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Conformal Prediction Beyond the Seen:
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Abstract
Uncertainty quantification (UQ) is essential for
safe deployment of generative AI models such
as large language models (LLMs), especially in
high-stakes applications. Conformal prediction
(CP) offers a principled UQ framework, but clas-
sical methods focus on regression and classifica-
tion, relying on geometric distances or softmax
scores—tools that presuppose structured outputs.
We depart from this paradigm by studying CP in a
query-only setting, where prediction sets must be
constructed solely from finite queries to a black-
box generative model, introducing a new trade-off
between coverage, test-time query budget, and
informativeness. We introduce Conformal Predic-
tion with Query Oracle (CPQ), a framework char-
acterizing the optimal interplay between these ob-
jectives. Our finite-sample algorithm is grounded
in two principles: the first characterizes the op-
timal query policy, and the second the optimal
mapping from queried samples to prediction sets,
remarkably connecting both to the classical miss-
ing mass problem in statistics. Fine-grained ex-
periments on three real-world open-ended tasks
and two LLMs, show CPQ’s applicability to any
black-box LLM and highlight: (1) individual con-
tribution of each principle to CPQ’s performance,
and (2) CPQ’s ability to yield significantly more
informative prediction sets than existing confor-
mal methods for language UQ.

1. Introduction
Generative models such as LLMs and diffusion models are
widely deployed in high-stakes applications, yet they often
produce unreliable outputs. These models may generate
plausible but incorrect information, hallucinate facts, or
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exhibit inconsistency across runs (Huang et al., 2025; Li
et al., 2024; McKenna et al., 2023; Farquhar et al., 2024).
Uncertainty quantification (UQ) is therefore essential for
safe and trustworthy deployment of generative AI, enabling
downstream users to detect unreliable outputs and make
informed decisions under uncertainty.

Conformal prediction (CP) is a statistical framework for
UQ in supervised learning (Vovk et al., 1999; Saunders
et al., 1999b; Vovk et al., 2005), where input-output pairs
(X,Y ) are drawn from an unknown distribution. Instead
of a single prediction, CP produces prediction sets cali-
brated to include the true label with high probability. For-
mally, given a miscoverage level α ∈ (0, 1), CP guarantees
P(Y ∈ C(X)) ≥ 1− α, where C(X) is the prediction set
for input X . This holds under minimal assumptions: CP
is distribution-free and model-agnostic, making it widely
applicable. These properties have made CP a key tool in
deploying ML systems in high-stakes settings. Recent work
also shows that CP sets are essential for risk-sensitive deci-
sion making, where decisions must account for predictive
uncertainty in a principled way (Kiyani et al., 2025).

CP has been extensively studied for classical tasks such as
classification and regression (Shafer & Vovk, 2008; Romano
et al., 2019a; Angelopoulos et al., 2020; Lei et al., 2018).
In these settings, uncertainty is typically expressed through
prediction sets of the form {y : S(x, y) ≤ q}, where S(x, y)
is a nonconformity score measuring how atypical a label
y is for a given input x, and q is a calibrated threshold. In
regression, S(x, y) might be |y − f(x)|, where f(x) is a
trained model. In classification, the score is often based on
softmax probabilities, such as 1− fy(x), where fy(x) is the
predicted probability for class y. However, this approach
does not directly carry over to generative modeling—such as
open-ended text generation—where outputs come from an
immense, unstructured space of discrete sequences. While
one can define similarity metrics over text or images, the
core difficulty lies not in the absence of a distance, but
in the fact that sets defined via these distances—such as
“all outputs within a radius of q”—are typically intractable
and hard to represent. In generative models like LLMs,
the model does not expose a full probability distribution
over the output space, but instead only provides a query
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oracle—a mechanism for sampling one output at a time.
These challenges motivate the question: Can we design
conformal prediction procedures that meaningfully quantify
uncertainty when the model only provides samples of its
output space?

Recent works have made progress toward adapting CP to
query-based generative models (Quach et al., 2024; Kladny
et al., 2025). However, two key challenges remain mainly
unresolved. First, querying at test time is resource intensive–
more queries improve output exploration but incur substan-
tial computational cost. Second, users often seek uncer-
tainty quantification at high coverage levels (e.g., 90%),
even when the model’s few-shot accuracy is much lower
(e.g., 60− 70%). In such regimes, some prediction sets are
necessarily non-informative—effectively suggesting that
the true output could be anything—because the model fails
to produce it within the query budget. These challenges
highlight a fundamental trade-off between coverage, infor-
mativeness, and test-time query cost. Our goal is to design
conformal procedures that navigate this trade-off by mini-
mizing the number of non-informative prediction sets while
maintaining valid coverage under a limited query budget.

A central insight in addressing this challenge is recognizing
that the notion of missing mass plays a foundational role.
When only a few outputs are sampled from a generative
model–such as querying an LLM a handful of times for a
prompt–the key question becomes: have we already seen
a correct answer, or could the correct output still lie in
the part of the distribution we haven’t sampled yet? This
uncertainty about the correct label remaining unseen—the
missing mass—is critical in deciding both whether to keep
querying and how much confidence to place in the outputs
we have.

To formalize the trade-off between coverage, informative-
ness, and query cost, we introduce an optimization frame-
work that jointly designs a query policy (how many queries
to allocate per test point) and a set map (how to turn sam-
pled outputs into calibrated prediction sets). Remarkably,
both components connect to the classical missing mass prob-
lem in statistics (see (Gale & Sampson, 1995; Orlitsky &
Suresh, 2015b; McAllester & Schapire, 2000a; Orlitsky
et al., 2003)). The optimal query policy corresponds to
controlling the rate of decrease in missing mass, while the
optimal set construction relies on estimating the missing
mass itself. We now summarize our main contributions:

1) We introduce a novel optimization framework (Section 2)
that formally captures the trade-off between coverage, in-
formativeness, and test-time query budget in generative
modeling UQ. This reinterprets conformal prediction from
a budgeted query perspective and defines two interacting
components: the query policy and the prediction set map,
which connects sampled outputs to sets.

2) We identify two key algorithmic principles that emerge
from this framework. First, the optimal query policy pre-
scribes querying each test input until the rate of decrease in
missing mass falls below a threshold—that is, one should
keep querying as long as an additional sample significantly
reduces uncertainty. Second, the optimal map from sampled
outputs to a set is defined by thresholding a particular con-
formity score that properly accounts for the missing mass.
These principles extend conformal prediction to a funda-
mentally new setting and may be of independent theoretical
interest.

3) In Section 4, we design a finite-sample algorithm that
combines these principles, integrating the estimation of
missing mass (and its rate of reduction) into the confor-
mal prediction pipeline while provably maintaining valid,
distribution-free coverage guarantees. A key technical con-
tribution is a novel estimator for the rate of decrease in miss-
ing mass, derived by revisiting the classical Good–Turing
estimator—originally developed to estimate the missing
mass itself.

4) We show the practical value of our approach through
experiments on open-ended LLM tasks. Across three bench-
mark datasets, we quantify how each algorithmic principle
contributes to prediction set informativeness under varying
query and coverage constraints. Compared to recent query-
based CP baselines (Quach et al., 2024; Kladny et al., 2025),
our method significantly reduces non-informative sets while
maintaining valid coverage guarantees. These highlight the
foundational role of our missing mass perspective in CP.

1.1. Related works

We briefly discuss closely related works here and defer a
full discussion to the supplementary material.

Conformal Language Modeling. Conformal Language
Modeling (CLM) was introduced by (Quach et al., 2024)
and similar ideas further studied by (Kladny et al., 2025;
Kaur et al., 2024; Shahrokhi et al., 2025; Su et al., 2024).
CLM adapts conformal prediction to LLMs by calibrating
a set of stopping rules that determine how many outputs to
include in a prediction set. However, these methods do not
account for uncertainty over unseen generations, and thus
only provide valid sets for coverage levels less or equal than
the few-shot accuracy of the underlying model. Further-
more, they do not explicitly optimize how the query budget
is used across different prompts. In contrast, we provide
valid prediction sets for any user-defined coverage level and
query budget, using a principled framework that bridges
conformal prediction with classical missing mass estimation
to optimize set informativeness and query efficiency. We
also compare against CLM methods in Section 5, demon-
strating substantial gains in informativeness, under fixed
query budgets.
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Conformal Abstention and Conformal Factuality. Con-
formal abstention algorithms refrain from generating a re-
sponse when uncertainty is high (Yadkori et al., 2024b;
Tayebati et al., 2025; Yadkori et al., 2024a). Other works fo-
cus on aligning CP with LLM factuality in structured tasks
(Ulmer et al., 2024; Gui et al., 2024; Kumar et al., 2023),
or filtering long-form generations by validating sub-claims
(Cherian et al., 2024; Mohri & Hashimoto, 2024; Liu & Wu,
2024; Rubin-Toles et al.). However, these methods do not
construct prediction sets and are thus not directly compara-
ble to ours, though connecting our framework with theirs
presents an interesting direction for future work.

2. Problem formulation
In this section, we formalize the problem of conformal pre-
diction with a query oracle. Consider a covariate space X
and a potentially infinite label space Y . An input-output
pair (X,Y ) ∈ X × Y is drawn from an unknown joint dis-
tribution p(x, y), which represents the true data-generating
process. For instance, in a text generation task, X could be a
prompt and Y the correct or intended response. We assume
access to a generative model, referred to as a query oracle,
which allows us to sample from a conditional distribution
π(y | x). That is, querying the oracle at input x yields an
independent sample y ∼ π(· | x). Our goal is to construct
prediction sets that provide rigorous coverage guarantees
while querying the oracle a finite number of times per test
input.

In classical CP, one defines a nonconformity score func-
tion S : X × Y → R to measure how atypical a label y is
for an input x, and constructs prediction sets of the form
C(x) = {y ∈ Y : S(x, y) ≤ q}, where q is a calibrated
threshold. To use such a construction in practice, one must
either enumerate the label space Y , as in multi-class classi-
fication, or describe the set compactly, such as an interval
when Y = R. However, in tasks such as text generation,
sets defined as {y ∈ Y : S(x, y) ≤ q}, when Y is the space
of all the text sequences, are not a tractable representation
for uncertainty. That is, there is no clear practical way to
list all these labels or describe them using an interpretable
structure (like an interval). Hence, the standard paradigm of
defining a score function and calibrating a threshold may not
fully capture the nature of uncertainty in generative models.
Instead, generative models allow for exploring the output
space by multiple queries.

What is missing is a perspective that views uncertainty
through the lens of querying the generative model–that
is, sampling from the oracle. In this view, the informa-
tion about the true label comes from a finite set of queries:
Zt(x) = {yx1 , . . . , yxt }, where x is a test point and t is the
number of queries. This multiple-query setting introduces
a key limitation: the correct label Y may not be among the

queried outputs. This scenario is common in practice–e.g.,
when using an LLM as the oracle to generate possible re-
sponses to a prompt. If none of the generated completions
contains the correct answer, we have no signal to recover
it. In such cases, there is no choice but to admit high un-
certainty and acknowledge that the correct label could lie
anywhere in the vast, unseen remainder of Y .

To address this, we introduce a special abstract label EE,
short for “Everything Else”, which denotes the collection
Y \ Z(x). Intuitively, when the model has not yet produced
the correct output in its first t queries, the only way to ensure
coverage is to include EE in the prediction set. With this for-
mulation, the prediction set C(x) is a subset of Z(x) ∪ EE.
The CP coverage guarantee P(Y ∈ C(X)) ≥ 1 − α then
admits the interpretation: either the true label Y is among
the sampled outputs, or it is captured by EE. Including EE
ensures valid coverage even when the true label has not been
observed. The key challenge, then, is to avoid including
EE unnecessarily—so as to keep prediction sets informa-
tive—while still maintaining coverage guarantees across all
test points. This creates a fundamental trade-off: query-
ing the oracle more increases the chance of capturing the
correct label explicitly, reducing reliance on EE; querying
less conserves resources but often necessitates including EE,
resulting in less informative predictions. To rigorously navi-
gate this trade-off, we formalize an optimization framework
that balances coverage, query cost, and informativeness.

Our framework consists of two components. The first is a
query policy T : X → N ∪ {0}, which determines how
many i.i.d. queries to make to the oracle for each input
x. This effectively allocates the total query budget across
test inputs. For each input x, we sample the oracle π(y|x)
independently T (x) times, producing a sampled label set
Z(T ;x) = {yx1 , . . . , yxT (x)} for each x.

The second component is a set map f : X × 2Y → 2Y
′
,

which converts the queried labels into a prediction set
C(x) = f(x, Z(T ;x)), where Y ′ = Y ∪ EE. Given a finite
computational query budget B and a user-defined miscover-
age rate α ∈ [0, 1], our goal is to design T and f jointly to
ensure valid coverage while maximizing the informativeness
of the prediction sets under the budget constraint.

Conformal Prediction with Query Oracle (CPQ)

minimize
f(·), T (·)

EX

[
λ1{EE ∈ C(X)}

+
∑

y ̸=EE 1{y ∈ C(X)}
]

subject to PrX,Y [Y ∈ C(X)] ≥ 1− α

EX [T (X)] ≤ B

We minimize two forms of uninformative prediction sets:

3
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one by the inclusion of EE, the other by the size of the
prediction set. Whenever EE ∈ C(x), the conditional cov-
erage at x is trivially satisfied: P[Y ∈ C(x) | X = x] = 1.
Thus, including EE guarantees coverage but offers no useful
information. Penalizing EE is therefore essential: the chal-
lenge lies not in achieving coverage, but in doing so while
using EE as infrequently as possible. The parameter λ ≥ 0
controls the penalty ratio. We focus on the regime where
λ≫ 1, expressing a strong preference for minimizing the
use of EE across the population. However, the second term
remains important to prioritize smaller sets among those that
avoid EE maximally. In the next section, we analyze this
objective to uncover two key algorithmic principles. These
principles will ultimately guide the design of our practical,
finite-sample algorithm.

3. Algorithmic Principles
The CPQ problem introduced above is a joint optimization
over two components: the query policy T (·) and set map
f(·). In this section, we adopt a decoupled analysis, splitting
the problem into two stages. First, we fix a query budget and
ask: What is the optimal query policy for allocating queries
to minimize the chance of missing the correct label? Then,
given a fixed query policy, we ask: What is the optimal
set map for constructing informative prediction sets while
ensuring valid coverage?

It is worth noting that this decoupled analysis only approxi-
mates the full CPQ solution, as it breaks the joint optimiza-
tion over T and f . Accordingly, optimality in this section
refers to the best solution within each stage, rather than the
overall joint optimum.

To answer these questions, we work in the population
regime, assuming the query oracle π(y | x) is the same
as the true conditional distribution p(y | x). Consequently,
we assume throughout this section that π ≡ p; i.e., the query
oracle is perfect. This idealized setting allows us to derive
two algorithmic principles—one for query policy and one
for prediction set construction—that form the foundation
of our finite-sample algorithm. In Section 4, we show how
to apply these principles with any black-box query oracle
(e.g., an LLM), particularly when π(y|x) ̸= p(y|x), to con-
struct practical prediction sets with finite-sample coverage
guarantees. Proofs are deferred to supplementary material.

3.1. Principle 1: Optimal Querying Policy by Missing
Mass Minimization

We now focus on the query policy, aiming to allocate queries
across covariate points to minimize the chance of missing
the correct label. If computational resources were unlimited,
we could query the oracle exhaustively for each input x,
fully uncovering the label distribution and removing the

need for the abstract label EE. But under a finite budget, we
must query strategically—balancing where and how much
to query—an objective naturally captured by the concept of
missing mass.

Formally, the missing mass for a covariate x after t queries is
defined as the probability that the true label Y is not among
the sampled set Zt(x):

θ(x, t) = Pr
Y,Zt(x)

[
Y /∈ Zt(x) | X = x

]
,

where Zt(x) consists of t i.i.d. samples from p(y | x). Intu-
itively, θ(x, t) measures residual uncertainty—the chance
that t independent draws from p(y | x) fail to capture
the true label. As t increases, θ(x, t) naturally decreases,
and does so with diminishing returns: each additional
query is less likely to reduce uncertainty than the previ-
ous one. To make this precise, define the finite difference
as ∆(x, t) := θ(x, t+ 1)− θ(x, t). For each x, ∆(x, t) is
negative and non-decreasing in t, meaning θ(x, t) is non-
increasing with diminishing returns (see supplementary ma-
terial for proofs).

These properties make missing mass a natural objective
for query policy. For each input x, increasing the number
of queries t reduces the probability of missing the true la-
bel—i.e., lowers θ(x, t)—and eventually, we may no longer
need to include EE in the prediction set for that x. However,
since our total query budget is limited, we cannot afford to
exhaustively query all inputs. This raises the core question:
how should we allocate our finite budget across different
covariates to minimize overall uncertainty? That is, which
inputs should receive more queries to reduce reliance on
EE most effectively? This naturally leads to the following
optimization problem:

min
T (·):X→N∪{0}

EX

[
θ(X,T (X))

]
subject to EX [T (X)] ≤ B.

(1)

Theorem 3.1 (Optimal Query Policy). Assuming X is a
continuous random variable, let T ∗(·) be the optimal solu-
tion to the optimization problem (1). Then, there exists a
constant β∗ ∈ R such that, for all x ∈ X almost surely, the
optimal query size T ∗(x) satisfies:

∆(x, T ∗(x)− 1) ≤ β∗ < ∆(x, T ∗(x) + 1) (2)

This result suggests a simple and intuitive principle: con-
tinue querying the oracle for a given x as long as doing
so substantially reduces the missing mass. In other words,
we should stop sampling when the gain from an additional
query falls below a threshold β∗. This behavior is directly
driven by the diminishing returns property of θ(x, t) and
constitutes our first algorithmic principle. This insight
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guides the query policy in our finite-sample algorithm in
Section 4, where we replace the exact derivative ∆(x, t)
with a data-driven estimate ∆̂(x, t), and stop querying when
∆̂(x, t) ≤ β∗, with β∗ calibrated from finite samples to
satisfy the query budget B.

3.2. Principle 2: Optimal Prediction Sets by Missing
Mass Estimation

In this section, we assume we are given access to a predeter-
mined and known query policy function T : X → N, which
specifies the number of i.i.d. queries made to the oracle for
each input x. For each x ∈ X , we denote the resulting
set of sampled labels by Z(T, x) = {yx1 , . . . , yxT (x)}. With
these samples in hand, our goal is to construct prediction
sets that satisfy the desired coverage guarantee while being
as informative as possible.

To achieve this, we formulate an optimization problem to
determine the best possible prediction sets under coverage
constraints. The primary goal is twofold: (1) minimize
the inclusion of the abstract label EE, as its presence indi-
cates complete uncertainty, and (2) among sets with minimal
inclusion of EE, minimizing the prediction set sizes. Re-
minding f : X × 2Y → 2Y

′
and C(x) = f(x, Z(T ;x))

from Section 2, we introduce:

min
f(·)

EX

[
λ1{EE ∈ C(X)}

+
∑
y ̸=EE

1{y ∈ C(X)}
]

subject to Pr
X,Y

[
Y ∈ C(X)

]
≥ 1− α,

(3)

The parameter λ ≥ 0 balances the trade-off between avoid-
ing EE and keeping prediction sets small. We are particu-
larly interested in the regime where λ is large. This reflects
a strict preference for minimizing the use of EE, while still
allowing the optimization to differentiate among prediction
sets that achieve the same frequency of EE inclusion. The
inclusion of the second term ensures that among all valid
prediction rules minimizing EE, we favor the most infor-
mative ones with smaller set sizes. Next, we characterize
the structure of the optimal set map solution to (3) in the
following theorem.

Theorem 3.2 (Optimal Set-Assignment Policy). Assuming
X is a continuous random variable, for sufficiently large
values of λ, the optimal solution f∗

λ to the optimization
problem (3) has the following structure: there exists a scalar
threshold q∗ ∈ R+ satisfying

f∗(x, Z(x)) = {y ∈ Z(x) ∪ {EE} : S(x, y) ≤ q∗},

almost surely for every x Also, defining p(EE|x) =

PrY
[
Y /∈ Zt(x) | X = x

]
, we have,

S(x, y) =

{
1− p(y | x), if y ̸= EE,

2− p(y | x), if y = EE.
(4)

Theorem 3.2 shows that the optimal prediction sets can
be constructed by thresholding a conformity score S(x, y).
This score prioritizes explicitly sampled labels over the
abstract label EE, ensuring that EE is included only if neces-
sary. Specifically, EE is assigned a score of 2− p(EE | x),
where p(EE | x) corresponds exactly to the missing mass.
This means EE is most likely to be included when the miss-
ing mass is high—an intuitive and desirable behavior. More-
over, this result generalizes the classic finding in confor-
mal prediction that optimal prediction sets minimizing size
under a coverage constraint are obtained by thresholding
1− p(y | x), in classification and regression (Sadinle et al.,
2019).

To summarize, we have derived two foundational principles:
one connecting the optimal query policy to the derivative
of the missing mass, and the other connecting the optimal
set map to the missing mass itself through an optimal con-
formity score. In the next section, we build upon these
principles to design a practical finite-sample algorithm.

4. Finite Sample Algorithm
In this section, we present our finite-sample algorithm,
which consists of two modules, each carefully built upon
the algorithmic principles derived in Section 3. The query
module relies on an estimator of the missing mass deriva-
tive, denoted ∆̂(x, t), while the calibration module uses an
estimator of the missing mass itself, θ̂(x, t)—both of which
we detail below.

Estimating Missing Mass and Its Derivative. Let Y be
the label space, and suppose we observe a sequence of t
i.i.d samples Zt(x) = {yx1 , . . . , yxt } ∼ π(y|x), i.e., samples
from the oracle. The missing mass, θ(x, t), is defined as
the total probability of all labels in Y that have not been
observed in the sample Zt(x). For each integer r ≥ 0,
let Nr(x, t) denote the number of distinct labels that oc-
cur exactly r times in the sample Zt(x). In other words,
Nr(x, t) = |{y ∈ Zt(x) : #(y) = r}|, where #(y) de-
notes the number of times the label y appears in the sample
Zt(x).

The classical Good-Turing estimator approximates the miss-
ing mass based on the labels seen exactly once, aka sin-
gletons. The intuition is simple in that if many labels ap-
pear only once, it is likely that there are more yet-unseen
labels with comparable probabilities. This yields the es-

timator θ̂(x, t) := N1

t . In fact, Good-Turing estimators

also provide estimates for seen labels. For y ∈ Zt(x),

5
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we estimate p(y | x) using the Good–Turing formula:
ω̂(y | x) = r+1

t ·
Nr+1
Nr

, where r is the number of times
y appears in Zt(x). Hence, we estimate the conformity
score derived in our optimal set construction (see Eq. (4))

by Ŝ(x, y) =

{
1− ω̂(y | x), if y ∈ Zt(x)

2− θ̂(x, t), if y /∈ Zt(x)
.

On the other hand, the query module requires an esti-
mate for the missing mass derivative ∆(x, t) = θ(x, t +
1)− θ(x, t), which captures the reduction in missing mass
from drawing an additional sample. By revisiting the
original calculations behind the classical Good-Turing es-
timator, we derive the following novel estimator for the

derivative: ∆̂(x, t) := − 2N2

t2 .

Interestingly, we see that while the Good-Turing estima-
tor relates the missing mass to the count of singletons, our
estimator for the derivative reveals that the count of double-
tons, number of unique labels that appear twice, is a good
proxy for the rate at which the missing mass decreases. A
detailed derivation and empirical evaluation are provided in
the supplementary material.

Algorithm. Assume we have access to a query oracle π(y|x)
that approximates–but may not perfectly match–the true
conditional distribution p(y|x). By querying this oracle,
we can draw independent samples from π(y|x) for each
input x, and compute quantities such as the missing mass
(or its derivative) as needed. Additionally, we are given
calibration data Dcal = (Xi, Yi)

N
i=1 drawn from the ground

truth distribution p(x, y), as is standard in CP.

To tune the query threshold β∗, we first partition the cali-
bration data Dcal into two disjoint subsets Dcal1 and Dcal2 .
The first subset Dcal1 is used exclusively for tuning β∗ as
follows: for each input x ∈ Dcal1 , draw a set of queries
y1:T (x) ∼ π(y|x), where T (x) is the smallest integer num-
ber at which ∆̂(x, T (x)) ≤ β∗. Given a query budget
constraint B, select β∗ such that the average number of
queries 1

|Dcal1
|
∑

x T (x) ≤ B. Since β∗ is a scalar, this can
be done via exhaustive search on a grid of values. Once β∗

is fixed, we apply our algorithm presented in Algorithm 1.

The following theorem guarantees the distribution-free cov-
erage validity of our algorithm.

Theorem 4.1 (Coverage Validity). AssumingDtest andDcal2
are exchangeable, we have:

Pr[Ytest ∈ C(Xtest)] ≥ 1− α,

where the probability is over (Xtest, Ytest) and Dcal2 .

In summary, CPQ adaptively query the oracle guided by
an estimation of derivative of the missing mass, and then
make prediction sets guided by Good-Turing estimate of the
missing mass itself.

Algorithm 1: Conformal Prediction with Query
Oracle (CPQ)

Input: Query oracle π(y | x), conformity score
Ŝ(x, y), calibration data Dcal2 , test point
xtest, miscoverage α, query budget B,
missing-mass estimator ∆̂(x, t), threshold β∗

Query Module→ Principle 1

foreach x ∈ Dcal2 ∪ {xtest} do
Sample y1:T (x) ∼ π(y | x) until
∆̂(x, T (x)) ≤ β∗;
Set Z(x) = {y1, . . . , yT (x)};

Calibration Module→ Principle 2

foreach (xi, yi) ∈ Dcal2 do
Compute conformity scores si =
Ŝ(xi, yi);

Set q∗ = Quantile1−α(s1, . . . , s|Dcal2
|,∞)

Output:
C(xtest) =

{
y ∈ Z(xtest) ∪ {EE} : Ŝ(xtest, y) ≤

q∗
}
.

5. Experimental Results
We begin by outlining our experimental setup, then present
empirical evaluations along two main axes: (i) a component-
wise analysis isolating the impact of optimal querying and
optimal conformal calibration (Section 3), and (ii) a compar-
ison against state-of-the-art conformal language modeling
baselines, including CLM (Quach et al., 2024) and its recent
variant, SCOPE-Gen (Kladny et al., 2025).
Datsets and Models. We evaluate on three benchmark
datasets using two leading LLMs, adapting all tasks to open-
eneded generation by removing any multiple-choice struc-
ture. Generations are lexically normalized and marked cor-
rect only if they exactly match the ground truth answer; i.e
evaluating using the exact match metric. The datasets are:

(i) BBH Geometric Shapes (Suzgun et al., 2022)
(250 prompts): Visual reasoning from SVG paths,
with responses generated using LLaMA-3 8B-
Instruct (AI@Meta, 2024).

(ii) GSM8K (Cobbe et al., 2021) (300 randomly selected
prompts): Multi-step arithmetic reasoning, answers
from Mixtral-8x7B-Instruct (AI, 2024).

(iii) BBH Date Understanding (Suzgun et al., 2022) (250
prompts): Temporal reasoning; responses generated
using LLaMA-3 8B-Instruct.
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Evaluation Metrics. Our goal is to construct prediction
sets that are both valid and informative. We report three key
evaluation metrics. First, Empirical Coverage: the fraction
of test examples whose prediction set contains either the
correct answer or EE, either ensures validity ( see Section 2).
Second, EE fraction measures how often EE appears; lower
fractions indicate the model more often explicitly captures
the correct answer without relying on fallback coverage
via EE. Third, Average set size: the average number of
seen labels per prediction set. While larger sets generally
imply less informative sets, a larger set without EE conveys
more information than a smaller set with EE, as the former
expresses uncertainty within observed outputs, whereas the
latter signals residual uncertainty over the entire unobserved
label space. Together, these metrics capture the tradeoff
between coverage and informativeness. An ideal prediction
set achieves target coverage with minimal reliance on EE.

Clustering. Clustering is a key step in our pipeline. Since
LLMs produce lexically varied outputs that convey the
same meaning, we group generations into semantic equiva-
lence classes (clusters), each corresponding to a single label
y ∈ Y . We use LLaMA-3-8B-Instruct model to decide if
two generations semantically equivalant and assign them
to the same cluster if so. This approach has proven effec-
tive for handling complex and unstructured outputs (Kuhn
et al., 2023; Kaur et al., 2024). Prompts and implemen-
tation details are provided in the supplementary material.
Each cluster’s frequency is used to estimate the missing
mass (probability of unseen clusters) and its derivative (see
Section 4). Probabilities for seen clusters are computed
by normalizing frequencies and scaling to form a valid dis-
tribution over both seen and unseen clusters. Importantly,
our finite sample algorithm is modular: it works with any
clustering or probability estimation method. As long as
clustering and associated probabilities are well defined and
valid, our method applies.

Calibration and sampling procedures. For each dataset,
we randomly split examples equally into calibration and
test sets. On the calibration set, we tune CPQ’s sampling
threshold β∗ to meet the target average query budget and
estimate the threshold q∗ for constructing prediction sets.
All results are averaged over 50 random splits of calibration
and test data.

5.1. Fine-grained Component-wise Analysis

To assess contributions of each algorithmic principle (Sec-
tion 3), we compare three progressively refined variants:
(i) Vanilla: A baseline with a fixed, non-adaptive querying
strategy—the same number of generations per input—and
a simple, yet valid calibration rule. While not optimal, this
baseline serves as a reasonable starting point. Calibration
details are provided in the supplementary material. (ii) Prin-

Figure 1. Performance of the three algorithmic variants (Vanilla,
P1, P1+P2 : corresponds to our full finite sample algorithm, i.e
CPQ) across Geo Shapes (B = 30), GSM8k (B = 7), and BBH-
Date (B = 20). Each row shows coverage, EE fraction, and
average set size as a function of 1− α.

ciple 1: Adds our adaptive querying, adjusting the number
of queries based on the estimated missing mass derivative,
with calibration unchanged. (iii) Principle 1 + 2: Combines
both optimal querying and conformal calibration, represent-
ing the full CPQ algorithm in Section 4. Figure 1 shows
results on all benchmark datasets. We observe consistent
gains from incorporating each algorithmic principle, with
the full CPQ algorithm (both principles combined) achiev-
ing the largest reduction in the fraction of prediction sets
that include the fallback label EE, while maintaining valid
coverage. The query budget B is fixed per dataset, while
the coverage level 1− α is varied. Budgets were chosen to
reflect reasonable intermediate values based on the few-shot
model accuracy for each dataset. Additional results across a
range of budgets are in the supplementary material.

We see that CPQ effectively manages the trade-off between
relying on observed labels and falling back on EE. As cov-
erage increases, CPQ includes more seen labels—reducing
reliance on EE. However, when inclusion of EE is unavoid-
able, CPQ compensates by removing other labels. This is a
principled choice: once included, EE already accounts for
the entire remaining label space, and adding more labels
offers no further benefit. Thus, CPQ adjusts set size based
on the structure of uncertainty.

5.2. Comparison with Conformal Baselines

We now compare CPQ to two recent conformal prediction
methods for large language models: CLM (Quach et al.,
2024) and its variant SCOPE-Gen (Kladny et al., 2025).
While both represent state-of-the-art in this space, they are
not out-of-the-box comparable with CPQ in two key ways.

7
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Dataset Algorithm Nom. Cov. Emp. Cov. EE Frac.

Geo
CLM 0.60 0.58± 0.038 0.40± 0.047
Scope-Gen 0.60 0.68± 0.080 0.38± 0.22
CPQ 0.60 0.61± 0.06 0.07± 0.07

GSM8K
CLM 0.95 0.93± 0.03 0.70± 0.11
Scope-Gen 0.95 0.93± 0.05 0.61± 0.26
CPQ 0.95 0.95± 0.02 0.16± 0.14

Date
CLM 0.70 0.68± 0.07 0.32± 0.11
Scope-Gen 0.70 0.78± 0.07 0.51± 0.11
CPQ 0.70 0.71± 0.07 0.25± 0.08

Table 1. Nominal and Empirical Coverage, and EE fraction

First, neither accounts for the missing mass—the residual
probability over unseen labels represented by EE in our
framework. As a result, they may fail to provide valid
configurations at higher coverage levels, especially when
the correct answer isn’t among the sampled outputs. Second,
they lack an explicit mechanism to control query budget:
the number of model queries varies across coverage levels
and is not directly tunable.

To enable a meaningful comparison, we evaluate CLM and
SCOPE-Gen using their original procedures, with one ad-
justment: we augment their output space to include the
abstract label EE alongside sampled responses. The under-
lying logic and mechanisms remain unchanged; we simply
extend the prediction space to reflect the possibility of un-
seen correct label, which is necessary for a complete cov-
erage analysis. This enables us to assess how often these
baselines would have needed to include EE to satisfy cover-
age validity. Since, there is no principled way to configure
these baselines to target a specific budget, we first measure
their average query usage. We then tune CPQ’s querying
threshold β∗ to match this budget. All methods are thus
evaluated on equal footing at the same nominal coverage
level and under the same average query budget. As shown in
Table 1, CPQ dramatically reduces reliance on EE. For ex-
ample, on GSM8k at 95% nominal coverage, CPQ achieves
the desired coverage with an EE fraction of 16.5%, versus
70.4% for CLM and 61% for SCOPE-Gen under the same
budget constraints. Moreover, CPQ not only offers more
informative prediction sets but also maintains tighter cov-
erage, especially in high-coverage regimes where baselines
struggle.

6. Conclusion and Limitations
We presented a principled framework for UQ by introducing
a novel missing mass perspective. we derived two algorith-
mic principles that guide optimal query policy and predic-
tion set construction. Our finite-sample algorithm integrates
these insights and yields significantly more informative pre-
diction sets compared to existing conformal methods for
LLM UQ. Our method relies on estimation of missing mass

and its derivative, which can be challenging in very low
query regimes.

7. Impact Statement
This work advances uncertainty quantification for generative
AI by introducing CPQ, a novel and broadly applicable
framework tailored specifically for black-box large language
models. CPQ is particularly beneficial in safety-critical
settings and downstream decision-making contexts, where
reliability and informative predictions are essential. We do
not foresee any negative societal impacts resulting from this
research.
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A. Proofs
A.1. Proof of Theorem 3.1

We first start by reviewing the theorem statement. Let θ(x, t) be the missing–mass curve defined in Section 3.1, and
∆(x, t) = θ(x, t+ 1)− θ(x, t). There exists a threshold β∗ ≤ 0 such that, almost surely,

∆
(
x, T∗(x)− 1

)
≤ β∗ < ∆

(
x, T∗(x) + 1

)
,

or, T∗(x) = 0 whenever ∆(x, 0) ≤ β∗.

Let T := {T : X →N≥0 measurable | E[T (X)] ≤ B} and let T ∗ ∈ T be an optimal solution.

For β ≤ 0 define the measurable sets

Aβ := {x : ∆(x, T ∗(x)− 1) > β, and T ∗(x) > 0}, Bβ := {x : ∆(x, T ∗(x) + 1) ≤ β}.

Because ∆(x, T ∗(x)) ≤ ∆(x, T ∗(x) + 1), the sets Aβ and Bβ are disjoint. We can now prove the following claim.

Claim. p(Aβ) p(Bβ) = 0 for every β ≤ 0.

Proof of the claim. Assume p(Aβ), p(Bβ) > 0. Take measurable A ⊆ Aβ , B ⊆ Bβ with p(A) = p(B) = η > 0 (this
exists due to the assumption that X is a continuous random variable) and set

T ′(x) :=


T ∗(x)− 1, x ∈ Aβ ,

T ∗(x) + 1, x ∈ Bβ ,

T ∗(x), otherwise.

Then we have,
E[T ′(X)] = EX

[
T ∗(X)− 1[X ∈ Aβ ] + 1[X ∈ Bβ ]

]
= E[T ∗(X)] ≤ B,

therefore, T ′ ∈ T . Furthermore,

E
[
θ(X,T ′(X))−θ(X,T ∗(X))

]
(a)
= − E[1[X ∈ Aβ ] ∆(X,T ∗(X)− 1)] + E[1[X ∈ Bβ ] ∆(X,T ∗(X))]

(b)

≤ − E[1[X ∈ Aβ ] ∆(X,T ∗(X)− 1)] + E[1[X ∈ Bβ ] ∆(X,T ∗(X) + 1)]

(c)
<E[1[X ∈ Aβ ]β] + E[1[X ∈ Bβ ]β]

(d)
= − ηβ + ηβ = 0,

where (a) follows from the definition of T ′, (b) stems from Lemma A.1 which indicates the diminishing return property, (c)
follows from the definitions of Aβ and Bβ , and finally, (d) is due to the definition of η. This is a contradiction with the
optimality of T ∗, hence we proved the claim.

Existence and characterization of the threshold β∗. Define the threshold β∗ by setting

β∗ := inf
{
β ≤ 0 : p(Aβ) = 0

}
.

Intuitively, this threshold separates covariate points into two groups: those for which an additional query would yield a
marginal improvement strictly greater than β∗, and those for which the marginal improvement from additional queries is at
most β∗. To see why β∗ is indeed the correct threshold, suppose there existed covariates violating the threshold condition
at this β∗. Then, we could slightly perturb the threshold, obtaining a nearby threshold β′ such that both sets Aβ′ and Bβ′

simultaneously have positive probability. But this situation would directly contradict the claim we proved earlier, which
ensures that at no threshold can both Aβ and Bβ have positive probability. Thus, no violation at threshold β∗ can occur,
confirming that β∗ is precisely the desired threshold.
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We now formalize this intuition precisely. Define the violation probabilities

f(β) := p(Aβ) and g(β) := p(Bβ), β ≤ 0.

Observe that enlarging the threshold β reduces the set Aβ and expands the set Bβ . Therefore, the function f(β) is non-
increasing and right-continuous, and g(β) is non-decreasing and left-continuous. Additionally, at β = 0, we have f(0) = 0,
since by construction ∆(x, t) ≤ 0.

By right-continuity of f(·), it follows immediately from the definition of β∗ that

p(Aβ∗) = f(β∗) = 0.

Next, assume towards contradiction that p(Bβ∗) > 0. By left-continuity of g(·), there would exist an ε > 0 sufficiently
small so that p(Bβ∗−ε) > 0. However, by the definition of β∗, lowering the threshold to β∗ − ε would yield p(Aβ∗−ε) > 0.
Thus, at threshold β∗ − ε, both Aβ∗−ε and Bβ∗−ε would simultaneously have positive probability, contradicting the claim
we previously established. Hence, we must have

p(Bβ∗) = 0.

Finally, since p(Aβ∗) = 0 and p(Bβ∗) = 0, we have for almost every x:

∆
(
x, T ∗(x)− 1

)
≤ β∗ < ∆

(
x, T ∗(x) + 1

)
.

In the corner case where ∆(x, 0) ≤ β∗, the definition of Aβ∗ forces the optimal query count T ∗(x) = 0. This establishes
precisely the threshold characterization asserted in the theorem, thereby completing the proof.

We now prove the following lemma, which we used in the above proof.
Lemma A.1 (Diminishing Returns). For every fixed covariate x ∈ X , the marginal

∆(x, t) = θ(x, t+ 1)− θ(x, t), t ≥ 0,

is strictly negative and non-decreasing in t; that is,

∆(x, t) < 0 and ∆(x, t+ 1) ≥ ∆(x, t) ∀ t ≥ 0.

Lemma A.1 establishes that as t increases, the missing mass θ(x, t) naturally decreases, and does so with diminishing
returns, meaning each additional query is less likely to reduce the uncertainty than the previous one. Thus the derivative of
the missing mass, namely ∆(x, t) is negative and non-decreasing in t.

Proof. The missing mass is

θ(x, t) = Pr
Y,Zt(x)

[Y /∈ Zt(x) | X = x] = EY,Zt(x)|X=x[1{Y /∈ Zt(x)}].

Applying law of total expectation

θ(x, t) = EY |X=x EZt(x)|Y,X=x[1{Y /∈ Zt(x)}].

and evaluating the inner expectation Conditioned on Y = y, the t draws in Zt(x) miss y with probability (1− p(y | x))t,
hence

θ(x, t) = EY |X=x

[
(1− p(Y | x))t

]
.

The, the finite difference becomes:

∆(x, t) = θ(x, t+ 1)− θ(x, t)

= EY

[
(1− p(Y | x))t+1 − (1− p(Y | x))t

]
= −EY

[
(1− p(Y | x))t p(Y | x)

]
.

For each y, (1− p(y | x))t is decreasing in t. Multiplying by the positive p(y | x) preserves this property, and expectation
is linear; therefore the sequence gt(x) := EY [(1 − p(Y | x))tp(Y | x)] is non-increasing, so ∆(x, t) = −gt(x) is
non-decreasing.

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Conformal Prediction Beyond the Seen: A Missing Mass Perspective for Uncertainty Quantification in Generative Models

A.2. Proof of Theorem 3.2

Let’s start by restating the optimisation problem: For every input x ∈ X the fixed query policy T : X →N returns the
random multiset Z(x) = Z

(
T (x), x

)
= {yx1 , . . . , yxT (x)}. A set map f outputs the prediction set C(x) = f

(
x, Z(x)

)
⊆

Z(x) ∪ {EE}. The goal is

min
f

E

λ1{EE ∈ C(X)} +
∑
y ̸=EE

1{y ∈ C(X)}


s. t. Pr

[
Y ∈ C(X)

]
≥ 1− α.

(5)

Let us first outline the strategy for the proof clearly. The optimization problem (3) involves selecting subsets of labels to
minimize the frequency of including the abstract label EE and the size of the prediction sets, subject to a coverage constraint.
To solve this precisely, we begin by introducing a relaxation to a linear programming problem, argue strong duality and
optimality conditions, and then show the relaxation introduces no strictly better fractional solutions, hence the relaxation is
actually equivalent to the original problem. Finally, we identify the optimal solution explicitly and demonstrate it has the
threshold-based structure stated in the theorem.

Relaxation to a Linear Program. For each x ∈ X and realized set Z(x), define a selection variable,

g(x, Z(x), y) ∈ [0, 1], y ∈ Z(x) ∪ {EE}

which represents the probability of including label y in the prediction set for covariate x and sampled set Z(x). Replacing f
by g and allowing the full interval [0, 1], the optimization problem (3) can then be relaxed to:

min
g

E

λ g(X,Z(X),EE) +
∑
y ̸=EE

g
(
X,Z(X), y

)
s. t. E

[
g
(
X,Z(X), Y

)]
≥ 1− α,

(6)

This relaxation enlarges the feasible region, i.e., its feasible region contains that of the discrete problem (5) (simply restrict g
to {0, 1}), hence the optimal value of (6) is no larger than the optimum of the original integer-valued problem (5).

Both objective and constraint are linear in g, so (LP) is a linear programme. In particular, This is a linear programme with
one linear constraint, identical in form to the Neyman–Pearson allocation problem. The classical lemma (see, (Neyman &
Pearson, 1933) for the case of finite dimensional optimization and Theorem 1, Section 8.3 of (Luenberger, 1969) for infinite
dimensional optimization) states that an optimal solution is obtained by selecting those labels with largest benefit–to–cost
ratio until the coverage constraint is met, possibly randomizing on a single tie. As we assumed that there is no mass-point
in the underlying distribution, tie-breaking randomization is not necessary, a situation that similarly arises in the original
derivation of Neyman–Pearson lemma.

Here the benefit of label y (EE or not) is p(y | x). However, the cost is 1 when y ̸= EE and λ when y = EE. The
benefit–to–cost ratio ordering is therefore equivalent to ordering by the non-conformity score

S0(x, y) :=

{
1− p(y | x), y ̸= EE,

1− p(EE|x)
λ , y = EE.

As a result of Neyman–Pearson lemma, there exists a threshold q∗0 ∈ R such that,

g⋆(x, Z, y) := 1 {S0(x, y) ≤ q∗0} , (7)

where g∗ is the optimal solution to (6). This automatically results that the relaxed optimization problem (6) is equivalent
to the original integer problem (5), as the optimal solution to (6) is of the integer form. That is to say, f∗ := g∗ is also
the optimal solution to (5). We now focus on g∗ and show that one can rewrite the same decision rule in the form that is
described in Theorem 3.2.

14
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The decision rule, g∗, depends solely on the level sets of S0. Here, the key observation is the set of selected labels depends on
the level-sets of the function g∗, rather than the values it takes. We may therefore apply any strictly decreasing transformation
to S0 without changing the selected labels. First, translate the EE row by +1 to obtain

S1(x, y) :=

{
1− p(y | x), y ̸= EE,

2− p(EE|x)
λ , y = EE.

To ensure this transformation does not interfere with the ordering of the original labels, we require that λ is sufficiently large.

This guarantees that for any y ̸= EE, we have 1− p(EE | x)
λ

> 1− p(y | x), so the EE score in S0 is strictly greater than

the scores assigned to any concrete label (here we also used the fact that p(y | x) > 0, which is true as y is one of the ”seen”
samples, hence the probability of it should be non-zero). Then, shifting the EE score by +1 preserves the separation of score
ranges: all concrete labels lie in (0, 1] and EE lies in (1, 2].

Next, apply the strictly decreasing map t 7→ 2− λ(2− t) on (1, 2]; this leaves the concrete labels untouched and sends the
EE score to 2− p(EE | x). The resulting score

S(x, y) :=

{
1− p(y | x), y ̸= EE

2− p(EE | x), y = EE

induces exactly the same selection rule and matches (4). That is, the optimal solution to is of the form: {y : S(x, y) ≤ q⋆}
for some q∗ ∈ R. This concludes the Theorem 3.2.

A.3. Proof of Theorem 4.1

Proof of Theorem 4.1 (Coverage Validity).

Define the conformity scores:

si = Ŝ(Xi, Yi), ∀(Xi, Yi) ∈ Dcal2 , and stest = Ŝ(Xtest, Ytest).

The prediction set is defined as:

C(Xtest) = {y ∈ Z(Xtest) ∪ {EE} : Ŝ(Xtest, y) ≤ q∗}, where q∗ = Quantile1−α(s1, . . . , sN2 ,∞).

We now derive a chain of equalities and inequalities:

Pr[Ytest ∈ C(Xtest)]
(a)
= Pr[stest ≤ q∗]

(a)
= Pr

[
stest ≤ Quantile1−α(s1, . . . , sN2

,∞)
]

(b)
= E

[ 1

N2 + 1

N2+1∑
i=1

I
[
si ≤ Quantile1−α(s1, . . . , sN2 , stest)

] ]
(c)

≥ 1− α,

where,

(a) By definition of the prediction set and q∗.

(b) Follows from exchangeability of the scores {s1, . . . , sN2
, stest}, since (Xtest, Ytest) is exchangeable with the calibra-

tion pairs.

(c) By definition of the (1− α) quantile, at least a 1− α fraction of the N2 + 1 values are less than or equal to it.

Therefore, we conclude:
Pr[Ytest ∈ C(Xtest)] ≥ 1− α,

as required. □
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B. Extended Related Works
Conformal Prediction The notion of prediction sets originates from classical work on tolerance regions in statistics
(Wilks, 1941; Scheffé & Tukey, 1945). However, the modern formulation of Conformal Prediction (CP), which provides
distribution-free, finite-sample validity guarantees, was introduced by (Vovk et al., 1999; 2005; Saunders et al., 1999a). Since
then, CP has emerged as a standard framework for uncertainty quantification, particularly in classification (Angelopoulos
et al., 2020; Romano et al., 2020; Papadopoulos et al., 2007) and regression tasks (Papadopoulos et al., 2002; Lei et al.,
2017; Romano et al., 2019b). A growing body of work has extended CO beyond marginal coverage to control more general
risk measures (Angelopoulos et al., 2023; 2022; Lindemann et al., 2023; Bates et al., 2021). These developments reflect the
increasing demand for flexible and reliable uncertainty quantification in modern predictive systems.

Conformal Prediction in LLMs. Recent work has explored conformal prediction as a principled tool for uncertainty
quantification in Large Language Models (LLMs), where outputs are open-ended and unbounded. Conformal Language
Modeling (Quach et al., 2024) introduced a sampling-and-filtering approach that generates candidate responses until a
calibrated stopping rule guarantees, with high probability, that at least one correct answer lies in the set. Generative
Prediction Sets (GPS) (Shahrokhi et al., 2025) recasts the problem as conformal regression on the number of samples
required for a correct output, using the resulting distribution to infer minimal draw count needed to achieve nominal coverage.
SCOPE-Gen (Kladny et al., 2025) proposes a sequential pruning strategy using greedy admissibility filters, leveraging
a Markov factorization to reduce verification costs during calibration. APIisEnough (Su et al., 2024) offers a black-box
approach that defines nonconformity via sampling frequencies and semantic similarity; their approach can be integrated in
our modular framework seamlessly.

Several complementary directions have further adapted CP to the generative language setting: token-level CP for non-
exchangeable generation (Ulmer et al., 2024), representation-level conformal alignment, filtering methods for long-form
factuality guarantees (Cherian et al., 2024; Mohri & Hashimoto, 2024; Rubin-Toles et al.), multi-group uncertainty
quantification in structured text (Liu & Wu, 2024), and CP for enumerable, discrete output spaces such as multiple-choice
tasks (Kumar et al., 2023). While all these methods offer valid coverage, they vary in efficiency, granularity, and scope, and
none explicitly incorporate missing mass estimation as a means to reason about unseen correct responses to capture the full
output space. Moreover, they do not account for or optimize under an explicit query budget, a central component of our
framework. In contrast, out method address both dimensions-coverage in the presence of unobserved labels and efficient
query allocation-through a unified, theoretically grounded approach.

Conformal abstention in LLMs An alternative to constructing prediction sets is to enable selective prediction: allowing
the LLM to abstain from responding when uncertain. This line of work aims to mitigate erroneous outputs by identifying
in puts where the model’s predictions are unreliable. In particular, (Yadkori et al., 2024b) apply conformal risk control
to bound the probability of hallucination and derive abstention rules that trigger whenever the estimated risk exceeds
a calibrated threshold.Moreover, (Tayebati et al., 2025) integrate CP with reinforcement learning to learn abstention
policies that adaptively respond to task difficulty and distributional shifts. Separately, (Yadkori et al., 2024a) introduce an
information-theoretic decomposition of uncertainty into epistemic and aleatoric components, leveraging the epistemic signal
to guide abstention decisions.

While these methods share the goal of reliable decision-making under uncertainty in LLMs, they differ from our approach in
that they do not produce explicit prediction sets, and therefore cannot be directly compares. One could, in principle, adapt
intermediate quantities from our method-such as prediction set size or estimated missing mass-as abstention criteria, which
can be an interesting venue for future work.

Broader Uncertainty Quantification for LLMs Our work is informed by a broad literature on uncertain quantification
(UQ) for LLMs that extends beyond conformal prediction. A substantial body of research focuses on mitigating hallucinations
in LLM outputs, employing techniques ranging from direct uncertainty estimation (Liu et al., 2024; Aichberger et al., 2024;
Farquhar et al., 2024; Duan et al., 2024) to strategies that generate multiple responses to probe and analyze the output
space (Wang et al., 2023). Prior research has observed that semantic disagreement among sampled responses correlates
with hallucinations risk, motivating a suite of detection methods based on self-consistency, token-level log-probability, or
verifier-based models (Kuhn et al., 2023; Liu & Wu, 2024; Manakul et al., 2023). While these heuristics have demonstrated
empirical success, they generally lack formal coverage guarantees and often require extensive sampling or auxiliary models.
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Missing Mass. The missing mass problem- estimating the total probability of outcomes not observed in a given sample-
has been extensively studied under the assumption of independent and identically distribution (i.i.d) data. Theoretical results
have established concentration inequalities for the missing mass around its expectation (McAllester & Ortiz, 2003; Berend
& Kontorovich, 2012; Ben-Hamou et al., 2017; Chandra & Thangaraj, 2019), studying the stability and predictability of this
quantity in large-sample regimes. Central to practical estimation, the classical Good-Turing (GT) estimator, first introduced
by (GOOD, 1953), has been analyzed extensively, with multiple variants developed to improve its finite-sample performance
(Acharya et al., 2013; Orlitsky & Suresh, 2015a; Falahatgar et al., 2017; Mossel & Ohannessian, 2019; Orlitsky & Suresh,
2015c; Skorski, 2021). Confidence intervals for missing mass were obtained using the GT estimator in (McAllester &
Schapire, 2000b) and subsequently refined by (Chandra et al., 2019). Building upon these ideas, (GOOD & TOULMIN,
1956) developed the ”Good-Toulmin” estimator, extending the missing mass framework to the species-discovery problem.
Though conceptually related, species discovery-estimating how many new previously unseen categories are expected to
appear in an enlarged sample-and missing mass estimation-which quantifies unseen probability mass-are fundamentally
different in objective and interpretation.

C. Further Experiments and Details
C.1. Sub-optimal calibration procedure

In our fine-grained, component-wise comparisons, we employ a simple yet valid calibration rule to ensure empirical coverage
at the target level 1 − α. This serves as a sub-optimal but interpretable baseline for evaluating the contributions of each
algorithmic principle.

To calibrate, we perform a grid search over a set of candidate thresholds {τ1, . . . , τm} ⊂ [0, 1], uniformly spaced across the
interval. For each candidate threshold τi, we apply the following two-step procedure on the calibration data (xi, yi)

n
i=1: (i)

include the fallback EE cluster in the prediction set if its estimated probability satisfies P(EE) ≥ τi. (ii) sort the remaining
clusters by their probabilities in descending order, and sequentially add them to the prediction set until the cumulative
probability mass exceeds 1− τi. We then compute the empirical coverage at each threshold:

cov(τi) =
1

n

n∑
i=1

{yi ∈ Cτi(xi)}

where Cτi(xi) denotes the prediction set constructed with threshold τi. We choose τ∗ = min{τ ∈ {τ1, . . . , τm} : cov(τi) ≥
1− α}.

At test time, we construct prediction sets using the calibrated threshold τ∗ via the same two-step strategy: include EE if its
predicted probability satisfies P(EE) ≥ τ∗, and then add remaining non-EE clusters in order of decreasing probability until
the cumulative mass exceeds 1− τ∗.

C.2. Performance across different budget values

To assess the robustness of each algorithmic component under varying resource limits, we conduct experiments at two
additional budget levels for every dataset. These settings are chosen to span regimes where additional queries provide
substantial gains (low budget) versus diminishing returns (high budget). In all settings, progressively adding adaptive
optimal querying (principle 1) and conformal calibration (principle 2) consistently improves or maintains performance
relative to the vanilla baseline. Notably, the largest reductions in EE–fraction occur under tighter budget constraints—when
the average number of queries per input is small relative to the model’s inherent uncertainty and the difficulty of the dataset.
In these regimes, adaptive querying provides the greatest benefit by allocating queries more strategically, thus increasing the
likelihood of observing informative labels. In contrast, when the budget is generous enough that most correct answers are
already revealed through uniform sampling, the marginal gains from adaptive querying diminish—but are never harmful.

Conformal calibration (principle 2) consistently improves performance across all budgets. By explicitly trading off set size
and fallback inclusion of EE, it ensures that the prediction sets remain compact while preserving valid coverage.

These results collectively reinforce that CPQ delivers targeted gains with the addition of each optimal modular component.
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Figure 2. Comparison of the fine-grained variants—vanilla baseline, optimal adaptive querying strategy (Principle 1), and full CPQ
(Principles 1 + 2)—under two different budget levels for each dataset. For BBH-Geometric Shapes, the corresponding budget levels are
20 and 40 ; for BBH Date Understanding, 10 and 30; and for GSM8K, 20 and 30. Shaded regions correspond to the standard deviation
over ten independent runs.
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C.3. Additional comparison with baselines

In this section, we provide further comparison of our algorithm CPQ with CLM and SCOPE-Gen across varying nominal
coverage levels for each dataset. Since scope-gen and CLM do not explicitly control the query budget; their number of
queries varies depending on the dataset and the desired coverage level. To ensure a fair comparison under shared resource
constraints, we first compute the average number of queries used by both CLM and SCOPE-Gen at each coverage level,
and configure CPQ to operate under the minimum of these two query budgets. While this setup may disadvantage CPQ in
cases where a baseline uses a larger query budget, CPQ still consistently achieves tighter empirical coverage and lower EE
fractions.

Dataset Algorithm Nom. Cov. Emp. Cov. EE Frac.

GSM8K
CLM 0.97 0.93± 0.02 0.74± 0.09
Scope-Gen 0.97 0.93± 0.05 0.56± 0.32
CPQ 0.97 0.96± 0.02 0.48± 0.15

CLM 0.90 0.89± 0.05 0.54± 0.14
Scope-Gen 0.90 0.86± 0.06 0.10± 0.12
CPQ 0.90 0.89± 0.03 0.00± 0.00

CLM 0.85 0.86± 0.05 0.48± 0.04
Scope-Gen 0.85 0.85± 0.07 0.01± 0.02
CPQ 0.85 0.84± 0.04 0.00± 0.00

CLM 0.80 0.83± 0.03 0.48± 0.04
Scope-Gen 0.80 0.84± 0.02 0.00± 0.00
CPQ 0.80 0.79± 0.03 0.00± 0.00

BBH - Geometric Shapes
CLM 0.90 0.88± 0.05 0.77± 0.05
Scope-Gen 0.90 0.95± 0.03 0.93± 0.05
CPQ 0.90 0.90± 0.03 0.76± 0.06

CLM 0.80 0.73± 0.08 0.60± 0.09
Scope-Gen 0.80 0.85± 0.04 0.76± 0.04
CPQ 0.80 0.81± 0.05 0.52± 0.10

CLM 0.70 0.65± 0.07 0.49± 0.08
Scope-Gen 0.70 0.80± 0.05 0.70± 0.08
CPQ 0.70 0.70± 0.06 0.20± 0.12

CLM 0.50 0.42± 0.08 0.21± 0.06
Scope-Gen 0.50 0.58± 0.10 0.12± 0.19
CPQ 0.50 0.50± 0.07 0.00± 0.00

BBH - Date Understanding
CLM 0.90 0.84± 0.06 0.63± 0.08
Scope-Gen 0.90 0.96± 0.05 0.92± 0.10
CPQ 0.90 0.90± 0.03 0.72± 0.06

CLM 0.80 0.72± 0.10 0.41± 0.12
Scope-Gen 0.80 0.88± 0.04 0.71± 0.05
CPQ 0.80 0.81± 0.04 0.47± 0.06

CLM 0.60 0.52± 0.08 0.12± 0.05
Scope-Gen 0.60 0.68± 0.06 0.33± 0.08
CPQ 0.60 0.61± 0.06 0.06± 0.04

CLM 0.50 0.45± 0.08 0.05± 0.05
Scope-Gen 0.50 0.60± 0.08 0.17± 0.05
CPQ 0.50 0.51± 0.08 0.00± 0.01

Table 2. Comparison of CPQ with CLM and SCOPE-Gen across nominal coverage levels on GSM8K, BBH–Geometric Shapes, and
BBH–Date Understanding. CPQ is constrained to the lowest average query budget used by the baselines at each coverage level. Despite
this restriction, CPQ maintains tighter empirical coverage and lower EE fractions.
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C.4. Clustering algorithm

To group semantically equivalent answers, we apply a relaxed clustering procedure based on pairwise entailment checks
using LLaMA-3-8B (AI@Meta, 2024). Given a question x and two candidate responses y1 and y2, we query LLaMA-3-8B
twice: once to determine whether y1 entails y2, and once for the reverse direction. We declare two responses as a match
under a relaxed bidirectional entailment criterion: one direction must return entailment, and the other must return either
entailment or neutral. This relaxation tolerates mild asymmetries when one answer adds detail without changing
the core meaning. Using this matching function, we construct clusters through a simple iterative merging process. Each
response is compares against existing clusters, and added to the first cluster containing a match; otherwise it initiates a
new cluster. This bucket-merge strategy, while simple, produced highly coherent clusters in practice and was robust across
datasets. We emphasize that CPQ is agnostic to the particular clustering routine used. Any method that produces coherent
and valid clusters—whether heuristic, learned, or rule-based—can be substituted.

Below we provide the exact system and user prompts used for LLaMA entailment checks, followed by the pseudo code for
our relaxed clustering procedure:

System:
You are an expert at determining semantic entailment between answers to questions.
Given a question and two answers, determine if Answer 1 entails Answer 2.
Respond with only one word:
entailment, contradiction, or neutral.

User:
Question: <QUESTION>
Answer 1: <RESP1>
Answer 2: <RESP2>

Does Answer 1 semantically entail Answer 2?

Algorithm 2: Relaxed Entailment Clustering

Input: question x, responses {yi}Ti=1

MATCH Function (via LLaMA)

Function match (x, a, b):
ent1← LLaMAEntail(x, a, b);
ent2← LLaMAEntail(x, b, a);
return (ent1 == entailment and ent2 ∈ {entailment,neutral})

or (ent2 == entailment and ent1 ∈ {entailment,neutral})

Clustering

C ← ∅;
foreach yi in {y1, . . . , yT } do

if there exists c ∈ C, y ∈ c such that match (x, yi, y) then add yi to c;
else

create new cluster {yi} and add to C

Output: clusters C
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D. Missing Mass and Missing Mass Derivative
In this section, we will first derive an estimator for the missing mass derivative introduced in Section 4, and then empirically
evaluate its performance on two synthetic distributions.

D.1. Derivation

In this section, we study the problem of estimating the missing mass and its rate of change. We abstract away from any
specific context (such as input x) and define the missing mass problem in a general form. The missing mass is the probability
of observing a previously unseen label if we were to draw one additional sample after observing t i.i.d. samples from a
discrete distribution. The classical Good–Turing estimator addresses this problem. Here, we derive an estimator for the
derivative of the missing mass, which quantifies the rate at which the mass of unseen labels is shrinking as more samples are
collected.

We begin by introducing some quantities and explaining a generative process that is helpful in the derivation of the classical
Good–Turing estimator, and then we use similar principles to derive an estimator for the rate of change in the missing mass.

Let Y be the label space, and W denote the sequence of T independent samples W = {w1, . . . , wt} where wk ∈ Y . Let
θj be the probability that a future sample will be yj , where we’d like to account for the probability of yj occurring even
if it has not appeared in the sample W . Thus, a simple frequency #(yj)

T does not suffice, where #(yj) is defined as the
number of times label yj ∈ Y appears in W . Throughout this derivation, we assume that θj = θj′ if #(yj) = #(yj′ ),
thus two samples appear the same amount of times if they have the same probability of occurring. This assumption is also
needed for the classical derivation of the Good-Turing estimator. Though not realistic, this assumption reduces the number
of parameters significantly.

Let Nr = |{yj : #(yj) = r}| be the number of labels that occur exactly r times in W . Let θ(r) denote the probability of a
label occuring given that it appeared r times in W .To derive an estimate for θ(r), consider the following generative process:
assume we have access to θj . Draw j and hence also θj uniformly at random from the label space Y . Then. flip a coin t
times, where θj is the probability of success. Then the number of successes is the number of times yj appears. if yj appears
r times, put θj in θ(r). At the end θ(r) will approximately be the average of the θj for which #(yj) = r.

Precisely
θ̂(r) = E

[
θj |#(yj) = r

]
=

∑
j

θjP
[
θj |#(yj) = r

]
Now, condition on θj by applying Bayes rules , and given the uniform prior on P(θj) = 1

m , we obtain the following for the
probability of a yj appearing given that it has appeared r times is∑

j θj P
[
#(yj) = r | θj

]∑
j′ θj′ P

[
#(yj′) = r | θj′

]
We can rewrite both the numerator and the denominator in terms of the pdf of the binomial distribution:∑

j θj
(
t
r

)
θrj (1− θj)

t−r∑
j′ θj′

(
t
r

)
θr
j′
(1− θj′ )

t−r

We can rewrite the denominator in terms of Ein t[Nr], the expected value of Nr given that we flipped t coins at each step of
our experiments, yielding the following equation:

1

Ein t[Nr]

∑
j

θj

(
t

r

)
θrj (1− θj)

t−r

This quantity is estimating the probability of a label conditioned on it appearing exactly r times in the sample—that is, the
expected value of θj given #(yj) = r. However, what we actually want is the total probability mass of all such labels. To
obtain that, we need to multiply the average by the number of labels that appeared r times. Notably, the denominator of the
expression we derived is E[Nr], the expected number of such labels. So in fact, the numerator alone gives an estimation of
the total probability mass.
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Furthermore, we’d like to derive and estimate of the change in missing mass, we set r = 0,thus we are interested in the
following quantity: ∑

j

θj(1− θj)
t+1 −

∑
j

θj(1− θj)
t =

∑
j

−θ2j (1− θj)
t

=
−2

(t+ 2)(t+ 1)

∑
j

(
t+ 2

2

)
θ2j (1− θj)

t

(a)
=

−2
(t+ 2)(t+ 1)

Ein t+2

[
N2

]
(b)
≈ −2N2

t2

where (a) follows from the fact that Ein t+2

[
N2

]
=

∑
j

(
t+2
2

)
θ2j (1− θj)

t which is due to a simple counting argument. (b) is
due to an approximation for sufficiently large t, and plugging N2 as Ein t+2

[
N2

]
.

Hence, this yields our proposed estimator introduced in Section 4 for the missing mass rate of decay

∆̂(t) =
−2N2

t2

.

D.2. Empirical evaluation

We conduct experiments on two synthetic distributions over a support of size 100: (i) a uniform distribution, πi = 1/100 for
all i, and (ii) a geometric distribution, πi = p (1− p)i−1 with p = 0.05. Figure 3 presents two panels for each distribution.
In the left panels, we compare the true missing mass θ(t) (red dashed) against the Good–Turing estimate θ̂(t) (blue solid).
In the right panels, we compare the true derivative (red dashed) against our proposed derivative estimator ∆̂(t) = −2N2

t2

(blue) and the naive finite-difference of the Good-Turing estimator baseline ∆̂(t) = θ̂(t+ 1)− θ̂(t) (Green). Across both
distributions, the Good–Turing estimator closely tracks the ground truth and its variance decays as more observations are
collected. Similarly, our estimator closely captures the decay rate of the missing-mass derivative with substantially lower
variance and fluctuations than the naive difference-based baseline.
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Figure 3. Empirical comparison of missing mass and its derivative estimators on two synthetic distributions: uniform (top panels) and
geometric with p = 0.05 (bottom panels). Left panels: true missing mass (red dashed line) versus the Good–Turing estimator (blue solid
line). Right panels: true derivative (red dashed line) compared to our proposed derivative estimator (blue) and the naive finite-difference
baseline (green). The standard deviation after averaging across 100 independent trials is represented by the shaded region in each
corresponding color.
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