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ABSTRACT

Standard fine-tuning of Large Language Models for domain-specific tasks is often
suboptimal due to interference from vast, pre-existing general knowledge from
pretraining, leading to issues like negative knowledge transfer and the reinforce-
ment of spurious correlations. We study whether removing parts of a pretrained
model’s pre-existing general knowledge before adaptation can make downstream
learning easier. We propose and analyze Forget-to-Focus: a two-stage protocol
that first performs targeted unlearning on a “forget” set (with an optional retain
set for stability), then fine-tunes on a domain-specific dataset. Through rigor-
ous experiments on different domains such as medical, mathematics, and cod-
ing benchmarks, we analyze whether this preparatory unlearning can lead to im-
proved domain specialization. Our findings show that this protocol consistently
outperforms standard fine-tuning e.g., it improves HumanEval pass@1 by 32.5%
on Qwen3-0.6B and 11.95% on Qwen 72B model compared to standard fine-
tuning. Beyond accuracy, we observe that F2F reshapes representational geome-
try as measured by centered kernel alignment, shifting models away from gener-
alist initialization toward structures more conducive to in-domain specialization.
Furthermore, unlearning prior fine-tuning helps improved calibration on medi-
cal QA tasks, reducing overconfidence and mitigating reliability issues that per-
sist under standard fine-tuning. These findings establish unlearning not merely
as a privacy tool but as a principled intervention for domain adaptation. By
strategically suppressing irrelevant pretraining knowledge, Forget-to-Focus helps
more stable optimization dynamics, better calibrated predictions, and consistently
stronger downstream performance. The code is available at anonymous github :
https://anonymous.4open.science/r/D-1545/README.md

1 INTRODUCTION

Fine-tuning large language models (LLMs) (Parthasarathy et al., 2024; Hu et al., 2022) on special-
ized target domains has shown impressive results, but it also comes with challenges of negative
transfer (Zhang et al., 2022), where certain knowledge from vast, general-domain pre-training cor-
pus actually hurts performance on the new domain specialized tasks. Pre-trained LLMs are exposed
to vast general data, and when adapting them to a niche domain, they often carry over misleading
correlations or behaviors that are irrelevant or even conflicting for the target domain. For example,
a model fine-tuned for biomedical QA might still hold onto casual language patterns from web text
that hinder learning precise medical terminology. Prior works (Sun & Dredze, 2025; Jiang et al.,
2025) have shown that treating all pre-training knowledge as uniformly important prior is not opti-
mal and some of that knowledge can degrade optimization and generalization on the target task or
domain.

In other words, vanilla fine-tuning may struggle to “forget” irrelevant features, leading to slower
convergence or suboptimal accuracy on in-domain data. This challenge motivates a shift in perspec-
tive. Thus, we ask a central research question: Instead of passively hoping a model learns to ignore
irrelevant knowledge, can we actively make it to forget this knowledge to enhance its capacity for
new, specialized learning? Notably Chen et al. (2023a) demonstrated that introducing an active for-
getting mechanism during pre-training led to faster convergence and better low-resource adaptation
to new languages.
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This question leads us to the field of “Machine Unlearning”(Li et al., 2025), originally developed to
address the “right to be forgotten” in response to data privacy regulations like GDPR Hoofnagle et al.
(2019). “Machine unlearning” refers to algorithms that make a trained model intentionally ‘forget’
certain knowledge or data influences. Conventionally, unlearning has been studied for privacy (e.g.,
removing specific training examples from models upon request). In this work, we repurpose the
concept of unlearning not for privacy, but to strategically remove or suppress irrelevant general
knowledge that might hinder domain specialization.

However, leveraging unlearning for improved fine-tuning is not straightforward as (1) deciding what
knowledge is harmful or useful is challenging, since the pretraining dataset is usually mixed with
domain-irrelevant and domain relevant data, (2) unlearning aggressively could also erase general lin-
guistic competence and useful information from the model, (3) optimization stability is uncertain in
unlearning since it has potential to disrupt convergence and (4) it is unclear whether benefits extend
across different domains and model scales (models with different architectures and sizes). These
challenges motivate the need and an investigation of a protocol that carefully balances forgetting
and retention to prepare models for effective specialization.

To address these challenges, we present Forget-to-Focus (F2F), where we analyze if a preparatory
unlearning phase can enhance the fine-tuning process. For this analysis, we employ a protocol
where an unlearned model, created using a “forget set” of general data and a “retain set” for sta-
bility (depending upon the unlearning algorithm), is subsequently fine-tuned on a domain-specific
dataset. We found that this preparatory unlearning consistently improves fine-tuning performance.
Our experiments span multiple models with different architectures and sizes, and we investigate this
phenomenon across the medical, mathematical, and coding domains and to deeply analyze why it
occurs, we observe the change and shifts in model’s internal representations.

Our contributions are as follows :

• We present the first comprehensive study of machine unlearning not as a privacy safe-
guard, but as a deliberate preparatory stage to enhance fine-tuning of large language models
(LLMs) for domain specialization.

• We introduce Forget-to-Focus (F2F), a two-stage training procedure that strategically un-
learns unnecessary general domain knowledge using a forget set (with an optional retain
set), followed by domain-specific fine-tuning. This protocol consistently outperforms stan-
dard fine-tuning, DAPT, and parameter-efficient baselines across coding, mathematics, and
medical domains.

• Through large-scale experiments on diverse models (from 0.6B to 72B parameters) with
different architecture, we show that F2F helps in substantial pass@1 gains (e.g., 10.7%
performance increase on MBPP for Qwen-0.6B, and 9% performance increase Qwen-72B
compared to LoRA fine-tuning) while improving calibration on sensitive tasks such as med-
ical QAs.

• Using centered kernel alignment (CKA), SVCCA, Fisher information, PCA-shift analyses,
we observe that unlearning reshapes representational geometry, reallocates parameter sen-
sitivity. These findings provide direct evidence that unlearning reduces negative transfer by
suppressing interfering generalist features.

• Through extensive experiments, we show that both the size and quality of the forget set
significantly impact fine-tuning performance, and that the relative weighting of the retain
and forget sets further shapes performance across different models.

2 FORGET-TO-FOCUS

The current pattern of pre-training followed by fine-tuning leverages broad knowledge from
large, general purpose datasets. However, this general knowledge is not always benefi-
cial. When adapting a model to a specialized domain, a subset of the pre-trained knowl-
edge can be irrelevant or even counterproductive, leading to a phenomenon known as neg-
ative transfer. We analyze that explicitly removing this irrelevant knowledge prior to fine-
tuning allows the model to specialize more effectively. This leads to our central proposition.
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Figure 1: Schematic illustration of how pretraining priors create
optimization barriers that slow convergence and induce subopti-
mal local minima when fine-tuning from θ0. Unlearning these
priors yield a cleaner optimization path and lower final loss

Let θ0 denote pretrained param-
eters. We wish to specialize
to domain D with loss LD(θ)
while suppressing the rooted
pretraining priors that induce
negative transfer. The core in-
tuition (Fig. 1) is that explicitly
removing priors that can hurt the
fine-tuning process, helps in a
cleaner optimization landscape
for specialization.

Formally, let θ⋆ =
argminθ LD(θ). The Forget-to-
Focus (F2F) protocol constructs
a new initialization θ̃0 such that

∥θ̃0 − θ⋆∥ < ∥θ0 − θ⋆∥ =⇒ LD(FINETUNE(θ̃0)) < LD(FINETUNE(θ0)), (1)

We assume access to (i) a forget set F cause spurious general-domain behavior and (ii) a small retain
set R (often a subset of D) that preserves essential capabilities during unlearning. The objective we
minimize to achieve Equation 1 is shown in the Equation 2 with gradient-accumulation averaging
over A micro-steps:

θ̃0 = argmin
θ

1

A

A∑
a=1

[
− λ ℓ

(a)
F (θ)︸ ︷︷ ︸

(GA/Forget term)

+ σ ℓ
(a)
R (θ)︸ ︷︷ ︸

(GD/Retain term)

]
, (2)

where λ, σ > 0 weight the forget/retain terms. In practice we realize (2) via gradient ascent on F ,
forget set and gradient descent on R, retain set:

θ ← θ + η λ∇θℓF (θ) − η σ∇θℓR(θ), (3)

where η > 0 is the step size. Thus features predictive on F are de-emphasized or can be forgeotten
while R stabilizes core competence. After Tu steps we obtain θ̃0 and then fine-tune on D.

Unlearn. In this phase, we initialize θ← θ0. For t=1:Tu: sample minibatches BF ⊂F , BR ⊂R,
compute gF =∇ℓ(BF ; θ), gR=∇ℓ(BR; θ), and update via (3). Set θ̃0←θ. Retune. And in retune
phase, we initialize θ← θ̃0 and optimize minθ LD(θ) with standard fine-tuning.

While LLM training objective is non-convex, we use a convex linear surrogate to clarify the mech-
anism in a setting where the optimization is normal and interpretable. Consider, regularized linear
models fθ(x)=θ⊤x with convex, β-smooth, µ-strongly convex losses. Suppose the feature space
decomposes as Rp = V⊕U , where V are domain-relevant directions and U are irrelevant (spurious)
w.r.t. D. Assume θ⋆ ∈ V and the forget risk LF has curvature along U (Hessian ⪰ µF I on U).

Proposition. (Contraction on irrelevant directions with bounded retain perturbation). Considering
the update in Equation 3 Assume: (i) the parameter space decomposes orthogonally as Rp = V ⊕U
with projections PV , PU ; (ii) LF is µF strongly convex on U (curvature lower bound µF > 0 along
U); (iii) LF , LR are β-smooth (gradient-Lipschitz with constant β); (iv) the retain gradient along U
is uniformly bounded: ∥PU∇LR(θ)∥ ≤ GR for all iterates. If 0 < η ≤ 1/β, then the U component
contracts as

∥PUθ
+∥ ≤ (1− η λµF ) ∥PUθ∥ + η σ GR.

Iterating for Tu unlearn steps gives∥∥PUθTu

∥∥ ≤ (1− η λµF )
Tu

∥∥PUθ0
∥∥ +

σGR

λµF
.

Here, θ are model parameters; θ+ is the next iterate; PU , PV are orthogonal projections onto the
“irrelevant” subspace U and “relevant” subspace V; µF is the strong convexity constant of LF along
U ; β is the smoothness constant; GR bounds the retain gradient on U ; Tu is the number of unlearn
steps.

3
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Corollary. (Retune convergence and downstream risk). Let θ̃0 := θTu
be the post-unlearn iterate.

Suppose the downstream objective LD is µ strongly convex and β-smooth with minimizer θ⋆ ∈ V .
Running gradient descent on LD with any step size α ∈ (0, 1/β] from θ̃0 satisfies:

Tretune(θ̃0, ε) ≤
β

µ
log

(LD(θ̃0)− LD(θ⋆)

ε

)
, LD(θ)− LD(θ⋆) ≤ β

2
∥θ − θ⋆∥2.

Moreover, since θ⋆ ∈ V ,

∥θ̃0 − θ⋆∥ ≤ ∥PVθ0 − θ⋆∥ + (1− η λµF )
Tu ∥PUθ0∥ +

σGR

λµF
,

so increasing the forget to retain ratio λ/σ tightens the starting distance for fine-tuning and hence
improves both the iteration complexity and the final risk bound.

θ̃0 is the post unlearn initialization; LD is the downstream fine-tuning objective with smoothness β
and strong convexity µ; θ⋆ is its minimizer; ε > 0 is the target suboptimality; Tretune is the number
of GD steps to reach ε.

3 EXPERIMENTAL SETUP

3.1 UNLEARNING ALGORITHMS

The F2F can be implemented using various machine unlearning algorithms. In practice, these meth-
ods realize the objective stated in Equation 2. In our experiments we explored the following un-
learning methods :

(1) GA+GD : Using gradient ascent (GA) combined with gradient descent (GD) (Yao et al., 2024)
on forget and the retain set (GA+GD) directly pushes the model parameters away from encoding the
irrelevant data while simultaneously preserving the desired domain knowledge.
(2) GA (σ = 0) : Using only gradient ascent on the forget set (σ = 0). This is a more aggressive
approach that focuses solely on forgetting, which can be effective if the retain set is not strictly
necessary for maintaining core capabilities.
(3) GA+KL : Another approach is to use Kullback-Leibler divergence (KL) with GA to make sure the
model does not diverge too much from the original parameters while preserving the desired domain-
specific knowledge. In this case, the objective becomes θ̃0 = argminθ

1
A

∑A
a=1

[
− λ ℓ

(a)
F (θ) +

σKL(pθ ∥ pθ0)
]
, where pθ0 denotes the original model distribution.

(4) Negative Preference Optimization (NPO) (Zhang et al., 2024), samples from the forget set are
treated as “unpreferred” or “rejected” responses. The model is then optimized to lower its likelihood
of producing such outputs, effectively unlearning the associated knowledge while maintaining its
general utility. The objective minimizes

θ̃ = argmin
θ

E(x,y)∈F

[
− 2

β log sigmoid
(
−β log πθ(y|x)

πref (y|x)

)]
(4)

where πref is the reference model, and β controls the sharpness of the penalty.

3.2 FINE-TUNING METHODS

To assess whether F2F consistently outperforms standard fine-tuning, we compare against following
baselines:
(1) SFT (Supervised Fine-Tuning): Fine-tune all model parameters on task-labeled data with a cross-
entropy objective, following the standard recipe (Devlin et al., 2019).
(2) DAPT (Domain-Adaptive Pretraining): Continue unsupervised pretraining on domain specific
text prior to task-specific fine-tuning to better match target distribution (Gururangan et al., 2020).
(3) LoRA: Update only low-rank adapter matrices inserted into attention/FFN projections while
freezing the original weights. This method reduces trainable parameters and memory both (Hu
et al., 2022).
(4) CurlLora : We used (Fawi, 2024) which continually updates production LLMs with new data
streams, minimizing model degradation and retraining costs.

4
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3.3 MODELS AND DATASETS

We performed our experiments on models of different sizes, architecture, variants, and family :
Qwen-2 72B-Instruct (Peng et al., 2023), LlaMA-2 13B (Touvron et al., 2023), LlaMA 3.1 8B-
Instruct (Grattafiori et al., 2024), Gemma-2B-Instruct (Team et al., 2024) and Qwen-3-0.6B (Yang
et al., 2025) to demonstrate the effectiveness of F2F to make the model adapt to certain domains.
We conducted experiments across three domains: medicine, mathematics, and coding.

Unlearning Step.

Figure 2: t-SNE of MiniLM (Wang et al., 2020)
embeddings for the BC-Mixed forget set (800
BookCorpus non-domain + 200 domain-related
code samples). The separation indicates distinct
representational regions with limited overlap.

For the unlearning step, we considered three
types of forget sets from the Bookcorpus
dataset (Kobayashi, 2018; Jagtap): (i) BC-select
: a curated subset where we manually ex-
cluded texts overlapping with the target domain
(e.g., biomedical for PubMedQA), focusing in-
stead on general narrative and fiction content.
This ensured that the forget set contained min-
imal domain-relevant knowledge, and (ii) BC-
Mixed : a subset combining 800 random non-
domain samples from BookCorpus with 200
domain-related samples (e.g., humaneval (Chen
et al., 2021) for coding domain).(iii) BC-Cosine
: a curated subset where we automatically ex-
tract samples which are not aligned with our
target domain i.e., we encode each sample x
with a Transformer (Vera et al., 2025) hx =
fθ(x), define the target-domain centroid cT =

1
|DT |

∑
x′∈DT

fθ(x
′), and rank samples by the

cosine distance dcos(x) = 1− h⊤
x cT

∥hx∥ ∥cT ∥ , selecting
samples with large dcos(x). This setup interpo-
lates between a clean forget set and one partially
contaminated with target-domain knowledge. This helps us analyze of how domain overlap or forget
set quality affects unlearning. The retain set is a small subset of the fine-tuning data, following prior
work (Geng et al., 2025). Figure 2 demonstrates the clear boundary between the two domains in the
BC-mixed dataset ensuring no domain leakage.

Fine-tuning Step. In the medical domain, we utilized PubMedQA (Jin et al., 2019), PubMed Guide-
lines (Chen et al., 2023b;c), and MedMCQA (Pal et al., 2022)’s training split as training datasets,
and evaluated performance on the PubMedQA and MedMCQA test sets. For the coding domain, we
trained on train set of OpenCoder (Huang et al., 2024) and evaluated on test set of HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021). For the mathematics domain, we used the NVIDIA’s
OpenMathInstruct-1 dataset (Toshniwal et al., 2024) for training, while evaluation was carried out
on the Hendrycks MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021) benchmarks.
For the evaluation, we used LM-EVALUATION-HARNESS repository by Eleuther (Gao et al., 2024b).

3.4 HYPERPARAMETER CONFIGURATION

Unlearning Step. During the unlearning step, we adopted a consistent set of hyperparameters across
all models, unless otherwise specified. The base learning rate was fixed at 1 × 10−5. We set the
gradient ascent (GA) weight to 1.0 and the gradient descent (GD) weight to 0.5. The only exception
was the LLaMA model, for which a higher learning rate of 3× 10−5 was found to be more effective
in stabilizing convergence during unlearning. All models were trained with a batch size of 8 for
Qwen 0.6B model and 2 for rest of the models. For the Qwen 72B model specifically, we employed
QLoRA with rank 16 and a dropout 0.05, using bfloat16 precision.

Fine-tuning Step. For the fine-tuning stage, we set a uniform learning rate of 2 × 10−5 across all
models. Training epochs varied across models: the Qwen 0.6B model was finetuned for 8 epochs,
while the remaining models were trained for a single epoch, due to their larger parameter sizes
and to reduce the risk of overfitting on relatively small domain-specific datasets. All models were

5
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optimized using the AdamW optimizer. The effective batch size was 128, obtained through gra-
dient accumulation with an accumulation step size of 32. For Qwen-72B model, we adopt 4bit
quantization and tuned it with only 50% of the original dataset.For models such as LLaMA-8B,
LLaMA-13B, and Qwen-72B, we performed LoRA-based supervised fine-tuning (SFT) using FP16
precision. Trainings were performed on 80GB A100 GPUs.

4 EVALUATION

4.1 EFFECT OF F2F ON CODING PERFORMANCE

Table 1 presents pass@1 accuracies on MBPP and HumanEval for multiple model architectures and
a comparative assessment of different fine-tuning strategies. For unlearning, we used 100 samples
for Qwen-0.6B, and 1000 samples for the other models, with 1000 samples for the retain dataset.
We can observe four principal insights :

(1) Across both Qwen, Gemma and LLaMA models, performing unlearning prior to fine-tuning
yields consistently higher coding performance compared to fine-tuning alone. For Qwen 0.6B
model, applying UnlGA+GD followed by fine-tuning improves performance on HumanEval from
19.50 to 42.07, demonstrating a considerable gain. Similarly, for LLaMA 8B-Instruct HumanEval
performance increases by 22.7% after applying unlearning before fine-tuning compared with other
fine-tuning methods, F2F enhances performance the most. These results confirm our central hy-
pothesis that actively removing irrelevant pre-training knowledge can create additional capacity for
specialized learning.

(2) Gradient ascent and descent combined (UnlGA+GD) strategy consistently outperforms the
GA-only variant. While GA-only unlearning sometimes leads to degradation or instability (e.g.,
LLaMA 8B HumanEval drops to 1.20 without subsequent fine-tuning), the GA+GD variant pro-
duces more reliable gains. This suggests that balancing removal (GA) with stability-preserving
retention (GD) is crucial to prevent catastrophic forgetting of useful priors. However, the GA vari-
ant demonstrates that unlearning can be more effective than conventional fine-tuning approaches.
For example, on the Qwen-0.6B model, GA achieves a pass@1 of 40.02 on HumanEval, surpassing
LoRA (37.50) and SFT (31.71).

(3) The effect of unlearning varies across architectures. For models like Gemma 2B, unlearning had
affected the performance (e.g., 0.00 performance after UnlGA+GD). This indicates that aggressive
unlearning may overwhelm models with limited capacity and limited pretraining domain specific
knowledge. In contrast, after tuning, it improves the pass@1, and even performs better than usual
fine-tuning where the model performance degrades after tuning.

4) Across fine-tuning methods, the performance challenge remains evident. In the case of the
Gemma-2B-Instruct model, LoRA fine-tuning reduces HumanEval accuracy by 11.3%. However,
following unlearning, performance improves substantially, rising by 29.4%.

((5) For Gemma-2B-Instruct, we observed that the strongest configuration is F2F+SFT, which
slightly improves over the base model on MBPP and substantially improves HumanEval (Table 1);
in contrast, the rows with large drops (e.g., UnlGA+GD without SFT) correspond to intermediate
unlearning checkpoints rather than the final tuned models.

These observations highlight that preparatory unlearning causes more effective fine-tuning which
strategically suppresses irrelevant pre-training knowledge causing the model align better with
domain-specific objectives, thereby mitigating negative transfer and unlocking performance gains.
Retention of broad skills beyond target domains are provided in Appendix A.

4.2 F2F W/ FINE-TUNING VARIANTS

To study the interaction between fine-tuning and unlearning, we tuned the models on a medical
dataset and evaluated them under identical conditions. Table 2 highlights that across both model
families, full SFT consistently delivers the strongest improvements, indicating that direct parameter
updates provide the most effective alignment with domain-specific data. For Qwen 0.6B, SFT yields
the largest gains, while LoRA and CurlLoRA provide modest but stable improvements, suggesting
that lightweight adapters capture useful task knowledge but lack the depth of full tuning. DAPT

6
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Table 1: MBPP and HumanEval pass@1 across different models (Qwen-2 72B-Instruct (Peng et al.,
2023), LlaMA-2 13B (Touvron et al., 2023), LlaMA 3.1 8B-Instruct (Grattafiori et al., 2024),
Gemma-2B-Instruct (Team et al., 2024) and Qwen-3-0.6B (Yang et al., 2025)) and tuning meth-
ods (higher is better). Best ; Second best

Qwen 0.6B Gemma 2B LlaMA 8B-Instruct LlaMA 13B Qwen 72B
Coding MBPP HumanEval MBPP HumanEval MBPP HumanEval MBPP HumanEval MBPP HumanEval

(1) Base Model 22.60 19.50 19.80 16.46 49.00 33.54 27.22 0.60 67.21 70.12
(1)+ SFT 28.80 31.71 12.80 16.20 56.60 56.71 37.01 40.21 69.50 71.12

(1) + DAPT 29.30 39.80 19.00 17.05 53.55 56.20 39.50 42.70 71.90 72.50
(1) + LORA 28.55 37.50 16.23 14.60 51.08 45.31 36.55 20.15 66.50 70.30

(1) + CurlLora 31.00 40.91 13.22 18.51 57.40 52.93 40.50 42.00 69.00 68.20

F2
F


(2) UnlGA+GD 30.00 21.34 7.80 0.00 43.60 54.88 27.22 0.60 67.21 71.30
(2)+ SFT 31.60 42.07 20.05 21.30 60.10 60.37 50.31 46.15 72.50 78.50

(3) UnlGA 24.00 20.73 0.80 0.00 22.60 1.20 0.00 25.50 60.05 65.02
(3)+ SFT 31.60 40.02 19.40 18.02 58.66 57.70 45.01 44.70 70.45 76.00

sits between the two, showing that continued pretraining transfers domain knowledge effectively but
still underperforms SFT. For LLaMA 8B-Instruct, the pattern shifts: combining SFT with LoRA
achieves the best balance of adaptation and efficiency, while LoRA and CurlLoRA trail behind,
highlighting diminishing returns when adapters are applied in isolation. DAPT with LoRA provides
gains but remains weaker than full SFT-based approaches, suggesting that structured fine-tuning
remains essential for larger models.

Table 2: Evaluation results on PubMedQA and MedMCQA for Qwen 3 0.6B and LLaMA 3.1 8B-
Instruct under different adaptation methods. ↑ Performance improvement over base model.

Qwen 0.6B LlaMA 8B-Instruct
PubMedQA MedMCQA PubMedQA MedMCQA

SFT 69.60↑11.8 45.31↑13.06 SFT 89.90↑14.70 70.25↑10.82
LoRA 64.35↑6.55 44.90↑12.65 LoRA 85.00↑9.80 65.10↑5.67
CurlLoRA 65.00↑7.22 45.00↑12.75 CurlLoRA 84.20↑9.00 63.40↑3.97
DAPT 68.00↑10.20 45.90↑13.45 DAPT 88.65↑13.45 65.00↑5.57

4.3 F2F W/ UNLEARNING VARIANTS

Figure 3 illustrates a comparative analysis in the medical domain (PubMedQA and MedMCQA) for
two models of differing architectures and scales: Qwen-0.6B and LLaMA-8B-Instruct. The results
show that combined gradient ascent and descent (GA+GD) unlearning yields the most substantial
performance gains after fine-tuning, outperforming both unlearning-only and alternative unlearning
approaches. Across PubMedQA and MedMCQA, unlearning reliably enhances the effectiveness of
subsequent tuning. Notably, for smaller models such as Qwen-0.6B, tuning after σ=0 (only GA)
unlearning tends to underperform, underscoring the importance of stability-preserving retention. In
contrast, for larger models like LLaMA-8B, GA-only unlearning achieves performance comparable
to, and in some cases exceeding, other unlearning variants due to the less dependency on stability-
preserving corrections like GD.

4.4 EFFECT OF FORGET SET QUALITY

Table 3 compares performance when different forget sets (BC-Select vs. BC-Mixed vs. BC-Cosine)
are applied across coding, medical, and mathematical domains. An important factor of F2F lies in
the composition of the forget set. Across Qwen, Gemma, and LLaMA models, unlearning with a
BC-Select forget set consistently produces greater downstream improvements following fine-tuning
compared to using BC-Mixed. For instance, in the case of Qwen 0.6B, applying UnlGA+GD fol-
lowed by tuning on BC-Select increases MBPP accuracy to 31.60, in contrast to 29.90 with BC-
Mixed. This indicates that BC-Select, being more curated and less noisy, enables more precise
removal of irrelevant pre-training features. Moreover, as it is not intermixed with domain-specific
data points, it avoids erasing domain-relevant knowledge. In the case of BC-Cosine, where we se-
lected forget set based on low cosine similarity demosntrates and proves to perform better than the
baseline and other SOTA tuning methods. For LlaMA 8B-Instruct, the performance is very similar
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GA+GD GA NPO GA+KL
25

40

55

70

55

70

85

GA+GD GA NPO GA+KL

PubMedQA MedMCQA Tuning Tuning

Qwen 3 0.6B LlaMA 3.1 8B-Instruct

Figure 3: Comparative performance of different unlearning methods across different models with
different architectures and sizes.

to the BC-Select which shows that cosine similarity can be used to select forget set if the domain is
distinct.

Across all model sizes and domains, the results clearly demonstrate that the F2F protocol con-
sistently outperforms standard fine-tuning. Models equipped with F2F show increasing gains in
pass@1 accuracy. For instance, Qwen3-0.6B improves from 21.34 to 42.07 on HumanEval after
applying unlearning and tuning, while LlaMA3.1-8B reaches 60.37 when compared to a baseline of
33.54.These improvements indicate that suppressing irrelevant pretraining knowledge helps models
specialize in algorithmic reasoning.

These results highlight that the effectiveness of unlearning is highly dependent on the choice of for-
get set, the target domain, and capacity of the model. BC-Select forget sets appear more reliable for
guiding domain adaptation, while BC-Mixed provides mixed benefits that depend on task alignment.

4.5 REPRESENTATION GEOMETRY ANALYSIS (CKA & SVCCA)

We analyze how unlearning Xu et al. (2025) and fine-tuning alter internal representations using Cen-
tered Kernel Alignment (CKA) Kornblith et al. (2019) and Singular Vector Canonical Correlation
Analysis (SVCCA) Raghu et al. (2017).

CKA . Let X ∈ RN×dx and Y ∈ RN×dy be mean-pooled, sample-centered layer repre-
sentations of the same inputs, i.e., Xc = X − X̄ and Yc = Y − Ȳ . The linear CKA is
CKA(X,Y ) =

∥X⊤
c Yc∥2

F

∥X⊤
c Xc∥F ∥Y ⊤

c Yc∥F
, which captures similarity of representational geometry and is

invariant to orthogonal transforms and isotropic rescaling. Across the three domains, CKA reveals
different representational drift patterns.Across all three domains, tuning overwrites most represen-
tations (low similarity), with F2F also highly divergent. This highlights that the extent of represen-
tational change depends on the domain, with F2F consistently pushing representations further from
the unlearned model.

Figure 4: Representational drift measured by linear CKA. Across three domains, tuning substantially
lowers similarity to the unlearned model; F2F exhibits the most pronounced departure. From left to
right : Medical Domain, Mathematics Domain and Coding Domain.
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Table 3: Effect of forget-set quality on F2F across domains. We compare curated BC-Select vs.
mixed BC-Mixed vs. BC-Cosine forget sets on Qwen3-0.6B, LLaMA3.1-8B-Instruct, and LLaMA2-
13B over coding (MBPP, HumanEval), medical (PubMedQA, MedMCQA), and math (Hendrycks-
MATH, GSM8K) benchmarks (higher is better). Best ; Second best

FD Method Coding Medical Mathematics
MBPP HumanEval PubMedQA MedMCQA Hendrycks GSM8K

Q
w

en
3

0.
6B B

C
-S

el
ec

t (1) UnlGA+GD 30.00 21.34 61.60 31.44 39.07 0.26
(1) + Tuning 31.60 42.07 69.60 45.31 54.11 15.30
(2) UnlGA 24.00 20.73 60.40 31.29 25.09 0.24
(2) + SFT 31.60 40.02 58.80 40.26 51.20 14.00

B
C

-M
ix

ed
. (1) UnlGA+GD 24.20 20.12 61.80 30.38 31.47 0.06

(1) + Tuning 29.90 40.00 60.20 23.31 52.00 13.21
(2) UnlGA 23.80 20.12 60.20 31.89 25.00 0.00
(2) + Tuning 28.00 33.10 61.20 35.43 50.00 13.51

B
C

-C
os

in
e (1) UnlGA+GD 24.01 18.00 61.20 29.32 29.05 0.10

(1) + Tuning 31.55 41.90 67.33 45.00 54.85 13.20
(2) UnlGA 22.22 18.23 58.45 29.00 25.00 0.00
(2) + Tuning 29.91 40.50 57.65 38.75 48.90 13.07

- (3) Baseline 22.60 19.50 57.80 32.25 41.09 0.02
(3) + Tuning 28.80 31.71 62.60 42.12 50.06 12.30

L
la

M
A

3.
1

8B B
C

-S
el

ec
t (1) UnlGA+GD 43.60 54.88 79.21 60.50 18.00 61.70

(1) + Tuning 60.10 60.37 89.90 70.25 29.50 70.51
(2) UnlGA 22.60 1.20 75.22 60.20 10.51 50.91
(2) + Tuning 58.66 57.70 87.00 67.15 25.70 67.20

B
C

-M
ix

ed
. (1) UnlGA+GD 40.50 52.52 79.50 59.30 17.00 51.00

(1) + Tuning 56.20 55.76 87.61 70.10 28.81 65.20
(2) UnlGA 33.20 25.50 72.30 57.00 5.20 35.20
(2) + Tuning 52.30 40.90 86.90 61.20 23.01 66.15

B
C

-C
os

in
e (1) UnlGA+GD 42.55 53.76 79.00 58.22 17.91 61.00

(1) + Tuning 59.55 59.86 85.31 71.02 28.33 68.57
(2) UnlGA 20.35 0.90 73.05 58.99 9.32 50.00
(2) + Tuning 57.76 57.55 85.31 66.00 27.01 67.10

- (3) Baseline 49.00 33.54 75.20 59.43 19.90 62.85
(3) + Tuning 56.60 56.71 85.31 64.20 25.51 66.70

L
la

M
A

2
13

B

B
C

-S
el

ec
t (1) UnlGA+GD 27.22 0.60 74.90 38.68 29.00 5.10

(1) + Tuning 50.31 46.15 90.11 60.10 51.50 21.50
(2) UnlGA 0.00 25.50 70.00 36.51 24.35 2.00
(2) + Tuning 45.01 44.70 89.33 57.93 50.90 20.00

B
C

-M
ix

ed
. (1) UnlGA+GD 27.20 0.45 73.00 37.50 27.00 5.10

(1) + Tuning 47.50 45.91 89.55 61.30 50.30 20.00
(2) UnlGA 0.00 10.00 65.99 29.55 23.55 1.05
(2) + Tuning 39.55 40.01 87.00 50.60 47.60 20.00

B
C

-C
os

in
e (1) UnlGA+GD 25.30 0.52 73.44 37.62 29.09 6.30

(1) + Tuning 48.91 44.30 90.00 58.42 50.33 18.03
(2) UnlGA 0.00 23.33 69.55 36.22 24.00 0.92
(2) + Tuning 44.33 42.05 89.10 60.99 49.62 19.52

- (3) Baseline 27.22 0.60 75.20 38.68 27.5 2.00
(3) + Tuning 37.01 40.21 86.30 54.00 37.09 16.30

SVCCA . SVCCA compresses each space to retain a fraction α = 0.99 of variance via SVD,
then computes the mean canonical correlation between the compressed features; if X ′ ∈ RN×kx ,
Y ′ ∈ RN×ky , and ρ1, . . . , ρk are the canonical correlations with k = min(kx, ky), then
SVCCA(X,Y ) = 1

k

∑k
i=1 ρi, emphasizing shared, high-variance factors which is complementary

global geometry view of CKA. The SVCCA heatmaps indicate that tuning preserves partial align-
ment with the base model, while F2F introduces more substantial representational shifts. Base model
vs. unlearned shows limited overlap beyond trivial self-similarity, whereas F2F vs. base model tuned
reveals only localized correspondences. This highlights that tuning induces domain-dependent but
structured drift, while F2F consistently drives stronger alterations in the representational subspace.
More analysis and ablations are given in the appendix section A.
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Figure 5: Heatmaps of representational similarity measured by SVCCA. We compare layer-wise
representations across (i) Base model(BM) vs. fine-tuned base model, (ii) Base model (BM) vs.
unlearned model, (iii) Base model (BM) vs. F2F, and (iv) Fine-tuned base model vs. F2F. SVCCA
emphasizes alignment of shared high-variance factors.

5 CONCLUSION

We demonstrate that Forget-to-Focus (F2F) a simple two-stage pipeline : unlearns targeted general
domain knowledge (forget) and then fine-tunes to adapt to a domain specific model (focus) consis-
tently improves domain adaptation of LLMs across coding, math, and medical tasks, from 0.6B to
72B scales. F2F delivers higher accuracy than standard fine-tuning and parameter-efficient baselines,
improves calibration on sensitive QA, and induces clear representational shifts (via CKA/SVCCA,
Fisher, PCA) away from generalist features toward domain-useful structure. These gains arise from
suppressing interfering priors from pretraining, causing stabler optimization and reduced spurious
correlations. The method is modular, data-driven (via forget/retain sets), and compatible with com-
mon training stacks. Overall, F2F reframes unlearning as capacity reallocation for specialization,
offering a practical path to more reliable in-domain LLMs.
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A APPENDIX FOR FORGET-TO-FOCUS

A.1 MBPP AND HUMANEVAL PASS@1 ACROSS DIFFERENT VARIANTS OF QWEN 2.5
FAMILY.

As extension of Table 1, Table 4 presents pass@1 accuracies on MBPP and HumanEval for Qwen
2.5 model variants and a comparative assessment of different fine-tuning strategies. In particular,
UnlGA+GD pretraining followed by SFT (2)+SFT results the strongest performance for every model
size, achieving new best pass@1 scores of 53.80 & 47.30 (MBPP/HumanEval) for 1.5B, 75.90 &
53.20 for 7B, and 71.30 & 51.59 for 14B. Compared to the respective base models, this corresponds
to absolute gains of +13.8, +10.1, and +9.1 points on MBPP and +11.9, +13.0, and +14.8 points on
HumanEval for the 1.5B, 7B, and 14B models, respectively, which translate to roughly 30 - 40%
relative improvements.

Overall, these results demonstrate that leveraging F2F is a robust and scalable strategy for enhancing
code generation capabilities across model sizes of the same famnily.

Table 4: MBPP and HumanEval pass@1 across Qwen 2.5 model variants and tuning methods
(higher is better). Best ; Second best

Qwen 2.5 1.5B Qwen 2.5 7B Qwen 2.5 14B
Coding MBPP HumanEval MBPP HumanEval MBPP HumanEval

(1) Base Model 40.00 35.37 65.85 40.20 62.20 36.80
(1)+ SFT 45.04 38.25 72.53 43.80 65.75 40.55

(1)+ DAPT 46.00 41.03 71.35 44.65 69.00 41.69
(1)+ LORA 44.76 39.01 70.33 44.83 67.35 49.97

(1)+ CurlLora 46.22 43.21 72.00 45.09 68.00 41.33
(2) UnlGA+GD 43.00 37.11 65.60 45.10 64.55 40.25

(2)+ SFT 53.80 47.30 75.90 53.20 71.30 51.59
(3) UnlGA 39.61 34.30 67.02 43.21 61.11 37.81
(3)+ SFT 52.40 45.80 72.50 48.70 68.45 48.10

A.2 RETENTION OF BROAD SKILLS BEYOND TARGET DOMAINS

We evaluated broad-skill retention across ARC-E/C Clark et al. (2018), HellaSwag (Zellers et al.,
2019), Winogrande (Sakaguchi et al., 2021), PIQA (Bisk et al., 2020), and BoolQ (Clark et al., 2019)
for Qwen-0.6B and LLaMA-8B with different fine-tuning settings.In Table 5, we observe that sim-
ple supervised fine-tuning improves tasks like ARC and BoolQ, while often reducing performance
on commonsense benchmarks such as HellaSwag, Winogrande, and PIQA, indicating a trade-off be-
tween specialization and everyday reasoning. Unlearning with gradient ascent plus gradient descent
produces small but consistent gains across most tasks with minimal regressions, suggesting a stabi-
lizing effect on broad skills. The full Forget-to-Focus pipeline that combines GA+GD unlearning
followed by supervised fine-tuning strengthens knowledge retention further and largely preserves
commonsense accuracy, yielding a near Pareto improvement relative to the base model in many
cases. In contrast, gradient-ascent-only unlearning is volatile, with large swings across datasets; ap-
plying supervised fine-tuning afterward recovers much of the instability yet still leaves task-selective
regressions, particularly on PIQA for the smaller and mid-size settings. Taken together, these trends
support the claim that the proposed unlearn-then-retune recipe can retain broad capabilities while
enabling targeted forgetting, provided the unlearning stage includes an explicit retain mechanism
rather than relying on ascent alone.

To assess conversational and instruction-following robustness, we additionally evaluated models on
Alpaca-Eval using the length-controlled win rate and the official lmsys-gpt4 annotator configuration.
We find that F2F slightly improves win rate compared to the base, indicating that the proposed
unlearning–retuning procedure reallocates capacity toward domain specialization without sacrificing
instruction-following or conversational fluency. Together, these results reinforce that F2F enables
targeted forgetting while preserving general and interactive capabilities.
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Table 5: Broad-skill retention audit across general benchmarks (accuracy) and Length Controlled
Win rate for Alpaca-Eval.

Model Method ARC-E ARC-C HellaSwag Winogrande PIQA BoolQ Alpaca-Eval (LC Win Rate)

Qwen 0.6B

(1) Base Model 68.00 32.50 45.00 59.00 67.50 67.50 28.58
(1) + SFT 68.50↑0.5 36.50↑4.0 44.50↓0.5 58.50↓0.5 65.00↓2.5 71.00↑3.5 27.65↓0.9
(2) UnlGA+GD 67.50↓0.5 36.00↑3.5 45.50↑0.5 61.00↑2.0 68.00↑0.5 72.00↑4.5 28.38↓0.2
(2) + SFT 68.50↑0.5 37.00↑4.5 45.00(0) 57.50↓1.5 64.00↓3.5 73.50↑6.0 29.01↑0.4
(3) UnlGA 67.50↓0.5 32.50(0) 59.00↑14.0 44.50↓14.5 66.50↓1.0 75.00↑7.5 29.59↓1.1
(3) + SFT 69.00↑1.0 35.00↑2.5 45.00(0) 63.50↑4.5 58.50↓9.0 73.50↑6.0 27.78↓0.7

LLaMA 8B

(1) Base Model 82.50 52.50 55.00 80.00 79.50 87.50 30.22
(1) + SFT 83.00↑0.5 56.50↑4.0 51.50↓3.5 74.30↓5.7 76.00↓3.5 89.00↑1.5 30.32↑0.1
(2) UnlGA+GD 82.00↓0.5 56.00↑3.5 55.50↑0.5 82.00↑2.0 80.50↑1.0 90.50↑3.0 30.22(0.0)
(2) + SFT 83.00↑0.5 59.00↑6.5 55.00(0) 79.00↓1.0 78.50↓1.0 91.00↑3.5 30.55↑0.3
(3) UnlGA 82.00↓0.5 52.50(0) 69.50↑14.5 65.00↓15.0 78.50↓1.0 86.50↓1.0 30.12↓0.1
(3) + SFT 84.00↑1.5 55.00↑2.5 68.00↑13.0 81.00↑1.0 77.00↓2.5 90.00↑2.5 30.42↑0.2

Table 6: Forgetting verification across models. ∆NLL = NLLC − NLLO; higher means more
forgetting.

Model Mean ∆NLL 95% CI Median Cohen’s d

Base Model (Tuned) 0.347 [0.234, 0.472] 0.297 1.72
Unlearn 0.681 [0.559, 0.831] 0.563 2.90
F2F 0.678 [0.566, 0.819] 0.609 3.07

A.3 PROBING VERIFICATION / FORGOTTENNESS

Because the forget set Df does not target a single domain, we verify forgetting via a probing
methodology with sparse autoencoders (SAEs). We train sparse-coders for the base model O and
the comparison model C using EleutherAI’s SPARSIFY framework Gao et al. (2024a); EleutherAI
(2024), on the final layer representation of Qwen3-0.6B and its two other variants : F2F, and
unelarned only with BookCorpus. For each x ∈ Df , we compute the per-example difference
∆NLL(x) = NLLC(x)− NLLO(x), so larger values indicate that C assigns lower likelihood than
O i.e., greater “forgottenness” of the targeted content. We summarize the distribution of ∆NLL
with its mean, a 95% percentile bootstrap CI over the mean (B=2000 resamples of examples), the
median, and a standardized effect size (Cohen’s d; one-sample against 0, using the sample standard
deviation of ∆NLL) which are reported in Table 6. Unlearn and F2F exhibit the largest forgetting
on Df , with mean ∆NLL of 0.681 [0.559, 0.831] and 0.678 [0.566, 0.819], respectively. Although
their means are essentially tied, F2F shows a higher median (0.609 vs. 0.563) and a larger effect size
(Cohen’s d = 3.07 vs. 2.90), indicating a more uniformly strong shift across examples. In contrast,
the Base Model (Tuned) also shows forgetting but at substantially smaller magnitude (mean 0.347,
CI [0.234, 0.472], median 0.297, d = 1.72). Overall, the table supports the conclusion that targeted
procedures (Unlearn/F2F) induce considerably greater forgottenness than generic fine-tuning, with
F2F displaying slightly stronger concentration of the effect.

A.4 PCA-SHIFT

To better understand how different training interventions alter internal representations (Xu et al.,
2025), we performed a layer-wise PCA shift analysis. For each layer L, we extracted the mean
hidden representations of a shared set of prompts from both the reference model and its variants, fit
a PCA on the reference representations, and projected all models into this space. The displacement
along the first principal component was computed as ∆PC1(L) = h

(L)

model · u1− href(L) · u1, where

u1 is the top PCA direction of the reference and h
(L)

is the mean hidden state. This analysis
reveals that Base model-tuned models exhibit broad and uniform representational drift across many
layers, indicating a global reshaping of internal geometry. In contrast, the Unlearned model remains
closely aligned with the base model, with only minimal deviations concentrated in a few higher
layers. Strikingly, F2F induces shifts of comparable magnitude to Baseline-Tuning but in a far more
targeted manner, selectively altering specific layers while preserving much of the base geometry.
This suggests that F2F achieves efficient and precise representational adaptation, retaining general
capabilities while reallocating capacity only where necessary.
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Figure 6: PCA shift analysis shows Baseline-Tuned models drift broadly, Unlearned models stay
close to the base, and F2F induces targeted shifts that balance adaptation with stability.

A.5 FISHER’S ANALYSIS

To understand how unlearning redistributes parameter sensitivity, we analyze the empirical Fisher
information (Cha et al., 2024) of attention projections (Figure 7). For each block l and role
r ∈ {q, k, v}, we estimate the diagonal Fisher as F̂l,r = 1

B

∑B
b=1

(
∇

W
(l)
r
ℓ(xb; θ)

)2
, where

ℓ(x; θ) is the token-level NLL. Head-wise values are obtained by slicing the row dimension of
W

(l)
r into H heads of size d = hidden size/H , averaging within each slice, and then across

roles:f (l)
h = 1

3

∑
r∈{q,k,v}

1
|Sh|

∑
(i,j)∈Sh

F̂l,r[i, j] We report the median and interquartile range

of {f (l)
h }Hh=1 within each block to capture depth-wise sensitivity. Figure 7 shows that standard fine-

tuning sharply amplifies Fisher values in shallow layers, reflecting unstable reliance on low-level
pretrained features. F2F with σ = 0.5 dampens shallow-layer sensitivity while retaining moderate
activity across depth, striking a balance between stability and useful priors. In contrast, σ = 0
further suppresses Fisher values and yields smoother, more uniform profiles, favoring robustness
and calibration but with reduced representational leverage. Overall, F2F systematically reshapes the
sensitivity landscape to enable more stable and domain-aligned specialization.

Figure 7: Head-wise redistribution of attention sensitivity after unlearning, measured by empirical
Fisher information.

A.6 CALIBRATION & RISK COVERAGE

To study how unlearning and fine-tuning affect calibration, we use reliability diagrams and confi-
dence histograms. Given logits z ∈ RC and labels y, we compute probabilities p = softmax(z),
confidence ci = maxj pi,j , and correctness ⊮[argmaxj pi,j = yi]. Grouping confidences into M
bins {Im}, average confidence ĉm and accuracy âm yield a reliability curve (ĉm, âm) against the di-
agonal y = x, while Expected Calibration Error (ECE) measures deviation. Confidence histograms
visualize the spread of predictions across [0, 1]. Calibration is critical in medical QA: overconfident
errors are harmful, while underconfident correct answers reduce utility. From Figure 8, we observe
that in F2F protocol, unlearning alone increases uncertainty, however, after fine-tuning the model
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recovers a well calibrated profile whose reliability curve follows y = x and whose confidences
are broadly distributed. In contrast, baseline fine-tuning collapses confidences around 0.3-0.5, pro-
ducing poorly calibrated outputs. Overall, F2F achieves better calibration than fine-tuning alone,
improving both trustworthiness and domain adaptation.

Figure 8: Reliability diagrams and confidence distributions on MedMCQA. F2F produces better-
calibrated probabilities than fine-tuned base model.

Table 7: Calibration and likelihood metrics on MedMCQA (↓ lower is better).

Model Types NLL↓ Brier↓ ECE↓
Base Model 1.851 0.911 0.308
Base Model (Tuned) 1.762 0.825 0.277
F2F 1.392 0.751 0.050
Unlearning 1.659 0.867 0.256

A.7 SPECTRAL SURROGATE ANALYSIS FOR LORA CAPACITY

We introduce a spectral surrogate analysis to estimate the intrinsic rank capacity required for LoRA
without full fine-tuning. The method instruments LoRA-targeted linear layers (attention projections
q/k/v/o and MLP up/down/gate projections) to collect activations A and output gradients G on
a small calibration set. From these, we construct the cross-covariance matrix C = Y X⊤/N with
X = A⊤ and Y = G⊤. A randomized SVD yields singular values {si}, which define the cumulative

explained variance curve EV(r) =
∑r

i=1 s2i∑
i s

2
i

. We summarize model capacity using two aggregate
measures: (i) an energy-weighted average curve across layers, reflecting overall compressibility,
and (ii) a layerwise minimum curve, which highlights bottleneck layers that require higher ranks. By
sweeping r, we obtain intrinsic rank estimates (e.g., the smallest r such that EV(r) ≥ 0.9), identify
non-uniform rank allocation strategies, and provide a lightweight proxy for domain shift by varying
calibration data. Figure 9 compares base and unlearned models using weighted average explained
variance (EV) and the energy-weighted CDF of effective ranks. Across both Qwen 0.6B and LLaMA
3.1 8B, the unlearned models consistently achieve higher EV at smaller ranks and concentrate more
representational energy in low-rank subspaces. In contrast, the base models require larger ranks
to capture the same variance. The effect is modest in Qwen 0.6B but pronounced in LLaMA 3.1
8B, where the unlearned variant is markedly more low-rank efficient. Overall, unlearning improves
LoRA efficiency, enabling comparable adaptation with fewer parameters.

A.8 VARYING RETAIN DATASET SIZE WITH VARYING σ

To assess the effect of forget-set size, we varied it across 1k, 3k, 5k, 7k, and 9k examples with vary-
ing values of σ 0, 0.5, 1.0. The forget set was BookCorpus and the eval/retain datset is PubMedQA
and MedMCQA. Experiments were conducted with Qwen-0.6B and LlaMA 3.1-8B to test whether
the effects are consistent across models of different sizes and architectures.
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Figure 9: Spectral surrogate analysis for LoRA capacity. We compute explained variance curves
from activations and gradients, aggregate across layers, and extract effective rank estimates. Un-
learned models concentrate more energy in low-rank subspaces, making them more LoRA-efficient
than their base counterparts.

Forget Set 
(no. of samples)

Forget Set 
(no. of samples)

Forget Set 
(no. of samples)

A
c
c
u
r
a
c
y

A
c
c
u
r
a
c
y

A
c
c
u
r
a
c
y

σ = 0 σ = 0.5

A
c
c
u
r
a
c
y

Forget Set 
(no. of samples)

Forget Set 
(no. of samples)

Forget Set 
(no. of samples)

A
c
c
u
r
a
c
y

A
c
c
u
r
a
c
y

σ = 1.0

σ = 1.0σ = 0.5σ = 0

Fine-tuning

Unlearning

Qwen 3 0.6B

Qwen 3 0.6B

LlaMA 3.1 8B

Forget Set 
(no. of samples)

Forget Set 
(no. of samples)

Forget Set 
(no. of samples)

σ = 0 σ = 0.5 σ = 1.0

A
c
c
u
r
a
c
y

I
m
p
r
o
v
e
m
e
n
t

A
c
c
u
r
a
c
y

I
m
p
r
o
v
e
m
e
n
t

A
c
c
u
r
a
c
y

I
m
p
r
o
v
e
m
e
n
t

Forget Set 
(no. of samples)

Forget Set 
(no. of samples)

Forget Set 
(no. of samples)

σ = 1.0σ = 0.5σ = 0

A
c
c
u
r
a
c
y

I
m
p
r
o
v
e
m
e
n
t

A
c
c
u
r
a
c
y

I
m
p
r
o
v
e
m
e
n
t

A
c
c
u
r
a
c
y

I
m
p
r
o
v
e
m
e
n
t

LlaMA 3.1 8B

Figure 10: Effect of varying retain dataset size with varying σ on accuracy after unlearning and
accuracy improvement after fine-tuning.s

For Qwen-0.6B, increasing σ from 0 to 1.0 stabilized retention on both datasets: PubMedQA re-
mained consistently high ( 60–65%) across all forget-set sizes, while MedMCQA showed a smaller
decline, indicating that σ noise helps prevent catastrophic forgetting. For LLaMA-3.1-8B, retention
was best maintained at moderate σ (σ=0.5), with PubMedQA accuracy remaining above 65% and
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MedMCQA showing stable trends, whereas high σ (σ=1.0) led to retention collapse as forget-set
size increased.

Fine-tuning further emphasized these architecture-dependent differences: Qwen-0.6B exhibited
modest but stable improvements under noise, while LLaMA-3.1-8B achieved larger gains at σ=0.5
but deteriorated sharply at σ=1.0. These results demonstrate that while noise injection facilitates sta-
ble unlearning, retention behavior is dataset- and model-dependent, with smaller models benefiting
from stronger σ and larger models requiring moderate σ to preserve generalization. We find a clear
scaling effect: larger models require larger forget sets to achieve comparable unlearning, reflecting
their greater capacity to store diverse knowledge. In contrast, smaller models can be effectively
unlearned with much smaller sets.

A.9 EFFECT OF DATASET SIZE AND GA WEIGHT

Accuracy improvement on PubMedQA (blue) and MedMCQA (red) is shown as a function of the
retain set size under two λ values. Both models achieve substantial gains at λ=0.5, with consistent
improvements as the retain set grows. In contrast, λ=1.0 severely limits improvement, particularly
for larger retain sets, indicating that moderate GA weighting better balances knowledge retention
and adaptation across datasets and architectures.

Figure 11: Effect of dataset size and gradient ascent weight,λ on accuracy improvement

A.10 GA WEIGHT AND GD WEIGHT

Accuracy improvement increases with λ up to 0.5 for both datasets, after which gains taper off,
suggesting diminishing returns from higher weighting. Right: Accuracy improvement remains rel-
atively stable across σ values, indicating that GD weighting exerts weaker influence on fine-tuning
gains compared to GA. These results suggest that GA weighting (λ) plays a more critical role than
GD weighting (σ) in mediating retention gains during fine-tuning, with λ=0.5 emerging as the opti-
mal trade-off point.

Figure 12: Effect of gradient descent weight,σ and gradient ascent weight,λ on accuracy improve-
ment.

B EFFECT OF LEARNING RATE ON UNLEARNING AND FINE-TUNING OF F2F

Table 8 shows the sensitivity analysis of unlearning and finetuning on th performance. For un-
learning, performance on PubMedQA and MedMCQA increases as we raise the learning rate from
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5× 10−6 to 3× 10−5. PubMedQA accuracy improves by +5.30 points, while MedMCQA increases
by +12.48 points. We chose 3× 10−5 as there was no performance gain after this.
For fine-tuning as we increase the learning rate from 5 × 10−6 to 2 × 10−5, accuracy on Pub-
MedQA improves by +5.70 points, and MedMCQA increases by +7.25 points. Beyond 2 × 10−5,
larger learning rates do not bring further improvements. Hence, these results motivate the choice of
learning rate of 3× 10−5 for unlearning and 2× 10−5 for fine-tuning.

Table 8: Learning rate ablation for Unlearning and Fine-Tuning on LLaMA 3.1 8B-Instruct.

Unlearning Fine-Tuning
Learning Rate PubMedQA MedMCQA Learning Rate PubMedQA MedMCQA
5× 10−6 73.91 48.02 5× 10−6 84.20 63.00
1× 10−5 75.20 51.22 1× 10−5 85.22 65.05
1.5× 10−5 76.99 54.81 1.5× 10−5 86.71 67.82
2× 10−5 76.81 58.35 2× 10−5 89.90 70.25
2.5× 10−5 79.05 59.21 2.5× 10−5 89.85 67.09
3× 10−5 79.21 60.50 3× 10−5 89.75 69.91
4× 10−5 78.00 60.33 4× 10−5 88.00 69.15

C EFFECT WITH MULTI-SEED SETTINGS

Table 9 demonstrates that the F2F consistently improves over SFT across models, domains, and
benchmarks under multi-seed evaluation. In the coding domain, F2F adds between +1.8 and +9.4
pass@1 points on top of SFT for both Qwen 2.5 7B and LLaMA-3.1 8B, despite SFT already
providing substantial gains over the Base models.

In the medical domain, F2F similarly yields consistent improvements, with gains of +3.5 to +6.0
accuracy points over SFT on PubMedQA and MedMCQA. Across all configurations, the standard
deviations are very small, indicating that F2F’s advantages are robust to random seed variation rather
than arising from unstable or lucky runs.

Table 9: Multi-seed robustness of F2F. We report mean ± std over 3 seeds. Base is single-seed (no
SFT). SFT and F2F are averaged across 3 seeds under identical settings.

Model Domain Metric Base SFT (3 seeds) F2F (3 seeds) ∆ (F2F–SFT)

Coding

Qwen 2.5 7B Coding HumanEval pass@1 (%) 40.20 44.35 ± 0.004 53.70 ± 0.005 +9.4
Qwen 2.5 7B Coding MBPP pass@1 (%) 65.85 72.90 ± 0.007 76.25 ± 0.004 +3.4
LLaMA-3.1 8B Coding HumanEval pass@1 (%) 33.54 57.37 ± 0.004 61.59 ± 0.005 +4.2
LLaMA-3.1 8B Coding MBPP pass@1 (%) 49.00 58.95 ± 0.005 60.73 ± 0.003 +1.8

Medical

Qwen 2.5 7B Medical PubMedQA acc. (%) 73.00 81.52 ± 0.012 85.00 ± 0.007 +3.5
Qwen 2.5 7B Medical MedMCQA acc. (%) 56.23 65.35 ± 0.008 69.35 ± 0.002 +4.0
LLaMA-3.1 8B Medical PubMedQA acc. (%) 75.20 89.51 ± 0.006 91.35± 0.009 +1.8
LLaMA-3.1 8B Medical MedMCQA acc. (%) 59.43 64.55 ± 0.001 70.55± 0.001 +6.0

C.1 EFFECT OF UNLEARNING STEP SIZE ON COMPUTATIONAL COST AND ACCURACY

Figure 13 highlights the change in medical domain benchmarks’ accuracy with varying unlearn-
ing step counts and shows how runtime also changes with it. Figure shows that as the number
of unlearning steps increases, accuracy on the medical domain benchmarks remains essentially un-
changed, while runtime grows. Accordingly, we choose 1,000 unlearning steps as a practical default:
it matches the best accuracy yet requires only 0.55 GPU-hours on a single A100 GPU.
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Figure 13: Runtime across different unlearning step counts, measured on a single A100 in GPU-
hours.
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