

000 001 002 003 004 005 FORGET-TO-FOCUS: CAN UNLEARNING IMPROVE DO- 006 MAIN SPECIALIZATION IN LLMs? 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Standard fine-tuning of Large Language Models for domain-specific tasks is often suboptimal due to interference from vast, pre-existing general knowledge from pretraining, leading to issues like negative knowledge transfer and the reinforcement of spurious correlations. We study whether removing parts of a pretrained model’s pre-existing general knowledge before adaptation can make downstream learning easier. We propose and analyze *Forget-to-Focus*: a two-stage protocol that first performs targeted unlearning on a “forget” set (with an optional retain set for stability), then fine-tunes on a domain-specific dataset. Through rigorous experiments on different domains such as medical, mathematics, and coding benchmarks, we analyze whether this preparatory unlearning can lead to improved domain specialization. Our findings show that this protocol consistently outperforms standard fine-tuning e.g., it improves HumanEval pass@1 by 32.5% on Qwen3-0.6B and 11.95% on Qwen 72B model compared to standard fine-tuning. Beyond accuracy, we observe that F2F reshapes representational geometry as measured by centered kernel alignment, shifting models away from generalist initialization toward structures more conducive to in-domain specialization. Furthermore, unlearning prior fine-tuning helps improved calibration on medical QA tasks, reducing overconfidence and mitigating reliability issues that persist under standard fine-tuning. These findings establish unlearning not merely as a *privacy tool* but as a principled intervention for domain adaptation. By strategically suppressing irrelevant pretraining knowledge, *Forget-to-Focus* helps more stable optimization dynamics, better calibrated predictions, and consistently stronger downstream performance. The code is available at anonymous github : <https://anonymous.4open.science/r/D-1545/README.md>

1 INTRODUCTION

Fine-tuning large language models (LLMs) (Parthasarathy et al., 2024; Hu et al., 2022) on specialized target domains has shown impressive results, but it also comes with challenges of *negative transfer* (Zhang et al., 2022), where certain knowledge from vast, general-domain pre-training corpus actually hurts performance on the new domain specialized tasks. Pre-trained LLMs are exposed to vast general data, and when adapting them to a niche domain, they often carry over misleading correlations or behaviors that are *irrelevant* or even *conflicting* for the target domain. For example, a model fine-tuned for biomedical QA might still hold onto casual language patterns from web text that hinder learning precise medical terminology. Prior works (Sun & Dredze, 2025; Jiang et al., 2025) have shown that treating all pre-training knowledge as uniformly important prior is not optimal and some of that knowledge can degrade optimization and generalization on the target task or domain.

In other words, vanilla fine-tuning may struggle to “forget” irrelevant features, leading to slower convergence or suboptimal accuracy on in-domain data. This challenge motivates a shift in perspective. Thus, we ask a central research question: *Instead of passively hoping a model learns to ignore irrelevant knowledge, can we actively make it to forget this knowledge to enhance its capacity for new, specialized learning?* Notably Chen et al. (2023a) demonstrated that introducing an active forgetting mechanism during pre-training led to faster convergence and better low-resource adaptation to new languages.

054 This question leads us to the field of “Machine Unlearning”(Li et al., 2025), originally developed to
 055 address the “right to be forgotten” in response to data privacy regulations like GDPR Hoofnagle et al.
 056 (2019). “Machine unlearning” refers to algorithms that make a trained model intentionally ‘forget’
 057 certain knowledge or data influences. Conventionally, unlearning has been studied for privacy (e.g.,
 058 removing specific training examples from models upon request). In this work, we *repurpose* the
 059 concept of unlearning not for privacy, but to strategically remove or suppress irrelevant general
 060 knowledge that might hinder domain specialization.

061 However, leveraging unlearning for improved fine-tuning is not straightforward as (1) deciding what
 062 knowledge is harmful or useful is challenging, since the pretraining dataset is usually mixed with
 063 domain-irrelevant and domain relevant data, (2) unlearning aggressively could also erase general lin-
 064 guistic competence and useful information from the model, (3) optimization stability is uncertain in
 065 unlearning since it has potential to disrupt convergence and (4) it is unclear whether benefits extend
 066 across different domains and model scales (models with different architectures and sizes). These
 067 challenges motivate the need and an investigation of a protocol that carefully balances forgetting
 068 and retention to prepare models for effective specialization.

069 To address these challenges, we present *Forget-to-Focus* (F2F), where we analyze if a preparatory
 070 unlearning phase can enhance the fine-tuning process. For this analysis, we employ a protocol
 071 where an unlearned model, created using a “forget set” of general data and a “retain set” for sta-
 072 bility (depending upon the unlearning algorithm), is subsequently fine-tuned on a domain-specific
 073 dataset. We found that this preparatory unlearning consistently improves fine-tuning performance.
 074 Our experiments span multiple models with different architectures and sizes, and we investigate this
 075 phenomenon across the medical, mathematical, and coding domains and to deeply analyze why it
 076 occurs, we observe the change and shifts in model’s internal representations.

077 Our contributions are as follows :

- 079 • We present the first comprehensive study of *machine unlearning* not as a privacy safe-
 080 guard, but as a deliberate preparatory stage to enhance fine-tuning of large language models
 081 (LLMs) for domain specialization.
- 082 • We introduce *Forget-to-Focus* (F2F), a two-stage training procedure that strategically un-
 083 learns unnecessary general domain knowledge using a forget set (with an optional retain
 084 set), followed by domain-specific fine-tuning. This protocol consistently outperforms stan-
 085 dard fine-tuning, DAPT, and parameter-efficient baselines across coding, mathematics, and
 086 medical domains.
- 087 • Through large-scale experiments on diverse models (from 0.6B to 72B parameters) with
 088 different architecture, we show that F2F helps in substantial pass@1 gains (e.g., 10.7%
 089 performance increase on MBPP for Qwen-0.6B, and 9% performance increase Qwen-72B
 090 compared to LoRA fine-tuning) while improving calibration on sensitive tasks such as med-
 091 ical QAs.
- 092 • Using centered kernel alignment (CKA), SVCCA, Fisher information, PCA-shift analyses,
 093 we observe that unlearning reshapes representational geometry, reallocates parameter sen-
 094 sitivity. These findings provide direct evidence that unlearning reduces negative transfer by
 095 suppressing interfering generalist features.
- 096 • Through extensive experiments, we show that both the size and quality of the forget set
 097 significantly impact fine-tuning performance, and that the relative weighting of the retain
 098 and forget sets further shapes performance across different models.

101 2 FORGET-TO-FOCUS

103 The current pattern of pre-training followed by fine-tuning leverages broad knowledge from
 104 large, general purpose datasets. However, this general knowledge is not always benefi-
 105 cial. When adapting a model to a specialized domain, a subset of the pre-trained knowl-
 106 edge can be irrelevant or even counterproductive, leading to a phenomenon known as neg-
 107 ative transfer. We analyze that explicitly removing this irrelevant knowledge prior to fine-
 tuning allows the model to specialize more effectively. This leads to our central proposition.

108 Let θ_0 denote pretrained parameters.
 109 We wish to specialize to domain D with loss $L_D(\theta)$
 110 while suppressing the rooted pretraining priors that induce
 111 negative transfer. The core intuition (Fig. 1) is that explicitly
 112 removing priors that can hurt the fine-tuning process, helps in a
 113 cleaner optimization landscape for specialization.
 114

115 Formally, let $\theta^* = \arg \min_{\theta} L_D(\theta)$. The Forget-to-
 116 Focus (F2F) protocol constructs a new initialization $\tilde{\theta}_0$ such that
 117

$$118 \|\tilde{\theta}_0 - \theta^*\| < \|\theta_0 - \theta^*\| \implies L_D(\text{FINETUNE}(\tilde{\theta}_0)) < L_D(\text{FINETUNE}(\theta_0)), \quad (1)$$

125 We assume access to (i) a *forget set* F cause spurious general-domain behavior and (ii) a small *retain set* R (often a subset of D) that preserves essential capabilities during unlearning. The objective we
 126 minimize to achieve Equation 1 is shown in the Equation 2 with gradient-accumulation averaging
 127 over A micro-steps:
 128

$$129 \tilde{\theta}_0 = \arg \min_{\theta} \frac{1}{A} \sum_{a=1}^A \left[-\lambda \underbrace{\ell_F^{(a)}(\theta)}_{(\text{GA/Forget term})} + \sigma \underbrace{\ell_R^{(a)}(\theta)}_{(\text{GD/Retain term})} \right], \quad (2)$$

133 where $\lambda, \sigma > 0$ weight the forget/retain terms. In practice we realize (2) via *gradient ascent* on F ,
 134 forget set and *gradient descent* on R , retain set:
 135

$$136 \theta \leftarrow \theta + \eta \lambda \nabla_{\theta} \ell_F(\theta) - \eta \sigma \nabla_{\theta} \ell_R(\theta), \quad (3)$$

137 where $\eta > 0$ is the step size. Thus features predictive on F are de-emphasized or can be forgotten
 138 while R stabilizes core competence. After T_u steps we obtain $\tilde{\theta}_0$ and then fine-tune on D .
 139

140 **Unlearn.** In this phase, we initialize $\theta \leftarrow \theta_0$. For $t=1:T_u$: sample minibatches $B_F \subset F$, $B_R \subset R$,
 141 compute $g_F = \nabla \ell(B_F; \theta)$, $g_R = \nabla \ell(B_R; \theta)$, and update via (3). Set $\tilde{\theta}_0 \leftarrow \theta$. **Retune.** And in retune
 142 phase, we initialize $\theta \leftarrow \tilde{\theta}_0$ and optimize $\min_{\theta} L_D(\theta)$ with standard fine-tuning.
 143

144 While LLM training objective is non-convex, we use a convex linear surrogate to clarify the mechanism
 145 in a setting where the optimization is normal and interpretable. Consider, regularized linear
 146 models $f_{\theta}(x) = \theta^{\top} x$ with convex, β -smooth, μ -strongly convex losses. Suppose the feature space
 147 decomposes as $\mathbb{R}^p = \mathcal{V} \oplus \mathcal{U}$, where \mathcal{V} are *domain-relevant* directions and \mathcal{U} are *irrelevant* (spurious)
 148 w.r.t. D . Assume $\theta^* \in \mathcal{V}$ and the forget risk L_F has curvature along \mathcal{U} (Hessian $\succeq \mu_F I$ on \mathcal{U}).
 149

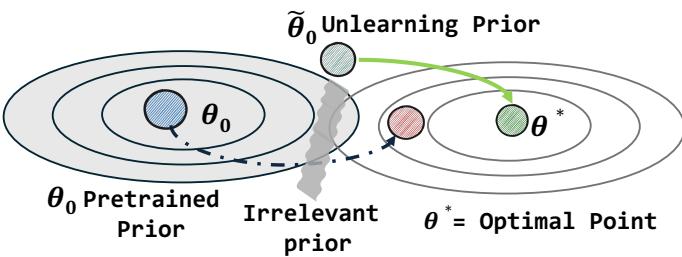
150 **Proposition. (Contraction on irrelevant directions with bounded retain perturbation).** Considering
 151 the update in Equation 3 Assume: (i) the parameter space decomposes orthogonally as $\mathbb{R}^p = \mathcal{V} \oplus \mathcal{U}$
 152 with projections $P_{\mathcal{V}}, P_{\mathcal{U}}$; (ii) L_F is μ_F strongly convex on \mathcal{U} (curvature lower bound $\mu_F > 0$ along
 153 \mathcal{U}); (iii) L_F, L_R are β -smooth (gradient-Lipschitz with constant β); (iv) the retain gradient along \mathcal{U}
 154 is uniformly bounded: $\|P_{\mathcal{U}} \nabla L_R(\theta)\| \leq G_R$ for all iterates. If $0 < \eta \leq 1/\beta$, then the \mathcal{U} component
 155 contracts as

$$156 \|P_{\mathcal{U}} \theta^+\| \leq (1 - \eta \lambda \mu_F) \|P_{\mathcal{U}} \theta\| + \eta \sigma G_R.$$

157 Iterating for T_u unlearn steps gives

$$158 \|P_{\mathcal{U}} \theta_{T_u}\| \leq (1 - \eta \lambda \mu_F)^{T_u} \|P_{\mathcal{U}} \theta_0\| + \frac{\sigma G_R}{\lambda \mu_F}.$$

159 Here, θ are model parameters; θ^+ is the next iterate; $P_{\mathcal{U}}, P_{\mathcal{V}}$ are orthogonal projections onto the
 160 “irrelevant” subspace \mathcal{U} and “relevant” subspace \mathcal{V} ; μ_F is the strong convexity constant of L_F along
 161 \mathcal{U} ; β is the smoothness constant; G_R bounds the retain gradient on \mathcal{U} ; T_u is the number of unlearn
 162 steps.



163 Figure 1: Schematic illustration of how pretraining priors create
 164 optimization barriers that slow convergence and induce suboptimal local minima when fine-tuning from θ_0 . Unlearning these
 165 priors yield a cleaner optimization path and lower final loss

162 **Corollary.** (*Retune convergence and downstream risk*). Let $\tilde{\theta}_0 := \theta_{T_u}$ be the post-unlearn iterate.
 163 Suppose the downstream objective L_D is μ strongly convex and β -smooth with minimizer $\theta^* \in \mathcal{V}$.
 164 Running gradient descent on L_D with any step size $\alpha \in (0, 1/\beta]$ from $\tilde{\theta}_0$ satisfies:
 165

$$166 \quad T_{\text{retune}}(\tilde{\theta}_0, \varepsilon) \leq \frac{\beta}{\mu} \log\left(\frac{L_D(\tilde{\theta}_0) - L_D(\theta^*)}{\varepsilon}\right), \quad L_D(\theta) - L_D(\theta^*) \leq \frac{\beta}{2} \|\theta - \theta^*\|^2.$$

168 Moreover, since $\theta^* \in \mathcal{V}$,

$$170 \quad \|\tilde{\theta}_0 - \theta^*\| \leq \|P_{\mathcal{V}}\theta_0 - \theta^*\| + (1 - \eta \lambda \mu_F)^{T_u} \|P_{\mathcal{U}}\theta_0\| + \frac{\sigma G_R}{\lambda \mu_F},$$

172 so increasing the forget to retain ratio λ/σ tightens the starting distance for fine-tuning and hence
 173 improves both the iteration complexity and the final risk bound.

174 $\tilde{\theta}_0$ is the post unlearn initialization; L_D is the downstream fine-tuning objective with smoothness β
 175 and strong convexity μ ; θ^* is its minimizer; $\varepsilon > 0$ is the target suboptimality; T_{retune} is the number
 176 of GD steps to reach ε .
 177

178 3 EXPERIMENTAL SETUP

181 3.1 UNLEARNING ALGORITHMS

183 The F2F can be implemented using various machine unlearning algorithms. In practice, these methods
 184 realize the objective stated in Equation 2. In our experiments we explored the following un-
 185 learning methods :

186 (1) *GA+GD* : Using gradient ascent (GA) combined with gradient descent (GD) (Yao et al., 2024)
 187 on forget and the retain set (*GA+GD*) directly pushes the model parameters away from encoding the
 188 irrelevant data while simultaneously preserving the desired domain knowledge.

189 (2) *GA* ($\sigma = 0$) : Using only gradient ascent on the forget set ($\sigma = 0$). This is a more aggressive
 190 approach that focuses solely on forgetting, which can be effective if the retain set is not strictly
 191 necessary for maintaining core capabilities.

192 (3) *GA+KL* : Another approach is to use Kullback-Leibler divergence (KL) with GA to make sure the
 193 model does not diverge too much from the original parameters while preserving the desired domain-
 194 specific knowledge. In this case, the objective becomes $\tilde{\theta}_0 = \arg \min_{\theta} \frac{1}{A} \sum_{a=1}^A \left[-\lambda \ell_F^{(a)}(\theta) + \right.$
 195 $\sigma \text{KL}(p_{\theta} \parallel p_{\theta_0}) \right]$, where p_{θ_0} denotes the original model distribution.

196 (4) Negative Preference Optimization (NPO) (Zhang et al., 2024), samples from the forget set are
 197 treated as “unpreferred” or “rejected” responses. The model is then optimized to lower its likelihood
 198 of producing such outputs, effectively unlearning the associated knowledge while maintaining its
 199 general utility. The objective minimizes

$$201 \quad \tilde{\theta} = \arg \min_{\theta} \mathbb{E}_{(x,y) \in \mathcal{F}} \left[-\frac{2}{\beta} \log \text{sigmoid}\left(-\beta \log \frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}\right) \right] \quad (4)$$

203 where π_{ref} is the reference model, and β controls the sharpness of the penalty.

205 3.2 FINE-TUNING METHODS

207 To assess whether F2F consistently outperforms standard fine-tuning, we compare against following
 208 baselines:

209 (1) *SFT* (Supervised Fine-Tuning): Fine-tune all model parameters on task-labeled data with a cross-
 210 entropy objective, following the standard recipe (Devlin et al., 2019).

211 (2) *DAPT* (Domain-Adaptive Pretraining): Continue unsupervised pretraining on domain specific
 212 text prior to task-specific fine-tuning to better match target distribution (Gururangan et al., 2020).

213 (3) *LoRA*: Update only low-rank adapter matrices inserted into attention/FFN projections while
 214 freezing the original weights. This method reduces trainable parameters and memory both (Hu
 215 et al., 2022).

215 (4) *CurlLora* : We used (Fawi, 2024) which continually updates production LLMs with new data
 streams, minimizing model degradation and retraining costs.

216 3.3 MODELS AND DATASETS
217

218 We performed our experiments on models of different sizes, architecture, variants, and family :
219 Qwen-2 72B-Instruct (Peng et al., 2023), LLaMA-2 13B (Touvron et al., 2023), LLaMA 3.1 8B-
220 Instruct (Grattafiori et al., 2024), Gemma-2B-Instruct (Team et al., 2024) and Qwen-3-0.6B (Yang
221 et al., 2025) to demonstrate the effectiveness of F2F to make the model adapt to certain domains.

222 We conducted experiments across three domains: medicine, mathematics, and coding.

223 *Unlearning Step.*

224 For the unlearning step, we considered **three**
225 **types** of forget sets from the Bookcorpus
226 dataset (Kobayashi, 2018; Jagtap): (i) BC-select :
227 a curated subset where we manually ex-
228 cluded texts overlapping with the target domain
229 (e.g., biomedical for PubMedQA), focusing in-
230 stead on general narrative and fiction content.
231 This ensured that the forget set contained min-
232 imal domain-relevant knowledge, and (ii) BC-
233 Mixed : a subset combining 800 random non-
234 domain samples from BookCorpus with 200
235 domain-related samples (e.g., humaneval (Chen
236 et al., 2021) for coding domain). (iii) BC-Cosine
237 : a curated subset where we automatically ex-
238 tract samples which are not aligned with our
239 target domain i.e., we encode each sample x
240 with a Transformer (Vera et al., 2025) $h_x =$
241 $f_\theta(x)$, define the target-domain centroid $c_T =$
242 $\frac{1}{|D_T|} \sum_{x' \in D_T} f_\theta(x')$, and rank samples by the
243 cosine distance $d_{\cos}(x) = 1 - \frac{h_x^\top c_T}{\|h_x\| \|c_T\|}$, selecting
244 samples with large $d_{\cos}(x)$. This setup inter-
245 polates between a clean forget set and one partially
246 contaminated with target-domain knowledge. This helps us analyze of how domain overlap or forget
247 set quality affects unlearning. The retain set is a small subset of the fine-tuning data, following prior
248 work (Geng et al., 2025). Figure 2 demonstrates the clear boundary between the two domains in the
249 BC-mixed dataset ensuring no domain leakage.

250 *Fine-tuning Step.* In the medical domain, we utilized PubMedQA (Jin et al., 2019), PubMed Guide-
251 lines (Chen et al., 2023b;c), and MedMCQA (Pal et al., 2022)’s training split as training datasets,
252 and evaluated performance on the PubMedQA and MedMCQA test sets. For the coding domain, we
253 trained on train set of OpenCoder (Huang et al., 2024) and evaluated on test set of HumanEval (Chen
254 et al., 2021) and MBPP (Austin et al., 2021). For the mathematics domain, we used the NVIDIA’s
255 OpenMathInstruct-1 dataset (Toshniwal et al., 2024) for training, while evaluation was carried out
256 on the Hendrycks MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021) benchmarks.
257 For the evaluation, we used LM-EVALUATION-HARNESS repository by Eleuther (Gao et al., 2024b).

258 3.4 HYPERPARAMETER CONFIGURATION
259

260 *Unlearning Step.* During the unlearning step, we adopted a consistent set of hyperparameters across
261 all models, unless otherwise specified. The base learning rate was fixed at 1×10^{-5} . We set the
262 gradient ascent (GA) weight to 1.0 and the gradient descent (GD) weight to 0.5. The only exception
263 was the LLaMA model, for which a higher learning rate of 3×10^{-5} was found to be more effective
264 in stabilizing convergence during unlearning. All models were trained with a batch size of 8 for
265 Qwen 0.6B model and 2 for rest of the models. For the Qwen 72B model specifically, we employed
266 QLoRA with rank 16 and a dropout 0.05, using bfloat16 precision.

267 *Fine-tuning Step.* For the fine-tuning stage, we set a uniform learning rate of 2×10^{-5} across all
268 models. Training epochs varied across models: the Qwen 0.6B model was finetuned for 8 epochs,
269 while the remaining models were trained for a single epoch, due to their larger parameter sizes
and to reduce the risk of overfitting on relatively small domain-specific datasets. All models were

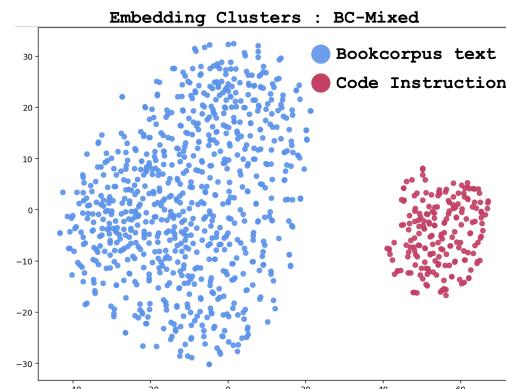


Figure 2: t-SNE of MiniLM (Wang et al., 2020) embeddings for the BC-Mixed forget set (800 BookCorpus non-domain + 200 domain-related code samples). The separation indicates distinct representational regions with limited overlap.

270 optimized using the AdamW optimizer. The effective batch size was 128, obtained through
 271 gradient accumulation with an accumulation step size of 32. For Qwen-72B model, we adopt 4bit
 272 quantization and tuned it with only 50% of the original dataset. For models such as LLaMA-8B,
 273 LLaMA-13B, and Qwen-72B, we performed LoRA-based supervised fine-tuning (SFT) using FP16
 274 precision. Trainings were performed on 80GB A100 GPUs.
 275

276 4 EVALUATION

277 4.1 EFFECT OF F2F ON CODING PERFORMANCE

280 Table 1 presents pass@1 accuracies on MBPP and HumanEval for multiple model architectures and
 281 a comparative assessment of different fine-tuning strategies. For unlearning, we used 100 samples
 282 for Qwen-0.6B, and 1000 samples for the other models, with 1000 samples for the retain dataset.
 283 We can observe four principal insights :

284 (1) Across both Qwen, Gemma and LLaMA models, performing unlearning prior to fine-tuning
 285 yields consistently higher coding performance compared to fine-tuning alone. For Qwen 0.6B
 286 model, applying Unl_{GA+GD} followed by fine-tuning improves performance on HumanEval from
 287 19.50 to 42.07, demonstrating a considerable gain. Similarly, for LLaMA 8B-Instruct HumanEval
 288 performance increases by 22.7% after applying unlearning before fine-tuning compared with other
 289 fine-tuning methods, F2F enhances performance the most. These results confirm our central hy-
 290 pothesis that actively removing irrelevant pre-training knowledge can create additional capacity for
 291 specialized learning.

292 (2) Gradient ascent and descent combined (Unl_{GA+GD}) strategy consistently outperforms the
 293 GA-only variant. While GA-only unlearning sometimes leads to degradation or instability (e.g.,
 294 LLaMA 8B HumanEval drops to 1.20 without subsequent fine-tuning), the GA+GD variant pro-
 295 duces more reliable gains. This suggests that balancing removal (GA) with stability-preserving
 296 retention (GD) is crucial to prevent catastrophic forgetting of useful priors. However, the GA vari-
 297 ant demonstrates that unlearning can be more effective than conventional fine-tuning approaches.
 298 For example, on the Qwen-0.6B model, GA achieves a pass@1 of 40.02 on HumanEval, surpassing
 299 LoRA (37.50) and SFT (31.71).

300 (3) The effect of unlearning varies across architectures. For models like Gemma 2B, unlearning had
 301 affected the performance (e.g., 0.00 performance after Unl_{GA+GD}). This indicates that aggressive
 302 unlearning may overwhelm models with limited capacity and limited pretraining domain specific
 303 knowledge. In contrast, after tuning, it improves the pass@1, and even performs better than usual
 304 fine-tuning where the model performance degrades after tuning.

305 (4) Across fine-tuning methods, the performance challenge remains evident. In the case of the
 306 Gemma-2B-Instruct model, LoRA fine-tuning reduces HumanEval accuracy by 11.3%. However,
 307 following unlearning, performance improves substantially, rising by 29.4%.

308 (5) For Gemma-2B-Instruct, we observed that the strongest configuration is F2F+SFT, which
 309 slightly improves over the base model on MBPP and substantially improves HumanEval (Table 1);
 310 in contrast, the rows with large drops (e.g., Unl_{GA+GD} without SFT) correspond to intermediate
 311 unlearning checkpoints rather than the final tuned models.

312 These observations highlight that preparatory unlearning causes more effective fine-tuning which
 313 strategically suppresses irrelevant pre-training knowledge causing the model align better with
 314 domain-specific objectives, thereby mitigating negative transfer and unlocking performance gains.
 315 Retention of broad skills beyond target domains are provided in Appendix A.

317 4.2 F2F w/ FINE-TUNING VARIANTS

319 To study the interaction between fine-tuning and unlearning, we tuned the models on a medical
 320 dataset and evaluated them under identical conditions. Table 2 highlights that across both model
 321 families, full SFT consistently delivers the strongest improvements, indicating that direct parameter
 322 updates provide the most effective alignment with domain-specific data. For Qwen 0.6B, SFT yields
 323 the largest gains, while LoRA and CurlLoRA provide modest but stable improvements, suggesting
 that lightweight adapters capture useful task knowledge but lack the depth of full tuning. DAPT

324 Table 1: MBPP and HumanEval pass@1 across different models (Qwen-2 72B-Instruct (Peng et al.,
325 LLaMA-2 13B (Touvron et al., 2023), LLaMA 3.1 8B-Instruct (Grattafiori et al., 2024),
326 Gemma-2B-Instruct (Team et al., 2024) and Qwen-3-0.6B (Yang et al., 2025)) and tuning meth-
327 ods (higher is better). **Best** ; **Second best**

Coding	Qwen 0.6B		Gemma 2B		LLaMA 8B-Instruct		LLaMA 13B		Qwen 72B	
	MBPP	HumanEval	MBPP	HumanEval	MBPP	HumanEval	MBPP	HumanEval	MBPP	HumanEval
(1) Base Model	22.60	19.50	19.80	16.46	49.00	33.54	27.22	0.60	67.21	70.12
(1)+ SFT	28.80	31.71	12.80	16.20	56.60	56.71	37.01	40.21	69.50	71.12
(1) + DAPT	29.30	39.80	19.00	17.05	53.55	56.20	39.50	42.70	71.90	72.50
(1) + LORA	28.55	37.50	16.23	14.60	51.08	45.31	36.55	20.15	66.50	70.30
(1) + CurlLora	31.00	40.91	13.22	18.51	57.40	52.93	40.50	42.00	69.00	68.20
F2F { (2) + SFT }	30.00	21.34	7.80	0.00	43.60	54.88	27.22	0.60	67.21	71.30
	31.60	42.07	20.05	21.30	60.10	60.37	50.31	46.15	72.50	78.50
	24.00	20.73	0.80	0.00	22.60	1.20	0.00	25.50	60.05	65.02
(3)+ SFT	31.60	40.02	19.40	18.02	58.66	57.70	45.01	44.70	70.45	76.00

337
338 sits between the two, showing that continued pretraining transfers domain knowledge effectively but
339 still underperforms SFT. For LLaMA 8B-Instruct, the pattern shifts: combining SFT with LoRA
340 achieves the best balance of adaptation and efficiency, while LoRA and CurlLoRA trail behind,
341 highlighting diminishing returns when adapters are applied in isolation. DAPT with LoRA provides
342 gains but remains weaker than full SFT-based approaches, suggesting that structured fine-tuning
343 remains essential for larger models.

344 Table 2: Evaluation results on PubMedQA and MedMCQA for Qwen 3 0.6B and LLaMA 3.1 8B-
345 Instruct under different adaptation methods. ↑ Performance improvement over base model.

	Qwen 0.6B		LLaMA 8B-Instruct		
	PubMedQA	MedMCQA	PubMedQA	MedMCQA	
SFT	69.60 ↑11.8	45.31↑13.06	SFT	89.90 ↑14.70	70.25 ↑10.82
LoRA	64.35↑6.55	44.90↑12.65	LoRA	85.00↑9.80	65.10↑5.67
CurlLoRA	65.00↑7.22	45.00↑12.75	CurlLoRA	84.20↑9.00	63.40↑3.97
DAPT	68.00↑10.20	45.90↑13.45	DAPT	88.65 ↑13.45	65.00↑5.57

354 4.3 F2F w/ UNLEARNING VARIANTS

355
356 Figure 3 illustrates a comparative analysis in the medical domain (PubMedQA and MedMCQA) for
357 two models of differing architectures and scales: Qwen-0.6B and LLaMA-8B-Instruct. The results
358 show that combined gradient ascent and descent (GA+GD) unlearning yields the most substantial
359 performance gains after fine-tuning, outperforming both unlearning-only and alternative unlearning
360 approaches. Across PubMedQA and MedMCQA, unlearning reliably enhances the effectiveness of
361 subsequent tuning. Notably, for smaller models such as Qwen-0.6B, tuning after $\sigma=0$ (only GA)
362 unlearning tends to underperform, underscoring the importance of stability-preserving retention. In
363 contrast, for larger models like LLaMA-8B, GA-only unlearning achieves performance comparable
364 to, and in some cases exceeding, other unlearning variants due to the less dependency on stability-
365 preserving corrections like GD.

366 4.4 EFFECT OF FORGET SET QUALITY

367
368 Table 3 compares performance when different forget sets (BC-Select vs. BC-Mixed vs. BC-Cosine)
369 are applied across coding, medical, and mathematical domains. An important factor of F2F lies in
370 the composition of the forget set. Across Qwen, Gemma, and LLaMA models, unlearning with a
371 BC-Select forget set consistently produces greater downstream improvements following fine-tuning
372 compared to using BC-Mixed. For instance, in the case of Qwen 0.6B, applying Unl_{GA+GD} fol-
373 lowed by tuning on BC-Select increases MBPP accuracy to 31.60, in contrast to 29.90 with BC-
374 Mixed. This indicates that BC-Select, being more curated and less noisy, enables more precise
375 removal of irrelevant pre-training features. Moreover, as it is not intermixed with domain-specific
376 data points, it avoids erasing domain-relevant knowledge. In the case of BC-Cosine, where we se-
377 lected forget set based on low cosine similarity demonstrates and proves to perform better than the
378 baseline and other SOTA tuning methods. For LLaMA 8B-Instruct, the performance is very similar

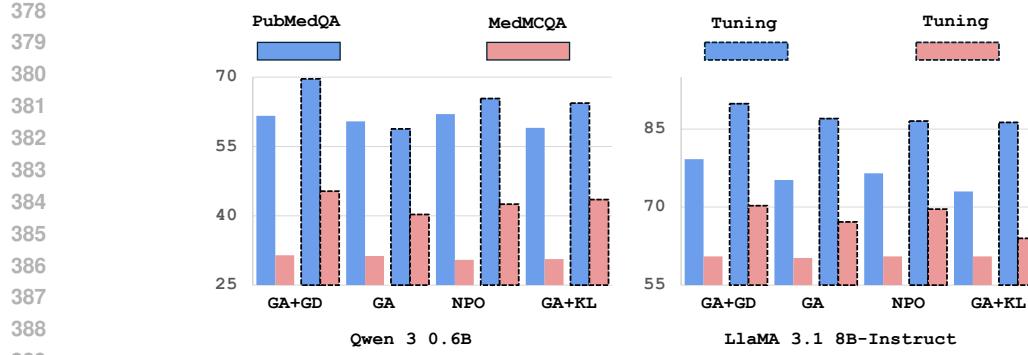


Figure 3: Comparative performance of different unlearning methods across different models with different architectures and sizes.

to the BC-Select which shows that cosine similarity can be used to select forget set if the domain is distinct.

Across all model sizes and domains, the results clearly demonstrate that the F2F protocol consistently outperforms standard fine-tuning. Models equipped with F2F show increasing gains in pass@1 accuracy. For instance, Qwen3-0.6B improves from 21.34 to 42.07 on HumanEval after applying unlearning and tuning, while LlaMA3.1-8B reaches 60.37 when compared to a baseline of 33.54. These improvements indicate that suppressing irrelevant pretraining knowledge helps models specialize in algorithmic reasoning.

These results highlight that the effectiveness of unlearning is highly dependent on the choice of forget set, the target domain, and capacity of the model. BC-Select forget sets appear more reliable for guiding domain adaptation, while BC-Mixed provides mixed benefits that depend on task alignment.

4.5 REPRESENTATION GEOMETRY ANALYSIS (CKA & SVCCA)

We analyze how unlearning Xu et al. (2025) and fine-tuning alter internal representations using *Centered Kernel Alignment* (CKA) Kornblith et al. (2019) and *Singular Vector Canonical Correlation Analysis* (SVCCA) Raghu et al. (2017).

CKA. Let $X \in \mathbb{R}^{N \times d_x}$ and $Y \in \mathbb{R}^{N \times d_y}$ be mean-pooled, sample-centered layer representations of the same inputs, i.e., $X_c = X - \bar{X}$ and $Y_c = Y - \bar{Y}$. The linear CKA is $\text{CKA}(X, Y) = \frac{\|X_c^\top Y_c\|_F^2}{\|X_c\|_F \|Y_c\|_F}$, which captures similarity of representational geometry and is invariant to orthogonal transforms and isotropic rescaling. Across the three domains, CKA reveals different representational drift patterns. Across all three domains, tuning overwrites most representations (low similarity), with F2F also highly divergent. This highlights that the extent of representational change depends on the domain, with F2F consistently pushing representations further from the unlearned model.

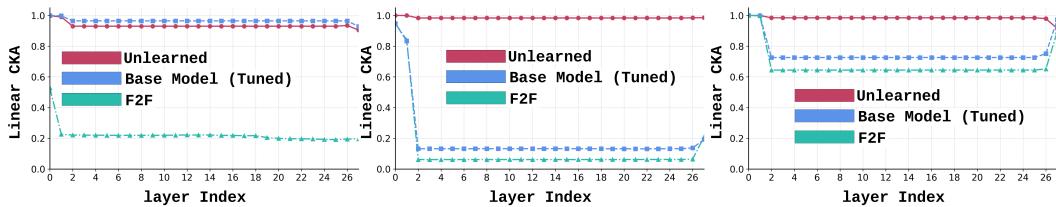


Figure 4: Representational drift measured by linear CKA. Across three domains, tuning substantially lowers similarity to the unlearned model; F2F exhibits the most pronounced departure. From left to right : Medical Domain, Mathematics Domain and Coding Domain.

432
 433 Table 3: Effect of forget-set quality on F2F across domains. We compare curated *BC-Select* vs.
 434 mixed *BC-Mixed* vs. *BC-Cosine* forget sets on Qwen3-0.6B, LLaMA3.1-8B-Instruct, and LLaMA2-
 435 13B over coding (MBPP, HumanEval), medical (PubMedQA, MedMCQA), and math (Hendrycks-
 436 MATH, GSM8K) benchmarks (higher is better). **Best** ; **Second best**

437	FD	Method	Coding		Medical		Mathematics	
			438 MBPP	HumanEval	439 PubMedQA	MedMCQA	440 Hendrycks	GSM8K
441 Qwen3 0.6B	- BC-Cosine	(1) <i>Unl_{GA+GD}</i>	30.00	21.34	61.60	31.44	39.07	0.26
		(1) + <i>Tuning</i>	31.60	42.07	69.60	45.31	54.11	15.30
		(2) <i>Unl_{GA}</i>	24.00	20.73	60.40	31.29	25.09	0.24
		(2) + <i>SFT</i>	31.60	40.02	58.80	40.26	51.20	14.00
		(1) <i>Unl_{GA+GD}</i>	24.20	20.12	61.80	30.38	31.47	0.06
		(1) + <i>Tuning</i>	29.90	40.00	60.20	23.31	52.00	13.21
		(2) <i>Unl_{GA}</i>	23.80	20.12	60.20	31.89	25.00	0.00
		(2) + <i>Tuning</i>	28.00	33.10	61.20	35.43	50.00	13.51
		(1) <i>Unl_{GA+GD}</i>	24.01	18.00	61.20	29.32	29.05	0.10
		(1) + <i>Tuning</i>	31.55	41.90	67.33	45.00	54.85	13.20
442 LLaMA3.1 8B	- BC-Cosine	(1) <i>Unl_{GA+GD}</i>	43.60	54.88	79.21	60.50	18.00	61.70
		(1) + <i>Tuning</i>	60.10	60.37	89.90	70.25	29.50	70.51
		(2) <i>Unl_{GA}</i>	22.60	1.20	75.22	60.20	10.51	50.91
		(2) + <i>Tuning</i>	58.66	57.70	87.00	67.15	25.70	67.20
		(1) <i>Unl_{GA+GD}</i>	40.50	52.52	79.50	59.30	17.00	51.00
		(1) + <i>Tuning</i>	56.20	55.76	87.61	70.10	28.81	65.20
		(2) <i>Unl_{GA}</i>	33.20	25.50	72.30	57.00	5.20	35.20
		(2) + <i>Tuning</i>	52.30	40.90	86.90	61.20	23.01	66.15
		(1) <i>Unl_{GA+GD}</i>	42.55	53.76	79.00	58.22	17.91	61.00
		(1) + <i>Tuning</i>	59.55	59.86	85.31	71.02	28.33	68.57
443 LLaMA2 13B	- BC-Cosine	(1) <i>Unl_{GA+GD}</i>	27.22	0.60	74.90	38.68	29.00	5.10
		(1) + <i>Tuning</i>	50.31	46.15	90.11	60.10	51.50	21.50
		(2) <i>Unl_{GA}</i>	0.00	25.50	70.00	36.51	24.35	2.00
		(2) + <i>Tuning</i>	45.01	44.70	89.33	57.93	50.90	20.00
		(1) <i>Unl_{GA+GD}</i>	27.20	0.45	73.00	37.50	27.00	5.10
		(1) + <i>Tuning</i>	47.50	45.91	89.55	61.30	50.30	20.00
		(2) <i>Unl_{GA}</i>	0.00	10.00	65.99	29.55	23.55	1.05
		(2) + <i>Tuning</i>	39.55	40.01	87.00	50.60	47.60	20.00
		(1) <i>Unl_{GA+GD}</i>	25.30	0.52	73.44	37.62	29.09	6.30
		(1) + <i>Tuning</i>	48.91	44.30	90.00	58.42	50.33	18.03

444 **SVCCA** . SVCCA compresses each space to retain a fraction $\alpha = 0.99$ of variance via SVD,
 445 then computes the mean canonical correlation between the compressed features; if $X' \in \mathbb{R}^{N \times k_x}$,
 446 $Y' \in \mathbb{R}^{N \times k_y}$, and ρ_1, \dots, ρ_k are the canonical correlations with $k = \min(k_x, k_y)$, then
 447 $SVCCA(X, Y) = \frac{1}{k} \sum_{i=1}^k \rho_i$, emphasizing shared, high-variance factors which is complementary
 448 global geometry view of CKA. The SVCCA heatmaps indicate that tuning preserves partial alignment
 449 with the base model, while F2F introduces more substantial representational shifts. Base model
 450 vs. unlearned shows limited overlap beyond trivial self-similarity, whereas F2F vs. base model tuned
 451 reveals only localized correspondences. This highlights that tuning induces domain-dependent but
 452 structured drift, while F2F consistently drives stronger alterations in the representational subspace.
 453 *More analysis and ablations are given in the appendix section A.*

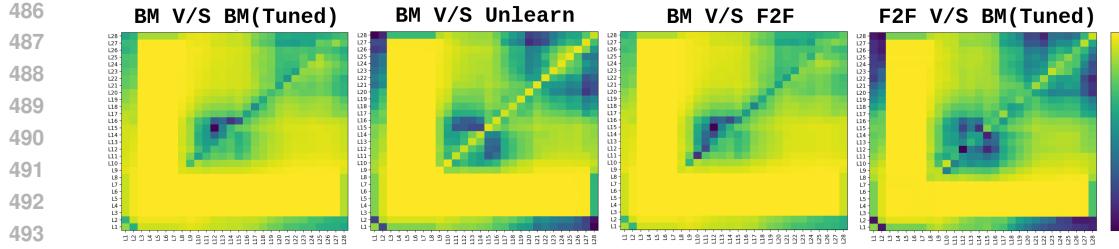


Figure 5: Heatmaps of representational similarity measured by SVCCA. We compare layer-wise representations across (i) Base model(BM) vs. fine-tuned base model, (ii) Base model (BM) vs. unlearned model, (iii) Base model (BM) vs. F2F, and (iv) Fine-tuned base model vs. F2F. SVCCA emphasizes alignment of shared high-variance factors.

5 CONCLUSION

We demonstrate that Forget-to-Focus (F2F) a simple two-stage pipeline : unlearns targeted general domain knowledge (forget) and then fine-tunes to adapt to a domain specific model (focus) consistently improves domain adaptation of LLMs across coding, math, and medical tasks, from 0.6B to 72B scales. F2F delivers higher accuracy than standard fine-tuning and parameter-efficient baselines, improves calibration on sensitive QA, and induces clear representational shifts (via CKA/SVCCA, Fisher, PCA) away from generalist features toward domain-useful structure. These gains arise from suppressing interfering priors from pretraining, causing stabler optimization and reduced spurious correlations. The method is modular, data-driven (via forget/retain sets), and compatible with common training stacks. Overall, F2F reframes unlearning as capacity reallocation for specialization, offering a practical path to more reliable in-domain LLMs.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. *arXiv preprint arXiv:2108.07732*, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 7432–7439, 2020.

Sungmin Cha, Sungjun Cho, Dasol Hwang, and Moontae Lee. Towards robust and parameter-efficient knowledge unlearning for llms. *arXiv preprint arXiv:2408.06621*, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebbgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code, 2021.

Yihong Chen, Kelly Marchisio, Roberta Raileanu, David Ifeoluwa Adelani, Pontus Stenetorp, Sebastian Riedel, and Mikel Artetxe. Improving language plasticity via pretraining with active forgetting. 2023a. URL <https://dl.acm.org/doi/10.5555/3666122.3667491>.

Zeming Chen, Alejandro Hernández-Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba, Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami, Alexandre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit, Axel Marmet,

540 Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi, and Antoine Bosselut. Meditron-70b: Scal-
 541 ing medical pretraining for large language models, 2023b.

542

543 Zeming Chen, Alejandro Hernández-Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
 544 Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami, Alexan-
 545 dre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit, Axel Marmet,
 546 Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi, and Antoine Bosselut. Meditron-70b: Scal-
 547 ing medical pretraining for large language models, 2023c. URL <https://github.com/epfLLM/meditron>.

548

549 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 550 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint*
 551 *arXiv:1905.10044*, 2019.

552 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 553 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 554 *arXiv preprint arXiv:1803.05457*, 2018.

555

556 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 557 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 558 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

559

560 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 561 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 562 *the North American chapter of the association for computational linguistics: human language*
 563 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

564

565 EleutherAI. Sparsify: sparsify transformers with saes and transcoders. <https://github.com/EleutherAI/sparsify>, 2024. version as of November 18, 2025.

566

567 Muhammad Fawi. CURLoRA: Leveraging CUR Matrix Decomposition for Stable LLM Continual
 568 Fine-Tuning and Catastrophic Forgetting Mitigation, July 2024. URL <https://doi.org/10.5281/zenodo.12730055>.

569

570 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
 571 Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint*
 572 *arXiv:2406.04093*, 2024a.

573

574 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 575 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 576 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 577 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 578 evaluation harness, 07 2024b. URL <https://zenodo.org/records/12608602>.

579

580 Jiahui Geng, Qing Li, Herbert Wosietschlaeger, Zongxiong Chen, Fengyu Cai, Yuxia Wang, Preslav
 581 Nakov, Hans-Arno Jacobsen, and Fakhri Karray. A comprehensive survey of machine unlearning
 582 techniques for large language models. *arXiv preprint arXiv:2503.01854*, 2025.

583

584 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 585 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 586 of models. *arXiv preprint arXiv:2407.21783*, 2024.

587

588 Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
 589 and Noah A Smith. Don't stop pretraining: Adapt language models to domains and tasks. *arXiv*
 590 *preprint arXiv:2004.10964*, 2020.

591

592 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 593 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 594 *preprint arXiv:2103.03874*, 2021.

595

596 Chris Jay Hoofnagle, Bart van der Sloot, and Frederik Zuiderveen Borgesius. The european union
 597 general data protection regulation: what it is and what it means*. *Information & Communications*
 598 *Technology Law*, 28(1):65–98, 2019. doi: 10.1080/13600834.2019.1573501. URL <https://doi.org/10.1080/13600834.2019.1573501>.

594 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 595 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 596

597 Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang,
 598 Jiaheng Liu, Chenchen Zhang, Linzheng Chai, et al. Opencoder: The open cookbook for top-tier
 599 code large language models. *arXiv preprint arXiv:2411.04905*, 2024.

600 Rohit Jagtap. Bookcorpus dataset. <https://huggingface.co/datasets/rojagtap/bookcorpus>. Accessed: 2025-09-11.
 601

602 Chunyang Jiang, Chi-min Chan, Yiyang Cai, Yulong Liu, Wei Xue, and Yike Guo. Graceful forget-
 603 ting in generative language models. *arXiv preprint arXiv:2505.19715*, 2025.

604

605 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset
 606 for biomedical research question answering. In *Proceedings of the 2019 Conference on Empirical
 607 Methods in Natural Language Processing and the 9th International Joint Conference on Natural
 608 Language Processing (EMNLP-IJCNLP)*, pp. 2567–2577, 2019.

609

610 Sosuke Kobayashi. Homemade bookcorpus. <https://github.com/soskek/bookcorpus>,
 611 2018.

612 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
 613 network representations revisited. In *International conference on machine learning*, pp. 3519–
 614 3529. PMIR, 2019.

615

616 Na Li, Chunyi Zhou, Yansong Gao, Hui Chen, Zhi Zhang, Boyu Kuang, and Anmin Fu. Machine
 617 unlearning: Taxonomy, metrics, applications, challenges, and prospects. *IEEE Transactions on
 618 Neural Networks and Learning Systems*, 36(8):13709–13729, 2025. doi: 10.1109/TNNLS.2025.
 619 3530988.

620 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
 621 multi-subject multi-choice dataset for medical domain question answering. In Gerardo Flores,
 622 George H Chen, Tom Pollard, Joyce C Ho, and Tristan Naumann (eds.), *Proceedings of the Con-
 623 ference on Health, Inference, and Learning*, volume 174 of *Proceedings of Machine Learning Re-
 624 search*, pp. 248–260. PMLR, 07–08 Apr 2022. URL <https://proceedings.mlr.press/v174/pal22a.html>.

625

626 Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar, Aafaq Khan, and Arsalan Shahid. The ul-
 627 timate guide to fine-tuning llms from basics to breakthroughs: An exhaustive review of tech-
 628 nologies, research, best practices, applied research challenges and opportunities. *arXiv preprint
 629 arXiv:2408.13296*, 2024.

630

631 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
 632 extension of large language models. *arXiv preprint arXiv:2309.00071*, 2023.

633

634 Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
 635 canonical correlation analysis for deep learning dynamics and interpretability. *Advances in neural
 636 information processing systems*, 30, 2017.

637

638 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 639 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

640

641 Kaiser Sun and Mark Dredze. Amuro & char: Analyzing the relationship between pre-training and
 642 fine-tuning of large language models. 2025. URL <https://aclanthology.org/2025.repl4nlp-1.11/>.

643

644 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
 645 Pathak, Laurent Sifre, Morgane Rivière, Mihr Sanjay Kale, Juliette Love, et al. Gemma: Open
 646 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

647

648 Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
 649 Openmathinstruct-1: A 1.8 million math instruction tuning dataset. *Advances in Neural Infor-
 650 mation Processing Systems*, 37:34737–34774, 2024.

648 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 649 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 650 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

651
 652 Henrique Schechter Vera, Sahil Dua, Biao Zhang, Daniel Salz, Ryan Mullins, Sindhu Raguram
 653 Panyam, Sara Smoot, Iftekhar Naim, Joe Zou, Feiyang Chen, et al. Embeddinggemma: Powerful
 654 and lightweight text representations. *arXiv preprint arXiv:2509.20354*, 2025.

655 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 656 attention distillation for task-agnostic compression of pre-trained transformers. *Advances in neu-
 657 ral information processing systems*, 33:5776–5788, 2020.

658 Xiaoyu Xu, Xiang Yue, Yang Liu, Qingqing Ye, Haibo Hu, and Minxin Du. Unlearning isn't dele-
 659 tion: Investigating reversibility of machine unlearning in llms. *arXiv preprint arXiv:2505.16831*,
 660 2025.

661 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 662 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 663 arXiv:2505.09388*, 2025.

664 Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and Xiang Yue. Machine
 665 unlearning of pre-trained large language models. *arXiv preprint arXiv:2402.15159*, 2024.

666 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 667 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

668 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
 669 trophic collapse to effective unlearning. *arXiv preprint arXiv:2404.05868*, 2024.

670 Wen Zhang, Lingfei Deng, Lei Zhang, and Dongrui Wu. A survey on negative transfer. *IEEE/CAA
 671 Journal of Automatica Sinica*, 10(2):305–329, 2022.

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A APPENDIX FOR FORGET-TO-FOCUS
703704
705 A.1 MBPP AND HUMAN EVAL PASS@1 ACROSS DIFFERENT VARIANTS OF QWEN 2.5
706 FAMILY.
707

708 As extension of Table 1, Table 4 presents pass@1 accuracies on MBPP and HumanEval for Qwen
709 2.5 model variants and a comparative assessment of different fine-tuning strategies. In particular,
710 Unl_{GA+GD} pretraining followed by SFT (2)+SFT results the strongest performance for every model
711 size, achieving new best pass@1 scores of 53.80 & 47.30 (MBPP/HumanEval) for 1.5B, 75.90 &
712 53.20 for 7B, and 71.30 & 51.59 for 14B. Compared to the respective base models, this corresponds
713 to absolute gains of +13.8, +10.1, and +9.1 points on MBPP and +11.9, +13.0, and +14.8 points on
714 HumanEval for the 1.5B, 7B, and 14B models, respectively, which translate to roughly 30 - 40%
715 relative improvements.

716 Overall, these results demonstrate that leveraging F2F is a robust and scalable strategy for enhancing
717 code generation capabilities across model sizes of the same family.

718
719 Table 4: MBPP and HumanEval pass@1 across Qwen 2.5 model variants and tuning methods
720 (higher is better). Best ; Second best

Coding	Qwen 2.5 1.5B		Qwen 2.5 7B		Qwen 2.5 14B	
	MBPP	HumanEval	MBPP	HumanEval	MBPP	HumanEval
(1) Base Model	40.00	35.37	65.85	40.20	62.20	36.80
(1)+ SFT	45.04	38.25	72.53	43.80	65.75	40.55
(1)+ DAPT	46.00	41.03	71.35	44.65	69.00	41.69
(1)+ LORA	44.76	39.01	70.33	44.83	67.35	49.97
(1)+ CurlLora	46.22	43.21	72.00	45.09	68.00	41.33
(2) Unl _{GA+GD}	43.00	37.11	65.60	45.10	64.55	40.25
(2)+ SFT	53.80	47.30	75.90	53.20	71.30	51.59
(3) Unl _{GA}	39.61	34.30	67.02	43.21	61.11	37.81
(3)+ SFT	52.40	45.80	72.50	48.70	68.45	48.10

731
732
733 A.2 RETENTION OF BROAD SKILLS BEYOND TARGET DOMAINS
734

735 We evaluated broad-skill retention across ARC-E/C Clark et al. (2018), HellaSwag (Zellers et al.,
736 2019), Winogrande (Sakaguchi et al., 2021), PIQA (Bisk et al., 2020), and BoolQ (Clark et al., 2019)
737 for Qwen-0.6B and LLaMA-8B with different fine-tuning settings. In Table 5, we observe that simple
738 supervised fine-tuning improves tasks like ARC and BoolQ, while often reducing performance
739 on commonsense benchmarks such as HellaSwag, Winogrande, and PIQA, indicating a trade-off be-
740 tween specialization and everyday reasoning. Unlearning with gradient ascent plus gradient descent
741 produces small but consistent gains across most tasks with minimal regressions, suggesting a sta-
742 bilizing effect on broad skills. The full Forget-to-Focus pipeline that combines GA+GD unlearning
743 followed by supervised fine-tuning strengthens knowledge retention further and largely preserves
744 commonsense accuracy, yielding a near Pareto improvement relative to the base model in many
745 cases. In contrast, gradient-ascent-only unlearning is volatile, with large swings across datasets; ap-
746 plying supervised fine-tuning afterward recovers much of the instability yet still leaves task-selective
747 regressions, particularly on PIQA for the smaller and mid-size settings. Taken together, these trends
748 support the claim that the proposed unlearn-then-retune recipe can retain broad capabilities while
749 enabling targeted forgetting, provided the unlearning stage includes an explicit retain mechanism
750 rather than relying on ascent alone.

751 To assess conversational and instruction-following robustness, we additionally evaluated models on
752 Alpaca-Eval using the length-controlled win rate and the official lmsys-gpt4 annotator configuration.
753 We find that F2F slightly improves win rate compared to the base, indicating that the proposed
754 unlearning-retuning procedure reallocates capacity toward domain specialization without sacrificing
755 instruction-following or conversational fluency. Together, these results reinforce that F2F enables
targeted forgetting while preserving general and interactive capabilities.

756 Table 5: Broad-skill retention audit across general benchmarks (accuracy) **and Length Controlled**
757 **Win rate for Alpaca-Eval.**

Model	Method	ARC-E	ARC-C	HellaSwag	Winogrande	PIQA	BoolQ	Alpaca-Eval (LC Win Rate)
Qwen 0.6B	(1) Base Model	68.00	32.50	45.00	59.00	67.50	67.50	28.58
	(1) + SFT	68.50 \uparrow 0.5	36.50 \uparrow 4.0	44.50 \downarrow 0.5	58.50 \downarrow 0.5	65.00 \downarrow 2.5	71.00 \uparrow 3.5	27.65 \downarrow 0.9
	(2) <i>Unl_{GA+GD}</i>	67.50 \downarrow 0.5	36.00 \uparrow 3.5	45.50 \uparrow 0.5	61.00 \uparrow 2.0	68.00 \uparrow 0.5	72.00 \uparrow 4.5	28.38 \downarrow 0.2
	(2) + SFT	68.50 \uparrow 0.5	37.00 \uparrow 4.5	45.00(0)	57.50 \downarrow 1.5	64.00 \downarrow 3.5	73.50 \uparrow 6.0	29.01 \uparrow 0.4
	(3) <i>Unl_{GA}</i>	67.50 \downarrow 0.5	32.50(0)	59.00 \uparrow 14.0	44.50 \downarrow 14.5	66.50 \downarrow 1.0	75.00 \uparrow 7.5	29.59 \downarrow 1.1
	(3) + SFT	69.00 \uparrow 1.0	35.00 \uparrow 2.5	45.00(0)	63.50 \uparrow 4.5	58.50 \downarrow 9.0	73.50 \uparrow 6.0	27.78 \downarrow 0.7
LLaMA 8B	(1) Base Model	82.50	52.50	55.00	80.00	79.50	87.50	30.22
	(1) + SFT	83.00 \uparrow 0.5	56.50 \uparrow 4.0	51.50 \downarrow 3.5	74.30 \downarrow 5.7	76.00 \downarrow 3.5	89.00 \uparrow 1.5	30.32 \uparrow 0.1
	(2) <i>Unl_{GA+GD}</i>	82.00 \downarrow 0.5	56.00 \uparrow 3.5	55.50 \uparrow 0.5	82.00 \uparrow 2.0	80.50 \uparrow 1.0	90.50 \uparrow 3.0	30.22(0.0)
	(2) + SFT	83.00 \uparrow 0.5	59.00 \uparrow 6.5	55.00(0)	79.00 \downarrow 1.0	78.50 \downarrow 1.0	91.00 \uparrow 3.5	30.55 \uparrow 0.3
	(3) <i>Unl_{GA}</i>	82.00 \downarrow 0.5	52.50(0)	69.50 \uparrow 14.5	65.00 \downarrow 15.0	78.50 \downarrow 1.0	86.50 \downarrow 1.0	30.12 \downarrow 0.1
	(3) + SFT	84.00 \uparrow 1.5	55.00 \uparrow 2.5	68.00 \uparrow 13.0	81.00 \uparrow 1.0	77.00 \downarrow 2.5	90.00 \uparrow 2.5	30.42 \uparrow 0.2

768 Table 6: Forgetting verification across models. $\Delta\text{NLL} = \text{NLL}_C - \text{NLL}_O$; higher means more
769 forgetting.
770

Model	Mean ΔNLL	95% CI	Median	Cohen's d
Base Model (Tuned)	0.347	[0.234, 0.472]	0.297	1.72
Unlearn	0.681	[0.559, 0.831]	0.563	2.90
F2F	0.678	[0.566, 0.819]	0.609	3.07

771

A.3 PROBING VERIFICATION / FORGOTTENNESS

772 Because the forget set \mathcal{D}_f does not target a single domain, we verify forgetting via a probing
773 methodology with sparse autoencoders (SAEs). We train sparse-coders for the base model O and
774 the comparison model C using EleutherAI’s SPARSIFY framework Gao et al. (2024a); EleutherAI
775 (2024), on the final layer representation of Qwen3-0.6B and its two other variants : F2F, and
776 unlearned only with BookCorpus. For each $x \in \mathcal{D}_f$, we compute the per-example difference
777 $\Delta\text{NLL}(x) = \text{NLL}_C(x) - \text{NLL}_O(x)$, so larger values indicate that C assigns lower likelihood than
778 O i.e., greater “forgottenness” of the targeted content. We summarize the distribution of ΔNLL
779 with its mean, a 95% percentile bootstrap CI over the mean ($B=2000$ resamples of examples), the
780 median, and a standardized effect size (Cohen’s d ; one-sample against 0, using the sample standard
781 deviation of ΔNLL) which are reported in Table 6. Unlearn and F2F exhibit the largest forgetting
782 on \mathcal{D}_f , with mean ΔNLL of 0.681 [0.559, 0.831] and 0.678 [0.566, 0.819], respectively. Although
783 their means are essentially tied, F2F shows a higher median (0.609 vs. 0.563) and a larger effect size
784 (Cohen’s $d = 3.07$ vs. 2.90), indicating a more uniformly strong shift across examples. In contrast,
785 the Base Model (Tuned) also shows forgetting but at substantially smaller magnitude (mean 0.347,
786 CI [0.234, 0.472], median 0.297, $d = 1.72$). Overall, the table supports the conclusion that targeted
787 procedures (Unlearn/F2F) induce considerably greater forgottenness than generic fine-tuning, with
788 F2F displaying slightly stronger concentration of the effect.

789

A.4 PCA-SHIFT

790 To better understand how different training interventions alter internal representations (Xu et al.,
791 2025), we performed a layer-wise PCA shift analysis. For each layer L , we extracted the mean
792 hidden representations of a shared set of prompts from both the reference model and its variants, fit
793 a PCA on the reference representations, and projected all models into this space. The displacement
794 along the first principal component was computed as $\Delta\text{PC1}(L) = \bar{\mathbf{h}}_{\text{model}}^{(L)} \cdot \mathbf{u}_1 - \bar{\mathbf{h}}_{\text{ref}}^{(L)} \cdot \mathbf{u}_1$, where
795 \mathbf{u}_1 is the top PCA direction of the reference and $\bar{\mathbf{h}}^{(L)}$ is the mean hidden state. This analysis
796 reveals that Base model-tuned models exhibit broad and uniform representational drift across many
797 layers, indicating a global reshaping of internal geometry. In contrast, the Unlearned model remains
798 closely aligned with the base model, with only minimal deviations concentrated in a few higher
799 layers. Strikingly, F2F induces shifts of comparable magnitude to Baseline-Tuning but in a far more
800 targeted manner, selectively altering specific layers while preserving much of the base geometry.
801 This suggests that F2F achieves efficient and precise representational adaptation, retaining general
802 capabilities while reallocating capacity only where necessary.

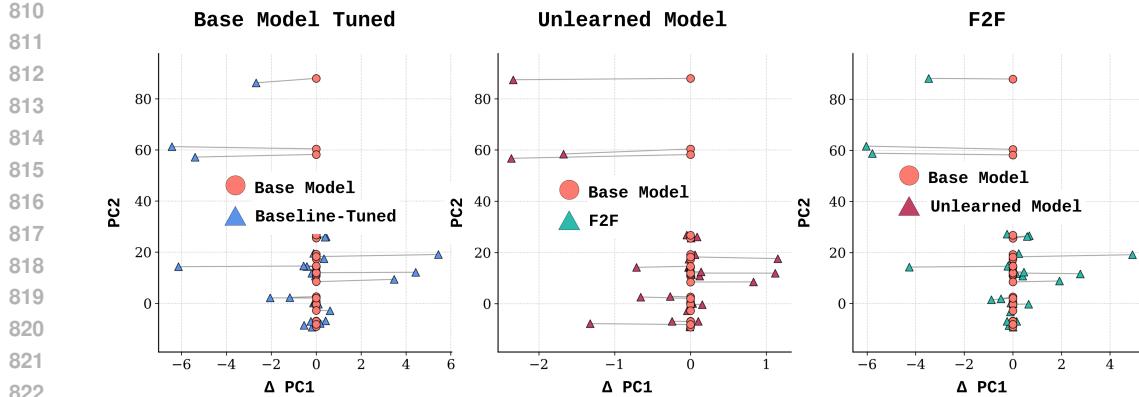


Figure 6: PCA shift analysis shows Baseline-Tuned models drift broadly, Unlearned models stay close to the base, and F2F induces targeted shifts that balance adaptation with stability.

A.5 FISHER’S ANALYSIS

To understand how unlearning redistributes parameter sensitivity, we analyze the empirical Fisher information (Cha et al., 2024) of attention projections (Figure 7). For each block l and role $r \in \{q, k, v\}$, we estimate the diagonal Fisher as $\widehat{F}_{l,r} = \frac{1}{B} \sum_{b=1}^B (\nabla_{W_r^{(l)}} \ell(x_b; \theta))^2$, where $\ell(x; \theta)$ is the token-level NLL. Head-wise values are obtained by slicing the row dimension of $W_r^{(l)}$ into H heads of size $d = \text{hidden_size}/H$, averaging within each slice, and then across roles: $f_h^{(l)} = \frac{1}{3} \sum_{r \in \{q, k, v\}} \frac{1}{|S_h|} \sum_{(i,j) \in S_h} \widehat{F}_{l,r}[i, j]$. We report the median and interquartile range of $\{f_h^{(l)}\}_{h=1}^H$ within each block to capture depth-wise sensitivity. Figure 7 shows that standard fine-tuning sharply amplifies Fisher values in shallow layers, reflecting unstable reliance on low-level pretrained features. F2F with $\sigma = 0.5$ dampens shallow-layer sensitivity while retaining moderate activity across depth, striking a balance between stability and useful priors. In contrast, $\sigma = 0$ further suppresses Fisher values and yields smoother, more uniform profiles, favoring robustness and calibration but with reduced representational leverage. Overall, F2F systematically reshapes the sensitivity landscape to enable more stable and domain-aligned specialization.

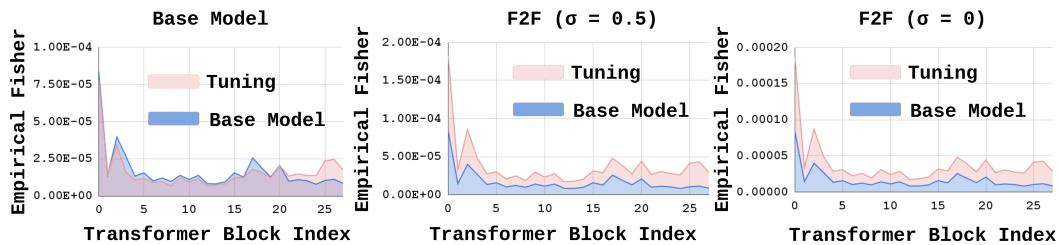
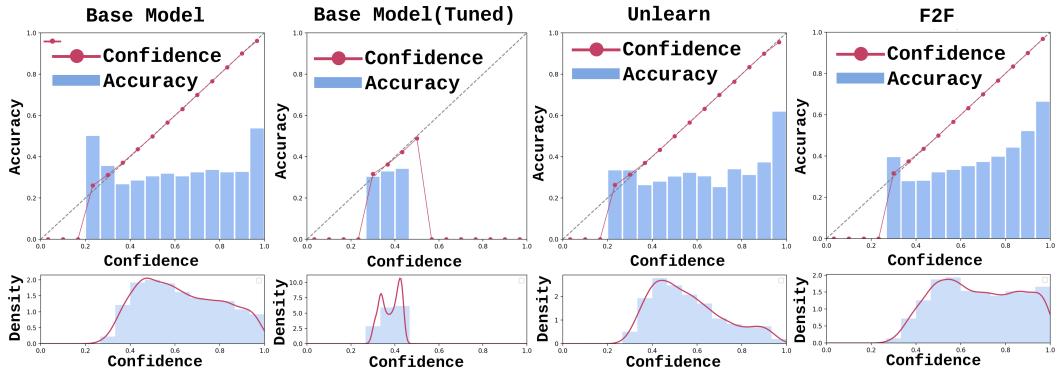


Figure 7: Head-wise redistribution of attention sensitivity after unlearning, measured by empirical Fisher information.

A.6 CALIBRATION & RISK COVERAGE

To study how unlearning and fine-tuning affect calibration, we use *reliability diagrams* and *confidence histograms*. Given logits $z \in \mathbb{R}^C$ and labels y , we compute probabilities $p = \text{softmax}(z)$, confidence $c_i = \max_j p_{i,j}$, and correctness $\mathbb{1}[\arg \max_j p_{i,j} = y_i]$. Grouping confidences into M bins $\{I_m\}$, average confidence \hat{c}_m and accuracy \hat{a}_m yield a reliability curve (\hat{c}_m, \hat{a}_m) against the diagonal $y = x$, while Expected Calibration Error (ECE) measures deviation. Confidence histograms visualize the spread of predictions across $[0, 1]$. Calibration is critical in medical QA: overconfident errors are harmful, while underconfident correct answers reduce utility. From Figure 8, we observe that in F2F protocol, unlearning alone increases uncertainty, however, after fine-tuning the model

864 recovers a well calibrated profile whose reliability curve follows $y = x$ and whose confidences
 865 are broadly distributed. In contrast, baseline fine-tuning collapses confidences around 0.3-0.5, pro-
 866 ducing poorly calibrated outputs. Overall, *F2F* achieves *better calibration than fine-tuning alone*,
 867 improving both trustworthiness and domain adaptation.
 868



881 Figure 8: Reliability diagrams and confidence distributions on MedMCQA. F2F produces better-
 882 calibrated probabilities than fine-tuned base model.
 883

884
 885 Table 7: Calibration and likelihood metrics on MedMCQA (\downarrow lower is better).
 886

Model Types	NLL \downarrow	Brier \downarrow	ECE \downarrow
Base Model	1.851	0.911	0.308
Base Model (Tuned)	1.762	0.825	0.277
F2F	1.392	0.751	0.050
Unlearning	1.659	0.867	0.256

893 A.7 SPECTRAL SURROGATE ANALYSIS FOR LoRA CAPACITY

894 We introduce a *spectral surrogate analysis* to estimate the intrinsic rank capacity required for LoRA
 895 without full fine-tuning. The method instruments LoRA-targeted linear layers (attention projections
 896 $q/k/v/o$ and MLP up/down/gate projections) to collect activations A and output gradients G on
 897 a small calibration set. From these, we construct the cross-covariance matrix $C = YX^\top/N$ with
 898 $X = A^\top$ and $Y = G^\top$. A randomized SVD yields singular values $\{s_i\}$, which define the cumulative
 899 explained variance curve $EV(r) = \frac{\sum_{i=1}^r s_i^2}{\sum_i s_i^2}$. We summarize model capacity using two aggregate
 900 measures: (i) an *energy-weighted average curve* across layers, reflecting overall compressibility,
 901 and (ii) a *layerwise minimum curve*, which highlights bottleneck layers that require higher ranks. By
 902 sweeping r , we obtain intrinsic rank estimates (e.g., the smallest r such that $EV(r) \geq 0.9$), identify
 903 non-uniform rank allocation strategies, and provide a lightweight proxy for domain shift by varying
 904 calibration data. Figure 9 compares base and unlearned models using weighted average explained
 905 variance (EV) and the energy-weighted CDF of effective ranks. Across both Qwen 0.6B and LLaMA
 906 3.1 8B, the unlearned models consistently achieve higher EV at smaller ranks and concentrate more
 907 representational energy in low-rank subspaces. In contrast, the base models require larger ranks
 908 to capture the same variance. The effect is modest in Qwen 0.6B but pronounced in LLaMA 3.1
 909 8B, where the unlearned variant is markedly more low-rank efficient. Overall, unlearning improves
 910 LoRA efficiency, enabling comparable adaptation with fewer parameters.
 911

912 A.8 VARYING RETAIN DATASET SIZE WITH VARYING σ

913 To assess the effect of forget-set size, we varied it across 1k, 3k, 5k, 7k, and 9k examples with vary-
 914 ing values of σ 0, 0.5, 1.0. The forget set was BookCorpus and the eval/retain dataset is PubMedQA
 915 and MedMCQA. Experiments were conducted with Qwen-0.6B and LLaMA 3.1-8B to test whether
 916 the effects are consistent across models of different sizes and architectures.
 917

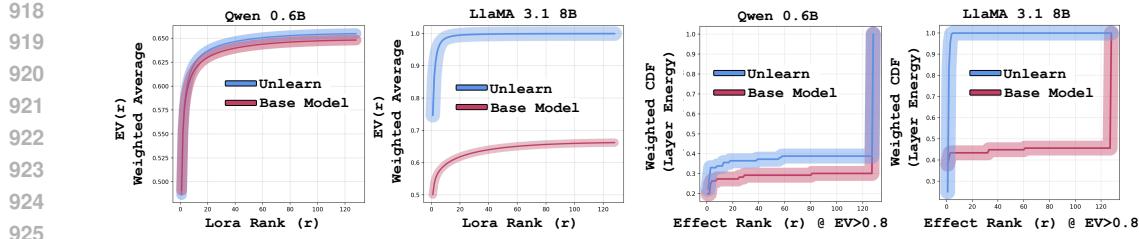


Figure 9: Spectral surrogate analysis for LoRA capacity. We compute explained variance curves from activations and gradients, aggregate across layers, and extract effective rank estimates. Unlearned models concentrate more energy in low-rank subspaces, making them more LoRA-efficient than their base counterparts.

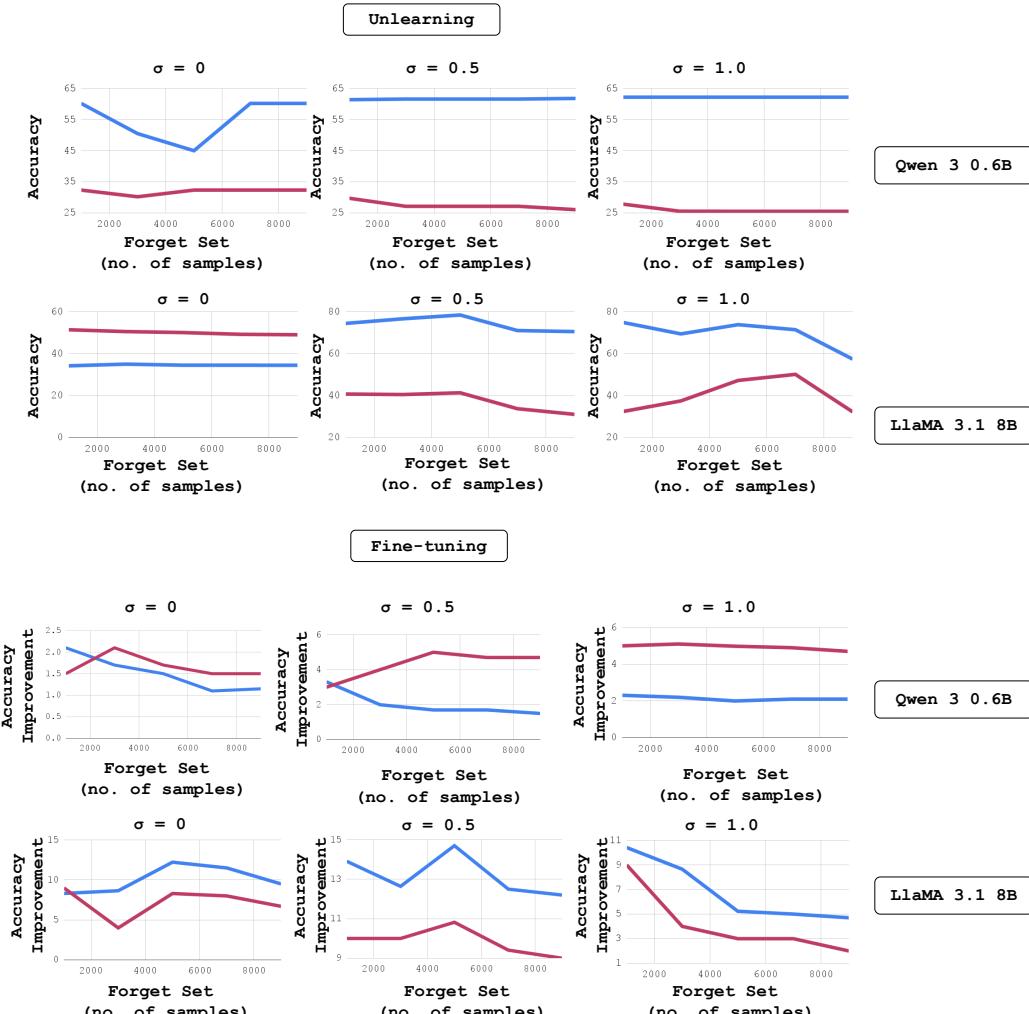


Figure 10: Effect of varying retain dataset size with varying σ on accuracy after unlearning and accuracy improvement after fine-tuning.

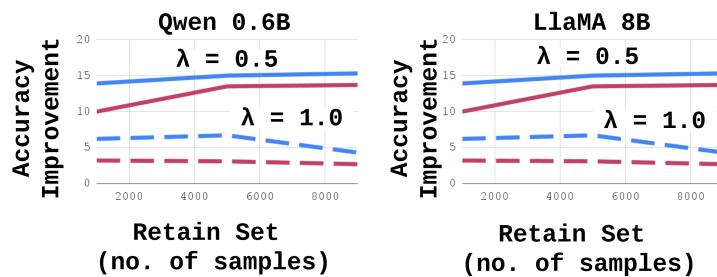
For Qwen-0.6B, increasing σ from 0 to 1.0 stabilized retention on both datasets: PubMedQA remained consistently high (60–65%) across all forget-set sizes, while MedMCQA showed a smaller decline, indicating that σ noise helps prevent catastrophic forgetting. For LLaMA-3.1-8B, retention was best maintained at moderate σ ($\sigma=0.5$), with PubMedQA accuracy remaining above 65% and

972 MedMCQA showing stable trends, whereas high σ ($\sigma=1.0$) led to retention collapse as forget-set
 973 size increased.

974 Fine-tuning further emphasized these architecture-dependent differences: Qwen-0.6B exhibited
 975 modest but stable improvements under noise, while LLaMA-3.1-8B achieved larger gains at $\sigma=0.5$
 976 but deteriorated sharply at $\sigma=1.0$. These results demonstrate that while noise injection facilitates
 977 stable unlearning, retention behavior is dataset- and model-dependent, with smaller models benefiting
 978 from stronger σ and larger models requiring moderate σ to preserve generalization. We find a clear
 979 scaling effect: larger models require larger forget sets to achieve comparable unlearning, reflecting
 980 their greater capacity to store diverse knowledge. In contrast, smaller models can be effectively
 981 unlearned with much smaller sets.

983 A.9 EFFECT OF DATASET SIZE AND GA WEIGHT

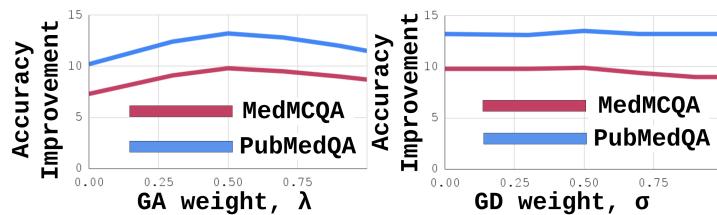
985 Accuracy improvement on PubMedQA (blue) and MedMCQA (red) is shown as a function of the
 986 retain set size under two λ values. Both models achieve substantial gains at $\lambda=0.5$, with consistent
 987 improvements as the retain set grows. In contrast, $\lambda=1.0$ severely limits improvement, particularly
 988 for larger retain sets, indicating that moderate GA weighting better balances knowledge retention
 989 and adaptation across datasets and architectures.



1000 Figure 11: Effect of dataset size and gradient ascent weight, λ on accuracy improvement

1003 A.10 GA WEIGHT AND GD WEIGHT

1004 Accuracy improvement increases with λ up to 0.5 for both datasets, after which gains taper off,
 1005 suggesting diminishing returns from higher weighting. Right: Accuracy improvement remains rel-
 1006 atively stable across σ values, indicating that GD weighting exerts weaker influence on fine-tuning
 1007 gains compared to GA. These results suggest that GA weighting (λ) plays a more critical role than
 1008 GD weighting (σ) in mediating retention gains during fine-tuning, with $\lambda=0.5$ emerging as the opti-
 1009 mal trade-off point.



1018 Figure 12: Effect of gradient descent weight, σ and gradient ascent weight, λ on accuracy improve-
 1019 ment.

1022 B EFFECT OF LEARNING RATE ON UNLEARNING AND FINE-TUNING OF F2F

1023 Table 8 shows the sensitivity analysis of unlearning and finetuning on th performance. For un-
 1024 learning, performance on PubMedQA and MedMCQA increases as we raise the learning rate from

1026 5×10^{-6} to 3×10^{-5} . PubMedQA accuracy improves by +5.30 points, while MedMCQA increases
 1027 by +12.48 points. We chose 3×10^{-5} as there was no performance gain after this.
 1028 For fine-tuning as we increase the learning rate from 5×10^{-6} to 2×10^{-5} , accuracy on Pub-
 1029 MedQA improves by +5.70 points, and MedMCQA increases by +7.25 points. Beyond 2×10^{-5} ,
 1030 larger learning rates do not bring further improvements. Hence, these results motivate the choice of
 1031 learning rate of 3×10^{-5} for unlearning and 2×10^{-5} for fine-tuning.

1032
 1033 **Table 8: Learning rate ablation for Unlearning and Fine-Tuning on LLaMA 3.1 8B-Instruct.**

Unlearning			Fine-Tuning		
Learning Rate	PubMedQA	MedMCQA	Learning Rate	PubMedQA	MedMCQA
5×10^{-6}	73.91	48.02	5×10^{-6}	84.20	63.00
1×10^{-5}	75.20	51.22	1×10^{-5}	85.22	65.05
1.5×10^{-5}	76.99	54.81	1.5×10^{-5}	86.71	67.82
2×10^{-5}	76.81	58.35	2×10^{-5}	89.90	70.25
2.5×10^{-5}	79.05	59.21	2.5×10^{-5}	89.85	67.09
3×10^{-5}	79.21	60.50	3×10^{-5}	89.75	69.91
4×10^{-5}	78.00	60.33	4×10^{-5}	88.00	69.15

C EFFECT WITH MULTI-SEED SETTINGS

Table 9 demonstrates that the F2F consistently improves over SFT across models, domains, and benchmarks under multi-seed evaluation. In the coding domain, F2F adds between +1.8 and +9.4 pass@1 points on top of SFT for both Qwen 2.5 7B and LLaMA-3.1 8B, despite SFT already providing substantial gains over the Base models.

In the medical domain, F2F similarly yields consistent improvements, with gains of +3.5 to +6.0 accuracy points over SFT on PubMedQA and MedMCQA. Across all configurations, the standard deviations are very small, indicating that F2F’s advantages are robust to random seed variation rather than arising from unstable or lucky runs.

Table 9: Multi-seed robustness of F2F. We report mean \pm std over 3 seeds. Base is single-seed (no SFT). SFT and F2F are averaged across 3 seeds under identical settings.

Model	Domain	Metric	Base	SFT (3 seeds)	F2F (3 seeds)	Δ (F2F-SFT)
Coding						
Qwen 2.5 7B	Coding	HumanEval pass@1 (%)	40.20	44.35 ± 0.004	53.70 ± 0.005	+9.4
Qwen 2.5 7B	Coding	MBPP pass@1 (%)	65.85	72.90 ± 0.007	76.25 ± 0.004	+3.4
LLaMA-3.1 8B	Coding	HumanEval pass@1 (%)	33.54	57.37 ± 0.004	61.59 ± 0.005	+4.2
LLaMA-3.1 8B	Coding	MBPP pass@1 (%)	49.00	58.95 ± 0.005	60.73 ± 0.003	+1.8
Medical						
Qwen 2.5 7B	Medical	PubMedQA acc. (%)	73.00	81.52 ± 0.012	85.00 ± 0.007	+3.5
Qwen 2.5 7B	Medical	MedMCQA acc. (%)	56.23	65.35 ± 0.008	69.35 ± 0.002	+4.0
LLaMA-3.1 8B	Medical	PubMedQA acc. (%)	75.20	89.51 ± 0.006	91.35 ± 0.009	+1.8
LLaMA-3.1 8B	Medical	MedMCQA acc. (%)	59.43	64.55 ± 0.001	70.55 ± 0.001	+6.0

C.1 EFFECT OF UNLEARNING STEP SIZE ON COMPUTATIONAL COST AND ACCURACY

Figure 13 highlights the change in medical domain benchmarks’ accuracy with varying unlearning step counts and shows how runtime also changes with it. Figure shows that as the number of unlearning steps increases, accuracy on the medical domain benchmarks remains essentially unchanged, while runtime grows. Accordingly, we choose 1,000 unlearning steps as a practical default: it matches the best accuracy yet requires only 0.55 GPU-hours on a single A100 GPU.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

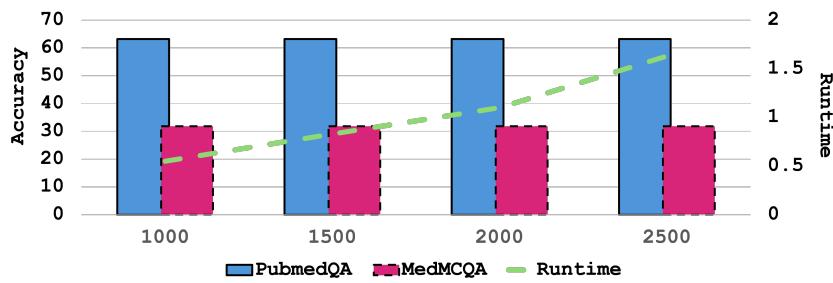


Figure 13: Runtime across different unlearning step counts, measured on a single A100 in GPU-hours.