
Learning Particle Dynamics Subject to Rigid Body
Manipulations Using Graph Neural Networks

Niteesh Midlagajni
Centre for Cognitive Science

Technical University of Darmstadt
niteesh.midlagajni@tu-darmstadt.de

Constantin A. Rothkopf
Centre for Cognitive Science

Technical University of Darmstadt
constantin.rothkopf@tu-darmstadt.de

Abstract
Simulating particle dynamics with high fidelity is crucial for solving real-world
interaction and control tasks involving liquids in design, graphics, and robotics.
Recently, data-driven approaches, particularly those based on graph neural net-
works (GNNs), have shown progress in tackling such problems. However, these
approaches are often limited to learning fluid behavior in static free-fall en-
vironments or simple manipulation settings involving primitive objects, often
overlooking complex interactions with dynamically moving kinematic rigid bod-
ies. Here, we propose a GNN-based framework designed from the ground up
to learn the dynamics of liquids under rigid body interactions and active ma-
nipulations, where particles are represented as graph nodes and particle-object
collisions are handled using surface representations with the bounding volume
hierarchy (BVH) algorithm. Our approach accurately captures fluid behavior
in dynamic settings and can also function as a simulator in static free-fall envi-
ronments. Despite being trained on single-object manipulation tasks, our model
generalizes effectively to environments with novel objects and novel manipula-
tion tasks. Finally, we show that the learned dynamics can be leveraged to solve
control and manipulation tasks using gradient-based optimization methods.

1 Introduction
Our physical world is shaped by complex interactions between various forms of matter, from solid
objects to flowing liquids. Accurately simulating these phenomena is essential across numerous
disciplines, including science and engineering, and becomes increasingly critical as we advance
toward a future with autonomous agents capable of reasoning, planning, and interacting with objects
in novel environments. Moreover, understanding human intuitive physical reasoning and interactions
in everyday tasks in the natural environment also requires the capability of simulating physical
scenarios [1, 2]. Traditional physics simulators, relying on hand-crafted features and computationally
intensive numerical methods, often struggle to scale to the complexity of real-world scenarios.

Recently, learning-based simulators have offered a viable alternative, demonstrating the ability to
learn complex dynamics directly from data [3–5], improve simulation accuracy, and enable natural
integration with gradient-based optimization for solving inverse problems [6, 7]. Graph neural
networks (GNNs) [8, 9], in particular, have been successful in recent years in capturing the dynamics
of diverse physical systems, including liquids, soft bodies, and rigid bodies [10–15]. While existing
GNN-based simulators have shown impressive results in modeling particle dynamics, significant
limitations remain. Many current approaches [10, 15] are restricted to simple collision scenarios with
basic geometric shapes, hindering their applicability to real-world rigid body interactions. While
recently, Mani et al. [14] improved boundary handling with complex rigid bodies via Signed Distance
Fields (SDFs), the model is still constrained to free-fall simulations, where the rigid bodies remain
fixed in place during simulation. Accurately modeling dynamic liquid interactions with moving
objects (kinematic rigid bodies) is essential for applications in sequential decision-making tasks

Midlagajni et al., Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural
Networks. Proceedings of the Fourth Learning on Graphs Conference (LoG 2025), PMLR 269, Arizona State
University, Phoenix, USA, December 10–12, 2025.

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

time time

a) b)

Figure 1: Rollouts from our proposed model on novel scenarios. (a) Successful simulation of pouring
from the complex Utah teapot. (b) Simultaneous manipulation of two jugs, demonstrating multi-
object control. The blue liquid streams, originating from each jug, collide and merge realistically. The
red and green particles represent the predicted trajectories for each jug if simulated independently.

such as robotic control. A simulator designed for free-fall settings can address only design-oriented
tasks (e.g., directing fluid flow [16]), and is insufficient for tasks requiring manipulation and control.
Crucially, even with highly accurate collision handling, a static framework does not guarantee correct
behavior when objects move, as dynamic interactions introduce additional complexities in fluid
motion and response. Therefore, achieving accurate dynamic simulations requires careful design
choices, including the appropriate GNN input representation and architectural modifications.

To address these challenges, we propose a unified GNN-based framework that models complex fluid
dynamics with dynamically moving rigid bodies. Our architecture leverages a multi-graph represen-
tation where liquid particles and rigid bodies are represented as distinct node sets. Liquid–liquid
interactions are determined by spatial proximity (particles are connected if they lie within a fixed
radius), while liquid–object interactions are determined by particle–surface proximity computed
efficiently using the BVH algorithm. We train our model on ground truth simulations of generic
pouring and sliding tasks, collectively covering a broad range of liquid-object interactions under
dynamic control. Our results show: 1) improved performance both qualitatively and quantitatively
over existing GNN-based particle simulators; 2) strong generalisation to unseen object geometries
and scene configurations; and 3) successful zero-shot transfer to novel manipulation tasks such
as stirring and scooping. Finally, we demonstrate the utility of our model by integrating it into a
gradient-based optimization pipeline to solve a pouring task using a Model Predictive Control (MPC)
controller. Taken together, these results demonstrate that our proposed model extends the capabilities
of GNN-based simulators to include complex interactions of liquids with kinematic rigid bodies.

2 Related Work
With the rise of deep learning and the increasing preference for end-to-end models, differentiable
simulators [17] have become a compelling alternative to traditional physics-based simulators such as
Bullet [18] and Mujoco [19] for simulating physics. Unlike conventional simulators, these analytical
differentiable simulators enable automatic differentiation, allowing seamless integration with gradient-
based optimization techniques [20–23]. Several frameworks have been developed for fluid dynamics,
such as PhiFlow [24], which is framework-agnostic, JAX-Fluids [25], built on JAX, and FluidLab
[26], which leverages Taichi [20]. Hybrid approaches have also emerged, combining analytical
equations with neural networks to improve accuracy and generalization [27–29].

Purely learning-based simulators, in particular, Graph Neural Networks (GNNs) [10–15, 30–34]
have gained significant traction due to their ability to model complex physical interactions. This
success can be attributed to the inherent nature of many physical phenomena – the dynamics of rigid
bodies, deformable bodies, fluids, and even their coupled interactions can often be described by
local interactions between constituent entities. GNNs, with their strong relational inductive bias [9],
provide a natural and effective framework for encoding this locality, allowing the model to learn the
underlying physics from data. The seminal work by Sanchez-Gonzalez et al. [10] established several
key architectural and representational choices that have influenced a number of subsequent works.
These include using relative geometric features to define node and edge attributes, employing one-step

2

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

Input state Decoded next stateInput graph

Mesh nodes

Object node
Particle nodes

Liquid edges

Liquid-object edges
Mesh edges

Encoder Decoder

liquid collision radius
object-liquid collision radius

k steps

Processor

Figure 2: Overview of our network architecture and graph encoding scheme. The figure shows the
graph connectivity of a liquid particle with its neighboring particles and a Cup object. Note that, for
illustration purposes only, the closest point on the surface of the cup to the particle is shown as VO.
In reality, the object node VO is virtual and located at the object’s center of mass.

prediction training instead of full rollout-based supervision, and utilizing message-passing GNNs
[35, 36] as the core model. While this work primarily focused on particle-based fluid simulation, later
studies successfully extended similar architectures to soft-body [11] and rigid-body [12, 30, 32–34]
simulations.

In physical simulation, accurately modeling collisions is essential. In GNN-based simulators, this
is typically addressed through node-based neighborhood interactions. This approach has proven
effective for simulating liquid-liquid [10] and deformable body [11] interactions. However, it
struggles when dealing with rigid-body collisions, as mesh vertices are often sparse and fail to
capture fine-grained object geometry [12–14]. To address these limitations, Allen et al. [12] proposed
handling collisions in the mesh-face space instead of the vertex space, leading to more robust rigid-
body interactions. Another widely adopted approach is the use of SDFs for collision handling. SDFs
implicitly represent surface geometry by encoding the distance of any point in space to the closest
surface on a mesh. This allows for efficient collision detection by evaluating the SDF at query
points. Rubanova et al. [13] used learned SDFs to simulate rigid body dynamics while Mani et al.
[14] used SDF formulation to learn fluid dynamics in a static free-fall environment, representing all
rigid surfaces in the environment as a single union of SDFs. These methods significantly reduce the
computational overhead compared to node-based collision handling, offering a scalable alternative
for complex physical interactions.

So far, the aforementioned GNN-based simulators have either been designed for static free-fall envi-
ronments, restricting their use to design optimization tasks [14, 16], or have supported manipulation
only in limited settings, typically involving simple rigid bodies like cuboids [10, 15] or spheres
[11]. In contrast, our model extends beyond these constraints by generalizing to arbitrary scenes
and complex manipulation tasks, marking a significant step toward a fully learned, general-purpose
differentiable simulator capable of handling diverse physical interactions.

3 Method

Our learned simulator predicts the dynamics of liquid particles interacting with kinematic rigid bodies
under active manipulations. Given the initial state of the liquid particles X0 in terms of their positions,
and external 6-DOF control inputs at every time step U (0), ..., U (T−1) for all the rigid bodies in the
scene, the GNN simulator iteratively applies the learned model X(t+1) = sθ(X

t, U t) and produces
the rollout trajectory of particles as X(1), ..., X(T). The rigid bodies in our framework can either
be kinematic objects, which can be subjected to external control, or stationary objects, that remain
fixed throughout the simulation. At timestep t, each kinematic object can be transformed to a new
6-DOF pose under the transformation Tt. For stationary objects, pose remains fixed throughout the
simulation.

Our graph network follows the Encode-Process-Decode architecture introduced in [10]. The state of
the world is first encoded into a graph where node features are derived from the current state, and
edge connections are determined based on factors such as spatial proximity for potential collisions
and the underlying geometry of objects. Subsequently, both node and edge features are embedded
into a latent space via MLPs. The final encoded graph is passed through P message-passing layers to

3

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

generate a sequence of P latent graphs. Finally, a decoder, which is also implemented as an MLP,
extracts the updated dynamics from task-relevant nodes of the final latent graph.

3.1 Graph Network

We define the graph as G = (VL,VO,VM , EL, EOL, EOM , EMO). In the input graph representation,
VL = {pi}i=1...N corresponds to the set of N liquid particles. VO = {oi}i=1...Q represents the set
of Q rigid-bodies in the scene. VM = {mik}i=1...Q,k=1...Ki

represents the set of surface vertices of
all the objects in the scene. The surface vertices are defined such that when an object oi is transformed
to a new 6-DOF pose at time t, the surface vertices mik belonging to the object also move under the
same transformation. Figure 2 gives an overview of our architecture.

Graph Connectivity in our model is handled using four sets of edges. Following [12, 13], we connect
bi-directional edges between object node oi and its corresponding surface nodes {mik}, forming
edge sets EOM (object-to-mesh) and EMO (mesh-to-object). This facilitates the propagation of object
motion to the particles through the surface nodes. Interaction between liquid particles is captured
using the edge set EL. We connect edges between liquid particles if the distance between them is less
than the liquid-liquid connectivity radius rl. This promotes local interactions of particles, and we
choose radius rl to ensure each particle has roughly 10-20 neighbors.

Crucially, to model the interactions between fluid particles and rigid bodies, we introduce the EOL

edge set. Similar to liquid-liquid interactions, the dynamics of fluid particles are primarily affected
when they are near a rigid body’s surface. Notably, this interaction can occur at any arbitrary point on
the object’s surface, not just at mesh vertices. To achieve this, we define a function C(p′j , oi) based
on the Boundary Vector Hierarchy (BVH) algorithm [37]. This function takes the mesh geometry of
object oi and a query particle p′j as input, and efficiently computes the closest point c′ij on the surface
of the mesh to the query particle. Since this function operates on positions in the object’s local frame,
we first transform the liquid particle position pj into this frame using the inverse transformation
T −1
t (pj) based on the object’s current transformation Tt. The closest point is then transformed back

to the world coordinate frame:

cij = Tt(C(T −1
t (pj), oi)) (1)

If the distance d between the particle pj and the transformed closest point cij is less than the liquid-
object connectivity radius, rol, we connect an edge between the particle node and the object node.
This approach is similar to [13], where learned SDFs for collision detection between rigid bodies
were used. We use a different connectivity radius rol for liquid-object interactions since our ground
truth simulator maintains some separation distance between the object surface and the particles to
enforce its boundary condition.

Node features Following the approach of [10–14], we use a history of velocity information as the
main node feature. Specifically, we use the finite-difference estimates of velocity from the previous
five timesteps. We calculate these velocity features differently depending on the node type. For liquid
particle nodes VL and mesh surface nodes VM , we calculate them based on their positions over
the past five timesteps. For object nodes VO, which represent the rigid bodies, we derive velocity
information from the object’s 6-DOF pose at each timestep. This 6-DOF pose information is crucial
for the network to learn the rotational dynamics of the objects, in addition to their translational motion.
Additionally, we also add features to distinguish between different types of object nodes VO. Our
simulation includes kinematic objects (which are controlled) and stationary objects (which remain
fixed). To represent this, we use a one-hot encoding to indicate its type. This one-hot encoding is also
extended to the mesh nodes VM since each mesh node belongs to a specific object.

Edge features For the edge sets EL (liquid-liquid), EMO (mesh-to-object), and EOM (object-to-
mesh), we adopt the relative encoding technique [10]. The edge features consist of the relative
displacement vector between two connected nodes and the scalar distance between them. The
calculation of these relative features differs slightly depending on the edge type. For EL, the relative
position and distance are computed between the positions of the two connected liquid particles.
For EMO and EOM edges, we calculate them based on the mesh node position and the center of
mass position of the corresponding object, derived from the object node’s 6-DOF pose. For the
liquid-object edge set EOL, which is critical for modeling particle collisions with surfaces, we use a
specialized feature set. For an edge connected between particle pj and object oi, the feature vector is

4

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

G
ro

u
n
d
 t

ru
th

M
o
d
e
l
P
re

d
ic

ti
o
n
s

time time

Figure 3: Example rollouts of our Full-model on the held-out test set.

defined as eolij = [cij − pj , cij − poi , ∥cij − pj∥, ∥cij − poi∥]. Here, cij represents the closest point
on the surface of object oi to the particle pj , and poi represents the center of mass of object oi. These
features together give information about the spatial relationship between the connected particle and
object, using the closest point on the object’s surface cij , as a reference. The resulting input graph is
encoded into separate MLPs for each node type and edge type before passing to the processor block.

Processor The processor stage consists of P identical message-passing steps, each with its own
learned parameters. These blocks iteratively update the embedded node and edge features using the
following update equations:

e′Lij = fLL(eLij ,v
L
i ,v

L
j) (2)

e′OL
ij = fOL(eOL

ij ,vO
i ,v

L
j) (3)

e′MO
ij = fMO(eMO

ij ,vM
i ,vO

j) (4)

e′OM
ij = fOM (eOM

ij ,vO
i ,v

M
j) (5)

v′M
i = fM (vM

i ,
∑

j e
′OM
ij) (6)

v′O
i = fO(vO

i ,
∑

j e
′MO
ij) (7)

v′L
i = fL(vL

i ,
∑

j e
′L
ij ,

∑
j e

′OL
ij) (8)

where fLL, fOL, fMO, fOM , fM , fO, fL are each implemented as MLPs.

Decoder The processor updates the latent representations of all the node types. However, since our
goal is to predict particle dynamics under the influence of rigid body manipulations, the decoder,
implemented as an MLP, only decodes latent features of liquid nodes VL. We train the model using
the L2 loss on one-step acceleration predictions of the liquid particles. Additional details on the
network architecture and training procedure are provided in Appendix A.1.

4 Experiments
4.1 Ground Truth Simulator

We use NVIDIA Isaac Sim [38] as our ground truth simulator. Isaac Sim is a robotics simulation
platform that also supports particle simulation based on the Position Based Dynamics (PBD) [39]
method. To investigate the ability of our system to generalize from a small set of training data, our
primary dataset consisted of a scene with a collection of liquid particles and three rigid bodies: a jug
(kinematic), a cup (stationary), and a floor (stationary). We adjusted the properties of particles to
approximate those of water. Each simulation episode was initialized as follows: the cup was placed
at a random location, the floor was positioned underneath it, and the jug was placed above the floor,
containing the liquid particles. To enable the network to learn liquid dynamics under a wide range
of jug motions, as well as the effects of liquid collisions with stationary objects (cup and floor), we
create three types of simulation scenarios:

5

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

Ground Truth Full-model MGNGNS

M
a
rt

in
i+

B
o
tt

le
W

in
e
+

B
e
a
ke

r

Figure 4: Comparison with the baseline models. GNS and MGN struggle to handle particle dynamics
with novel geometry, while our method generalises without any additional training.

• Translation-Motion-Sim: The jug undergoes purely translational motion, with a random
velocity along the x, y, or z axis at each timestep. This scenario teaches the network how linear
motion of a container affects the enclosed liquid.

• Rotation-Motion-Sim: The jug remains positionally fixed but rotates with a random angular
velocity around a random axis. In half the cases, the rotation is configured to pour liquid into the
cup, and in the other half, the liquid spills on the floor. This helps the model learn the effects of
rotational motion on the liquid, as well as collisions with the stationary objects.

• Full-Body-Motion-Sim: The jug undergoes combined translational and rotational motion. It
moves upwards along a specified direction in the xy-plane while simultaneously rotating with a
random angular velocity. This motion is designed to simulate a pouring action and allows the
network to learn complex fluid dynamics resulting from 6-DOF motion.

To train the network to handle abrupt changes in liquid motion, we introduce random noise to the jug’s
motion in 30% of the trials. We use a Martini cup and Vase jug to generate the dataset for training
our model. Our training and test sets contain 1200 and 120 simulations(each with 415 timesteps),
respectively.

Generalization Test Sets To evaluate our model’s generalization capabilities, we created additional
Rotation-Motion-Sim simulations using two novel jug shapes, WineBottle and Beaker, and a Wine
cup. Our training dataset used the Vase jug, which has a relatively simple geometry. In contrast, the
WineBottle has a wide base that tapers sharply to a narrow opening. The Beaker has a spout at the
rim, channeling the liquid into a narrower stream. We also used a Wine cup, which features a curved
geometry, unlike the conical shape of the Martini cup used during training.

4.2 Evaluation

Baseline models We compare our model against recent GNN-based particle simulators that support
kinematic rigid body manipulation, specifically Graph Network Simulator (GNS) [10] and Mesh-
GraphNet [11]. Both models handle liquid-object interaction using node-based collision. GNS uses a
single edge set to model both liquid-liquid and liquid-object interactions. In contrast, MeshGraphNet
separates liquid-liquid and liquid-object interactions into two distinct edge sets. We evaluate two
variants of MeshGraphNet based on how the liquid-object edge set is defined. In the first variant
(MGN), it includes only liquid-object edges. In the second variant (MGN*), mesh connectivity edges
are included alongside the liquid-object edges. All 3 models use a single node set to represent both
particle and mesh nodes. As a result, the 6-DOF control inputs for manipulating a rigid body are
incorporated into the node features of all the nodes in the graph. This implicit representation of

6

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

G
ro

u
n
d
 t

ru
th

M
o
d
e
l
P
re

d
ic

ti
o
n
s

time time

Figure 5: Rollouts of our Full-model showing successful Scooping (left) and Stirring (right) manipu-
lation tasks

control inputs limits these models to manipulating only one rigid object per simulation. We use
the same neighborhood radii as in our model: rl for liquid-liquid collision and rol for liquid-object
collision. See Appendix A.2 for complete details of the baseline models.

Ablation We hypothesized that for our task, the mesh vertex nodes VM might be less critical for
learning liquid-object interaction, and that the direct interaction between VL and VO via our accurate
collision handling method might suffice. While the mesh nodes VM do contribute to updating latent
states of object nodes VO within the processor block, their direct influence on the liquid nodes VL

might be limited. To test this, we created an ablated version of our model by removing the mesh vertex
nodes VM and the corresponding edge sets EOM and EMO. This results in a simplified input graph:
G = (VL,VO, EL, EOL). The processor update equations are reduced to Equations (2), (3), and (8),
with Equation (7) simplifying to v′O

i = vO
i (meaning the object node features are not updated within

the processor block). This ablated model has a lower memory footprint during both training and
inference. In the rest of the paper, we refer to our complete network as Full-model and to this reduced
version as Ablated-model. The baseline models and the Ablated-model were trained using the same
dataset as our proposed model.

Metric For quantitative comparison, we use the mean Chamfer distance over the entire rollout
trajectory between the ground truth and the model prediction. Chamfer distance is more suitable
for evaluating point cloud data than root mean squared error (RMSE), as it emphasizes overall
distributional similarity rather than exact one-to-one correspondences between particles.

4.3 Results

Our graph network model reliably predicts particle dynamics under external manipulations of rigid
bodies. We first evaluate the Full-model’s long-term rollout performance on the test set by comparing
the predicted rollouts with the ground truth simulator, qualitatively assessing the model’s ability to
maintain realistic motion over extended periods. During rollouts, the ground truth 6-DOF control
inputs for the jug are provided to the network at each timestep. Figure 3 presents qualitative results
for our Full-model, showing rollout snapshots from two challenging scenarios. In the sliding task
(Figure 3 (right) from the Rotation-Motion-Sim test set), when the externally controlled jug comes to
an abrupt stop, our model accurately handles both the boundary collisions and the conservation of
momentum of the liquid particles. In the full-motion task (Figure 3 (left) from the Full-Body-Motion-
Sim), the jug is manipulated across all six degrees of freedom. Our network successfully tracks the
intricate dynamics throughout the rollout. Notably, on these test sets, both the Ablated-model and the
GNS baseline exhibit qualitatively similar performance to the Full-model, whereas the MGN and
MGN* models struggle to maintain consistency over the entire rollout.

Generalization A key advantage of our model is its ability to generalize to novel object shapes.
Figure 4 compares rollouts from our Full-model, GNS, and MGN on the Wine-Beaker and Martini-
Bottle test sets. Despite never encountering these shapes during training, our model accurately
simulates the liquid dynamics, closely matching the ground truth behavior. Importantly, our Ablated-
model also performs comparably well, suggesting that both models effectively learn to represent

7

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

Table 1: Quantitative comparison of Full-model, Ablated-model, and the baseline models using
mean Chamfer Distance (lower is better) with respect to ground truth simulations. N represents the
number of particles. All simulations had a rollout length of 415 timesteps.

Simulation
N

Full- Ablated- GNS MGN MGN*domain model model

Translation- 1K 0.057±0.01 0.055±0.01 0.063±0.02 0.092±0.06 0.089±0.04Motion-Sim
Rotation- 1K 0.086±0.03 0.099±0.05 0.099±0.04 0.178±0.18 0.163±0.07Motion-Sim
Full-Body- 1K 0.138±0.07 0.165±0.09 0.184±0.09 0.493±0.37 0.236±0.14Motion-Sim
Wine-Beaker 1K 0.091±0.02 0.111±0.035 0.156±0.01 0.141±0.04 0.347±0.06
Martini-Bottle 1K 0.077±0.01 0.069±0.01 2.02±0.15 1.317±0.15 2.261±0.17

local surface geometry through our liquid-object collision handling. In contrast, the GNS and MGN
baselines exhibit substantial limitations. With the Beaker, GNS shows pronounced tunneling effects,
with particles incorrectly passing through the spout walls. While MGN is able to channel particles
through the spout, it still suffers from tunneling toward the end of the rollout. With the WineBottle,
both GNS and MGN struggle to simulate the liquid flow as the particles approach the narrow neck,
resulting in significant particle tunneling. This difficulty stems from their reliance on mesh vertices
alone to handle liquid-object collisions, which fails to capture finer geometric details of these novel
shapes. Importantly, this is despite increasing the mesh vertex density of the objects by 2-5 times
to facilitate better shape information. MGN* performs worse than both GNS and MGN across all
evaluated scenarios. Table 1 summarizes the quantitative results for each model, while Figure 6
shows the step-wise error over the trajectory. Our Full-model consistently achieves the best scores
across most test scenarios. Additional snapshots can be found in Appendix A.4.

Figure 6: Mean Chamfer loss curves over rollout on the three test sets for all models. Our model
achieves the lowest error; shaded regions show variability as median absolute deviation.

We further validated the generalization capabilities of our Full-model by simulating liquid pouring
from the classic Utah teapot, which features intricate geometry. As shown in Figure 1, the Full-model
(chamfer loss of 0.078) successfully simulates realistic liquid dynamics even for this challenging
shape. The Ablated-model (chamfer loss of 0.301), however, exhibited some leakage with the Utah
teapot, suggesting a potential limitation in handling highly complex geometries. The difference in
performance may be due to the unavailability of object node VO updates during the message-passing
process in the Ablated-model.

In practice, since both the Full-model and Ablated-model offer similar performance in most scenarios,
the two can be seen as complementary. The Ablated-model is suitable for environments with rigid
objects of relatively simple shapes, as it reduces computational overhead and memory footprint, while
the Full-model is preferable for scenes containing highly intricate geometries.

4.4 Novel Manipulation Scenarios

Having demonstrated in the previous section that our network generalises to novel objects, we now
investigate our model’s ability to handle unseen manipulation tasks. We focus on Stirring and

8

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

Scooping tasks, two common liquid manipulation tasks found in kitchen settings that are significantly
different from the pouring motions used during training. We created a new simulation environment
consisting of a large pot filled with liquid particles (2.1K particles). In the Stirring task, a stick is
controlled to stir the liquid. In the Scooping scenario, a ladle is manipulated to scoop liquid from
the pot. We compare the performance of our Full-model against ground truth simulations generated
by Isaac Sim. Figure 5 illustrates the trajectories of these two manipulation tasks performed by
our Full-model along with the ground truth. In both the manipulation tasks, our model successfully
simulates the complex liquid dynamics. For the Stirring task (chamfer loss of 0.0514), the network
accurately models the pushing forces exerted by the stick on the liquid particles as it rotates. For
the Scooping task (chamfer loss of 0.0593), the model captures both the scooping action and the
subsequent containment and transport of the liquid within the ladle. Additionally, we also showcase
our model’s ability to simultaneously control multiple objects. We created a two-jug pouring scenario,
where each jug is independently controlled to pour liquid. Figure 1 shows the snapshots of the result
from our Full-model (chamfer loss of 0.257), where it realistically simulates the interaction of liquid
streams from two sources. Taken together, these results show that our learned simulator is indeed a
versatile general-purpose simulator for modeling liquid dynamics. It accurately captures complex
interactions between liquids and rigid bodies of arbitrary shapes undergoing diverse manipulations.

4.5 Control on learned dynamics

A key advantage of a fully differentiable environment is the ability to solve tasks using gradient-based
optimization techniques. To showcase the utility of our model, we designed a pouring task where
the objective is to pour a specified percentage of the cup’s total volume from the jug into the cup.
In the initial state, the jug is placed in an upright position next to the cup, such that rotating the
jug around the x-axis will cause liquid to pour into the cup. We use an MPC controller with the
control variable being the jug’s rotational acceleration angle around the x-axis. The control inputs
are initialized randomly. Following a task formulation similar to [27], we implement a two-stage cost
function optimized using Adam [40]. In the first stage, the cost is the L2 distance between all liquid
particles and a target point on the rim of the jug closest to the cup. This encourages the jug to rotate
towards the cup to let the liquid flow into the cup. Once the target fill level is reached, the second
stage activates. This stage uses a regularization term on the jug’s rotation angle, encouraging it to
return to its initial upright position.

time

Figure 7: Optimal trajectory snapshots from
our MPC controller for a 30% fill target.

Figure 7 shows snapshots of the optimized trajectory
for a target fill level of 30%. Despite the random ini-
tialization of control inputs, the optimizer successfully
finds a control sequence that achieves the desired fill
level. We tested the controller with four different tar-
get fill levels, corresponding to 10%, 25%, 50%, and
70% of the cup’s volume, and observed achieved fill
levels of 10%, 44%, 72%, and 94%, respectively. For
higher fill targets, there is a larger deviation from the
desired level, likely due to the dynamics of the two-
stage control: at higher fill targets, the jug rotates more
in the first stage. When the second stage activates and
the jug begins to return to its upright position, residual liquid continues to pour, leading to overfilling.

4.6 Computational Complexity and Inference Times

For liquid-object collisions, our BVH-based handling reduces complexity compared to node-based
baselines. BVH is relatively inexpensive, with a complexity of O(log(Ki)) per query, where Ki is
the number of vertices in the mesh. In our method, each particle is connected to at most one edge per
object, yielding an O(NQ) complexity for N liquid particles and Q objects. In node-based collision,
such as in GNS, a particle may connect to many vertices, resulting in O(NK) complexity, where K
is the total number of object mesh vertices. Since the number of objects is significantly lower than
the total number of node vertices(Q << K), a substantial speedup is possible.

We calculated the rollout inference times per step (dt = 1/60) for all our models and baselines on
the test set (evaluated on a workstation with Nvidia 4090 GPU and 32-core CPU) and report them
in Table 2. Indeed, the performance is twice as fast as the fastest baseline methods. However, it is

9

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

Table 2: Comparison of Inference Times across all models.

Method Time per step (ms)
Full-model 25.05
Ablated-model 21.34
GNS 75.51
MGN 50.32
MGN* 49.58
Isaac-Sim (equiv.) 10.20

Figure 8: Inference time and memory consumption plotted against the number of particles for our
model.

still slower than Isaac-sim. This gap arises from CPU-bound neighborhood computations, a known
limitation in these GNN-based methods, as noted in the GNS (supplementary).

For the overall system, our method scales linearly with the number of particles O(N). We tested this
on the stirring environment by varying the number of particles between 2k and 16k particles and
report the memory consumption and inference time per step in Figure 8. The results confirm that our
model scales linearly with the number of particles.

5 Discussion
We presented a unified GNN-based framework for learning particle-based fluid dynamics under
rigid body manipulations. The key insights driving our approach are (1) separating liquid-liquid
and liquid-object interactions, (2) using accurate surface-based collision handling for liquid-object
interactions, (3) representing rigid bodies and fluid particles with separate node sets, making the
architecture modular and extensible. These design choices enable our model to simulate fluid behavior
in complex environments, setting it apart from prior work.

While promising, our current framework is limited in its ability to simulate fluids with diverse
physical properties, such as viscosity. Future work will focus on incorporating richer representations
of material properties within the network architecture. Additionally, our framework is currently
designed exclusively for learning fluid dynamics and, as such, cannot handle rigid body dynamics
when interacting with particles. For instance, it cannot simulate a scenario where flowing water
displaces or carries a rigid object. However, given our modular graph definition, it is possible to extend
our framework to handle this two-way coupling. By introducing trainable non-kinematic rigid-body
nodes (VR) alongside liquid nodes (VL), and defining explicit liquid–object (ELO) and object–object
(EOO) edges for bidirectional interactions, the framework could learn coupled fluid–rigid dynamics.
We consider this a natural extension for future work.

10

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

Acknowledgments
This research was supported by the European Research Council (ERC; Consolidator Award ‘ACTOR’-
project number ERC-CoG-101045783), by the Hessian Ministry of Higher Education, Research,
Science and the Arts with its LOEWE research priority program ‘WhiteBox’, and by ‘The Adaptive
Mind’, funded by the Excellence Program of the Hessian Ministry of Higher Education, Science,
Research and Art.

References
[1] Christopher J Bates, Ilker Yildirim, Joshua B Tenenbaum, and Peter Battaglia. Modeling human

intuitions about liquid flow with particle-based simulation. PLoS computational biology, 15(7):
e1007210, 2019. 1

[2] Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine
of physical scene understanding. Proceedings of the National Academy of Sciences, 110(45):
18327–18332, 2013. 1

[3] Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, Wei Chen, and Barnabás Póczos.
Learning to predict the cosmological structure formation. Proceedings of the National Academy
of Sciences, 116(28):13825–13832, 2019. 1

[4] Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent space physics: Towards learning the
temporal evolution of fluid flow. In Computer graphics forum, volume 38, pages 71–82. Wiley
Online Library, 2019.

[5] L’ubor Ladickỳ, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross.
Data-driven fluid simulations using regression forests. ACM Transactions on Graphics (TOG),
34(6):1–9, 2015. 1

[6] Adithya Challapalli, Dhrumil Patel, and Gouqiang Li. Inverse machine learning framework for
optimizing lightweight metamaterials. Materials & Design, 208:109937, 2021. 1

[7] Xingyu Lin, Zhiao Huang, Yunzhu Li, Joshua B Tenenbaum, David Held, and Chuang Gan.
Diffskill: Skill abstraction from differentiable physics for deformable object manipulations with
tools. arXiv preprint arXiv:2203.17275, 2022. 1

[8] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008. 1

[9] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018. 1, 2

[10] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
conference on machine learning, pages 8459–8468. PMLR, 2020. 1, 2, 3, 4, 6, 14

[11] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning
mesh-based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020. 3, 6

[12] Kelsey R Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction
graph networks. arXiv preprint arXiv:2212.03574, 2022. 3, 4

[13] Yulia Rubanova, Tatiana Lopez-Guevara, Kelsey R Allen, William F Whitney, Kimberly
Stachenfeld, and Tobias Pfaff. Learning rigid-body simulators over implicit shapes for large-
scale scenes and vision. arXiv preprint arXiv:2405.14045, 2024. 3, 4

[14] Arjun Mani, Ishaan Preetam Chandratreya, Elliot Creager, Carl Vondrick, and Richard Zemel.
Surfsup: Learning fluid simulation for novel surfaces. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14225–14235, 2023. 1, 3, 4

[15] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint
arXiv:1810.01566, 2018. 1, 2, 3

11

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

[16] Kelsey Allen, Tatiana Lopez-Guevara, Kimberly L Stachenfeld, Alvaro Sanchez Gonzalez, Peter
Battaglia, Jessica B Hamrick, and Tobias Pfaff. Inverse design for fluid-structure interactions
using graph network simulators. Advances in Neural Information Processing Systems, 35:
13759–13774, 2022. 2, 3

[17] Rhys Newbury, Jack Collins, Kerry He, Jiahe Pan, Ingmar Posner, David Howard, and Akansel
Cosgun. A review of differentiable simulators. IEEE Access, 2024. 2

[18] Erwin Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses, page 1. 2015. 2

[19] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012. 2

[20] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and
Frédo Durand. Difftaichi: Differentiable programming for physical simulation. arXiv preprint
arXiv:1910.00935, 2019. 2

[21] C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax–a differentiable physics engine for large scale rigid body simulation. arXiv
preprint arXiv:2106.13281, 2021.

[22] Samuel S. Schoenholz and Ekin D. Cubuk. Jax m.d. a framework for differentiable physics. In
Advances in Neural Information Processing Systems, volume 33. Curran Associates, Inc., 2020.

[23] Genesis Authors. Genesis: A Universal and Generative Physics Engine for Robotics and
Beyond. https://github.com/Genesis-Embodied-AI/Genesis, December 2024. URL
https://github.com/Genesis-Embodied-AI/Genesis. 2

[24] Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. phiflow: A differentiable pde
solving framework for deep learning via physical simulations. In NeurIPS workshop, volume 2,
2020. 2

[25] Deniz A. Bezgin, Aaron B. Buhendwa, and Nikolaus A. Adams. Jax-fluids: A fully-
differentiable high-order computational fluid dynamics solver for compressible two-phase
flows. Computer Physics Communications, 282:108527, 1 2023. ISSN 00104655. doi:
10.1016/j.cpc.2022.108527. URL https://linkinghub.elsevier.com/retrieve/pii/
S0010465522002466. 2

[26] Zhou Xian, Bo Zhu, Zhenjia Xu, Hsiao-Yu Tung, Antonio Torralba, Katerina Fragkiadaki,
and Chuang Gan. Fluidlab: A differentiable environment for benchmarking complex fluid
manipulation. In International Conference on Learning Representations, 2023. 2

[27] Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for deep neural networks.
In Conference on Robot Learning, pages 317–335. PMLR, 2018. 2, 9

[28] Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid sim-
ulation with continuous convolutions. In International Conference on Learning Representations,
2020.

[29] Yifei Li, Yuchen Sun, Pingchuan Ma, Eftychios Sifakis, Tao Du, Bo Zhu, and Wojciech Matusik.
Neuralfluid: Nueral fluidic system design and control with differentiable simulation. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=LLsOmvJbBm. 2

[30] Kelsey R Allen, Tatiana Lopez Guevara, Yulia Rubanova, Kim Stachenfeld, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Graph network simulators can learn discontinuous,
rigid contact dynamics. In Conference on Robot Learning, pages 1157–1167. PMLR, 2023. 2, 3

[31] Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and
Johannes Brandstetter. Boundary graph neural networks for 3d simulations. Proceedings of
the AAAI Conference on Artificial Intelligence, 37(8):9099–9107, Jun. 2023. doi: 10.1609/aaai.
v37i8.26092. URL https://ojs.aaai.org/index.php/AAAI/article/view/26092.

[32] Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Equiv-
ariant graph mechanics networks with constraints. arXiv preprint arXiv:2203.06442, 2022.
3

[33] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
networks. In International conference on machine learning, pages 9323–9332. PMLR, 2021.

12

https://github.com/Genesis-Embodied-AI/Genesis
https://github.com/Genesis-Embodied-AI/Genesis
https://linkinghub.elsevier.com/retrieve/pii/S0010465522002466
https://linkinghub.elsevier.com/retrieve/pii/S0010465522002466
https://openreview.net/forum?id=LLsOmvJbBm
https://ojs.aaai.org/index.php/AAAI/article/view/26092

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

[34] Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li, Josh Tenenbaum, and Chuang Gan.
Learning physical dynamics with subequivariant graph neural networks. Advances in Neural
Information Processing Systems, 35:26256–26268, 2022. 2, 3

[35] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017. 3

[36] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction
networks for learning about objects, relations and physics. Advances in neural information
processing systems, 29, 2016. 3

[37] James H Clark. Hierarchical geometric models for visible surface algorithms. Communications
of the ACM, 19(10):547–554, 1976. 4

[38] NVIDIA. "Isaac Sim - Robotics Simulation and Synthetic Data Generation". https://
developer.nvidia.com/isaac-sim. accessed on 2024-31-05. 5

[39] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based
dynamics. Journal of Visual Communication and Image Representation, 18(2):109–118, 2007.
5

[40] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 9, 14

[41] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 14

13

https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

A Appendix
A.1 Architecture and training

All the MLPs in our architecture contain 2 hidden layers of 128 units each with LayerNorm [41] and
an output layer of 128 units. Only in the case of the decoder, the output layer has 3 units to decode
the 3D acceleration of particles. We chose P = 10 as the number of processor blocks.

It has been shown that perturbing the inputs with noise makes the GNN models more robust to noisy
inputs [10]. This is particularly helpful when generating rollouts where the network is fed with its
own noisy, previous predictions as input. We choose a noise value N (0, σ = 0.00067). Additionally,
all the inputs and outputs were normalised.

We use Adam [40] to optimize the L2 loss on one-step acceleration predictions of the liquid particles
with an exponentially decaying learning rate from 1e-4 to 1e-6. The predicted particle accelerations
are then integrated to produce the next-step positions using the finite-difference method.

The models were trained on a single Nvidia 4090 GPU up to a maximum of 2M gradient steps
with a batch size of 20. The training period lasted approximately 10 days. The source code and
visualizations are available here.1

A.2 Baseline model details

GNS baseline has a graph of the form G = (V, E), while MeshGraphNet (MGN and MGN*) models
use a multigraph of the form G = (V, EL, EM). For all three baselines, the node set V contains both
liquid particles and rigid bodies. To represent a rigid body, its mesh vertices are used as nodes in a
graph. To distinguish between particle nodes and mesh nodes, one-hot encoding is incorporated into
the node features. Unlike our model, GNS does not explicitly represent the floor as a separate object;
instead, the distance from each particle to the floor is included as part of each particle’s node features.
We use the same floor representation for MeshGraphNets as well.

For the edge sets in MeshGraphNet baselines, EL captures liquid–liquid interactions (within neigh-
borhood radius rl) and corresponds to EL from our model. The EM edge set represents liquid–object
interactions, where an edge is connected between a liquid particle and a mesh vertex node if they are
within the collision radius rol. The MGN* model additionally includes edges between surface nodes
of the rigid bodies in the EM set. In the GNS baseline, E edge set contains both liquid-liquid and
liquid-object edges.

The architecture of the individual MLPs in the baseline models, as well as the training procedure,
normalisation, and noise injection, remains the same as in our model training.

Since collision with particles is handled at the mesh vertex level in the baseline models, a low vertex
count negatively impacts performance. To ensure a fair comparison, we oversampled all objects used
in the baseline evaluations. Table 3 summarizes the number of nodes and edges used in both our
models and the baseline models.

Table 3: Number of vertices and edges of each object used in our models and baselines.

Object Our models Baseline models

Nodes # Edges # Nodes # Edges

Vase jug 776 3264 1684 8640
Beaker jug 540 3264 1994 10728
WineBottle jug 713 2880 2261 10944
Martini cup 491 1800 909 4080
Wine cup 903 4032 2780 14208

Connectivity radius rl was chosen such that each liquid particle interacts with approximately 10-20
particles. To determine this value, we computed the average number of neighbors for each particle
in a subset of our main dataset (Martini cup + Vase jug) across various values of rl. Figure 9(a)
illustrates these results, based on which we selected rl = 0.12.

1https://github.com/RothkopfLab/fluid-manip-gnn

14

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

0.01 0.05 0.08 0.1 0.12 0.15 0.18
radius r_l

0

10

20

30

40

A
v
e
ra

g
e
 #

 o
f

n
e
ig

h
b
o
rs

liquid-liquid neighborhood

0.01 0.05 0.07 0.1 0.15 0.19 0.25
radius r_ol

0

10

20

30

40

50

60

A
v
e
ra

g
e
 #

 o
f

n
e
ig

h
b
o
rs

liq-obj neighborhood in baselines

0.01 0.05 0.07 0.1 0.15 0.19 0.25
radius r_ol

0

200

400

600

800

A
v
e
ra

g
e
 #

 o
f

n
e
ig

h
b

o
rs

liquid-object neighborhood with BVH

0.1 0.15 0.17 0.19 0.25
radius r_ol

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

Average chamfer rollout loss

(a) (b) (c) (d)

Figure 9: Effects of varying rl and rol on edge connectivity and model performance.

rol defines the neighborhood radius for liquid-object interactions. In Isaac Sim, a small separation
is maintained between liquid particles and object surfaces to enforce boundary conditions during
collision handling. As a result, particles do not interact with objects exactly at their surface. To
determine the minimum value of rol at which the object surface falls within the particle interaction
range, we used the same dataset as for rl and ran our BVH-based collision algorithm. Figure 9(b)
shows the average number of particles in contact with object surfaces for different values of rol. For
values of rol below 0.05, the object surface lies outside the liquid-object interaction radius.

To identify the appropriate value for rol, we trained our Full-model across different rol values
and observed that performance remained largely consistent between 0.1 and 0.2 (see Figure 9(c)).
For the baseline models, which use node-based collision detection, we ran a similar test as for rl
(Figure 9(d)). We ultimately selected rol = 0.19 for all experiments, as it ensures that each liquid
particle is connected to approximately 20-30 object mesh nodes in the baseline models, allowing a
fairer comparison with our models.

A.3 Failure cases

We tested our model on two scenarios where it fails or performs suboptimally.

Tunneling occurs when object velocities are significantly higher than those seen during training.
GNN-based models operate on a fixed time step (dt=1), and hence, if the object pose changes
significantly between steps, the object can jump across particles between steps, resulting in missed
collisions (“tunneling”). We tested this on the Martini-Vase environment (identical to our training
environment) by making the Vase jug rotate rapidly. We observe the tunneling effect at the beginning
of the simulation (see video in our project repository). In Classical simulators, this tunneling effect
is typically mitigated by using sub-stepping and continuous collision detection (CCD) methods. In
learned GNN-based simulators, it is not clear how such remedies can be integrated.

Another case where our model fails is when the liquid motion is caused by shear stress and centrifugal
effects. For example, when a cylindrical container with liquid inside spins about its axis, the liquid also
rotates along with the container. This behavior cannot be captured by our model, as our liquid–object
connectivity is distance-based. When the container rotates around its axis, particle–surface distances
remain constant, so the model does not perceive tangential motion. To test this, we created a cement-
mixer environment in which liquid particles are placed inside a rotating drum. Our model fails to
reproduce the expected rotation of the liquid (see video in our project repository).

15

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

A.4 Additional Figures

G
ro

u
n
d

 T
ru

th
M

G
N

*
M

G
N

G
N

S
A
b
la
te
d
-m

o
d
e
l

Fu
ll-
m
o
d
e
l

Figure 10: Visualisation of rollouts of all models on a Wine+Beaker example

16

Learning Particle Dynamics Subject to Rigid Body Manipulations Using Graph Neural Networks

G
ro

u
n
d
 T

ru
th

M
G

N
*

M
G

N
G

N
S

A
b
la
te
d
-m

o
d
e
l

Fu
ll-
m
o
d
e
l

Figure 11: Visualisation of rollouts of all models on a Martini+Bottle example

G
ro

u
n
d
 T

ru
th

M
G

N
*

M
G

N
G

N
S

A
b
la
te
d
-m

o
d
e
l

Fu
ll-
m
o
d
e
l

Figure 12: Visualisation of rollouts of all models on a Martini+Vase example

17

	1 Introduction
	2 Related Work
	3 Method
	3.1 Graph Network

	4 Experiments
	4.1 Ground Truth Simulator
	4.2 Evaluation
	4.3 Results
	4.4 Novel Manipulation Scenarios
	4.5 Control on learned dynamics
	4.6 Computational Complexity and Inference Times

	5 Discussion
	A Appendix
	A.1 Architecture and training
	A.2 Baseline model details
	A.3 Failure cases
	A.4 Additional Figures

