Ilusory Generalization in NLP: Why Scaling Laws Mask Systematic
Failures in Out-of-Distribution Reasoning

Anonymous ACL submission

Abstract

Despite the rapid advances in natural language
processing (NLP) driven by large-scale neural
models, the claim that these models achieve
true generalization remains questionable. This
paper argues that the current paradigm of scal-
ing laws in which larger models appear to per-
form better does not equate to genuine con-
ceptual generalization. Instead, models opti-
mize for memorization of latent statistical pat-
terns, leading to overestimated generalization
capabilities. We critique existing evaluation
methodologies, highlight failures in systematic
out-of-distribution (OOD) reasoning, and pro-
pose an approach inspired by cognitive science
to benchmarking generalization.

1 Introduction

NLP research is at an inflection point. The impres-
sive performance of large-scale models has led to
a prevailing narrative that increasing model size
and training data leads to more human-like lin-
guistic capabilities. But this assumption that rests
upon scaling laws as a proxy for intelligence is fun-
damentally flawed. It confuses statistical pattern-
matching with true generalization, conflates in-
terpolation with conceptual abstraction, and ul-
timately propagates an illusion of understanding
rather than a meaningful grasp of language.
Human cognition does not operate on the sheer
brute-force recognition of patterns. Instead, it is
marked by the ability to generalize across domains,
integrate concepts in novel ways, and infer meaning
from minimal data. This capacity for conceptual
flexibility allows humans to extrapolate beyond
their experiences, making sense of entirely new
constructs without requiring millions of training
examples. Large language models (LLMs), despite
their scale, lack this core cognitive ability. Their so-
called "generalization" is often little more than the
ability to retrieve and recombine learned statistical
regularities which we see crumbles when faced

with truly novel linguistic structures or shifts in
meaning.

If generalization is to be more than an illusory
benchmark, we must radically rethink how we de-
fine and evaluate it. This paper critiques the illu-
sion of generalization in NLP and argues that a
paradigm shift is necessary: one that prioritizes
systematicity, compositionality, and conceptual in-
tegration over raw scaling power. Without such
a shift, the field risks mistaking the shadows of
intelligence for intelligence itself.

2 The Limits of Current Generalization
Metrics

Most generalization claims in NLP stem from per-
formance on standard benchmarks, yet these bench-
marks often fail to capture meaningful OOD rea-
soning. Common datasets, such as GLUE (Wang,
2018), SuperGLUE (Wang et al., 2019), GLUE-X
(Yang et al., 2022), and multilingual benchmarks
(Kakwani et al., 2020), rely on splits that main-
tain high degrees of overlap between training and
test distributions. Even when adversarial datasets,
like AdvGlue (Wang et al., 2021), attempt to probe
robustness, models still succeed through pattern
exploitation rather than conceptual understanding.
Consider the following key failures of existing gen-
eralization metrics:

1. IID Assumptions: Most benchmarks split data
randomly (Arp et al., 2022), leading to train-
test leakage of latent patterns that models can
exploit.

2. Spurious Correlations: Large models pick up
on statistical artifacts rather than underlying
linguistic principles (Tu et al., 2020), perform-
ing well on benchmarks while failing in real-
world, structurally different cases.

3. Lack of True Compositionality Tests: Human
cognition allows for productive compositional



generalization, the ability to combine known
concepts in novel ways, but models struggle
with systematicity and recombination.

3 Why Scaling Does Not Solve the
Problem

The success of large-scale models is often at-
tributed to their ability to absorb vast amounts
of data and identify complex correlations. How-
ever, this brute-force approach does not address
deeper challenges of conceptual generalization.
While scaling improves interpolation within the
training distribution, it does not guarantee system-
atic extrapolation to unseen structures. Scaling
laws, which suggest that performance improves
predictably as models grow, have become a domi-
nant narrative in NLP. Yet, this narrative conceals
fundamental failures in systematic reasoning, ab-
straction, and robust linguistic adaptability.

Fundamentally, the scaling hypothesis from sta-
tistical mechanics does not, and cannot, apply to
language in the ways we aim for it. The scaling
hypothesis in statistical mechanics describes how
physical quantities, such as correlation length and
specific heat, exhibit power-law behavior near criti-
cal points. (Baxter, 2016) This framework assumes
that key macroscopic properties emerge from un-
derlying microscopic interactions in a way that is
self-similar across scales. Such behavior is well-
suited to physical systems because these systems
obey fundamental conservation laws, operate un-
der local interactions, and exhibit universal behav-
ior near phase transitions. However, applying this
same reasoning to language, which is an emergent
faculty of human cognition, introduces fundamen-
tal problems.

Unlike physical systems, language is not gov-
erned by simple statistical interactions but by com-
plex, hierarchical, and context-dependent struc-
tures. In statistical mechanics, increasing system
size (e.g., more particles in a lattice model) pre-
serves the same governing equations, leading to
predictable scaling behaviors. In contrast, language
acquisition and processing are shaped by concep-
tual abstraction, communicative intent, and socio-
cultural constraints, none of which follow simple
power-law relationships. While scaling large lan-
guage models improves performance on certain
benchmarks, it does not imply that language un-
derstanding itself is a function of model size in
the same way that physical properties depend on
system size.

Moreover, in statistical mechanics, self-
similarity across scales arises because the same
fundamental interactions govern both small and
large-scale behavior. In cognition, however,
different scales involve qualitatively different
processes. Phonemes do not compose into words in
the same way that words compose into sentences,
and sentence-level meaning does not simply
emerge from statistical aggregation of words.
Human language is characterized by symbolic
structure, long-range dependencies, and non-local
meaning constraints, none of which are naturally
captured by statistical scaling laws. This is why
merely increasing model size does not necessarily
resolve core challenges in NLP, such as reasoning,
abstraction, or grounding in real-world perception.

Thus, while the scaling hypothesis provides a
powerful framework for understanding physical
phase transitions, its direct application to linguistic
cognition is problematic. The underlying mecha-
nisms of statistical physics (local interactions, en-
ergy minimization, and universality classes) are
fundamentally different from the principles that
govern language (symbolic representation, hierar-
chical compositionality, and meaning constraints).
Future advancements in NLP will require insights
from cognitive science, linguistics, and neurosym-
bolic models, rather than relying solely on scaling
laws derived from statistical physics.

However, as the size of data grows, neurosym-
bolic systems encounter bottlenecks in processing
speed and memory usage, limiting their effective-
ness in real-time applications or large-scale mod-
els. Moreover, symbolic reasoning can become un-
wieldy when faced with ambiguous, contradictory,
or incomplete data, conditions that are common-
place in natural language. Despite recent advance-
ments, the scalability of neurosymbolic models
remains a critical challenge (Hamilton et al., 2024),
and the models’ inability to efficiently handle the
vast amounts of unstructured data characteristic of
modern NLP tasks has hindered their broader use.
Until these issues are addressed, neurosymbolic
models are likely to remain a niche solution rather
than a mainstream approach in the NLP field.

3.1 The Limits of Memorization

LLMs do not generalize in the way that humans
do, rather, they approximate statistical distributions
over language. While human cognition, particu-
larly language acquisition, is influenced by statis-
tical regularities in the input we receive, humans



combine these patterns with context, experience,
and higher-order cognitive processes like theory of
mind, social cues, and world knowledge. This al-
lows humans to generalize beyond mere statistical
patterns, make inferences, and creatively use lan-
guage in ways that statistical distributions alone
cannot account for. In other words, while we
are sensitive to statistical distributions, our cogni-
tive processing involves interpreting these patterns
within a larger framework of meaning, intention,
and context. NLP models’ reliance on data-driven
pattern extraction allows them to mimic generaliza-
tion in-distribution, but it does not translate to true
conceptual flexibility. Studies show that when mod-
els encounter test distributions that significantly
deviate from training data, performance collapses.
(Bommasani et al., 2021) This suggests that scaling
primarily enhances memorization and interpolation,
rather than fostering genuine abstraction.

3.2 Insufficient Models of Human Memory

Long short-term memory (LSTM) networks and
other neural networks used in NLP (Sherstinsky,
2020) are modeled after human memory and learn-
ing, attributing the flow of information to artifi-
cial neurons, memory cells, gates, and connections.
These models are designed to capture sequential
dependencies and learn patterns over time, mim-
icking certain aspects of human memory. However,
this biologically-inspired approach oversimplifies
the complexities of actual human memory. Human
memory is not solely governed by neuronal firing,
but is also influenced by a wide range of other fac-
tors, including the biological, environmental, and
psychological context in which memory is formed
and recalled.

One important factor that current NLP models
overlook is synaptic plasticity (Abraham and Bear,
1996), a fundamental process in the brain that un-
derpins learning and memory. Synaptic plastic-
ity refers to the ability of synapses to strengthen
or weaken over time, in response to increases or
decreases in their activity. This process plays a
critical role in memory formation and recall in hu-
mans, allowing the brain to adapt and reconfigure
its connections based on experiences. Only a very
limited body of research addresses the similarities
between learning dynamics employed in deep ar-
tificial neural networks and synaptic plasticity in
spiking neural networks (Kaiser et al., 2020), and
an even smaller looks to connect this to the net-
work architectures employed in NLP. In contrast,

most NLP models, including LSTMs, focus solely
on the flow of information through artificial neu-
rons, neglecting the broader, dynamic processes
that contribute to memory in biological systems.
Without considering these additional factors, neu-
ral networks in NLP are limited in their ability to
fully replicate the richness and flexibility of human
memory.

3.3 Failures in Compositional and Systematic
Generalization

Humans can seamlessly compose known concepts
in novel ways, a property essential for linguistic cre-
ativity and reasoning. Yet, even the largest LLMs
struggle with:

* Compositional Generalization: Models
trained on simple phrase structures often
fail to generalize those structures to novel
contexts, as seen in tasks like SCAN (Lake
and Baroni, 2018) and COGS (Kim and
Linzen, 2020).

* Systematicity: The ability to apply learned
rules consistently across linguistic contexts
remains weak, leading to unpredictable per-
formance in unseen but structurally related
tasks.

3.4 Lack of Robust Causal Reasoning

Human cognition relies heavily on causal inference
rather than surface-level correlations. NLP mod-
els, on the other hand, remain trapped in statistical
association. Even when fine-tuned on causal rea-
soning datasets, LLMs often default to heuristics
based on co-occurrence rather than grasping the
underlying causal mechanisms. (Wang et al., 2023)
This limitation renders them unreliable for applica-
tions requiring counterfactual reasoning and logical
inference.

3.5 Semantic Drift and Fragility

Another overlooked consequence of scaling is se-
mantic drift, where models exhibit inconsistencies
in meaning representation over time. Unlike hu-
mans, who can dynamically refine and stabilize
meanings based on experience and context, LLMs
often demonstrate erratic shifts in word interpreta-
tions when probed under different conditions. This
fragility exposes the shallow nature of their linguis-
tic generalization.



3.6 The Illusion of Scaling as a Silver Bullet

The belief that simply making models larger
and feeding them more data will eventually
yield human-like generalization is deeply flawed.
While scaling improves performance on benchmark
datasets, it does not address the fundamental de-
ficiencies outlined above. If true intelligence re-
quired only more data and more parameters, then
insects, whose neural systems are vastly smaller
than deep learning models, would be incapable of
intelligent behavior. Yet, even with limited neural
resources, biological organisms exhibit remarkable
adaptability and conceptual understanding far be-
yond what LLMs can achieve.

In sum, scaling laws create an illusion of
progress while failing to address core limitations in
abstraction, compositionality, and causal inference.
To move beyond the current paradigm, NLP re-
search must embrace alternative evaluation frame-
works that prioritize conceptual flexibility, sys-
tematic reasoning, and human-like generalization
mechanisms over mere statistical pattern-matching.

4 Toward a Better Evaluation Framework

If scaling alone does not ensure true generalization,
how should we redefine the problem? We propose
a cognitive-science-inspired approach to evaluating
NLP models, incorporating:

1. Conceptual Integration Tasks: Instead of rely-
ing on predefined taxonomies, models should
be tested on their ability to form novel con-
ceptual categories. In human cognition, con-
ceptual integration is a general cognitive op-
eration on a par with analogy, recursion, men-
tal modeling, conceptual categorization, and
framing (Fauconnier and Turner, 1998) that al-
lows individuals to merge disparate concepts
into a coherent framework and NLP models
should be evaluated on their ability to do the
same.

2. Compositional and Systematic Reasoning:
Humans can generalize by systematically re-
combining known components in novel ways,
a property essential for linguistic creativity.
This uniquely human cognitive operation al-
lows for flexible adaptation to novel situations
by applying learned rules and concepts in
a structured, predictable manner. It is not
just about rote application of patterns, but

rather about dynamically building new con-
ceptual relationships based on context and
prior knowledge. This form of reasoning un-
derpins advanced cognitive functions such as
language, mathematics, and higher-order plan-
ning. Models should be assessed through
tasks that require genuine productivity, such
as forming and understanding entirely new
idioms or metaphors rather than memorizing
frequent n-grams.

. Causal and Counterfactual Testing: Unlike

mere correlation-based inference, human cog-
nition relies on understanding causal relation-
ships. Future NLP benchmarks should include
counterfactual reasoning challenges where
models must infer the implications of an event
based on causal structures, rather than relying
on statistical co-occurrence.

. Cross-Population Generalizability: A true

measure of generalization is how well mod-
els adapt to linguistic and cognitive diversity.
Benchmarks should include language varia-
tion across demographics, dialects, and cul-
tural contexts to test whether models exhibit
human-like adaptability rather than overfitting
to dominant linguistic norms.

. Grounding in Embodied Experience: Unlike

statistical models, human cognition is deeply
grounded in perceptual and sensorimotor ex-
periences. While NLP models lack direct
physical grounding, we should develop bench-
marks that require grounding via multimodal
learning, integrating textual, visual, and au-
ditory inputs in a way that mimics human
sensory-driven understanding.

Grounded cognition theories emphasize un-
derstanding concepts through sensory, motor,
and emotional interactions with the physical
world (Barsalou, 2008), whereas LLMs rely
solely on patterns in linguistic (and, more re-
cently, multimodal) data. While LL.Ms can
simulate grounded cognition by generating
descriptions of sensory or embodied experi-
ences (Zhong et al., 2024), these outputs are
still based on statistical correlations within
text rather than direct perceptual grounding.
Multimodal models incorporating visual or
auditory data provide a step toward bridging
this gap, but the grounding remains indirect.
Similarly, embodied Al systems that integrate



LLMs with sensors and actuators offer po-
tential for grounded understanding, but that
grounding still would reside in the broader
system, not the LLM itself.

5 Addressing the Illusion of
Understanding: Our Responsibility as
NLP Researchers

The illusion of understanding perpetuated by NLP
models, neurosymbolic or otherwise, poses a sig-
nificant danger to the general public. As these tech-
nologies increasingly permeate everyday life, the
public often equates Al’s ability to generate coher-
ent responses with true comprehension or reason-
ing. This misperception leads to dangerous over-
confidence, where individuals and organizations
place undue trust in Al systems for tasks that de-
mand deep understanding, ethical decision-making,
or complex judgment. In high-stakes fields like
healthcare, law, and education, this misguided trust
can result in profound consequences, including the
amplification of biases, the propagation of misin-
formation, and the undermining of critical human
decision-making. The gap between the perceived
and actual capabilities of these models is widen-
ing, and it is crucial for researchers in NLP to take
immediate and decisive action to address this issue.

The onus is squarely on the NLP community to
clarify, educate, and communicate the limitations
of these systems to the public. Researchers must
be transparent about what current Al technologies
can and, more importantly, cannot do, highlighting
the distinction between machine pattern recogni-
tion and genuine human understanding. Failing
to take responsibility for this clarification not only
risks the misuse and misapplication of these tech-
nologies but also perpetuates a dangerous cycle of
misinformation and misplaced trust that can harm
society on a large scale. It is imperative that the
field confronts this issue head-on, ensuring that the
public is fully aware of the limits of current tech-
nologies before these systems are entrusted with
decisions that affect lives.

Importantly, it is imperative that the aforemen-
tioned distinction is maintained and emphasized,
especially when we still refer to the field as NLP,
natural language processing, whereas other param-
eterized aspects of cognition are clearly delineated
by their synthetic and data-driven nature, such as
computer vision or machine learning. We do not
conflate computer vision as being the same as bio-

logical vision, or machine learning to be the same
process as human learning, even though the capa-
bilities of computational perceptualities like ma-
chine vision are more human-like in performance,
complexity, and theoretical underpinnings. The
language we use as researchers contributes to the
public’s understanding of concepts, and the words
we use to label things can influence how they are
perceived. Blurring critical distinctions with im-
precise language reinforces misconceptions about
human intelligence, machine behavior, and text an-
alytics as three independent disciplines.

6 Conclusion

The NLP community stands at a crossroads. The
rapid expansion of model size and training data has
fueled a narrative of progress, but this progress is
largely an illusion when it comes to genuine gener-
alization. Scaling alone does not produce models
that reason, integrate concepts, or systematically
extend knowledge beyond their training data. In-
stead, it perpetuates the brittle successes of statisti-
cal pattern-matching, masking fundamental weak-
nesses that become apparent in out-of-distribution
settings.

If NLP is to move beyond the superficial trap-
pings of intelligence, the field must undergo a
paradigmatic shift. We must abandon the notion
that performance on existing benchmarks equates
to human-like cognition and instead develop evalu-
ation frameworks that capture the hallmarks of true
conceptual understanding. This means embracing
benchmarks that prioritize systematicity, composi-
tionality, conceptual integration, and causal reason-
ing, rather than those that reward mere statistical
approximation.

The illusion of generalization is dangerous not
only because it misrepresents what these models
can do, but because it shapes the direction of re-
search and the application of NLP technologies in
real-world settings. The risk is not just academic,
but has profound ethical and societal implications.
Models that fail to generalize robustly propagate bi-
ases, misinterpret linguistic nuances, and reinforce
systemic errors at scale. If we do not rethink our
approach now, we risk entrenching systems that
fail when it matters most.

The challenge before us is not one of mere scale,
but of fundamental reevaluation. Generalization
must mean more than predictive accuracy and must
reflect the flexible, adaptive, and compositional



nature of human cognition. Without this shift, NLP
will continue to chase the mirage of intelligence,
never reaching the oasis of true understanding.

Limitations

While this paper critiques the illusion of general-
ization in NLP and proposes a cognitive-science-
inspired evaluation framework, several limitations
must be acknowledged. First, the proposed bench-
marks, while theoretically motivated, require sig-
nificant interdisciplinary collaboration to imple-
ment effectively. Cognitive science and NLP re-
searchers must work together to design tests that
are both empirically rigorous and practically fea-
sible. Second, current large-scale models are opti-
mized for efficiency, and introducing cognitively in-
spired benchmarks may require more computation-
ally intensive testing procedures, posing scalability
concerns. Third, there remains an open question
of whether models, even with improved evaluation
frameworks, can ever achieve human-like abstrac-
tion without fundamentally different architectures.
Finally, this paper focuses on linguistic generaliza-
tion but does not address broader Al capabilities,
such as embodied cognition and interaction, which
may be necessary for deeper intelligence.
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