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Abstract001

Despite the rapid advances in natural language002
processing (NLP) driven by large-scale neural003
models, the claim that these models achieve004
true generalization remains questionable. This005
paper argues that the current paradigm of scal-006
ing laws in which larger models appear to per-007
form better does not equate to genuine con-008
ceptual generalization. Instead, models opti-009
mize for memorization of latent statistical pat-010
terns, leading to overestimated generalization011
capabilities. We critique existing evaluation012
methodologies, highlight failures in systematic013
out-of-distribution (OOD) reasoning, and pro-014
pose an approach inspired by cognitive science015
to benchmarking generalization.016

1 Introduction017

NLP research is at an inflection point. The impres-018

sive performance of large-scale models has led to019

a prevailing narrative that increasing model size020

and training data leads to more human-like lin-021

guistic capabilities. But this assumption that rests022

upon scaling laws as a proxy for intelligence is fun-023

damentally flawed. It confuses statistical pattern-024

matching with true generalization, conflates in-025

terpolation with conceptual abstraction, and ul-026

timately propagates an illusion of understanding027

rather than a meaningful grasp of language.028

Human cognition does not operate on the sheer029

brute-force recognition of patterns. Instead, it is030

marked by the ability to generalize across domains,031

integrate concepts in novel ways, and infer meaning032

from minimal data. This capacity for conceptual033

flexibility allows humans to extrapolate beyond034

their experiences, making sense of entirely new035

constructs without requiring millions of training036

examples. Large language models (LLMs), despite037

their scale, lack this core cognitive ability. Their so-038

called "generalization" is often little more than the039

ability to retrieve and recombine learned statistical040

regularities which we see crumbles when faced041

with truly novel linguistic structures or shifts in 042

meaning. 043

If generalization is to be more than an illusory 044

benchmark, we must radically rethink how we de- 045

fine and evaluate it. This paper critiques the illu- 046

sion of generalization in NLP and argues that a 047

paradigm shift is necessary: one that prioritizes 048

systematicity, compositionality, and conceptual in- 049

tegration over raw scaling power. Without such 050

a shift, the field risks mistaking the shadows of 051

intelligence for intelligence itself. 052

2 The Limits of Current Generalization 053

Metrics 054

Most generalization claims in NLP stem from per- 055

formance on standard benchmarks, yet these bench- 056

marks often fail to capture meaningful OOD rea- 057

soning. Common datasets, such as GLUE (Wang, 058

2018), SuperGLUE (Wang et al., 2019), GLUE-X 059

(Yang et al., 2022), and multilingual benchmarks 060

(Kakwani et al., 2020), rely on splits that main- 061

tain high degrees of overlap between training and 062

test distributions. Even when adversarial datasets, 063

like AdvGlue (Wang et al., 2021), attempt to probe 064

robustness, models still succeed through pattern 065

exploitation rather than conceptual understanding. 066

Consider the following key failures of existing gen- 067

eralization metrics: 068

1. IID Assumptions: Most benchmarks split data 069

randomly (Arp et al., 2022), leading to train- 070

test leakage of latent patterns that models can 071

exploit. 072

2. Spurious Correlations: Large models pick up 073

on statistical artifacts rather than underlying 074

linguistic principles (Tu et al., 2020), perform- 075

ing well on benchmarks while failing in real- 076

world, structurally different cases. 077

3. Lack of True Compositionality Tests: Human 078

cognition allows for productive compositional 079
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generalization, the ability to combine known080

concepts in novel ways, but models struggle081

with systematicity and recombination.082

3 Why Scaling Does Not Solve the083

Problem084

The success of large-scale models is often at-085

tributed to their ability to absorb vast amounts086

of data and identify complex correlations. How-087

ever, this brute-force approach does not address088

deeper challenges of conceptual generalization.089

While scaling improves interpolation within the090

training distribution, it does not guarantee system-091

atic extrapolation to unseen structures. Scaling092

laws, which suggest that performance improves093

predictably as models grow, have become a domi-094

nant narrative in NLP. Yet, this narrative conceals095

fundamental failures in systematic reasoning, ab-096

straction, and robust linguistic adaptability.097

Fundamentally, the scaling hypothesis from sta-098

tistical mechanics does not, and cannot, apply to099

language in the ways we aim for it. The scaling100

hypothesis in statistical mechanics describes how101

physical quantities, such as correlation length and102

specific heat, exhibit power-law behavior near criti-103

cal points. (Baxter, 2016) This framework assumes104

that key macroscopic properties emerge from un-105

derlying microscopic interactions in a way that is106

self-similar across scales. Such behavior is well-107

suited to physical systems because these systems108

obey fundamental conservation laws, operate un-109

der local interactions, and exhibit universal behav-110

ior near phase transitions. However, applying this111

same reasoning to language, which is an emergent112

faculty of human cognition, introduces fundamen-113

tal problems.114

Unlike physical systems, language is not gov-115

erned by simple statistical interactions but by com-116

plex, hierarchical, and context-dependent struc-117

tures. In statistical mechanics, increasing system118

size (e.g., more particles in a lattice model) pre-119

serves the same governing equations, leading to120

predictable scaling behaviors. In contrast, language121

acquisition and processing are shaped by concep-122

tual abstraction, communicative intent, and socio-123

cultural constraints, none of which follow simple124

power-law relationships. While scaling large lan-125

guage models improves performance on certain126

benchmarks, it does not imply that language un-127

derstanding itself is a function of model size in128

the same way that physical properties depend on129

system size.130

Moreover, in statistical mechanics, self- 131

similarity across scales arises because the same 132

fundamental interactions govern both small and 133

large-scale behavior. In cognition, however, 134

different scales involve qualitatively different 135

processes. Phonemes do not compose into words in 136

the same way that words compose into sentences, 137

and sentence-level meaning does not simply 138

emerge from statistical aggregation of words. 139

Human language is characterized by symbolic 140

structure, long-range dependencies, and non-local 141

meaning constraints, none of which are naturally 142

captured by statistical scaling laws. This is why 143

merely increasing model size does not necessarily 144

resolve core challenges in NLP, such as reasoning, 145

abstraction, or grounding in real-world perception. 146

Thus, while the scaling hypothesis provides a 147

powerful framework for understanding physical 148

phase transitions, its direct application to linguistic 149

cognition is problematic. The underlying mecha- 150

nisms of statistical physics (local interactions, en- 151

ergy minimization, and universality classes) are 152

fundamentally different from the principles that 153

govern language (symbolic representation, hierar- 154

chical compositionality, and meaning constraints). 155

Future advancements in NLP will require insights 156

from cognitive science, linguistics, and neurosym- 157

bolic models, rather than relying solely on scaling 158

laws derived from statistical physics. 159

However, as the size of data grows, neurosym- 160

bolic systems encounter bottlenecks in processing 161

speed and memory usage, limiting their effective- 162

ness in real-time applications or large-scale mod- 163

els. Moreover, symbolic reasoning can become un- 164

wieldy when faced with ambiguous, contradictory, 165

or incomplete data, conditions that are common- 166

place in natural language. Despite recent advance- 167

ments, the scalability of neurosymbolic models 168

remains a critical challenge (Hamilton et al., 2024), 169

and the models’ inability to efficiently handle the 170

vast amounts of unstructured data characteristic of 171

modern NLP tasks has hindered their broader use. 172

Until these issues are addressed, neurosymbolic 173

models are likely to remain a niche solution rather 174

than a mainstream approach in the NLP field. 175

3.1 The Limits of Memorization 176

LLMs do not generalize in the way that humans 177

do, rather, they approximate statistical distributions 178

over language. While human cognition, particu- 179

larly language acquisition, is influenced by statis- 180

tical regularities in the input we receive, humans 181
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combine these patterns with context, experience,182

and higher-order cognitive processes like theory of183

mind, social cues, and world knowledge. This al-184

lows humans to generalize beyond mere statistical185

patterns, make inferences, and creatively use lan-186

guage in ways that statistical distributions alone187

cannot account for. In other words, while we188

are sensitive to statistical distributions, our cogni-189

tive processing involves interpreting these patterns190

within a larger framework of meaning, intention,191

and context. NLP models’ reliance on data-driven192

pattern extraction allows them to mimic generaliza-193

tion in-distribution, but it does not translate to true194

conceptual flexibility. Studies show that when mod-195

els encounter test distributions that significantly196

deviate from training data, performance collapses.197

(Bommasani et al., 2021) This suggests that scaling198

primarily enhances memorization and interpolation,199

rather than fostering genuine abstraction.200

3.2 Insufficient Models of Human Memory201

Long short-term memory (LSTM) networks and202

other neural networks used in NLP (Sherstinsky,203

2020) are modeled after human memory and learn-204

ing, attributing the flow of information to artifi-205

cial neurons, memory cells, gates, and connections.206

These models are designed to capture sequential207

dependencies and learn patterns over time, mim-208

icking certain aspects of human memory. However,209

this biologically-inspired approach oversimplifies210

the complexities of actual human memory. Human211

memory is not solely governed by neuronal firing,212

but is also influenced by a wide range of other fac-213

tors, including the biological, environmental, and214

psychological context in which memory is formed215

and recalled.216

One important factor that current NLP models217

overlook is synaptic plasticity (Abraham and Bear,218

1996), a fundamental process in the brain that un-219

derpins learning and memory. Synaptic plastic-220

ity refers to the ability of synapses to strengthen221

or weaken over time, in response to increases or222

decreases in their activity. This process plays a223

critical role in memory formation and recall in hu-224

mans, allowing the brain to adapt and reconfigure225

its connections based on experiences. Only a very226

limited body of research addresses the similarities227

between learning dynamics employed in deep ar-228

tificial neural networks and synaptic plasticity in229

spiking neural networks (Kaiser et al., 2020), and230

an even smaller looks to connect this to the net-231

work architectures employed in NLP. In contrast,232

most NLP models, including LSTMs, focus solely 233

on the flow of information through artificial neu- 234

rons, neglecting the broader, dynamic processes 235

that contribute to memory in biological systems. 236

Without considering these additional factors, neu- 237

ral networks in NLP are limited in their ability to 238

fully replicate the richness and flexibility of human 239

memory. 240

3.3 Failures in Compositional and Systematic 241

Generalization 242

Humans can seamlessly compose known concepts 243

in novel ways, a property essential for linguistic cre- 244

ativity and reasoning. Yet, even the largest LLMs 245

struggle with: 246

• Compositional Generalization: Models 247

trained on simple phrase structures often 248

fail to generalize those structures to novel 249

contexts, as seen in tasks like SCAN (Lake 250

and Baroni, 2018) and COGS (Kim and 251

Linzen, 2020). 252

• Systematicity: The ability to apply learned 253

rules consistently across linguistic contexts 254

remains weak, leading to unpredictable per- 255

formance in unseen but structurally related 256

tasks. 257

3.4 Lack of Robust Causal Reasoning 258

Human cognition relies heavily on causal inference 259

rather than surface-level correlations. NLP mod- 260

els, on the other hand, remain trapped in statistical 261

association. Even when fine-tuned on causal rea- 262

soning datasets, LLMs often default to heuristics 263

based on co-occurrence rather than grasping the 264

underlying causal mechanisms. (Wang et al., 2023) 265

This limitation renders them unreliable for applica- 266

tions requiring counterfactual reasoning and logical 267

inference. 268

3.5 Semantic Drift and Fragility 269

Another overlooked consequence of scaling is se- 270

mantic drift, where models exhibit inconsistencies 271

in meaning representation over time. Unlike hu- 272

mans, who can dynamically refine and stabilize 273

meanings based on experience and context, LLMs 274

often demonstrate erratic shifts in word interpreta- 275

tions when probed under different conditions. This 276

fragility exposes the shallow nature of their linguis- 277

tic generalization. 278
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3.6 The Illusion of Scaling as a Silver Bullet279

The belief that simply making models larger280

and feeding them more data will eventually281

yield human-like generalization is deeply flawed.282

While scaling improves performance on benchmark283

datasets, it does not address the fundamental de-284

ficiencies outlined above. If true intelligence re-285

quired only more data and more parameters, then286

insects, whose neural systems are vastly smaller287

than deep learning models, would be incapable of288

intelligent behavior. Yet, even with limited neural289

resources, biological organisms exhibit remarkable290

adaptability and conceptual understanding far be-291

yond what LLMs can achieve.292

In sum, scaling laws create an illusion of293

progress while failing to address core limitations in294

abstraction, compositionality, and causal inference.295

To move beyond the current paradigm, NLP re-296

search must embrace alternative evaluation frame-297

works that prioritize conceptual flexibility, sys-298

tematic reasoning, and human-like generalization299

mechanisms over mere statistical pattern-matching.300

4 Toward a Better Evaluation Framework301

If scaling alone does not ensure true generalization,302

how should we redefine the problem? We propose303

a cognitive-science-inspired approach to evaluating304

NLP models, incorporating:305

1. Conceptual Integration Tasks: Instead of rely-306

ing on predefined taxonomies, models should307

be tested on their ability to form novel con-308

ceptual categories. In human cognition, con-309

ceptual integration is a general cognitive op-310

eration on a par with analogy, recursion, men-311

tal modeling, conceptual categorization, and312

framing (Fauconnier and Turner, 1998) that al-313

lows individuals to merge disparate concepts314

into a coherent framework and NLP models315

should be evaluated on their ability to do the316

same.317

2. Compositional and Systematic Reasoning:318

Humans can generalize by systematically re-319

combining known components in novel ways,320

a property essential for linguistic creativity.321

This uniquely human cognitive operation al-322

lows for flexible adaptation to novel situations323

by applying learned rules and concepts in324

a structured, predictable manner. It is not325

just about rote application of patterns, but326

rather about dynamically building new con- 327

ceptual relationships based on context and 328

prior knowledge. This form of reasoning un- 329

derpins advanced cognitive functions such as 330

language, mathematics, and higher-order plan- 331

ning. Models should be assessed through 332

tasks that require genuine productivity, such 333

as forming and understanding entirely new 334

idioms or metaphors rather than memorizing 335

frequent n-grams. 336

3. Causal and Counterfactual Testing: Unlike 337

mere correlation-based inference, human cog- 338

nition relies on understanding causal relation- 339

ships. Future NLP benchmarks should include 340

counterfactual reasoning challenges where 341

models must infer the implications of an event 342

based on causal structures, rather than relying 343

on statistical co-occurrence. 344

4. Cross-Population Generalizability: A true 345

measure of generalization is how well mod- 346

els adapt to linguistic and cognitive diversity. 347

Benchmarks should include language varia- 348

tion across demographics, dialects, and cul- 349

tural contexts to test whether models exhibit 350

human-like adaptability rather than overfitting 351

to dominant linguistic norms. 352

5. Grounding in Embodied Experience: Unlike 353

statistical models, human cognition is deeply 354

grounded in perceptual and sensorimotor ex- 355

periences. While NLP models lack direct 356

physical grounding, we should develop bench- 357

marks that require grounding via multimodal 358

learning, integrating textual, visual, and au- 359

ditory inputs in a way that mimics human 360

sensory-driven understanding. 361

Grounded cognition theories emphasize un- 362

derstanding concepts through sensory, motor, 363

and emotional interactions with the physical 364

world (Barsalou, 2008), whereas LLMs rely 365

solely on patterns in linguistic (and, more re- 366

cently, multimodal) data. While LLMs can 367

simulate grounded cognition by generating 368

descriptions of sensory or embodied experi- 369

ences (Zhong et al., 2024), these outputs are 370

still based on statistical correlations within 371

text rather than direct perceptual grounding. 372

Multimodal models incorporating visual or 373

auditory data provide a step toward bridging 374

this gap, but the grounding remains indirect. 375

Similarly, embodied AI systems that integrate 376
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LLMs with sensors and actuators offer po-377

tential for grounded understanding, but that378

grounding still would reside in the broader379

system, not the LLM itself.380

5 Addressing the Illusion of381

Understanding: Our Responsibility as382

NLP Researchers383

The illusion of understanding perpetuated by NLP384

models, neurosymbolic or otherwise, poses a sig-385

nificant danger to the general public. As these tech-386

nologies increasingly permeate everyday life, the387

public often equates AI’s ability to generate coher-388

ent responses with true comprehension or reason-389

ing. This misperception leads to dangerous over-390

confidence, where individuals and organizations391

place undue trust in AI systems for tasks that de-392

mand deep understanding, ethical decision-making,393

or complex judgment. In high-stakes fields like394

healthcare, law, and education, this misguided trust395

can result in profound consequences, including the396

amplification of biases, the propagation of misin-397

formation, and the undermining of critical human398

decision-making. The gap between the perceived399

and actual capabilities of these models is widen-400

ing, and it is crucial for researchers in NLP to take401

immediate and decisive action to address this issue.402

The onus is squarely on the NLP community to403

clarify, educate, and communicate the limitations404

of these systems to the public. Researchers must405

be transparent about what current AI technologies406

can and, more importantly, cannot do, highlighting407

the distinction between machine pattern recogni-408

tion and genuine human understanding. Failing409

to take responsibility for this clarification not only410

risks the misuse and misapplication of these tech-411

nologies but also perpetuates a dangerous cycle of412

misinformation and misplaced trust that can harm413

society on a large scale. It is imperative that the414

field confronts this issue head-on, ensuring that the415

public is fully aware of the limits of current tech-416

nologies before these systems are entrusted with417

decisions that affect lives.418

Importantly, it is imperative that the aforemen-419

tioned distinction is maintained and emphasized,420

especially when we still refer to the field as NLP,421

natural language processing, whereas other param-422

eterized aspects of cognition are clearly delineated423

by their synthetic and data-driven nature, such as424

computer vision or machine learning. We do not425

conflate computer vision as being the same as bio-426

logical vision, or machine learning to be the same 427

process as human learning, even though the capa- 428

bilities of computational perceptualities like ma- 429

chine vision are more human-like in performance, 430

complexity, and theoretical underpinnings. The 431

language we use as researchers contributes to the 432

public’s understanding of concepts, and the words 433

we use to label things can influence how they are 434

perceived. Blurring critical distinctions with im- 435

precise language reinforces misconceptions about 436

human intelligence, machine behavior, and text an- 437

alytics as three independent disciplines. 438

6 Conclusion 439

The NLP community stands at a crossroads. The 440

rapid expansion of model size and training data has 441

fueled a narrative of progress, but this progress is 442

largely an illusion when it comes to genuine gener- 443

alization. Scaling alone does not produce models 444

that reason, integrate concepts, or systematically 445

extend knowledge beyond their training data. In- 446

stead, it perpetuates the brittle successes of statisti- 447

cal pattern-matching, masking fundamental weak- 448

nesses that become apparent in out-of-distribution 449

settings. 450

If NLP is to move beyond the superficial trap- 451

pings of intelligence, the field must undergo a 452

paradigmatic shift. We must abandon the notion 453

that performance on existing benchmarks equates 454

to human-like cognition and instead develop evalu- 455

ation frameworks that capture the hallmarks of true 456

conceptual understanding. This means embracing 457

benchmarks that prioritize systematicity, composi- 458

tionality, conceptual integration, and causal reason- 459

ing, rather than those that reward mere statistical 460

approximation. 461

The illusion of generalization is dangerous not 462

only because it misrepresents what these models 463

can do, but because it shapes the direction of re- 464

search and the application of NLP technologies in 465

real-world settings. The risk is not just academic, 466

but has profound ethical and societal implications. 467

Models that fail to generalize robustly propagate bi- 468

ases, misinterpret linguistic nuances, and reinforce 469

systemic errors at scale. If we do not rethink our 470

approach now, we risk entrenching systems that 471

fail when it matters most. 472

The challenge before us is not one of mere scale, 473

but of fundamental reevaluation. Generalization 474

must mean more than predictive accuracy and must 475

reflect the flexible, adaptive, and compositional 476
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nature of human cognition. Without this shift, NLP477

will continue to chase the mirage of intelligence,478

never reaching the oasis of true understanding.479

Limitations480

While this paper critiques the illusion of general-481

ization in NLP and proposes a cognitive-science-482

inspired evaluation framework, several limitations483

must be acknowledged. First, the proposed bench-484

marks, while theoretically motivated, require sig-485

nificant interdisciplinary collaboration to imple-486

ment effectively. Cognitive science and NLP re-487

searchers must work together to design tests that488

are both empirically rigorous and practically fea-489

sible. Second, current large-scale models are opti-490

mized for efficiency, and introducing cognitively in-491

spired benchmarks may require more computation-492

ally intensive testing procedures, posing scalability493

concerns. Third, there remains an open question494

of whether models, even with improved evaluation495

frameworks, can ever achieve human-like abstrac-496

tion without fundamentally different architectures.497

Finally, this paper focuses on linguistic generaliza-498

tion but does not address broader AI capabilities,499

such as embodied cognition and interaction, which500

may be necessary for deeper intelligence.501

References502

Wickliffe C Abraham and Mark F Bear. 1996. Meta-503
plasticity: the plasticity of synaptic plasticity. Trends504
in neurosciences, 19(4):126–130.505

Daniel Arp, Erwin Quiring, Feargus Pendlebury,506
Alexander Warnecke, Fabio Pierazzi, Christian507
Wressnegger, Lorenzo Cavallaro, and Konrad Rieck.508
2022. Dos and don’ts of machine learning in com-509
puter security. In 31st USENIX Security Symposium510
(USENIX Security 22), pages 3971–3988.511

Lawrence W Barsalou. 2008. Grounded cognition.512
Annu. Rev. Psychol., 59(1):617–645.513

Rodney J Baxter. 2016. Exactly solved models in statis-514
tical mechanics. Elsevier.515

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,516
Russ Altman, Simran Arora, Sydney von Arx,517
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-518
lut, Emma Brunskill, et al. 2021. On the opportuni-519
ties and risks of foundation models. arXiv preprint520
arXiv:2108.07258.521

Gilles Fauconnier and Mark Turner. 1998. Conceptual522
integration networks. Cognitive science, 22(2):133–523
187.524

Kyle Hamilton, Aparna Nayak, Bojan Božić, and Luca 525
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