3 Consider a Lyapunov function

V (x) = x⊤Px+ 2

M∑
j=1

kj∑
i=1

Λj
i

∫ W i
jx

0

f ij(s)ds,

where the vector W i
j is the i-th row of the matrix Wj . It is positive definite and radially unbounded

due to Finsler’s Lemma under the condition equation 8 and Assumption 2. Then, taking the derivative

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

of V (x), one has

V̇ =


x

f1(W1x)
...

fM (WMx)
g(u)


⊤

Q


x

f1(W1x)
...

fM (WMx)
g(u)

− x⊤Ξ0x

−
M∑
j=1

fj(Wjx)
⊤Ξjfj(Wjx)− 2

M∑
j=1

x⊤W⊤
j Υ0,jfj(Wjx)

−2

M−1∑
s=1

M∑
r=s+1

fs(Wsx)
⊤W⊤

s WsΥs,rW
⊤
r Wrfr(Wrx) + g(u)⊤Φg(u)

≤ −x⊤Ξ0x−
M∑
j=1

fj(Wjx)
⊤Ξjfj(Wjx)− 2

M∑
j=1

x⊤W⊤
j Υ0,jfj(Wjx)

−2

M−1∑
s=1

M∑
r=s+1

fs(Wsx)
⊤W⊤

s WsΥs,rW
⊤
r Wrfr(Wrx) + g(u)⊤Φg(u)

≤ −α(V ) + g(u)⊤Φg(u),

for a function α ∈ K∞. Under (Sontag & Wang, 1995, Theorem 1), we can verify the first
condition of the ISS property due to the form of V , and the second relation can be recovered via
V ≥ α−1

(
2g(u)⊤Φg(u)

)
⇒ V̇ ≤ − 1

2α(V ). This means that the ISS property of the NN equation 7
is guaranteed, and so is the boundedness of its solution.

B.4 PROOF OF THEOREM 4

To analyze the contraction property of (9), we need the following lemma.

Lemma 2 Under Assumption 3, we have pj(x, ξ)
⊤pj(x, ξ) ≤ ξ⊤W⊤

j L
jpj(x, ξ) and

fj(Wjξ)
⊤fj(Wjξ) ≤ ξ⊤W⊤

j L
jfj(Wjξ).

Proof. It follows from the Lipschitz continuity Assumption 3 that |pij(x, ξ)| = |f ij((Wjx)
i+(Wjξ)

i)−
f ij((Wjx)

i)| ≤ Li
j |(Wjξ)

i|. Here, the superscript i denotes the i-th component of the vector.
When (Wjx)

i ≥ 0, we have pij(x, ξ) = f ij((Wjx)
i + (Wjξ)

i) − f ij((Wjx)
i) ≥ 0 due to the

Monotonicity in Assumption 3. Then pij(x, ξ) ≤ Li
j(Wjξ)

i. Multiplying both sides by a non-
negative number pij(x, ξ), we get pij(x, ξ)

2 ≤ Li
jp

i
j(x, ξ)(Wjx)

i. When (Wjx)
i ≤ 0, we have

pij(x, ξ) = f ij((Wjx)
i + (Wjξ)

i) − f ij((Wjx)
i) ≤ 0 due to the same Monotonicity Assumption,

leading to −pij(x, ξ) ≤ −Li
j(Wjξ)

i. Multiplying both sides by a non-negative number −pij(x, ξ),
we get the same result pij(x, ξ)

2 ≤ Li
jp

i
j(x, ξ)(Wjx)

i.

Summing over i on both sides gives
∑

i p
i
j(x, ξ)

2 ≤
∑

i L
i
jp

i
j(x, ξ)(Wjx)

i. Or equivalently, in a
compact from, pj(x, ξ)⊤pj(x, ξ) ≤ (Wjx)

⊤Ljpj(x, ξ) = x⊤W⊤
j Ljpj(x, ξ). This completes the

proof of the first part of the lemma. By noting the relation of f(Wjx) = f(Wjx− 0) = pj(0, ξ), the
second part of the lemma holds naturally.

Proof of Theorem 4 Consider an positive definite function

Ṽ (ξ) = ξ⊤P̃ ξ + 2

M∑
j=1

kj∑
i=1

Λ̃j
i

∫ W i
j ξ

0

f ij(s)ds.
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Taking the time derivative of Ṽ :

˙̃V =



ξ
p1(x, ξ)

...
pM (x, ξ)
f1(W1ξ)

...
fM (WMξ)



⊤

Q̃



ξ
p1(x, ξ)

...
pM (x, ξ)
f1(W1ξ)

...
fM (WMξ)


+γ

M∑
j=1

pj(x, ξ)
⊤pj(x, ξ) + θ

M∑
j=1

f⊤j (Wjξ)fj(Wjξ)

−ξ⊤Ξ̃0ξ − 2

M∑
j=1

ξ⊤W⊤
j Γjpj(x, ξ)− 2

M∑
j=1

ξ⊤W⊤
j Ωjfj(Wjξ)

−2

M∑
j=1

M∑
r=1

pj(x, ξ)
⊤W⊤

j WjΥ̃j,rW
⊤
r Wrfr(Wrξ).

Then, under Lemma 2, it can be deduced that

˙̃V ≤ 2γ

M∑
j=1

pj(x, ξ)
⊤pj(x, ξ) + 2θ

M∑
j=1

f⊤j (Wjξ)fj(Wjξ)− ξ⊤Ξ̃0ξ − 2

M∑
j=1

ξ⊤W⊤
j Γjpj(x, ξ)

−2

M∑
j=1

ξ⊤W⊤
j Ωjfj(Wjξ)− 2

M∑
j=1

M∑
r=1

pj(x, ξ)
⊤W⊤

j WjΥ̃j,rW
⊤
r Wrfr(Wrξ)

≤ −ξ⊤Ξ̃0ξ

−2

M∑
j=1

ξ⊤W⊤
j

(
Γj − γLj

)
pj(x, ξ)

−2

M∑
j=1

ξ⊤W⊤
j

(
Ωj − θLj

)
fj(Wjξ)

−2

M∑
j=1

pj(x, ξ)
⊤W⊤

j Wj

M∑
r=1

(
Υ̃j,r

)
W⊤

r Wrfr(Wrξ).

Therefore, with the conditions equation 10, we can substantiate that the error dynamics of system
equation 7 asymptotically approaches zero, meaning that the solution is contracting. Moreover, by
Khalil & Grizzle (2002, Theorem 4.9). the stablility area of ξ contains {ξ|V (ξ) ≤ maxζ∈Rd Ṽ (ζ)}.
Since y(t) = x(t)+ξ(t), we can determine that ∀y0 ∈ {x0+ξ|V (ξ) ≤ maxζ∈Rd Ṽ (ζ)}, y(t) → x(t).
This completes the proof.

C MORE DISCUSSION ON RECONSTRUCTION ERROR OPTIMIZATION IN
PRECISION-DEMANDING TASKS

Generative models utilize probabilistic modeling. The benefit of this approach is that once a dis-
tribution is learned, more new samples can be sampled, thus accomplishing the task of generation.
However, in scenarios such as robot manipulation or temporal prediction, our primary objective
is to model and understand the system, rather than approximating the underlying distribution and
generating highly diverse and stylistically varied samples as is common in computer vision (CV).
For instance, in imitation learning for robotic manipulation, expert human demonstration data often
contains inherent jitter or other artifacts. Our objective is for the model to learn a smooth and robust
policy, instead of modeling this underlying noise distribution. A mainstream framework in robotic
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manipulation is to feed observed images as input and predict the robot’s next action(s). This resembles
a traditional supervised learning task (instead of probabilistic modeling), where we learn a mapping
from inputs to outputs from the data. What differs is that the data distribution here often exhibits
multi-modal properties. Taking the robot obstacle avoidance problem as an example: to avoid an
obstacle ahead, the robot can detour by moving either left or right. These two options create a bimodal
distribution in the data. If we simply use an Mean Squared Error (MSE) loss between the model’s
output and the collected sample data, the model may only learn an average behavior — ultimately
causing it to move straight forward and collide with the obstacle. Therefore, Generative models such
as diffusion (Chi et al., 2023) are used to capture this multi-modal nature in the data.

In summary, while traditional frequentist supervised learning enables us to discard the noise term and
achieve high precision, probabilistic models allow us to capture more complex data distributions. But
within each mode of the data distribution, we do not want to compromise on precision. In fact, the
approach we adopt to conditional flow matching—via joint learning or optimal transport—achieves
semantic segmentation of the noise space x0 (Pooladian et al., 2023; Tong et al., 2024). Then our MLE
fine-tuning based on the reconstruction results of each mode effectively compensates for the precision
requirements in probabilistic models. The demand for precision necessitates the consideration of
reconstruction error. This may also partially explain why VAE-based policy ACT (Zhao et al., 2023)
has achieved significant success in robot fine manipulation tasks, despite being less capable than
diffusion or flow-based models in capturing action diversity.

D EXPERIMENT DETAILS AND ADDITIONAL RESULTS

This section provides a detailed overview of the parameters used in our experiments to ensure
reproducibility. All experiments were run on compute nodes, each node featuring eight A100 GPUs.

D.1 CIFAR-10

We perform an experiment on unconditional CIFAR-10 generation from a Gaussian source to examine
how OT-CFM performs in the high-dimensional image setting. We use a similar setup to that of
Lipman et al. (2023) and Tong et al. (2024), including the time-dependent U-Net architecture from
Nichol & Dhariwal (2021) that is commonly used in diffusion models. We choose channels = 128,
depth = 2, channels multiple = [1, 2, 2, 2], heads = 4, heads channels = 64, attention resolution
= 16, dropout = 0.1, batch size per gpu = 128, gpus = 4, epochs = 2000. We use a constant
learning rate, set to 2 × 10−4 in the pre-training stage and 5 × 10−6 in the fine-tuning stage. To
prevent training instabilities and variance, we clip the gradient norm to 1 and rely on exponential
moving average with a decay of 0.99.

For sampling, we use Euler integration using the torchdyn package and DOPRI5 from the torchdiffeq
package. Since the DOPRI5 solver is an adaptive step size solver, it uses a different number of steps
for each integration. We use a batch size of 1024 and average the number of function evaluations
(NFE) over batches.

The visualization results of the generated images are presented in Fig. E.2. From Figs E.2b-E.2b, we
can see that fine-tuning induces minimal alteration to the latent space semantics. Images generated
from identical noise points retain consistent content, with a slight improvement in reconstruction
fidelity (e.g., the 9th to 11th images from the end in the final row).

D.2 ROBOTIC MANIPULATION

These experiments were conducted under a unified framework, systematically evaluated across multi-
ple environments. The configuration encompasses four main aspects: model architectures, training
hyperparameters, environment-specific parameters, and execution modes, ensuring reproducibility
and consistency throughout the study.

We employ two types of network architectures to learn the vector field: a Conditional UNet-1D
and a Transformer-based diffusion model. The UNet model was designed with an input dimension
matching the action space of the environment and an output dimension corresponding to the action
dimensions. It incorporated global conditioning based on visual feature encodings, a hidden size of
256, 4 UNet blocks with 2 layers each, and attention mechanisms to enhance representational capacity.
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H-Param Ta Tp ObsRes F-Net F-Par V-Enc V-Par P-Lr F-Lr
Push-T 8 16 1x96x96 ConditionalUnet1D 80 ResNet-18 11 1e-4 5e-6
Franka Kitchen 8 16 1x60 ConditionalUnet1D 66 N/A N/A 1e-4 5e-6
Robomimic 8 16 1x50 ConditionalUnet1D 66 N/A N/A 1e-4 5e-6

Table D.1: Hyperparameters for FM and diffusion policy. Ta: action horizon. Tp: action prediction
horizon. ObsRes: environment observation resolution. D-Net: diffusion/flow matching network.
D-Par: diffusion/flow matching network number of parameters in millions. V-Enc: vision encoder.
V-Par: vision encoder number of parameters in millions. P-Lr: learning rate in pretraining. F-Lr:
learning rate in MLE fine-tuning.

Tasks Rob Obj ActD PH Steps Img
Push-T 1 1 2 200 300 ✓
Franka Kitchen 1 7 9 566 280 ✗
Robomimic 2 3 20 200 700 ✗

Table D.2: Tasks Summary. Rob: number of robots. Obj: number of objects. ActD: action dimension.
PH: proficient-human demonstration. Steps: max number of rollout steps. Franka Kitchen and
Robomimic involve 6D robot and gripper actions in the joint space. Push-T focuses on robot end-
effector trajectories.

The Transformer model used a hidden dimension of 512, 6 transformer layers, 8 attention heads, and
a dropout rate of 0.1 to prevent overfitting. Both models utilized a ResNet-18 vision encoder for
extracting image features, with GroupNorm substituted for BatchNorm to improve training stability.

We used a batch size of 64. In the pre-training stage the Adam optimizer was used with a learning rate
of 1.0e-4 and weight decay of 1.0e-6, accompanied by a linear warm-up phase spanning 500 steps.
While in MLE fine-tining stage we use a learning rate of 5.0e-6. In the design for inducing contraction
properties we choose λω = 0.05 and ϵA = 10−6. All models were trained on 4 A100 GPUs using a
Distributed Data Parallel strategy with 32-bit precision. An Exponential Moving Average was applied
with a decay rate of 0.75, updated every 50 epochs.

Environment-specific parameters were carefully tailored to each experimental setting. For the kitchen
environment, the observation horizon was set to 2, the prediction horizon to 24, and the action horizon
to 8, with an action dimension of 9 and a visual feature dimension of 512. Each episode was allowed
a maximum of 280 steps. In the Push-T environment, the observation horizon was 1, prediction
horizon 16, and action horizon 8, with an action dimension of 2 and visual feature dimension of 514.
The maximum steps per episode were 300. For the Mimic environment, the observation horizon was
1, prediction horizon 32, and action horizon 16, with action dimension 7 and visual feature dimension
512. Episodes were run for up to 400 steps.

The experiments supported several execution modes: FM pretraining mode; MLE fine-tuning mode or
residual fine-tuning with a specialized network architecture; and testing mode with 10 test episodes,
and 50 runs per episode by default. The maximum number of steps was automatically configured
according to the environment settings. This modular configuration supports high customizability
while ensuring the reproducibility of all experimental results.

Table D.1 shows the hyperparameters used in FM and diffusion policy. Table D.2 shows the task
summary. Our evaluations were all conducted within the MuJoCo or Gym simulation environment.
Specifically, the Push-T simulation environment is developed using Gym, whereas the Franka Kitchen
and Robomimic environments utilize MuJoCo for simulation.

E THE USE OF LARGE LANGUAGE MODELS

We employed some Large Language Models (LLMs) to polish the writing and identify grammatical
errors.
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(a) Push-T (b) Franka Kitchen (c) Robomimic

Figure E.1: Different Simulation Environments in MuJoCo or Gym.

(a) Images generated by FM at 105 step, FID: 6.17.

(b) Images generated by FM at 3.5× 105 step, FID: 3.61.

(c) Images generated by our fine-tuned FM model. Fine-tuning started from the 3.5× 105 step and continued
for 1, 000 steps, FID: 3.55.

Figure E.2: Visualization Results of generated images under the same initial noise points.
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