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ABSTRACT

On-policy MARL remains attractive under non-stationarity but typically relies on
a fixed entropy bonus that conflates useful exploration with stochastic fluctua-
tions from concurrently learning agents. We present Policy Entropy Manipulation
(PEM), a simple, drop-in alternative that treats entropy as a noisy measurement to
be denoised rather than uniformly maximized. PEM applies positive–negative mo-
mentum to entropy gradient to form a high-pass, variance-controlled signal that
preserves persistent exploratory trends while suppressing transient spikes. The
method integrates seamlessly with heterogeneous, permutation-based on-policy
algorithms, requires no critic or advantage changes, and uses a one-step warm
start that recovers the standard entropy objective before momentum takes effect.
Across benchmark tasks, PEM yields smoother and more stable learning curves,
and improves coordination under heterogeneous observation/action spaces, result-
ing in stronger generalization than conventional entropy-regularized baselines.
Our results indicate that noise-aware control of the entropy channel is an effec-
tive and principled way to stabilize exploration in cooperative MARL.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) is a paradigm in which multiple agents learn poli-
cies through decentralized decision-making within a shared interactive environment. It constitutes
a critical extension of the achievements of single-agent reinforcement learning to a broader spec-
trum of multi-agent domains. However, the simultaneous updates of each agent’s policy induce
non-stationarity by continuously shifting the underlying environmental distribution. When coupled
with the inherent complexities of Decentralized Partially Observable Markov Decision Processes
(Dec-POMDPs) (Oliehoek et al., 2016), this non-stationarity renders the joint pursuit of stable con-
vergence and efficient exploration particularly challenging.

To address these difficulties, on-policy updating method refines policies using data collected ex-
clusively under the current policy, thereby mitigating distribution shift and enabling the explicit
enforcement of constraints that guarantee policy improvement. Notably, Trust Region Policy Op-
timization (TRPO) (Schulman et al., 2015) and Proximal Policy Optimization (PPO) (Schulman
et al., 2017) exemplify this principle by constraining excessive policy updates through trust regions
or clipping ratios, which enhances training stability.

Although on-policy methods may suffer from inefficiency in terms of data reuse, they retain sub-
stantial value in MARL settings characterized by severe non-stationarity, as they preserve consis-
tency between the policy and the data distribution. The development of on-policy extensions for
MARL can broadly be categorized into three directions. First, independent PPO (IPPO) represents
a straightforward variant in which each agent independently applies PPO by estimating only a local
value function (De Witt et al., 2020). Second, on-policy methods in Centralized Training with De-
centralized Execution (CTDE) framework (Chen, 2020): approaches such as Multi-Agent Proximal
Policy Optimization (MAPPO) combine decentralized actors with a centralized critic to reduce vari-
ance induced by partial observability and inter-agent interactions, while employing techniques such
as generalized advantage estimation (GAE) and entropy regularization to promote effective explo-
ration (Yu et al., 2022). Third, trust-region adaptations to the multi-agent setting: methods such as
HATRPO (Shek et al., 2025) and HAPPO (Zhong et al., 2024) impose agent-wise Kullback–Leibler
(KL) constraints or clipping to theoretically guarantee monotonic improvement of the joint policy.
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In this paper, we focus on two key challenges: (i) policy entropy, while widely used for explo-
ration, is a noisy measurement that mixes beneficial exploratory signals with detrimental stochastic
fluctuations induced by non-stationarity; and (ii) heterogeneous-agent settings exacerbate this issue,
as agents operate with different observation and action spaces, making fixed entropy coefficients
unstable and hard to tune.

To address these challenges, we discuss the following:

• Policy Entropy Manipulation (PEM), a novel on-policy optimization method that replaces
raw entropy with a positive-negative momentum buffer of entropy increments. This mech-
anism suppresses high-frequency stochastic noise while preserving persistent policy explo-
ration.

• Integration of PEM into the on-policy reinforcement learning framework, showing that it
stabilizes training dynamics and improves coordination among multi-agents without addi-
tional critic modifications.

Extensive experiments across benchmark tasks demonstrate that PEM yields more stable learning
curves, reduces policy thrashing, and achieves stronger generalization compared to existing entropy-
regularized baselines.

2 RELATED WORK

Entropy Regularization in Policy Update. Entropy bonuses are a long-standing device for sta-
bilizing policy optimization and encouraging sufficient exploration. Early policy-gradient and ac-
tor–critic methods routinely add an entropy term to the policy objective to avoid premature collapse
to near-deterministic policies (Williams, 1992; Mnih et al., 2016). In PPO (Schulman et al., 2017),
this takes the form of maximizing a clipped surrogate objective augmented with an entropy bonus,
which empirically improves learning stability across a wide range of tasks. Subsequent analyses
study how entropy alters the optimization landscape and gradient signals, clarifying when and why
it improves performance (Ahmed et al., 2019). In multi-agent settings, MAPPO adopts the same
entropy-regularized policy update under centralized training with decentralized execution (Yu et al.,
2022). While these approaches treat all entropy as uniformly beneficial, they do not differentiate
between exploratory entropy and stochastic noise arising from non-stationarity.

Maximum Entropy Reinforcement Learning. Maximum entropy RL optimizes return plus an en-
tropy term as the objective, yielding policies that remain stochastic even at convergence and improv-
ing robustness and exploration (Ziebart et al., 2008; 2010). Soft actor–critic (SAC) implements this
paradigm with a soft policy iteration scheme and an automatic temperature adjustment that targets
a desired entropy level (Haarnoja et al., 2018). While max-ent methods provide strong guarantees
and sample efficiency in single-agent, off-policy regimes, directly transplanting them to cooperative
multi-agent on-policy PPO-style updates can be nontrivial due to coupled non-stationarity and the
need to coordinate exploration across agents. Our work is closer to on-policy MARL (e.g., MAPPO),
but differs by treating policy entropy as a noisy measurement that should be denoised before being
used to steer exploration, rather than always maximized.

Heterogeneous-Agent Reinforcement Learning. Most cooperative MARL methods assume ho-
mogeneous agents and rely on parameter sharing, which limits applicability when observation or
action spaces differ. While algorithms such as IPPO and MAPPO have shown strong empirical
performance (De Witt et al., 2020; Yu et al., 2022), they lack theoretical grounding in heteroge-
neous settings. Recently, Zhong et al. (2024) introduced the Heterogeneous-Agent Reinforcement
Learning (HARL) framework, which establishes a principled foundation for heterogeneous MARL.
Building on this framework, variants such as HAPPO (Zhong et al., 2024) and HATRPO (Kuba
et al., 2021) extend policy optimization to explicitly handle agent heterogeneity, yielding more sta-
ble and robust performance across diverse benchmarks. However, these methods continue to rely
on conventional entropy regularization, which treats all entropy as uniformly beneficial. In contrast,
our approach complements the HARL framework by denoising stochastic noise in policy entropy,
thereby enabling heterogeneous agents to coordinate exploration more effectively while avoiding
instability from spurious entropy fluctuations.
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3 PRELIMINARIES

3.1 PARTIALLY OBSERVABLE DYNAMIC ENVIRONMENT

At time step t, an agent i observes its state si and select an action ai ∈ Ai. After that, the agent
i generates its own trajectory τi, which could be shared to agents around it. The joint actions
of agents at = (a1t , · · · , aNt ) yield the new environment state s′ and immediate reward {rit}Ni=1
according to the transition probability T : S × A × S → [0, 1] and reward function S × A → R,
respectively, in which S andA are the state space and action space of system (i.e. S =

∏M
i=1 Si and

A =
∏M

i=1Ai). The main goal of each agent is to learn an optimal policy π∗ which can maximize
the expected return. To get the maximum return, reinforcement learning updates policy model to
reduce the loss as following on-policy optimization.

3.2 REVISITING ENTROPY REGULARIZATION IN ON-POLICY OPTIMIZATION

The overall policy update is obtained by maximizing a weighted combination of the surrogate ob-
jective and the entropy regularization term (Schulman et al., 2017; Yu et al., 2022; Zhong et al.,
2024):

Lπ(θ) = LCLIP(θ) + centropy L
entropy(θ) = LCLIP(θ) + centropy Et

[
H(πθ(· | ot))

]
(1)

where centropy is a coefficient controlling the strength of the entropy regularization and H(πθ) denotes
the entropy of the action distribution. centropy is determined as a hyperparameter. However, in
general environments, the mean and variance of H(πθ) can vary significantly across tasks, making
a fixed coefficient suboptimal and potentially leading to either excessive randomness or insufficient
exploration.

While Equation (1) stabilizes updates and encourages exploration, it does not distinguish between
useful exploratory entropy and detrimental stochastic noise in the policy distribution. Our work
addresses this limitation by explicitly denoising the stochastic noise of policy entropy to achieve
more robust optimization in multi-agent settings.

4 PROPOSED METHOD

We propose policy entropy manipulation (PEM), an on-policy optimization method for MARL that
replaces the raw entropy bonus with a positive-negative momentum of policy entropy. The key idea
is to interpret policy entropy as a noisy proxy for exploration. Rather than always maximizing it,
we high-pass filter its temporal variation so that the update uses the consistent component of explo-
ration while suppressing spurious fluctuations induced by non-stationarity. This connects to prior
work that explicitly controls stochastic gradient noise via momentum (Xie et al., 2021), and extends
entropy-regularized on-policy methods (MAPPO (Yu et al., 2022), HAPPO and HAA2C (Zhong
et al., 2024)).

4.1 IMPROVING GENERALIZATION WITH POSITIVE-NEGATIVE MOMENTUM UNDER
STOCHASTIC NOISE

Here, we draw inspiration from a long line of research on stochastic gradient descent (SGD) and
stochastic gradient noise (SGN), which has been extensively studied as a means to improve gener-
alization by controlling the stochastic noise component (Hochreiter & Schmidhuber, 1994; Mandt
et al., 2017; Smith et al., 2020; Xie et al., 2021). In particular, Xie et al. (2021) introduced Positive-
Negative Momentum (PNM), which maintains two approximately independent momentum terms
and combines them with positive and negative coefficients. This construction allows the variance of
stochastic gradient noise to be explicitly scaled by a factor depending on a tunable parameter. Let
Hi

t ≜ H
(
πi
θ(· | oit)

)
denote the (batch-averaged) entropy of agent i’s policy at iteration t. Stochastic

policy gradient follows:

∆Hi
t ≜ Hi

t −Hi
t−1 + ξit, Hi

−1 ≡ Hi
0 (2)

3
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where ξit indicates SGN. Referring to Xie et al. (2021), the key update rule can be expressed as{
m

(odd)
t =

∑
j=1,3,...,t(1− β)βt−j∆Hi

t

m
(even)
t =

∑
j=0,2,...,t−1(1− β)βt−j∆Hi

t

(3)

mi
t = (1− β)m

(odd)
t + β m

(even)
t , mi

0 ≡ 0, β < 0. (4)

where β is a momentum parameter m(odd)
t and m

(even)
t denote momentum terms updated from odd

and even iterations, respectively. The resulting variance of the stochastic noise satisfies

Var(ξ) ≈
[
(1 + β)2 + β2

]
σ2 (5)

demonstrating that the noise level can be increased or decreased by tuning β without altering the
expected gradient direction.

This perspective motivates our approach: if policy entropy in reinforcement learning can be regarded
as a noisy signal of stochastic exploration, then techniques inspired by momentum-based noise ma-
nipulation may provide a pathway to improve generalization performance. In particular, we view
the entropy regularization not as a uniformly beneficial signal but as a mixture of informative ex-
ploration and detrimental stochastic noise. By drawing on ideas from noise-aware momentum, we
aim to design mechanisms that disentangle and suppress the harmful component of entropy in policy
optimization.

Intuitively, mi
t tracks persistent trends in entropy while attenuating zero-mean noise. When the

environment and co-players are locally stationary, E[∆Hi
t ] ≈ 0, so mi

t decays; when coordinated
exploration ramps up (or collapses), mi

t responds smoothly without being dominated by transient
spikes.

4.2 REINFORCEMENT LEARNING OBJECTIVE WITH POLICY ENTROPY MANIPULATION

Let LCLIP(θ) be the standard clipped surrogate for the policy actor. Conventional entropy regulariza-
tion augments this with centropy Et[H

i
t ] (Equation. (1)). In the proposed PEM, after a one-step warm

start, we replace the raw entropy term with the momentum-denoised signal:

Warm start (t = 0): Lπ(θ) = LCLIP(θ) + centropy Ei[H
i
0], (6)

PEM (t ≥ 1): Lπ
PEM(θ) = LCLIP(θ) + Ei[m

i
t]. (7)

In practice, mi
t is computed from the current batch entropy; the update then backpropagates the loss

−(Lπ
PEM) (equivalently, policy loss −mi

t per the implementation) with optional gradient clipping.
Setting β=0 recovers a short-memory high-pass filter equal to ∆Hi

t , while omitting β entirely (or
treating t=0) reverts to the classical entropy bonus with coefficient centropy.

Why it helps. The momentum on ∆Hi
t acts as a variance controller on the entropy channel: it

damps high-frequency entropy fluctuations that are symptomatic of non-stationarity, while preserv-
ing low-frequency, coordinated shifts that represent useful exploration. This yields more stable actor
updates, improving generalization across heterogeneous agents and tasks.

4.3 MANIPULATION OF STOCHASTIC NOISE IN POLICY ENTROPY

We consider N heterogeneous agents with decentralized policies {πi
θi
(ai | oi)}Ni=1 and a cen-

tralized critic Vϕ(s). At timestep t, the joint action is at = (a1t , . . . , a
N
t ) with observations

ot = (o1t , . . . , o
N
t ), and Ât denotes an advantage estimate (e.g., GAE). Heterogeneous observa-

tion/action spaces are allowed; parameter sharing is not assumed.

Permutation-based surrogate. Following Zhong et al. (2024), we randomize the order of policy
updates using permutations σ ∈ SN . For i = σ(k), the incremental ratio is

r i;σ
t (θi) =

πi
θi
(ait | oit)

πi
θold

(ait | oit)
, (8)
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and the cumulative joint ratio up to position k is

R
(k;σ)
t (θσ(1:k)) =

k∏
j=1

π
σ(j)
θσ(j)

(a
σ(j)
t | oσ(j)t )

π
σ(j)
θold

(a
σ(j)
t | oσ(j)t )

. (9)

The clipped surrogate is then defined as

LCLIP
i|σ (θi) = Et

[
min

(
R

(k;σ)
t Ât, clip(R

(k;σ)
t , 1− ϵ, 1 + ϵ)Ât

)]
, (10)

and averaged over permutations σ.

Problem with policy entropy. The standard actor objective augments the surrogate with an en-
tropy bonus centropy Et[H(πi

θi
(·|oit))]. However, in heterogeneous MARL the entropy Hi

t varies
widely across agents and tasks. A fixed weight centropy can therefore induce either excessive ran-
domness or insufficient exploration. Moreover, Hi

t is itself a noisy signal under non-stationarity, so
blindly maximizing it amplifies stochastic fluctuations.

Positive–negative momentum for entropy denoising. To address this, we propose to replace the
raw entropy with a momentum-denoised variant. Let

∆Hi
t = Hi

t −Hi
t−1, Hi

−1 ≡ Hi
0. (11)

We construct odd- and even-indexed momentum buffers:

m
(odd),i
t =

∑
j≤t, j odd

(1− β)βt−j ∆Hi
j , m

(even),i
t =

∑
j≤t, j even

(1− β)βt−j ∆Hi
j , (12)

and combine them as

mi
t = (1 + β)m

(odd),i
t − β m

(even),i
t , mi

0 = 0, β ∈ [0, 1). (13)

This filter suppresses high-frequency noise in entropy increments while preserving their low-
frequency trend, providing a more stable exploration signal.

Denoised-entropy actor loss. With a one-step warm start (t = 0) we use the standard entropy
bonus:

Lπ(θ) = LCLIP(θ) + centropy Ei[H
i
0]. (14)

For t ≥ 1, we replace the entropy with the momentum-denoised term:

Lπ
PEM(θ) = LCLIP(θ) + Ei[m

i
t]. (15)

The actor parameters are updated by ascending Lπ
PEM(θ) with gradient clipping, while the critic

minimizes
J V (ϕ) = Et

[
(Vϕ(st)− V̂t)

2
]
. (16)

The overall objective is
min
θ,ϕ
J (θ, ϕ) = −Lπ

PEM(θ) + cv J V (ϕ). (17)

Heuristic Algorithms. Algorithm 1 summarizes the proposed PEM with positive–negative momen-
tum. The procedure begins with HAPPO-style permutation updates so that heterogeneous agents
can be optimized under decentralized policies without assuming parameter sharing. At the first
iteration (t=0), we employ the conventional entropy regularization term to warm-start the buffer,
ensuring that the update is not dominated by transient fluctuations. From t≥1, the entropy incre-
ment ∆Hi

t = Hi
t −Hi

t−1 is tracked with separate odd and even momentum buffers, which are then
combined using a positive–negative momentum rule. This construction suppresses high-frequency
noise while preserving low-frequency exploration trends, yielding a denoised entropy signal mi

t. The
actor objective replaces the raw entropy bonus with Ei[m

i
t], so that policy updates are guided by the

persistent component of exploration rather than spurious entropy spikes caused by non-stationarity.
The critic update remains unchanged. Overall, PEM acts as a variance controller on the exploration
channel, reducing instability and “thrashing” while enabling heterogeneous agents to coordinate
exploration more effectively.

5
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Algorithm 1 Policy Entropy Manipulation with Positive-Negative Momentum (PEM)
Require: Decentralized actors {πi

θi
}Ni=1, centralized critic Vϕ, clip ϵ, entropy coeff. centropy, mo-

mentum β ∈ [0, 1), epochs K, mini-batches M
0: Initialize θ, ϕ; set mi←0, Hi

prev←0 for all i
0: for iteration t = 0, 1, 2, . . . do
0: Collect on-policy trajectories with actors {πi

θi
}; compute advantages Ât (e.g., GAE)

0: for k = 1 to K do {PPO-style epochs}
0: for j = 1 to M do {mini-batches}
0: Sample a permutation σ ∈ SN ; let i = σ(k) denote the current agent in the permuted

order

0: Compute cumulative ratio R
(k;σ)
t =

∏k
u=1

π
σ(u)
θσ(u)

(a
σ(u)
t |oσ(u)

t )

π
σ(u)

θold
σ(u)

(a
σ(u)
t |oσ(u)

t )

0: Clipped surrogate: LCLIP(θ) = Et

[
min(R

(k;σ)
t Ât, clip(R

(k;σ)
t , 1− ϵ, 1 + ϵ)Ât)

]
0: Compute per-agent policy entropies Hi

t = H(πi
θi
(·|oit)) (masked means if needed)

0: if t = 0 then {Warm start}
0: Lπ(θ)← LCLIP(θ) + centropy Ei[H

i
t ]

0: else
0: ∆Hi

t ← Hi
t −Hi

prev for all i
0: Update odd/even buffers:

m
(odd),i
t ←

∑
u≤t, u odd(1− β)βt−u ∆Hi

u, m
(even),i
t ←

∑
u≤t, u even(1− β)βt−u ∆Hi

u

0: Combine (PNM): mi
t ← (1 + β)m

(odd),i
t − β m

(even),i
t

0: Lπ(θ)← LCLIP(θ) + Ei[m
i
t]

0: end if
0: Actor update: ascend Lπ(θ) with gradient clipping
0: Critic update: minimize J V (ϕ) = Et[(Vϕ(st)− V̂t)

2]
0: Hi

prev ← Hi
t for all i

0: end for
0: end for
0: θold ← θ
0: end for=0

5 EXPERIMENTS

This section details the environment, hardware configuration, training parameters, performance met-
rics, and evaluation methodology employed in our study. Code is available at https://github.
com/anonymous5281/per.git

5.1 ENVIRONMENT

We conduct experiments in two widely used multi-agent reinforcement learning benchmarks that
capture complementary aspects of cooperative decision-making: (1) the Multi-Agent Particle
Environment-v2 (MPEv2) via PettingZoo, (2) the StarCraft Multi-Agent Challenge v2 (SMACv2),
and (3) multi-agent search and rescue using AirSim (Shah et al., 2017). Frameworks instantiate
decentralized partially observable Markov decision processes (Dec-POMDPs), providing a con-
trolled yet challenging testbed for evaluating scalability, coordination, and robustness under non-
stationarity.

MPE. We use the simple reference v2 and simple spread v2 tasks. The former requires agents to
reach assigned targets via communication, while the latter demands cooperative landmark coverage
with collision avoidance. Agents observe relative positions and velocities, and act through low-
dimensional continuous control.

SMACv2. SMACv2 extends StarCraft II micromanagement with richer unit compositions and
stochasticity. Each agent controls a unit with partial observability, and the team must coordinate
to defeat opponents. This benchmark stresses large state spaces, heterogeneous behaviors, and tac-
tical cooperation.
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Table 1: Evaluation performance on Spread and Reference scenarios. We report final reward, mean
reward, and standard deviation (Std). PEM+HAPPO achieves the best performance in Spread, while
MAPPO dominates in Reference.

Spread Reference

Algorithm Final Mean Std Final Mean Std

MAPPO -76.95 -83.96 7.95 -8.88 -17.34 9.30
HAPPO -61.64 -71.73 10.85 -9.37 -20.24 10.04
PEM+HAPPO -59.78 -72.42 9.69 -9.17 -20.88 10.21
HAA2C -106.21 -104.72 4.99 -34.23 -38.58 4.16
PEM+HAA2C -102.58 -104.56 5.09 -30.61 -37.70 3.32
HATRPO -70.69 -74.61 8.72 -11.11 -23.89 9.95
MATD3 -61.08 -73.12 4.20 -9.54 13.39 3.42
HATD3 -63.72 -74.27 3.88 -9.21 -13.07 3.31

(a) Simple_spread task in MPE (b) Simple_reference in MPE

Figure 1: Evaluation curves on the Spread scenario. HAPPO significantly outperforms MAPPO,
while PEM+HAPPO achieves the best overall performance with improved stability and conver-
gence. In contrast, HAA2C lags far behind, and PEM only provides limited gains, underscoring the
importance of robust policy optimization methods in cooperative coordination tasks.

Search and Rescue. Multi-UAVs search and rescue environment, a classic control problem, sourced
from the Gymnasium reinforcement learning library. We implemented the PEM on MAPPO algo-
rithm, leveraging Ray RLlib Liang et al. (2018) framework for distributed training. For visualization
and simulation of environment, we exploited AirSim Shah et al. (2017) with Unreal Engine Epic
Games.

5.2 PERFORMANCE COMPARISON ON MPEV2

Simple Spread v2. In the Spread task, performance diverges across algorithm families as shown
in Figure 1(a). Among policy-gradient methods, HAPPO markedly outperforms MAPPO (–61.64
vs. –76.95 final reward). The introduction of PEM further enhances results, with PEM+HAPPO
achieving the best overall performance (–59.78) and stable learning dynamics. By contrast, HAA2C
performs poorly (–106.21), and PEM+HAA2C yields only marginal improvements (–102.58), con-
firming that simple actor–critic architectures are not competitive in this cooperative coordination
setting. HATRPO stabilizes training but remains behind PEM+HAPPO, while MATD3 and HATD3
exhibit intermediate performance with relatively stable but less competitive asymptotic rewards.

Simple Reference v2. In the Reference task as shown in Figure 1(b), MAPPO remains the top-
performing algorithm, with the best final reward (–8.88) and mean performance (–17.34). Both
HAPPO (–9.37) and PEM+HAPPO (–9.17) follow closely but do not surpass MAPPO. HAA2C
performs poorly (–34.23), though PEM offers some improvement (–30.61).

Among the extended baselines, HATRPO converges moderately (–11.11 final, mean –23.89), while
MATD3 (–9.54 final, mean –13.39) and HATD3 (–9.21 final, mean –13.07) achieve competitive
results close to MAPPO. Notably, MATD3/HATD3 exhibit low variance, suggesting stable conver-
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Table 2: Evaluation performance on Protoss 5v5 and Terran 5v5 with final reward, mean reward, and
standard deviation (Std). PEM improves both HAPPO and HAA2C, with environment-dependent
effects: incremental gains in Protoss, but substantial improvements in Terran.

Protoss 5v5 Terran 5v5

Algorithm Final Mean Std Final Mean Std

MAPPO 13.83 14.63 1.53 7.77 6.98 1.08
HAPPO 14.28 15.32 1.92 9.21 7.36 1.12
PEM+HAPPO 17.07 15.49 1.88 13.20 13.14 2.15
HAA2C 15.58 13.48 1.79 9.27 9.98 1.59
PEM+HAA2C 16.84 14.26 1.87 11.95 11.91 1.64

(a) Protoss 5 vs 5 in SMACv2 (b) Terran 5 vs 5 in SMACv2

Figure 2: Evaluation curves on (a) Protoss 5v5 and (b) Terran 5v5. In Protoss, PEM yields moderate
gains, with PEM+HAPPO and PEM+HAA2C achieving the best performance. In Terran, PEM is
crucial, as PEM+HAPPO and PEM+HAA2C substantially outperform their baselines and MAPPO,
highlighting environment-dependent effects of PEM.

gence. These findings confirm that centralized critics (MAPPO) and off-policy actor–critic exten-
sions (MATD3/HATD3) are particularly effective for Simple Reference task.

5.3 PERFORMANCE COMPARISON ON SMACV2

We reports the evaluation performance of MAPPO (Yu et al., 2022), HAPPO (Zhong et al., 2024)
and HAA2C (Zhong et al., 2024), and the proposed PEM in terms of average episode rewards in
evaluation procedure. The learning curves are averaged over evaluation checkpoints, and Table 2
summarizes final and mean performance.

Protoss 5 vs 5. Figure 2(a) compares five algorithms on the Protoss 5v5 task. HAPPO achieves
stronger performance than MAPPO, reaching a higher final reward (14.28 vs. 13.83). Incorporating
PEM yields consistent improvements: PEM+HAPPO attains the best final reward of 17.07, exceed-
ing MAPPO and vanilla HAPPO by +3.2 and +2.8, respectively, while also improving the mean
performance. Similarly, PEM+HAA2C (16.84 final) surpasses its baseline HAA2C (15.58), though
the margin is less pronounced.

Terran 5 vs 5. Figure 2(b) shows the Terran results show a different pattern. PEM+HAPPO achieves
the highest final reward (13.20), clearly outperforming both HAPPO (9.21) and MAPPO (7.77).
Similarly, PEM+HAA2C (11.95) surpasses its baseline HAA2C (9.27). Unlike in Protoss, where
PEM provided incremental improvements, in Terran PEM is crucial for achieving strong perfor-
mance, especially when combined with HAPPO. This suggests that PEM’s effect is environment-
dependent, yielding significant gains in Terran where baseline algorithms struggle to converge to
high rewards.
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Figure 3: Performance comparison of PEM+MAPPO with MAPPO, MASAC, DDQN, and QMIX
in search and rescue environment.

5.4 PERFORMANCE COMPARISON ON SEARCH AND RESCUE

In this experiment, we compare continuous and discrete action spaces against standard baselines.
For continuous control, we evaluate MAPPO Yu et al. (2022), which extends PPO to multi-agent
settings with a centralized critic, and MASAC Lowe et al. (2017), an off-policy maximum entropy
method designed for stable and sample-efficient learning. For discrete control, we consider DAD-
DQN Van Hasselt et al. (2016) and QMIX Rashid et al. (2020), where QMIX employs a monotonic
mixing network for consistent credit assignment.

Configurations. All algorithms, including our method, were trained for 200M timesteps with hy-
perparameters largely following prior work Yu et al. (2022); Lowe et al. (2017); Van Hasselt et al.
(2016); Rashid et al. (2020).

Result. Figure 3 presents the comparative performance of our proposed EFARL algorithm against
several baseline MARL methods, evaluated over 200 million training timesteps. The performance
is quantified by the normalized return, where a higher value indicates better performance.

Figure 3(a) illustrates the learning curves for algorithms operating in a continuous action space:
PEM+MAPPO, MAPPO, and MASAC. Our proposed PEM method demonstrates a robust and
stable learning trajectory, achieving the highest normalized return which consistently stays above
0.8 after 120 million timesteps. In contrast, while MAPPO exhibits rapid initial learning, its per-
formance is marked by high variance and significant oscillations throughout the training process.
MASAC shows a more stable learning progression than MAPPO but converges to a suboptimal
normalized return of approximately 0.65. This result highlights PEM’s superior stability and con-
vergence performance in complex continuous control environments.

Figure 3(b) displays the results for the discrete action space, comparing PEM+MAPPO against
DDQN and QMIX. Similar to the continuous setting, PEM achieves the most favorable outcome,
reaching a stable normalized return of approximately 0.75 by the 120 million timestep mark. DDQN
demonstrates steady learning, gradually improving its performance over time and eventually sur-
passing QMIX, reaching a return of nearly 0.7 by the end of the training. Conversely, QMIX suffers
from significant learning instability; after an initial phase, its performance degrades and remains
erratic, ultimately converging to the lowest return among the discrete-action methods.

6 CONCLUSION

We introduced Policy Entropy Manipulation (PEM), an on-policy optimization method that denoises
entropy signals via positive–negative momentum. By filtering out high-frequency noise while pre-
serving consistent exploration, PEM stabilizes training and improves coordination in heterogeneous
multi-agent settings. Experiments on MPEv2, SMACv2, and a multi-agent search-and-rescue task
demonstrate that PEM yields smoother learning curves, stronger asymptotic performance, and better
generalization than conventional entropy-regularized baselines.
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